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The periastron shift and the Lense-Thirring effect of bound orbital motion in a general axially

symmetric space-time given by Plebański and Demiański are analyzed. We also define a measure for

the conicity of the orbit and give analytic expressions for the observables in terms of hyperelliptic

integrals and Lauricella’s FD function. For an interpretation of these analytical expressions, we perform a

post-Schwarzschild and a post-Newton expansion of these quantities. This clearly shows the influence of

the different space-time parameters on the considered observables and allows one to characterize Kerr,

Taub-NUT, Schwarzschild–de Sitter, or other space-times.
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I. INTRODUCTION

Axially symmetric vacuum solutions of the Einstein
field equations are used to describe a wide range of black
holes appearing in the Universe. The most prominent of
these solutions is the Kerr space-time [1], which describes
an axially symmetric rotating black hole. Generalizations
of these are the charged Kerr-Newman black holes, the
Kerr–de Sitter space-time which incorporates a nonvanish-
ing cosmological constant, the Kerr-Taub-NUT space-time
which includes the NUT charge, or some combination of
these. All these space-times can be seen as special cases of
the family of electrovac space-times of Petrov type D given
by the Plebański-Demiański class of solutions [2]. They
are characterized by seven parameters: the mass, the rota-
tion around the symmetry axis, the electric and magnetic
charge, the NUT charge, the cosmological constant, and
the acceleration of the gravitating source.

Shortly after the introduction of general relativity,
Einstein found that for every revolution of a planetary orbit
the point of the shortest distance between particle and
central object, the periapsis, is shifted in the direction of
rotation of the test particle [3]. Indeed, the explanation of
the anomalous shift of Mercury’s perihelion, together with
the observation of light deflection, constituted the break-
through of general relativity. Already in 1918, Lense and
Thirring found that bound orbital motion around an axially
symmetric rotating black hole is perturbed not only com-
pared to the Newtonian case but also to the nonrotating
case [4]. The rotation of the central object causes an addi-
tional shift of the periapsis and a precession of the orbital
plane. For the more exotic Taub-NUT space-time Misner
and Taub [5] showed that the geodesic motion takes place

on a cone which, if slit open and flattened, defines the
orbital plane as it would be for vanishing NUT charge.
These three examples show that the parameters of the
space-time affect the observables of bound orbital motion
and that in turn these observables may be used to character-
ize a space-time. In this paper we will investigate these
orbital effects starting from the general Plebański-
Demiański space-time with vanishing acceleration of the
gravitating source.
The only way to get access to these characteristics of

black holes is through the orbits of particles and light
around these black holes. They are given as solutions of
the geodesic equation describing the motion of test parti-
cles and light rays in a given space-time. For a thorough
investigation of the physical properties of orbits analytical
solutions of the geodesic equation are most useful.
Hagihara [6] was the first to find an analytical solution of
the geodesic equation in Schwarzschild space-times
using elliptic functions. He also classified all possible types
of orbits in terms of the energy and the angular momentum
of the test particle. The complete set of solutions for
charged particle motion in Reissner-Nordström space-
times has been presented only recently by Grunau and
Kagramanova [7]. Shortly after the discovery of the Kerr
solution in 1963 [1], a number of authors studied the
geodesic motion in this space-time. Their results were
reviewed and extended by Chandrasekhar [8]. A treatise
of the geodesics in Kerr space-time of the same complete-
ness as [6] was given only recently by Slezáková [9] and
for the motion of charged particles in Kerr-Newman space-
times by Xu [10]. Geodesics in even more complicated
space-times like the one incorporated in the Plebański-
Demiański space-time are beyond the methods introduced
by Hagihara. However, in 2008 a method has been
found to analytically integrate the geodesic equation in
Schwarzschild–de Sitter space-times using the theory of
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hyperelliptic functions [11,12] and to classify all types of
possible orbits in terms of energy and angular momentum
of the particles as well as the cosmological constant. This
approach was then used to find solutions of the geodesic
equations in general Plebański-Demiański space-times
with vanishing acceleration of the gravitating source [13]
and of some special cases [14,15].

Bound stable orbits far away from the black hole are not
very different from Newtonian orbits but in the vicinity of
the black holes they exhibit some peculiar features. These
are caused by mismatches between the periodicities of the
radial, polar, and azimuthal motion, which are all equal to
2� in the Keplerian case but may differ greatly near black
holes. A systematic approach to handle these different
periodicities for Kerr space-time was worked out by
Schmidt [16] and continued by Drasco and Hughes [17]
using a technique for decoupling the radial and polar
motion suggested by Mino [18]. They showed that arbi-
trary functions of Kerr black hole orbits can be described in
the frequency domain and how these expansions may be
computed explicitly. Later, Fujita and Hikida [19] derived
analytical expressions for the frequencies of radial, polar,
and azimuthal motion in Kerr space-time and also for
bound timelike orbits in Kerr space-time.

In this paper, we will find analytic expressions of the
fundamental frequencies defined by Schmidt [16], Drasco
and Hughes [17], as well as Fujita and Hikida [19] for the
general Plebański-Demiański space-time with vanishing
acceleration of the gravitating source. We will then inves-
tigate how these frequencies are influenced by the parame-
ters of the black hole. To this end, we expand the analytic
expression in terms of the parameters in a Taylor series up
to first order. This clearly shows the influence of different
parameters on the orbits of the black hole and leads to
conclusions about which kinds of orbits may belong to a
given black hole.

The paper is organized as follows. In Sec. II, we review
the equations of motion in Plebański-Demiański space-
times decoupled by the method introduced by Mino.
These equations are then used in Sec. III to define the
fundamental frequencies and observables for Plebański-
Demiański space-time following closely the arguments
of Fujita and Hikida. All necessary quantities in
Schwarzschild space-time as well as their post-Newtonian
expansions are computed in Sec. IV. These quantities will
serve as a reference for the comparison with more compli-
cated space-times later on. Section V is the most technical
one, where the linear correction to the fundamental frequen-
cies are computed. These corrections are given in terms of
elementary function or in terms of complete Jacobian ellip-
tic integrals. In Sec. VI we use these results to compute the
post-Schwarzschild and post-Newtonian corrections to the
periastron shift, the Lense-Thirring effect, and the conicity
and compare them to earlier results. A discussion and
outlook closes the paper.

II. GEODESIC MOTION IN
PLEBAŃSKI-DEMIAŃSKI SPACE-TIME

The axially symmetric Plebański-Demiański space-
times are characterized by the seven parameters mass,
rotation, acceleration, cosmological constant, NUT pa-
rameter, electric charge, and magnetic charge. It can be
shown that the Hamilton-Jacobi equation for these space-
times is separable and the geodesic equation integrable, if
and only if the acceleration vanishes or null geodesics are
considered. In this paper we will consider the case of
geodesic motion of massive test particles in a Plebański-
Demiański space-time with vanishing acceleration. We
will also assume that the test particles are neutral, i.e.
without electric or magnetic charge.
The six-parameter Plebański-Demiański space-times

considered here are then given by the metric [2,20,21]
(we use units where c ¼ 1 ¼ G)

ds2=M2 ¼ �r

p2
ðdt� Ad’Þ2 � p2

�r

dr2

���

p2
sin2�ðadt� Bd’Þ2 � p2

��

d�2; (1)

where p2 ¼ r2 þ ðn� a cos�Þ2, A ¼ asin2�þ 2n cos�,
B ¼ r2 þ a2 þ n2,

�r ¼ ðr2 þ a2 � n2Þð1��ðr2 þ 3n2ÞÞ
� 2rþQ2

e þQ2
m � 4�n2r2; (2)

�� ¼ 1þ a2�cos2�� 4�an cos�: (3)

Here a, the angular momentum per mass of the gravitating
source, the NUT parameter n, the electric charge Qe, and
the magnetic charge Qm as well as the coordinates r and t
are normalized with respect to M, where M is the mass of
the gravitating object. The dimensionless parameter �
denotes the cosmological constant divided by three and
normalized by multiplication with M2.
The equations of motion for massive test particles in

these space-times are given by�
dr

d�

�
2 ¼ PðrÞ2 ��rðr2 þ CÞ ¼: RðrÞ; (4)

�
d�

d�

�
2 ¼ ��ðC� ðn� a cos�Þ2Þ �Oð�Þ2

sin2�
¼: �ð�Þ; (5)

d’

d�
¼ a

�r

PðrÞ þ Oð�Þ
��sin

2�
¼: �ðr; �Þ; (6)

dt

d�
¼ r2 þ a2 þ n2

�r

PðrÞ þ asin2�þ 2n cos�

��sin
2�

Oð�Þ

¼: Tðr; �Þ; (7)

where
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PðrÞ ¼ ðr2 þ a2 þ n2ÞE� aL; (8)

Oð�Þ ¼ L� ðasin2�þ 2n cos�ÞE: (9)

The constants of motion E, L, and C have the mean-
ing of energy, angular momentum in direction of the
symmetry axes, and Carter constant, each per unit
mass. The two constants L and C are additionally nor-
malized by division by M and M2, respectively, such that
they are dimensionless. The affine parameter � is the
Mino time [18], also normalized to M, d� ¼ d�=ðMp2Þ
with the eigentime �. Note that R depends quadratically
on n, Qe, and Qm and that � does not depend on Qe

and Qm.
Equations (4)–(7) can be solved analytically [13,22,23].

However, in this paper we are interested in the periods of
the motion, which can be used to define observables related
to geodesic motion in these space-times.

III. OBSERVABLES FOR BOUND ORBITS

In Newtonian gravity bound geodesic motion is de-
scribed by a fixed ellipse defining the orbital plane. This
is no longer true in the framework of general relativity. In
the spherically symmetric Schwarzschild space-time, the
orbital plane remains fixed while the ellipse precesses
resulting in a periastron shift. In the axially symmetric
Kerr space-time additionally the orbital plane itself pre-
cesses what is known as the Lense-Thirring effect [24]. In
the more exotic Taub-NUT space-time the geodesic motion
of test particles does not lie in a plane at all but on a cone;
see e.g. [25].

The precession of the orbital ellipse and the orbital
plane is induced by mismatches of the periods of the
motion in the r and � coordinates compared to the aver-
age secular increase of the angle ’ about the symmetry
axes. These effects were discussed in the framework of a
Kerr space-time by Schmidt [16], Drasco and Hughes
[17], and Fujita and Hikida [19]. In the following sec-
tions, we will use the procedure in [19] to analyze the
first-order corrections to the periastron shift and the
Lense-Thirring effect due to the parameters a, n, and �.
(As Qe and Qm appear only quadratically, there are no
linear effects due to electric or magnetic charge on neutral
test particles.) Below we review their line of argument for
the convenience of the reader. In addition, we will char-
acterize the deviation from an orbital plane, the conicity,
due to the parameter n.

For bound orbits, the radial and polar components r and
� vary between a minimal and maximal value given by the
turning points dr

d� ¼ 0 and d�
d� ¼ 0. The periods �r of r and

�� of � with respect to the Mino time � are then defined by
a revolution from maximum to minimum and back to the
maximal value. This means that �r and �� are defined by
the smallest nonzero real value with rð�þ �rÞ ¼ rð�Þ and
�ð�þ ��Þ ¼ �ð�Þ giving

� r ¼
I
ar

drffiffiffiffiffiffiffiffiffi
RðrÞp ¼ 2

Z ra

rp

drffiffiffiffiffiffiffiffiffi
RðrÞp ; (10)

� � ¼
I
a�

d�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ¼ 2

Z �max

�min

d�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ; (11)

where rp is the periapsis and ra the apoapsis. In general

these are hyperelliptic integrals, which are a generalization
of elliptic integrals. [The closed integration path ar (a�)
refers to the integration on the Riemann surface of the
algebraic curve defined by y2 ¼ RðrÞ (y2 ¼ �ðcos�Þ). It
runs around the branch cut connecting rp and ra ( cos�min

and cos�max). On the Riemann surface the two branches of
the square root are glued to one analytic function.] From
these two periods conjugate fundamental frequencies can
be defined by

�r :¼ sgnL
2�

�r

; �� :¼ sgnL
2�

��

: (12)

The sign of L is included in this definition to indicate the
direction in which the particle travels around the gravitat-
ing object relative to a > 0. This means that L > 0 corre-
sponds to a prograde and L < 0 to a retrograde orbit.
For vanishing n, Eq. (5) is symmetric with respect to the

equatorial plane � ¼ �
2 . However, in the more general

space-time considered here this is not true, and the devia-
tion from this symmetry can be measured by the difference
between 1

2 ð�min þ �maxÞ and �
2 . In the case of a Taub-NUT

space-time, where all parameters except mass and NUT
parameter vanish, this implies that the particle moves on an
orbital cone rather than an orbital plane [5]. Later we will
see that this phenomenon also appears in the weak field
limit. For these reasons, we will refer to this quantity as the
conicity, �conicity :¼ �� ð�min þ �maxÞ. This means that

�conicity > 0 corresponds to a cone opened in the northern

direction and �conicity < 0 to a cone opened in the southern

direction.
The nature of Eqs. (6) and (7) is somewhat different

from (4) and (5) as they cannot be solved by periodic
functions. They depend on both r and � but can be sepa-
rated in an r-dependent and a �-dependent part,

�ðr; �Þ ¼: �rðrÞ þ��ð�Þ; (13)

Tðr; �Þ ¼: TrðrÞ þ T�ð�Þ: (14)

The solutions ’ð�Þ and tð�Þ of Eqs. (6) and (7) can be
written as an averaged part linear in � plus perturbations in
r and �,

’ð�Þ ¼ h�ðr; �Þi��þ�r
oscðrÞ þ��

oscð�Þ; (15)

tð�Þ ¼ hTðr; �Þi��þ Tr
oscðrÞ þ T�

oscð�Þ; (16)

where
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h�i� :¼ lim
ð�2��1Þ!1

1

2ð�2 � �1Þ
I �2

�1

�d� (17)

is an infinite time average with respect to �, and Xr
oscðrÞ and

X�
oscð�Þ (with X ¼ � or X ¼ T) represent oscillatory de-

viations from this average. They are defined by

Xr
oscðrÞ ¼

Z
XrðrÞd�� hXrðrÞi��; (18)

X�
oscð�Þ ¼

Z
X�ð�Þd�� hX�ð�Þi�� (19)

and have periods�r and��. Therefore, the average secular
increase of ’ and t with respect to � is given by

� :¼ hTðr; �Þi� ¼ hTrðrÞi� þ hT�ð�Þi�; (20)

�’ :¼ h�ðr; �Þi� ¼ h�rðrÞi� þ h��ð�Þi�: (21)

As Xr and X� (again with X ¼ � or X ¼ T) are periodic
functions with respect to � because r and � are periodic
functions, their integrals,

I �2

�1

Xrðrð�ÞÞd�;

and

I �2

�1

X�ð�ð�ÞÞd�;

in the definition of the infinite time average can be reduced
to an integral over one period �r or ��, respectively. This
yields

�’ ¼ 2

�r

Z ra

rp

�rðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp þ 2

��

Z �max

�min

��ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ; (22)

� ¼ 2

�r

Z ra

rp

TrðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp þ 2

��

Z �max

�min

T�ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp : (23)

The corresponding frequencies with respect to the coordi-
nate time t are then given by

�r :¼ �r

�
; �� :¼ ��

�
; �’ :¼ �’

�
: (24)

These are frequencies as seen by an observer at infinity.
In the limit of weak gravitational fields the mismatch of

the frequency of the ’- and r-motion,�P ¼ �’ ��r can

be interpreted as the precession of the orbital ellipse, and
the mismatch of the frequency of the ’- and �-motion,
�LT ¼ �’ ��� as a precession of the orbital plane. In

strong gravitational fields the orbits are in general of such
irregularity that orbital planes or ellipses can no longer be
identified.

IV. REFERENCE ORBIT

In the next section we will analyze the influence of the
parameters a, �, and n on the observables of a bound
reference orbit, which is neither circular nor polar. (Polar
orbits may be considered as a special case but we leave this
out here. For a discussion of these orbits in Kerr space-
time, see [26].) This will be done by post-Schwarzschild
and post-Newton expansions, where we assume the con-
stants of motions to be fixed. But first wewill introduce and
characterize the reference orbit.
If all space-time parameters except the mass vanish,

the Plebański-Demiański space-time is identical to the
Schwarzschild space-time and the functions RðrÞ and
�ð�Þ of Eqs. (4) and (5) reduce to

R0ðrÞ :¼ ðE2 � 1Þr4 þ 2r3 � Cr2 þ 2Cr; (25)

�0ð�Þ :¼ C� L2

sin2�
: (26)

A necessary condition for the existence of a noncircular
bound orbit in a Schwarzschild space-time is that R0ðrÞ has
four real zeros, 0 ¼ r01 < r02 < r03 < r04 <1, where
R0ðrÞ> 0 for r03 < r < r04; cf. [23]. Therefore, our bound
reference orbit has turning points r03 and r04. Note
that instead of using E2 and C all formulas can also be
expressed in terms of the turning points: A comparison
of coefficients in ðE2 � 1Þr4 þ 2r3 � Cr2 þ 2Cr ¼ ðE2 �
1Þrðr� r02Þðr� r03Þðr� r04Þ yields

E2 � 1 ¼ �2

r02 þ r03 þ r04
; (27)

C ¼ r02r03r04
r02 þ r03 þ r04

; (28)

r02 ¼ �2r03r04
2r03 þ 2r04 � r03r04

: (29)

A nonpolar orbit requires C � L2 and lies in an orbital

plane with inclination arcsinjLjffiffiffi
C

p (or �
2 � arcsinjLjffiffiffi

C
p if mea-

sured from the equatorial plane). Therefore, the �-motion
of the reference orbit is symmetric with respect to the

equatorial plane and confined to ½�01; �02� with �01 ¼
arcsinjLjffiffiffi

C
p 2 ½0; �2� and �02 ¼ �� arcsin jLjffiffiffi

C
p 2 ½�2 ; ��. In

particular, the orbit lies in the equatorial plane if C ¼ L2.
In terms of the inclination and the turning points the
constant of motion L is given by

L ¼ � ffiffiffiffi
C

p
sin�01 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02r03r04

r02 þ r03 þ r04

s
sin�01: (30)

In the following we will calculate the expressions �r, ��,
��, and � for the reference orbit.
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A. Frequency of r

Let us first calculate the r period for our reference orbit.
For an orbit bound between r03 and r04 we get

� r;0 :¼ 2
Z r04

r03

drffiffiffiffiffiffiffiffiffiffiffi
R0ðrÞ

p : (31)

This is a complete elliptic integral of the first kind which
can be easily transformed to the Legendre form giving

� r;0 ¼ 4KðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� E2Þr03ðr04 � r02Þ
p ; (32)

with k2 ¼ r02ðr04 � r03Þ=ðr03ðr04 � r02ÞÞ. For general in-
formation on the complete elliptic integral of the first kind,

KðkÞ ¼
Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp ; (33)

see e.g. [27]; for fast numerical computation, see e.g. [28].
In computer algebra systems like MATHEMATICA or MAPLE

the complete elliptic integrals are usually implemented
and, therefore, �r;0 can be computed easily. The conjugate

fundamental frequency �r;0 is then given by

�r;0 ¼ 2�

4KðkÞ sgnL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� E2Þr03ðr04 � r02Þ

q
: (34)

B. Frequency of �

The � period of the reference orbit is given by

� �;0 :¼ 2
Z �02

�01

d�ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð�Þ

p ¼ 2
Z �03

�02

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1� �2Þ � L2

p ;

(35)

where we substituted � ¼ cos� and cos�01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L2

C

q
¼:

�03, cos�02 ¼ �02 ¼ ��03. This can be solved by

��;0 ¼ 2�ffiffiffiffi
C

p ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ r03 þ r04

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02r03r04

p ; (36)

from which we infer

��;0 ¼ sgnL
2�

��;0

¼ sgnL
ffiffiffiffi
C

p
: (37)

Note that for the case �01 ¼ �
2 ¼ �02 it is �ð�Þ � �

2 and,

therefore, ��;0 is undefined. However, we can treat this as

the limiting case C ! L2, which gives the same results for
��;0 and ��;0 as above.

C. Frequency of ’

For the reference orbit Eq. (6) simplifies to

d’

d�
¼ L

sin2�
(38)

and �’ can be calculated to

�’;0 ¼ 2

��;0

Z �02

�01

L

sin2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð�Þ

p ¼ 2� sgnL

��;0

¼ sgnL
ffiffiffiffi
C

p
; (39)

where we used the substitution � ¼ cos� as in Sec. IVB.
Although ��;0 is not defined for �ð�Þ � �

2 we get in this

case ’ð�Þ ¼ L� and, therefore, the same result �’;0 ¼
L ¼ sgnL

ffiffiffiffi
C

p
.

D. Frequency of t

The expression for �0 is the most complicated in this
section as it involves an elliptic integral of the third kind.
For the reference orbit Eq. (7) simplifies to

dt

d�
¼ r3E

r� 2
; (40)

which leads to

�0 ¼ 2

�r;0

Z r03

r02

r3Edr

ðr� 2Þ ffiffiffiffiffiffiffiffiffiffiffi
R0ðrÞ

p
¼ E

2KðkÞ
�
�r03r04KðkÞ þ r03ðr04 � r02ÞEðkÞ

þ 2r04ð3� 2E2Þ
1� E2

�ðn1; kÞ þ 8r04
r04 � 2

�ðn2; kÞ
�
; (41)

where EðkÞ and �ðn; kÞ are the complete elliptic integrals
of second and third kind,

EðkÞ ¼
Z 1

0

ð1� k2t2Þdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp ; (42)

�ðn; kÞ ¼
Z 1

0

dt

ð1� nt2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp ; (43)

and the parameters n1, n2 are given by

n1 ¼ r03 � r04
r03

< 0; n2 ¼ 2ðr04 � r03Þ
r03ðr04 � 2Þ< 0: (44)

E. Observables

Let us now collect the results so far in this section. As
expected for a ¼ 0, the frequencies��;0 and�’;0 coincide

and the Lense-Thirring effect vanishes,

�LT;0 ¼
�’;0 ���;0

�0

¼ 0: (45)

Likewise, for n ¼ 0 the particle moves on an orbital plane,

�conicity;0 ¼ �� ð�01 þ �02Þ ¼ 0: (46)

The periastron shift �P;0 ¼ ð�’;0 ��r;0Þ��1
0 is given in

terms of elliptic integrals
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�P;0 ¼ sgnL

E

2
ffiffiffiffi
C

p
KðkÞ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr04 � r02Þð1� E2Þp

ð�r03r04KðkÞ þ r03ðr04 � r02ÞEðkÞ þ 2r04ð3�2E2Þ
1�E2 �ðn1; kÞ þ 8r04

r04�2�ðn2; kÞÞ
: (47)

The usual result for the periastron shift in terms of radians
or degrees can be found in the following way: Using the
averaged �ð’Þ ¼ ’��1

’ we get the period of the r-motion
in terms of ’, r’ :¼ r � �: ’ � rð’��1

’ Þ, by observing
that r’ð’þ�’�rÞ ¼ rð’��1

’ þ �rÞ ¼ r’ð’Þ. From this
period we get for the difference between the angle of the
periapsis and 2� after one revolution,

�P;0 ¼ �’;0�r;0 � 2� sgnL

¼ sgnL

�
4

ffiffiffiffi
C

p
KðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� E2Þr03ðr04 � r02Þ

p � 2�

�
: (48)

If this shift should be expressed in terms of radians per
time, it can be referred to the time needed for a revolution
from some fixed ’0 to ’0 again, i.e. the sidereal period, or
for a revolution from some fixed r0 to r0 again, i.e. the
anomalistic period. The first choice corresponds to the
usual notion of the periastron shift in arc seconds per
century whereas the second corresponds to the definition
of �P: The time elapsed for a revolution from, say,
periapsis to periapsis is given as the period of rt :¼ r �
�: t � rðt��1Þ, which is ��r. If �P ¼ �’�r � 2� sgnL
is divided by this period we obtain �P ¼ �P=ð��rÞ.

Note that (47) and (48) are exact and, therefore, more
complicated than the post-Newtonian formula given e.g. in
[29]. If we consider the weak field approximation by
assuming that the periapsis r03 and the apoapsis r04 be-
come large, we recover Eq. (51) of [29] with vanishing
solar quadrupole momentum and parameters correspond-
ing to general relativity,

�P;0 � 6� sgnL

dð1� �2ÞM; (49)

where d ¼ M
2 ðra þ rpÞ is the semimajor axis and � ¼ M

2d 	
ðra � rpÞ the eccentricity with the apoapsis ra ¼ r04 and

the periapsis rp ¼ r03. Here we used (27)–(29) to perform

the series expansion. Note that the angular momentum of
the test particle is usually chosen to be positive and, there-
fore, its sign does not appear in Eq. (51) of [29]. But we
include it here as we choose the sign of L relative to the
angular momentum of the gravitating source, which will be
nonzero later on. The post-Newtonian expression for�P is
given by

�P;0 � 3 sgnL

dð5=2Þð1� �2ÞM
ð5=2Þ; (50)

which includes the perturbation of the time needed for one
revolution from periapsis to periapsis.

Let us test our results for the orbital motion of Mercury.
From [30] we take for peri- and aphelion the values

rmin ¼ ð307 500:7� 3:0Þ 	 10�6 AU; (51)

rmax ¼ ð466 696:6� 2:6Þ 	 10�6 AU; (52)

and use M ¼ 1476:625 28 m for the mass of the Sun to
determine r03 ¼ rmin

M and r04 ¼ rmax

M . With Eqs. (27)–(29)

and the results of this section we obtain

�P;0 ¼ 3:252 308	 10�19 � 5:5	 10�24: (53)

In order to express this dimensionless quantity in terms of
arc seconds per century we have to multiply it by c

M where

c ¼ 299 792 458 m s�1 is the speed of light. Then we get

�P;0

c

M
¼ 42:980 48� ð0:73	 10�3Þ ðarc secÞ=cy; (54)

in consistency with observations; cf. [31]. However, it is
not the usual result in the sense that it describes the
perihelion shift per revolution from periapsis to periapsis
rather than from 0 to 2�.
The usual result for the perihelion shift in terms of arc

seconds per century can by found using �P,

�P;0 ¼ 5:018 648 5	 10�7 � 3:7	 10�12: (55)

In [30] a revolution of Mercury is given as 87.969 257 days.
We get with t’ :¼ t � �: ’ � �0�

�1
’;0’ for a revolution

of 2�

yM :¼ 2��0

�’;0

M

c
¼ 87:969 25� ð8:5	 10�4Þ days; (56)

which agrees to the given accuracy with observation. This
yields for the perihelion shift

�P;0

yM
¼ 42:980 48� ð0:73	 10�3Þ ðarc secÞ=cy; (57)

in accord with observations. We see here that this value
coincides with (54) within the given accuracy and, there-
fore, the two different definitions cannot be distinguished.

V. FIRST-ORDER CORRECTIONS

In the following we will calculate the linear post-
Schwarzschild corrections for all quantities used to define
the observables�P and�LT as well as the conicity�conicity

due to the parameters a, n, and �. As the parameters Qe

and Qm appear only quadratically in Eqs. (4)–(7), we will
not study them here. However, this would be a totally
analogous procedure. We assume the constants of motion
to be fixed but let the zeros ri of R and �i of� vary. By this
procedure we will reduce the hyperelliptic integrals ap-
pearing in the definitions of �r, ��, �’, and � for the
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general Plebański-Demiański space-time to elliptic inte-
grals and elementary expressions.

The observables �P and �LT are defined through the
frequencies �r, ��, �’, and �. Whereas �r and ��

depend only on the variable indicated in the index, �’

and � can be separated in an r- and a �-dependent part,
�’ ¼ �’r þ�’� and � ¼ �r þ ��, where

�’r :¼ 2

�r

Z ra

rp

�rðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp ¼:

I’r
�r

;

�’� :¼ 2

��

Z �max

�min

��ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ¼:

I’�
��

; (58)

�r :¼ 2

�r

Z ra

rp

TrðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp ¼:

Itr
�r

;

�� :¼ 2

��

Z �max

�min

T�ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp ¼:

It�
��

: (59)

In terms of these expressions the periastron shift and the
Lense-Thirring effect can be restated as

�P ¼
�’ ��r

�
¼ I’r�� þ I’��r � sgnL 2���

Itr�� þ It��r

; (60)

�LT ¼ �’ ���

�
¼ I’r�� þ I’��r � sgnL 2��r

Itr�� þ It��r

: (61)

A. Standard form of hyperelliptic integrals

All integrals appearing here have the form

Z x2

x1

fðxÞdxffiffiffiffiffiffiffiffiffiffiffiffi
P6ðxÞ

p ; (62)

where P6 is a polynomial of degree 6 in x ¼ r or x ¼ � ¼
cos�, fðxÞ is a rational function, and x1, x2 are zeros of P6.
This type of integral is called a hyperelliptic integral. The
functions P6 and f as well as the zeros x1, x2 depend on the
parameters a, n, and �. For a Taylor expansion of such an
integral it is of advantage to first reduce it to a standard
form similar to the elliptic integrals which appeared in the
calculations for the reference orbit. However, to our knowl-
edge such a standard form does not exist in the literature. A
straightforward generalization of the Legendre standard
form of elliptic integrals of the first kind can be obtained
by an additional term ð1� k22t

2Þ under the square root but
this yields again an elliptic integral as a substitution s ¼ t2

shows. A better choice is to generalize the Riemann form
of elliptic integrals,

Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1� k2tÞp ; (63)

to the hyperelliptic form

Z 1

0

ðAtþ BÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1� k21tÞð1� k22tÞð1� k23tÞ

q ; (64)

which was also used in [26] for the calculation of the
periastron shift of equatorial orbits in Kerr–de Sitter
space-times. As pointed out in [26], the form (64) can
also be expressed in terms of Lauricella’s hypergeometric
FD function; see also Appendix A.
The transformation of the form (62) to the form (64)

depends on the range of integration ½x1; x2�. In the case of
P6ðxÞ ¼ RðrÞ, we have four real zeros r1 < r2 < r3 < r4
and another two zeros r0, r5 which may be complex and
which tend to infinity for vanishing �. Here x1 ¼ r3 and
x2 ¼ r4 result in a transformation r ¼ ðAtþ BÞ�1 þ r1,
which yields

Z r4

r3

drffiffiffiffiffiffiffiffiffi
RðrÞp ¼ 1ffiffiffiffi

D
p

Z 1

0

ðAtþ BÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1� k21tÞð1� k22tÞð1� k23tÞ

q
¼ Affiffiffiffi

D
p �

2
FD

�
3

2
; ~	1; 2; ~m

�

þ Bffiffiffiffi
D

p �FD

�
1

2
; ~	1; 1; ~m

�
; (65)

where B ¼ 1=ðr4 � r1Þ ¼: Br,

A ¼ r4 � r3
ðr4 � r1Þðr3 � r1Þ ¼

: Ar ; (66)

D ¼ �
ðr3 � r1Þðr4 � r2Þ

ðr4 � r1Þ2
ðr4 � r0Þðr5 � r4Þ ¼: Dr ; (67)

k21 ¼
ðr4 � r3Þðr2 � r1Þ
ðr3 � r1Þðr4 � r2Þ ¼

: k21r ; (68)

k22 ¼ �ðr4 � r3Þðr5 � r1Þ
ðr3 � r1Þðr5 � r4Þ ¼

: k22r ; (69)

k23 ¼ �ðr4 � r3Þðr1 � r0Þ
ðr3 � r1Þðr4 � r0Þ ¼

: k23r ; (70)

and ~	1 ¼ ð12 ; 12 ; 12Þ, ~m ¼ ðk21r; k22r; k23rÞ ¼: ~m0r. For the case

of P6ðxÞ ¼ ��ð�Þ [see Eq. (90)], there are two real zeros

�2 < �3 and four other maybe complex zeros �0, �1, �4,
�5, where �1, �4 tend to infinity for vanishing a and �0, �5

for vanishing a or�. With x1 ¼ �2 and x2 ¼ �3 we get the
same form (65) but with B ¼ 1=ð�3 � �1Þ ¼: B�,

A ¼ ð�3 � �2Þ
ð�2 � �1Þð�3 � �1Þ ¼

: A� ; (71)

D¼a4�
ð�2��1Þð�4��3Þ

ð�3��1Þ2
ð�3��0Þð�3��5Þ¼:D� ; (72)
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k21 ¼ �ð�3 � �2Þð�4 � �1Þ
ð�2 � �1Þð�4 � �3Þ ¼

: k21� ; (73)

k22 ¼ �ð�3 � �2Þð�5 � �1Þ
ð�2 � �1Þð�5 � �3Þ ¼

: k22� ; (74)

k23 ¼ �ð�3 � �2Þð�1 � �0Þ
ð�2 � �1Þð�3 � �0Þ ¼

: k23� ; (75)

and ~m ¼ ðk21�; k22�; k23�Þ ¼: ~m0�.

B. Linear correction to period of r

In this section we will calculate the linear corrections to
the reference orbit due to the parameters a, n, and �. The
exact formula for the r period is given by

�r¼2
Z r4

r3

drffiffiffiffiffiffiffiffiffi
RðrÞp

¼ 2ffiffiffiffiffiffi
Dr

p
Z 1

0

ðArtþBrÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1�k21rtÞð1�k22rtÞð1�k23rtÞ

q
¼ 2Arffiffiffiffiffiffi

Dr

p �

2
FD

�
3

2
; ~	1;2; ~m0r

�
þ 2Brffiffiffiffiffiffi

Dr

p �FD

�
1

2
; ~	1;1; ~m0r

�
:

(76)

All quantities indexed with an r are given as some combi-
nation of the zeros of RðrÞ and, therefore, depend on the
parameters a, n, and �. This means that for a Taylor
expansion of �r we need to explicitly know how the zeros
ri of RðrÞ depend on the parameters. To see this, we
compare the coefficients of the equation

RðrÞ ¼ �

�
r� ~r0ffiffiffiffi

�
p

�
ðr� r1Þðr� r2Þðr� r3Þ

	 ðr� r4Þ
�
r� ~r5ffiffiffiffi

�
p

�
; (77)

where ~r0 ¼ r0
ffiffiffiffi
�

p
, ~r5 ¼ r5

ffiffiffiffi
�

p
do not have a singularity at

� ¼ 0. As the coefficient of r5 vanishes in RðrÞ we imme-
diately see that

� ðr2 þ r3 þ r4 þ r1Þ�� ð~r0 þ ~r5Þ
ffiffiffiffi
�

p
¼ 0 (78)

and, thus, ~r0 and ~r5 have to be expanded in terms of
ffiffiffiffi
�

p
.

Therefore, we introduce l ¼ ffiffiffiffi
�

p
as an expansion parame-

ter instead of �. Expanding the right-hand side of (77) in
terms of a, n, and l gives a system of equations which can
be solved for the derivatives of all ri with respect to the
parameters.

The Taylor expansion of �r in ~p ¼ ða; n; lÞ near ~p ¼ ~0
then reads

�r � �rð ~p ¼ ~0Þ þX3
i¼1

�r;ið ~p ¼ ~0Þpi (79)

¼ �r;0 þ 2
X3
i¼1

��Dr;i

2Dð3=2Þ
r

�
Ar

�

2
FD

�
3

2
; ~	1; 2; ~m0r

�
þ Br�FD

�
1

2
; ~	1; 1; ~m0r

��

þ 1ffiffiffiffiffiffi
Dr

p
�
Ar;i

�

2
FD

�
3

2
; ~	1; 2; ~m0r

�
þ Br;i�FD

�
1

2
; ~	1; 1; ~m0r

��
þ 1ffiffiffiffiffiffi

Dr

p X3
j¼1

ðk2jrÞ;i
2k2jr

�
Ar

�

2

�
FD

�
3

2
; ~	j

1; 2; ~m0r

�

� FD

�
3

2
; ~	1; 2; ~m0r

��
þ Br�

�
FD

�
1

2
; ~	j

1; 1; ~m0r

�
� FD

�
1

2
; ~	1; 1; ~m0r

������������ ~p¼~0
pi; (80)

where we used @
@xi

FDð
; ~	; �; ~xÞ ¼ 	i

xi
ðFDð
; ~	i; �; ~xÞ � FDð
; ~	; �; ~xÞÞwhich can be found in [32]. The symbol ~	j

means
that the jth component of ~	 is increased by one [e.g. ~	2

1 ¼ ð12 ; 32 ; 12Þ], and by X;i we denote the derivative of X with respect
to pi. Note that

k22r ¼
r03 � r04

r03
¼ k23r for ~p ¼ ~0; (81)

and, therefore, the Lauricella function FD reduces to an elliptic integral in this case. Here r0i are again the zeros of R0, i.e.
the turning points of the reference orbit.

For the linear correction with respect to a we obtain

� r;að~0Þ ¼ �4EL
�1ð1� E2Þ2ðr03 � r02ÞKðkÞ þ 2r03ð4� 3Cþ 3CE2ÞEðkÞ

ð1� E2Þ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr04 � r02Þð1� E2Þp ðr04 � r02Þðr03 � r02Þ2ðr04 � r03Þ2

; (82)

where k2 ¼ r02ðr04�r03Þ
r03ðr04�r02Þ as for the reference orbit and �1 is a nonsymmetric function of r02, r03, and r04,

�1 ¼ r02r03 þ r02r04 � r203 � r204: (83)

The linear corrections with respect to n vanishes,
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� r;nð~0Þ ¼ 0 (84)

and also the linear correction due to l ¼ ffiffiffiffi
�

p
, as expected. To determine the linear correction due to � we use

df

d�
ða; n;�Þj�¼0 ¼

�
df

dl
ða; n; lÞ 1

2l

�
l¼0

: (85)

In this way the linear correction due to � can be calculated to

�r;�ð~0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr04 � r02Þð1� E2Þp ð1� E2Þ

�
r03r04ð�1 � 2C�2Þ

ðr02 � r04Þðr03 � r04Þ2ðr02 � r03Þ
KðkÞ

� 4r03Cð�16Cþ 76CE2 � 57CE4 � C2 þ C2E4 � 48Þ
ðr02 � r04Þðr02 � r03Þ2ðr03 � r04Þ2ð1� E2Þ5 EðkÞ þ 6r04

ð1� E2Þ2 �ðn1; kÞ
�
; (86)

where �1 and �2 are nonsymmetric functions of r02, r03,
and r04,

�1¼2r203r
2
04�3r303r04�3r304r03þ3r303r02þ3r304r02�r203r

2
02

þ2r03r04r
2
02�r204r03r02�r204r

2
02�r203r04r02;

�2¼r04r02þr03r02�2r04r03: (87)

C. Linear correction to period of �

The linear correction to the � period can be determined
analogously to the foregoing subsection. The exact formula
for the period of the �-motion is

��¼
2A�ffiffiffiffiffiffiffi
D�

p �

2
FD

�
3

2
; ~	1;2; ~m0�

�
þ 2B�ffiffiffiffiffiffiffi

D�

p �FD

�
1

2
; ~	1;1; ~m0�

�
:

(88)

Again, we have to determine the dependence of the zeros
�i, i ¼ 0; . . . ; 5 on the parameters a, n, and �. This time
we use the ansatz

��ð�Þ ¼ a4�ð�� �2Þð�� �3Þ
�
��

~�1

a

��
��

~�4

a

�

	
�
��

~�0

a
ffiffiffiffi
�

p
��
��

~�5

a
ffiffiffiffi
�

p
�
; (89)

where ��ð�Þ is the right-hand side of (5) with the sub-

stitution � ¼ cos�,�
d�

d�

�
2 ¼ ��ð�Þ
¼ ð1þ a2��2 � 4�an�ÞðC� ðn� a�Þ2Þð1� �2Þ

� ðL� ðað1� �2Þ þ 2n�ÞEÞ2; (90)

and ~�1 ¼ a�1, ~�4 ¼ a�4, ~�0 ¼ a
ffiffiffiffi
�

p
�0, ~�5 ¼ a

ffiffiffiffi
�

p
�5 be-

have regularly in the limit a ¼ 0, � ¼ 0. By comparing
the coefficient of �5 it can be seen that �0 and �5 expand in

terms of l ¼ ffiffiffiffi
�

p
like r0 and r5 in the foregoing section.

Solving the system of equations given by (89), we obtain

~�0 � �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p
, ~�5 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p
and, therefore, ~�0 and

~�5 are complex conjugate.
For the Taylor expansion of �� we obtain the same

formula (80) with r replaced by �. However, in this case
we get

k21� ¼ k22� ¼ k23� ¼ 0 for ~p ¼ 0; (91)

which means that the Lauricella function FD reduces to an
elementary function in the limit ~p ¼ 0. For the linear
correction with respect to a we get

��;að~0Þ ¼ � 2�LE

Cð3=2Þ : (92)

The corrections with respect to n and l vanish, ��;nð~0Þ ¼
0 ¼ ��;lð~0Þ, as well as the correction for � due to

��;lð~0Þ ¼ Oðl2Þ.

D. Linear correction to frequency of ’-motion

In this section we will calculate the Taylor expansions of
the integrals I’r and I’� defined in (58),

I’rð ~pÞ ¼ 2
Z ra

rp

�rðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp ; I’�ð ~pÞ ¼ 2

Z �max

�min

��ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp :

The conversion of these two integrals to the standard form
is more involved than in the case of �r and �� because an
additional function�r or�� appears in the integrand here.

Let us first consider �rðrÞ ¼ a PðrÞ
�r

. The poles of �r are

given by the horizons �r ¼ 0, which we denote by hi, 1 

i 
 4. Let h2 � 0 and h3 � 2 correspond to the
Schwarzschild case, whereas h1 � �l�1 � 1 and h4 �
l�1 � 1 tend to infinity for vanishing �. Then �r can be
rewritten as

�rðrÞ ¼ aPðrÞ
l2ðr� ~h1

l Þðr� h2Þðr� h3Þðr� ~h4
l Þ
; (93)
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where ~h1 ¼ lh1, ~h4 ¼ lh4. Now �r can be decomposed in partial fractions and the resulting integrals transformed to the
standard form by the substitution outlined in Sec. VA. This yields an integral of the form

I’rð ~pÞ ¼ 2
X4
i¼0

ci’rffiffiffiffiffiffi
Dr

p
Z 1

0

ðArtþ BrÞdt
ð1� Ni’rtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞð1� k21rtÞð1� k22rtÞð1� k23rtÞ

q (94)

¼ 2
X4
i¼0

ci’rffiffiffiffiffiffi
Dr

p
�
Ar

�

2
FD

�
3

2
; ~	2; 2; ~mi’r

�
þ Br�FD

�
1

2
; ~	2; 1; ~mi’r

��
; (95)

where ci’r and Ni’r are some constants with N0’r ¼ 0, ~	2 ¼ ð12 ; 12 ; 12 ; 1Þ, and ~mi’r ¼ ðk21r; k22r; k23r; Ni’rÞ. The Taylor
expansion of this can be done analogously to Sec. VB and gives

I’rð ~pÞ � 4Er04�ðn2; kÞ
ðr04 � 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r03ðr04 � r02Þð1� E2Þp a (96)

as the other corrections with respect to n, l, and � vanish. Here r0i, k, and n2 correspond to the reference orbit; see
Sec. IV for a definition.

Now let us consider I’�. With the substitution � ¼ cos�, the integral can be transformed to

I’�ð ~pÞ ¼ 2
Z �3

�2

ðL� ðað1� �2Þ þ 2n�ÞEÞd�
ð�� 1Þð�þ 1Þð�� 1

l ð2nlþ fðn; lÞÞÞð�� 1
l ð2nl� fðn; lÞÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�Þ

q ; (97)

where fðn; lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2n2 � 1

p
. Then the standard form can

be obtained with the substitution described in Sec. VA
giving the integral (95) with r replaced by �. Here again
ci’� and Ni’� are constants with N0’� ¼ 0. The Taylor
expansion is given by

I’�ð ~pÞ � 2� sgnL� 2�Effiffiffiffi
C

p a; (98)

with vanishing corrections due to n, l, and �.

E. Linear correction to frequency of t-motion

The two integrals to be considered for determining the
correction to the t-motion are

Itrð ~pÞ ¼ 2
Z ra

rp

TrðrÞdrffiffiffiffiffiffiffiffiffi
RðrÞp ; It�ð ~pÞ ¼ 2

Z �max

�min

T�ð�Þd�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp :

The procedure will be analogous to the foregoing subsec-
tion. The poles of Tr and T� are the same as of �r and ��

respectively and, therefore, the integrals can be expressed
similar to (95). We get

Itrð ~pÞ ¼ 2
X4
i¼0

citr

�
Ar

�

2
FD

�
3

2
; ~	2; 2; ~mitr

�
þ Br�FD

�
1

2
; ~	2; 1; ~mitr

��

� Itrð~0Þ þ Itr;að~0Þaþ Itr;nð~0Þnþ Itr;�ð~0Þ�; (99)

where citr and Nitr are constants with N0tr ¼ 0, ~	2 ¼ ð12 ; 12 ; 12 ; 1Þ, ~mitr ¼ ðk21r; k22r; k23r; NitrÞ, and Itrð~0Þ ¼ Itr;0 as for the
reference orbit. The linear correction due to a is given by

Itr;að~0Þ¼ 4Lr203
ðr03ðr04�r02Þð1�E2ÞÞð3=2Þðr04�r03Þ2ðr03�r02Þ

�
r041E

2KðkÞ
ðr04�2Þðr03�2Þþ

2Cð8þ2C�3CE2Þ
ðr03�r02Þð1�E2Þ2 EðkÞ

�
; (100)

where 1 is a nonsymmetric function of r02, r03, and r04,

1 ¼ 2r204r02 � r03r
2
04r02 � 2r204r03 þ 2r203r

2
04 � 2r203r04 � r203r04r02 þ 2r203r02: (101)

The correction due to n vanishes, Itr;nð~0Þ ¼ 0, and the correction due to � is given by
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Itr;�ð~0Þ¼ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr04�r02Þð1�E2Þp �

�r03r04KðkÞ
�� ð
2þ12C
3Þ

24ð1�E2Þðr04�r03Þ2ðr03�r02Þðr04�r02Þ
þ
1

12

�
ðr04�2Þ�1ðr03�2Þ�1

þ 2

ð1�E2Þ3
�
þr03ðr04�r02Þ

ð1�E2Þ EðkÞ
�ð
4þ12C
5Þ

24S
�8�75E2þ149E4�116E6þ32E8

E2ð1�E2Þ2 �4C

3

�

þ r04
1�E2

�ðn1;kÞ
�
238�754E2þ952E4�560E6þ27E8

ð1�E2Þ3 þ2Cð2E2�5Þ
1�E2

þ 
6þ4C
7

8ðr04�r03Þ2ðr03�r02Þðr04�r02Þ
�

þr02þr03�3r04
ð1�E2Þ2

�
r03r04KðkÞ�r03ðr04�r02ÞEðkÞ�2r04ð3�2E2Þ

1�E2
�ðn1;kÞ

�
þ256r04
r04�2

�ðn2;kÞ
�
; (102)

where S ¼ ðr04 � r03Þ2ðr03 � r02Þ2ðr04 � r02Þ2ðr04 � 2Þ	
ðr03 � 2Þðr02 � 2Þ and 
i, i ¼ 1; . . . ; 7, are nonsymmetric
functions of r02, r03, and r04 given in Appendix B.

The Taylor expansion for the �-dependent part is much
easier. The zero-order term and all linear corrections ex-

cept It�;a vanish, It�ð~0Þ ¼ It�;nð~0Þ ¼ It�;�ð~0Þ ¼ 0. The re-

maining term is given by

It�;að~0Þ ¼ 2�Lffiffiffiffi
C

p : (103)

VI. OBSERVABLES

In Sec. III we defined the general expressions for the
fundamental frequencies �r, ��, and �’ in Plebański-

Demiański space-time. The analytic expressions of these
quantities are given in terms of complete hyperelliptic
integrals on a Riemann surface of genus 2 [see Eqs. (76),
(88), (95), and (99)], whose numerical evaluation is quite
cumbersome. By a post-Schwarzschild expansion of the

fundamental frequencies we will reduce the hyperelliptic
integrals to elementary expressions and elliptic integrals,
which can be handled easily with computer algebra sys-
tems like MATHEMATICA or MAPLE. In addition, we will
perform the post-Newtonian expression for comparison
with other results and use the parameter values of
Mercury to get an idea of the order of magnitude of the
corrections.

A. Periastron shift

In Sec. IV we calculated the expression for �P for the
Schwarzschild case [see Eq. (47)] and noted that as long as
a particle is considered to move in an orbital plane usually
the difference angle �P [see (48)] is used instead of �P.
Let us now consider the linear corrections of �P and �P

due to a, n, and �. As all linear corrections due to n so far
vanished, the linear correction due to this parameter also
vanishes for �P and �P. The linear correction due to a for
the frequency �P is given by

�P;að~0Þ¼
I’r;að~0ÞþsgnL

ffiffiffiffi
C

p
�r;að~0Þ�E�r;0ð1� jLjffiffiffi

C
p Þ

Itr;0
þsgnL

ðL�r;0þItr;að~0ÞÞð2�� ffiffiffiffi
C

p
�r;0Þ

I2tr;0

¼ 2

Z

�
r04

r04�2
�ðn2;kÞþ

ffiffiffiffi
C

p jLj�1ðr02�r03ÞðE2�1Þ2KðkÞ�2r03ð4�3CðE2�1ÞÞEðkÞ
ðr02�r03Þ2ðr02�r04Þðr03�r04Þ2ðE2�1Þ3 �KðkÞ

�
1� jLjffiffiffiffi

C
p

��

þ jLj
E2Z2

�
KðkÞþ

�
r03r041E

2KðkÞ
ðr04�2Þðr03�2Þþr03

2Cð8þ2C�3CE2ÞEðkÞ
ðr03�r02Þð1�E2Þ2

�
ðð1�E2Þðr04�r02Þðr04�r03Þ2ðr03�r02ÞÞ�1

�

	
�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr02�r04ÞðE2�1Þ

q
�4

ffiffiffiffi
C

p
KðkÞ

�
; (104)

where Z ¼ �r03r04KðkÞ þ r03ðr04 � r02ÞEðkÞ þ 2r04
3�2E2

1�E2 �ðn1; kÞ þ 8r04
r04�2�ðn2; kÞ and �1, 1 are nonsymmetric func-

tions of r02, r03, and r04 defined in (83) and (101). Here r0i, k, and ni correspond to the reference orbit and are defined in
Sec. IV. Note that�P;a does not depend on the sign ofL, i.e. on whether the particle travels on a prograde or retrograde orbit.

The correction of �P due to the angular momentum of the gravitating source reads

�P;að~0Þ ¼ 4E
ffiffiffiffi
C

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� E2Þr03ðr04 � r02Þ

p �� jLj�1
ðr04 � r03Þ2ðr03 � r02Þðr04 � r02ÞðE2 � 1Þ �

1ffiffiffiffi
C

p þ jLj
C

�
KðkÞ

� 2jLjr03ð4� 3C� 3CE2Þ
ð1� E2Þ3ðr04 � r03Þ2ðr03 � r02Þ2ðr04 � r02Þ

EðkÞ þ r04
r04 � 2

�ðn2; kÞ
�
; (105)

which also does not depend on the sign of L. These formulas are exact in M and, therefore, quite complicated. If we
consider the post-Newtonian approximation of these terms by using (27)–(30) and assuming that r03 and r04, the turning
points of the reference orbit in Schwarzschild space-time, become large we obtain
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�P;að~0Þa ¼ 2
1� 6 sin�01

d3ð1� �2Þð3=2Þ JM
2 þOðJM3Þ; (106)

�P;að~0Þa ¼ 4�
1� 6 sin�01

dð3=2Þð1� �2Þð3=2Þ JM
ð1=2Þ þOðJMð3=2ÞÞ;

(107)

where d is again the semimajor axis, � the eccentricity, and
J ¼ aM is the non-normalized specific angular momentum
of the gravitating source. These terms are similar to the
expression derived by Lense and Thirring [4] for the pre-
cession of the longitude of pericenter, to which it differs
only in the second term containing the inclination �01.
However, the fundamental frequency �P is not identical
to the precession of longitude of the pericenter: As�r does
not contribute to the first order correction of�P the value of
�P;a is calculated by the correction due to �’ ¼ �’

� only,
which is the averaged d’

dt . The longitude of pericenter on the
other hand contains the argument of the pericenter which is
defined not on the reference plane but the orbital plane.

Note that the expressions for �P and �P depend on the
inclination of the orbital plane. For an inclination of �01 <

arcsin16 � 0:053� the periastron shift is perturbed in the

direction of the rotation of the gravitating source whereas
for �01 > arcsin16 the perturbation is in the opposite direc-

tion. (Here an inclination of �01 ¼ �
2 corresponds to the

equatorial plane and �01 
 �
2 by definition; see Sec. IV.) In

particular, if the unperturbed test particle moves on the
equatorial plane, the periastron shift is perturbed against
the direction of rotation. This seems to be counterintuitive
as a particle radially approaching the gravitational source
is dragged along the direction of the rotation. However, this
does not mean that the shape of the orbit is affected in the
same way: The rotation of the gravitating source acts as an
repulsive force which also causes the peri- and apoapsis to
increase; see (4).

Let us now consider the linear correction of �P and �P

due to �. For �P we get a very complicated expression
given in Appendix B. In terms of the expression derived in
the previous section we get

�P;� ¼ sgnL
ffiffiffiffi
C

p �
�r;�

Itr;0
þ

�
2�ffiffiffiffi
C

p � �r;0

�
Itr;�
I2tr;0

�
: (108)

The correction of �P due to � is much simpler,

�P;� ¼ sgnL
ffiffiffiffi
C

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� E2Þr03ðr04 � r02Þ

p ð1� E2Þ
	

�
2Cðr02r03 þ r02r04 � 2r03r04Þ � �1

ðr04 � r03Þ2ðr04 � r02Þðr03 � r02Þ
r03r04KðkÞ

þ 48þ 16C� 76CE2 þ 57CE4 þ C2 � C2E4

16þ 8C� 36CE2 þ 27CE4 þ C2 � C2E2

	 r03ðr04 � r02ÞEðkÞ þ 6r04
1� E2

�ðn1; kÞ
�
: (109)

These complicated expressions can be simplified by con-
sidering the post-Newtonian approximation, which reads

�P;�� ¼ 1

2
sgnLdð3=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�̂Mð1=2Þ þOð�̂Mð3=2ÞÞ;

(110)

�P;�� ¼ � sgnLd3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �̂

M
þ 2� sgnLd2

2� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p �̂

þOð�̂MÞ; (111)

where �̂ ¼ 3�
M2 is the usual non-normalized cosmological

constant and d, � are the semimajor axis and eccentricity.
The first term of Eq. (111) coincides with the result in [33].

Interestingly, although we assumed both �̂ and M to be
small we assumed nothing about their ratio. This raises the
question whether the first term of (111) is indeed the largest
of the expansion. But if we divide the second term by the
first, this is proportional to M

d , which is assumed to be

small. This proves that the terms of the above expansions
in fact decrease in magnitude for increasing powers of M.
The exact formula for the perihelion shift assuming a

nonvanishing cosmological constant was derived in
[12,34]. We will use the formalism of [12] [see Eq. (70)]
to compute the perihelion shift of Mercury in
Schwarzschild–de Sitter space-times and compare it with
our approximate formula. For this, we use M ¼
1476:62528 m and, by using (27)–(30), we determine
averaged values for the energy and angular momentum
from the apo- and periapsis data given by [30] and written
down in Sec. IVE. With the exact formulas given in [12]
the difference between the perihelion shift for � ¼ 0

and with a cosmological constant of �̂ ¼ 3�=M2 ¼
3	 10�52 m�2 is given by

�P;ð�¼10�52Þ=yM � �P;ð�¼0Þ=yM

¼ 1:038 833 075 425 928	 10�14 arc sec

cy
; (112)

where yM is the Mercury year as calculated in (56). If we
insert the same values in our formula (106) we get

�P=yM��P;0=yM

¼1:038832108177831	10�14 arc sec

cy
þOð�2Þ; (113)

which agrees very well with (112).

B. Lense-Thirring effect

The Lense-Thirring effect, which can be identified with
a precession of the orbital plane in the weak field limit, is
up to first order not influenced by any other parameter than
the rotation a. This is because all linear corrections to ��
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and�’ due to n and� vanish. The linear correction due to

a is given by

�LT;a ¼ 1

Z

�
2r04

ðr04 � 2Þ�ðn2; kÞ � 2KðkÞ
�
; (114)

where Z¼�r03r04KðkÞþr03ðr04�r02ÞEðkÞþ2r04
3�2E2

1�E2 	
�ðn1;kÞþ 8r04

r04�2�ðn2;kÞ and r0i, k, and ni correspond to the
reference orbit; see Sec. IV.

Let us consider now the weak field limit by assuming
that r03 and r04 become large. Using (27)–(30), we get

�LT;aa ¼ 2

d3ð1� �2Þð3=2Þ JM
2 þOðJM3Þ; (115)

where J ¼ aM is the non-normalized angular momentum
of the gravitating source per unit mass, d is the semimajor
axis, and � the eccentricity. This formula is identical to the
precession rate of the longitude of the ascending node as
given by Lense and Thirring; cf. [4].

C. Conicity

The effect of n can be observed by a deviation from the
symmetry of the geodesic motion with respect to equatorial
plane. In Sec. III we defined �conicity ¼ �� ð�min þ �maxÞ
as a measure for this deviation, which is given by

�conicity � sgnL
4Effiffiffiffi
C

p n (116)

up to first order. Linear corrections due to a and � vanish.
This deviation from the symmetry to the equatorial plane
also implies that for n � 0 a test particle cannot move on
an orbital plane and, in particular, not in the equatorial
plane (if E � 0). Instead it moves on a cone with opening
angle �� 4Effiffiffi

C
p nþOðn2Þ. As �01 and �02 are perturbed by

the same value 
 ¼ �sgnL 2Effiffiffi
C

p n (up to first order) the

symmetry axis of this cone coincides with one of the two
normals of the orbital plane in the Schwarzschild case, i.e.
�n ¼ �02 � �

2 2 ð0; �2Þ if 
< 0 or �n ¼ �01 þ �
2 2 ð�2 ; �Þ

if 
> 0.
In the post-Newtonian limit, the conicity becomes

�conicity � 4 sgnLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð1� �2Þp n̂

Mð1=2Þ �
8 sgnL

dð3=2Þð1� �2Þð3=2Þ n̂M
ð1=2Þ;

(117)

where n̂ ¼ nM is the non-normalized NUT parameter.
Here d and � are the semimajor axis and the eccentricity,
as before. Note that as we assumed n ¼ n̂

M to be small in the

first place, the first term in the above equation will indeed
tend to zero for M ! 0 (but is still the largest of the
expansion).

The conicity can be used to determine an upper bound
for the value of n. As the error tolerance of the inclination

of an orbiting object places a bound for�conicity, this can be

used in one of the above equations to get an estimate of n.
From [30] we obtain for the difference of maximal and
minimal inclination of Mercury over a time span of 10 yr
j�conicityj 
 4:2001 arc sec or j�conicityj
2:04	10�5 rad.

Inserted in (116) this yields jnj 
 0:032.

VII. CONCLUSIONS AND OUTLOOK

In this paper we derived analytic expressions for the
periastron shift and Lense-Thirring effect assuming neutral
test particles in the general axially symmetric Plebański-
Demiański electrovac space-time with vanishing accelera-
tion of the gravitating source. We determined the direct
dependence of these observables on the parameters of the
space-time by expanding them in a Taylor series up to first
order. In addition, we defined the conicity of an orbit and
analyzed its dependence on the space-time parameters by
also expanding it in a Taylor series up to first order. Within
the linear approximation we used the osculating orbital
elements of Mercury to derive an upper bound for the
dimensionless NUT parameter n.
From the six parameters of a Plebański-Demiański

space-time with vanishing acceleration, only the mass M,
the rotation a, the NUT charge n, and the cosmological
constant � have any linear effects on neutral test particles.
For Schwarzschild space-time (0 ¼ a ¼ n ¼ � ¼ Qe ¼
Qm), the only effect is the periastron shift, whereas the
Lense-Thirring effect vanishes and the mean value of the
polar coordinate coincides with the equator. In the follow-
ing we summarize the effects due to the other parameters
compared to Schwarzschild space-time:
(i) Taub-NUT space-time (0 ¼ a ¼ � ¼ Qe ¼ Qm):

The mean value of the polar motion deviates from
the equator and the motion takes place on a cone
rather than a plane.

(ii) Kerr space-time (0 ¼ n ¼ � ¼ Qe ¼ Qm): The
periastron shift is changed and the Lense-Thirring
effect is nonzero. The latter can be interpreted as a
precession of the orbital plane in the weak field
approximation. Both are independent from the di-
rection of rotation of the particle.

(iii) Kerr-Taub-NUT space-time (0 ¼ � ¼ Qe ¼ Qm):
In addition to Kerr, the mean value of the polar
motion deviates from the equator. The combination
with a nonvanishing Lense-Thirring effect causes a
precession of the orbital cone.

(iv) Kerr-Taub-NUT–de Sitter space-time (0 ¼ Qe ¼
Qm): In addition to Kerr-Taub-NUT, the periastron
shift is changed by a nonvanishing�. However, due
to the smallness of � the effect is tiny.

The effects of nonvanishing space-time parameters may
also be analyzed compared to any other space-time covered
by the general Plebański-Demiański metric using the same
methods as presented in this paper. In particular the Kerr
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space-time may be used as reference. In this case ��;0 and

�’;0 are also given in terms of elliptic integrals instead of

elementary expressions.
The mathematical framework presented in this paper is

based on the theory of hyperelliptic and elliptic functions.
We defined a standard form for hyperelliptic integrals
based on the Riemann form of elliptic integrals and ex-
pressed it in terms of the hypergeometric FD function
introduced by Lauricella (see also [26]). The methods
presented in this paper may also be used to analyze the
linear (and higher order) effects of the six parameters of
Plebański-Demiański space-time with vanishing accelera-
tion on charged particles with a complete analogous pro-
cedure. Another interesting question is whether additional
effects arise for a higher order approximation, for example,
the quadratic effect of n on r-dependent expressions or the
coupling of a to the other parameters. Similarly to the
analysis presented here, observables for unbound orbits
like light deflection or the deflection of massive particles
may be considered. This will be postponed to a later
publication.
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APPENDIX A: LAURICELLA’S FD FUNCTION

The four functions FA, FB, FC, and FD of Lauricella
are hypergeometric functions of multiple variables
generalizing the hypergeometric functions of Gauss and
Appell. They were introduced in 1893 [35] and given as a
hypergeometric series,

FDð
; ~	; �; ~xÞ ¼
X1
~�¼0

ð
Þj~�jð ~	Þ~�
ð�Þj~�j ~�! ~x~�; (A1)

where ~� is a multi-index, jx�n j< 1 for all n, and ð�Þj~�j the
Pochhammer symbol. Here j~�j ¼ P

n�n, ~�! ¼
Q

n�n!, and

ð ~	Þ~� ¼ Q
nð	nÞ�n . The function FD can be extended to

other values of ~x by analytic continuation.
In this paper the FD function is used because it can be

represented in an integral form,

FDð
; ~	; �; ~xÞ ¼ �ð�Þ
�ð
Þ�ð�� 
Þ

Z 1

0
t
�1ð1� tÞ��
�1

	Y
n

ð1� xntÞ�	ndt; (A2)

for Reð�Þ> Reð
Þ> 0, which is exactly the form of all
hyperelliptic integrals appearing in this paper.

APPENDIX B: DETAILS OF �P;�

The calculation of the linear correction of the periastron
shift due to the cosmological constant yields a very cum-
bersome expression given by

�P;� ¼ 2EsgnL
ffiffiffiffi
C

p
ðE2 � 1ÞZ

�
�1 � 2Cðr02r03 þ r02r04 � 2r03r04Þ
ðr02 � r04Þðr02 � r03Þðr03 � r04Þ2

r03r04KðkÞ

þ �16Cþ 76CE2 � 57CE4 � C2 þ C2E4 � 48

16þ 8C� 36CE2 þ 27CE4 þ C2 � C2E2
r03ðr04 � r02ÞEðkÞ þ 6r04

E2 � 1
�ðn1; kÞ

�

� sgnL

2EZ2
½2 ffiffiffiffi

C
p

KðkÞ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03ðr02 � r04ÞðE2 � 1Þ

q
�
�
r02 þ r03 � 3r04

ðE2 � 1Þ2
�
r03r04KðkÞ � r03ðr04 � r02ÞEðkÞ

� 2r04
3� 2E2

1� E2
�ðn1; kÞ

�
3þ

�
2

ðE2 � 1Þ3 �

1

12ðr04 � 2Þðr03 � 2Þ
þ 
2 þ 12C
3

24ðr04 � 2Þðr03 � 2Þðr02 � r04Þðr02 � r03Þðr03 � r04Þ2ðE2 � 1Þ
�
r03r04KðkÞ

þ
�

4C

3ðE2 � 1Þ2 �

4 þ 12C
5

24ðr04 � 2Þðr03 � 2Þðr02 � 2Þðr02 � r04Þ2ðr02 � r03Þ2ðr03 � r04Þ2

þ�75E2 þ 8þ 149E4 � 116E6 þ 32E8

E2ðE2 � 1Þ4
�
r03ðr04 � r02ÞEðkÞ þ 256r04

r04 � 2
�ðn2; kÞ

þ
�
2Cð2E2 � 5Þ
ðE2 � 1Þ2 � 
6 þ 4C
7

8ðr02 � r04Þðr02 � r03Þðr03 � r04Þ2ðE2 � 1Þ
þ 238þ 128E8 þ 952E4 � 754E2 � 560E6

ðE2 � 1Þ4
�
r04�ðn1; kÞ

�
; (B1)

where Z ¼ �r03r04KðkÞ þ r03ðr04 � r02ÞEðkÞ þ 2r04
3�2E2

1�E2 �ðn1; kÞ þ 8r04
r04�2�ðn2; kÞ and �1; 
1; . . . ; 
7 are nonsymmet-

ric expressions of r02, r03, and r04. These constants read
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�1 ¼ �2r203r
2
04 þ 3r303r04 þ 3r304r03 � 3r303r02 � 3r304r02 þ r203r

2
02 � 2r03r04r

2
02 þ r204r03r02 þ r204r

2
02 þ r203r04r02 (B2)


1 ¼ 1536� 288r04 � 288r03 þ 96r02 þ 20r202 � 8r204r02 þ 4r203r04r02 þ 4r204r03r02 þ 5r03r04r
2
02

þ 8r02r03r04 þ 14r203r
2
04 þ 15r304r03 � 10r03r

2
02 � 10r04r

2
02 � 30r303 � 8r203r02 þ 14r204r03

þ 14r203r04 þ 56r03r04 � 32r02r04 � 32r02r03 � 84r203 þ 15r303r04 � 30r304 � 84r204; (B3)


2 ¼ 864r03r
2
04r

2
02 � r403r04r

3
02 � 336r03r

3
04r02 þ 384r203r04r02 � 20r203r04r

3
02 þ 384r204r03r02 þ 36r303r04r

3
02

� 52r302r
2
04r

2
03 þ 48r403r04r

2
02 þ 58r402r04r

2
03 � 768r03r04r

2
02 þ 58r402r

2
04r03 � 12r03r

3
02r

3
04 � 96r302r04r03

þ 286r203r
2
02r

3
04 þ 592r203r02r

3
04 þ 124r302r

2
04r03 � 812r03r

2
02r

3
04 � 474r404r02r

2
03 þ 200r03r

5
04r02 þ 96r03r

4
04r

2
02

þ 80r503r04r02 þ 318r403r02r
2
04 � 416r303r

2
04r02 þ 32r303r

3
04r02 � 290r303r

2
04r

2
02 þ 432r303r04r02 þ 23r503r

2
02r04

� 7r503r
2
04r02 þ 308r03r02r

4
04 � 232r402r04r03 � 460r403r04r02 � 576r203r

2
04r02 � 288r203r

2
02r04 þ 148r303r04r

2
02

þ 29r402r04r
3
03 � 13r03r

4
04r

3
02 � 11r303r

2
04r

3
02 þ 416r403r

2
04 þ 414r604r02 þ 137r02r

2
03r

5
04 þ 102r603r02 þ 58r02r

3
03r

4
04

þ 29r402r
3
04r03 � 58r402r

2
04r

2
03 þ 120r303r

2
02r

3
04 � 768r203r

2
04 � 207r03r02r

6
04 þ 48r302r

2
04 þ 25r203r

3
02r

3
04 � 76r302r

3
04

� 179r202r
2
03r

4
04 þ 95r03r

5
04r

2
02 � 35r403r

2
02r

2
04 � 98r403r

3
04r02 � 51r603r04r02 � 948r504r02 þ 524r202r

4
04 � 832r203r

4
04

� 816r404r03 þ 816r203r
3
04 � 34r503r

2
04 � 10r203r

5
04 � 368r403r

3
04 � 384r304r02 � 414r604r03 þ 44r403r

2
02 þ 116r402r

2
03

� 384r303r02 þ 48r203r
3
02 þ 432r403r02 þ 352r303r

4
04 � 102r603r04 � 336r303r

2
04 þ 384r304r03 � 58r402r

3
04 � 232r303r

5
04

þ 207r203r
6
04 � 132r503r02 þ 132r503r04 � 16r503r

3
04 þ 51r603r

2
04 þ 134r403r

4
04 þ 192r202r

2
03r

2
04 � 28r302r

3
03

� 58r303r
4
02 � 432r403r04 þ 384r204r

2
02 � 46r503r

2
02 þ 384r203r

2
02 þ 384r303r04 � 190r504r

2
02 þ 816r404r02 þ 116r402r

2
04

þ 296r303r
3
04 þ 26r404r

3
02 þ 948r03r

5
04 þ 2r403r

3
02 � 480r304r

2
02 � 96r202r

3
03; (B4)


3 ¼ 32r204r02 þ 2r03r
2
04r

2
02 þ 14r03r

3
04r02 � 32r203r04r02 � 16r03r04r

2
02 þ 4r203r02r

3
04 þ 3r03r

2
02r

3
04 � 4r303r

2
04r02

þ 14r303r04r02 � 11r03r02r
4
04 � 3r403r04r02 þ 2r203r

2
02r04 þ 3r303r04r

2
02 þ 3r403r

2
04 þ 24r203r

2
04 þ 11r203r

4
04 � 22r404r03

� 18r203r
3
04 � 44r304r02 � 12r303r02 þ 6r403r02 � 2r303r

2
04 þ 44r304r03 þ 32r203r02 � 32r204r03 � 32r203r04 � 4r202r

2
03r

2
04

� 6r403r04 þ 12r204r
2
02 þ 12r203r

2
02 þ 12r303r04 þ 22r404r02 � 2r303r

3
04 � 6r304r

2
02 � 6r202r

3
03; (B5)


4¼204r703r
2
04�128r503r

4
02þ348r702r

2
04þ80r603r

4
02þ32r502r

3
04þ560r403r04r

3
02�192r502r04r03�1536r203r04r

3
02

�1344r303r04r
3
02þ1344r302r

2
04r

2
03þ2400r403r04r

2
02þ864r402r04r

2
03�1440r402r

2
04r03þ1728r03r

3
02r

3
04

�4800r203r
2
02r

3
04�1536r203r02r

3
04�1536r302r

2
04r03�1536r03r

2
02r

3
04þ864r404r02r

2
03�3264r03r

5
04r02

þ3168r03r
4
04r

2
02�1728r503r04r02�2208r403r02r

2
04�1536r303r

2
04r02þ1728r303r

3
04r02þ1344r303r

2
04r

2
02

�1088r503r
2
02r04þ1792r503r

2
04r02þ1536r03r02r

4
04þ1536r402r04r03þ1536r403r04r02�264r603r

2
02þ68r603r

3
04

þ828r203r
7
04�704r403r

5
04þ128r303r

5
02�414r303r

7
04þ464r403r

6
04�1536r303r04r

2
02�112r402r04r

3
03�220r604r

3
02

þ20r303r
6
04�496r402r

4
04�2032r03r

4
04r

3
02þ1424r303r

2
04r

3
02þ96r203r

5
02�768r403r

2
04�800r02r

2
03r

5
04�1840r02r

3
03r

4
04

þ1232r402r
3
04r03�608r402r

2
04r

2
03�1264r303r

2
02r

3
04þ3792r03r02r

6
04�1264r203r

3
02r

3
04þ1536r302r

3
04þ4960r202r

2
03r

4
04

�3392r03r
5
04r

2
02�2240r403r

2
02r

2
04þ2096r403r

3
04r02þ528r603r04r02�768r202r

4
04�768r203r

4
04þ864r503r

2
04þ1632r203r

5
04

þ672r403r
3
04þ96r502r

2
04�768r403r

2
02�768r402r

2
03�1632r303r

4
04�292r03r

6
04r

4
02þ266r303r

4
04r

4
02�190r203r

4
04r

5
02

þ122r203r
5
04r

4
02þ170r03r

5
04r

5
02þ266r302r

4
03r

4
04þ64r603r

3
02r

2
04�40r603r04r

4
02�620r302r

3
03r

5
04þ207r03r

7
04r

3
02

þ352r203r
6
04r

3
02�58r503r

4
02r

2
04�114r602r

3
04r03þ87r303r04r

7
02�68r203r04r

6
02þ172r303r

6
04r

2
02�414r203r

7
04r

2
02

þ756r403r
2
04r

4
02þ102r703r04r

2
02þ464r503r04r

3
02þ1328r03r

5
04r

3
02þ460r03r

6
04r

2
02þ38r502r

5
03r04�16r02r

6
03r

4
04

�232r403r
6
04r02�76r03r

4
04r

6
02�1656r03r

7
04r02þ216r03r

4
04r

4
02�808r302r

2
03r

4
04
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� 384r202r
2
03r

5
04 þ 828r704r

2
02 � 164r603r02r

2
04 þ 64r502r

2
04r03 � 8r603r

3
04r

2
02 � 114r603r04r

3
02 þ 176r403r

4
02 þ 192r503r

2
02r

2
04

� 18r603r
3
04r02 þ 20r603r

2
02r

2
04 � 148r602r

2
04r

2
03 � 544r403r

3
02r

3
04 � 354r303r

6
04r02 � 1096r202r

3
03r

4
04 � 784r502r

3
04r03

� 260r203r
6
04r02 � 174r702r

2
04r

2
03 � 1896r202r

6
04 � 262r403r

4
02r

3
04 þ 74r403r

2
04r

5
02 þ 102r703r02r

2
04 þ 87r702r

3
04r03

þ 51r703r
3
04r02 � 102r703r

2
04r

2
02 þ 174r702r

2
04r03 þ 194r403r

2
02r

5
04 � 20r502r

3
04r

3
03 þ 112r602r

3
04r

2
03 þ 414r03r

7
04r

2
02 þ 64r403r

5
02

� 594r03r
6
04r

3
02 � 516r203r

4
04r

4
02 þ 252r03r

5
04r

4
02 þ 414r203r

7
04r02 � 174r303r

7
02 � 102r703r

3
04 � 28r603r

3
02 þ 132r02r

5
03r

4
04

� 176r502r
2
04r

3
03 þ 568r503r

3
04r

2
02 þ 174r203r04r

7
02 þ 336r602r04r03 � 536r503r

3
02r

2
04 þ 424r502r

3
04r

2
03 þ 60r03r

4
04r

5
02

þ 180r503r04r
4
02 � 552r403r04r

4
02 � 76r602r

3
03 � 408r703r04r02 þ 51r703r04r

3
02 þ 207r303r

7
04r02 þ 30r303r04r

6
02

� 250r202r
5
03r

4
04 þ 4r602r

2
04r

3
03 þ 136r503r

3
04r

3
02 � 180r403r04r

5
02 � 40r403r04r

6
02 þ 448r303r

2
02r

5
04 þ 134r503r

5
04r02

þ 364r602r
2
04r03 � 224r203r04r

5
02 þ 368r303r04r

5
02 þ 124r603r04r

2
02 � 520r402r

2
04r

3
03 � 232r402r

3
04r

3
03 � 36r02r

4
03r

5
04

� 540r202r
4
03r

4
04 � 1264r503r

3
04r02 þ 312r02r

4
03r

4
04 þ 752r02r

3
03r

5
04 þ 920r403r

2
02r

3
04 þ 728r402r

3
04r

2
03 þ 552r303r

3
02r

3
04

� 40r403r
2
04r

3
02 � 100r202r

2
03r

6
04 þ 680r302r

3
03r

4
04 � 56r302r

2
03r

5
04 � 696r702r04r03 þ 2528r504r

3
02 � 76r502r

5
03 � 992r504r

4
02

� 168r203r
6
02 � 168r602r

2
04 þ 32r603r

4
04 þ 204r703r

2
02 þ 640r502r

4
04 � 220r602r

3
04 � 340r504r

5
02 þ 584r604r

4
02

� 414r704r
3
02 � 174r702r

3
04 þ 152r404r

6
02 þ 128r503r

3
02 þ 348r203r

7
02 þ 672r402r

3
04 þ 1664r303r

5
04 � 1896r203r

6
04

� 268r503r
5
04 � 102r703r

3
02 þ 80r403r

6
02 þ 736r503r

4
04 � 832r503r

3
04 � 264r603r

2
04 � 592r403r

4
04 þ 4608r202r

2
03r

2
04

þ 1536r302r
3
03 � 96r303r

4
02 þ 864r503r

2
02 þ 1632r504r

2
02 � 768r402r

2
04 þ 1536r303r

3
04 � 2400r404r

3
02 � 864r403r

3
02; (B6)


5 ¼ �18r502r
3
04 þ 128r03r

2
04r

2
02 � 16r403r04r

3
02 � 128r03r

3
04r02 � 48r502r04r03 þ 24r203r04r

3
02 þ 24r303r04r

3
02 þ 32r302r

2
04r

2
03

þ 24r403r04r
2
02 � 40r402r04r

2
03 � 8r402r

2
04r03 þ 56r03r

3
02r

3
04 þ 16r203r

2
02r

3
04 þ 120r203r02r

3
04 � 40r302r

2
04r03

� 168r03r
2
02r

3
04 � 56r404r02r

2
03 � 88r03r

5
04r02 þ 24r03r

4
04r

2
02 � 24r503r04r02 � 24r403r02r

2
04 þ 120r303r

2
04r02

� 32r303r
3
04r02 � 16r303r

2
04r

2
02 � 128r303r04r02 þ 6r503r

2
02r04 þ 6r503r

2
04r02 þ 176r03r02r

4
04 þ 32r402r04r03

þ 48r403r04r02 � 128r203r
2
04r02 þ 128r203r

2
02r04 � 18r303r

5
02 � 104r303r04r

2
02 þ 20r402r04r

3
03 þ 24r402r

4
04

� 32r03r
4
04r

3
02 � 16r303r

2
04r

3
02 þ 36r203r

5
02 � 24r403r

2
04 þ 22r02r

2
03r

5
04 � 12r02r

3
03r

4
04 þ 20r402r

3
04r03 þ 20r402r

2
04r

2
03

þ 32r303r
2
02r

3
04 � 64r302r

2
04 � 48r203r

3
02r

3
04 þ 96r302r

3
04 þ 16r202r

2
03r

4
04 þ 22r03r

5
04r

2
02 þ 4r403r

3
04r02 � 88r202r

4
04

� 88r203r
4
04 þ 64r203r

3
04 þ 12r503r

2
04 þ 44r203r

5
04 þ 4r403r

3
04 þ 36r502r

2
04 � 24r403r

2
02 � 8r402r

2
03 � 64r203r

3
02 þ 36r303r

4
04

þ 64r303r
2
04 þ 3r503r04r

3
02 þ 11r03r

5
04r

3
02 þ 6r502r

2
04r03 þ 8r403r

4
02 � 6r503r

2
02r

2
04 � 3r202r

3
03r

4
04 þ 9r502r

3
04r03

� 12r502r
2
04r

2
03 � 4r403r04r

4
02 þ 6r203r04r

5
02 þ 9r303r04r

5
02 � 7r402r

2
04r

3
03 þ 3r503r

3
04r02 � 2r02r

4
03r

4
04 þ 11r02r

3
03r

5
04

� 3r403r
2
02r

3
04 þ r402r

3
04r

2
03 � 2r303r

3
02r

3
04 þ 9r403r

2
04r

3
02 � 12r03r

4
04r

4
02 þ 17r302r

2
03r

4
04 � 22r202r

2
03r

5
04 � 22r504r

3
02

� 6r503r
3
02 � 44r402r

3
04 � 22r303r

5
04 � 6r503r

3
04 þ 4r403r

4
04 � 48r202r

2
03r

2
04 þ 32r302r

3
03 � 12r303r

4
02

þ 12r503r
2
02 þ 44r504r

2
02 � 8r402r

2
04 � 48r303r

3
04 � 4r404r

3
02 � 4r403r

3
02 þ 64r304r

2
02 þ 64r202r

3
03; (B7)
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6 ¼ 32r03r
3
04r02 � 58r502r04r03 þ 128r203r04r02 � 28r203r04r

3
02 þ 128r204r03r02 þ 5r303r04r

3
02 þ 26r302r

2
04r

2
03

� 35r403r04r
2
02 � 18r402r04r

2
03 � 256r03r04r

2
02 þ 18r402r

2
04r03 � 67r03r

3
02r

3
04 � 64r302r04r03 þ r203r

2
02r

3
04

þ 128r203r02r
3
04 þ 68r302r

2
04r03 � 260r03r

2
02r

3
04 þ 5r404r02r

2
03 þ 49r03r

5
04r02 þ 5r03r

4
04r

2
02 þ 9r503r04r02

� 39r403r02r
2
04 � 160r303r

2
04r02 þ 30r303r

3
04r02 þ 5r303r

2
04r

2
02 þ 32r303r04r02 þ 140r03r02r

4
04 � 88r402r04r03

� 52r403r04r02 � 4r303r04r
2
02 þ 29r203r

5
02 þ 16r403r

2
04 � 69r604r02 � 17r603r02 � 256r203r

2
04 þ 32r302r

2
04

� 36r302r
3
04 � 236r504r02 þ 164r202r

4
04 � 304r203r

4
04 þ 32r404r03 � 32r203r

3
04 � 11r503r

2
04 � 15r203r

5
04 þ 62r403r

3
04

� 128r304r02 þ 69r604r03 þ 29r502r
2
04 þ 36r403r

2
02 þ 44r402r

2
03 � 128r303r02 þ 32r203r

3
02 � 32r403r02 � 58r303r

4
04

þ 17r603r04 � 32r303r
2
04 þ 128r304r03 � 6r402r

3
04 � 12r503r02 þ 12r503r04 þ 128r202r

2
03r

2
04 � 4r302r

3
03

þ 6r303r
4
02 þ 32r403r04 þ 128r204r

2
02 þ 2r503r

2
02 þ 128r203r

2
02 þ 128r303r04 � 34r504r

2
02 � 32r404r02

þ 44r402r
2
04 þ 168r303r

3
04 þ 48r404r

3
02 þ 236r03r

5
04 þ 12r403r

3
02; (B8)


7 ¼ �12r302r04r03 þ 9r203r
3
02 þ 9r302r

2
04 � 16r03r04r

2
02 � r03r

2
04r

2
02 � 9r203r

2
02r04 þ 16r203r

2
02 þ 2r202r

3
03

þ 16r204r
2
02 � 6r304r

2
02 þ 6r03r

3
04r02 � 32r304r02 � 3r403r02 þ 8r204r03r02 þ 2r203r

2
04r02

� 24r203r04r02 � 11r404r02 � 2r303r04r02 þ 3r403r04 þ 5r203r
3
04 � 3r303r

2
04 þ 11r404r03 þ 32r304r03: (B9)

These complicated expressions are exact and may be simplified by an additional approximation. For example, for large
peri- and apoapsis only the higher orders of r03 and r04 may be taken into account. In particular, in the post-Newtonian case
these long expressions are reduced to (110).
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[9] G. Slezáková, Ph.D. thesis, University of Waikato,

Waikato, New Zealand, 2006.
[10] H. Xu, Master thesis, University of Bremen, 2011.
[11] E. Hackmann and C. Lämmerzahl, Phys. Rev. Lett. 100,

171101 (2008).
[12] E. Hackmann and C. Lämmerzahl, Phys. Rev. D 78,

024035 (2008).
[13] E. Hackmann, V. Kagramanova, J. Kunz, and C.

Lämmerzahl, Europhys. Lett. 88, 30008 (2009).
[14] E. Hackmann, V. Kagramanova, J. Kunz, and C.

Lämmerzahl, Phys. Rev. D 81, 044020 (2010).
[15] V. Kagramanova, J. Kunz, E. Hackmann, and C.

Lämmerzahl, Phys. Rev. D 81, 124044 (2010).
[16] W. Schmidt, Classical Quantum Gravity 19, 2743

(2002).

[17] S. Drasco and S.A. Hughes, Phys. Rev. D 69, 044015
(2004).

[18] Y. Mino, Phys. Rev. D 67, 084027 (2003).
[19] R. Fujita and W. Hikida, Classical Quantum Gravity 26,

135002 (2009).
[20] D. Kubizňák and P. Krtouš, Phys. Rev. D 76, 084036

(2007).
[21] The metric (1) originates from [20] with t ! tþ 2n’,

� ! �� �.
[22] V. Kagramanova, Ph.D. thesis, Carl von Ossietzky

Universität Oldenburg, 2009.
[23] E. Hackmann, Ph.D. thesis, University of Bremen,

Bremen, Germany, 2010.
[24] With ‘‘Lense-Thirring effect’’ we refer to the precession

of the orbital plane only, not including the additional
precession of the periapsis as derived in the original
paper [4].

[25] D. Lynden-Bell and M. Nouri-Zonoz, Rev. Mod. Phys. 70,
427 (1998).

[26] G. V. Kraniotis, Classical Quantum Gravity 24, 1775
(2007).

[27] M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions with Formulas, Graphs, and
Mathematical Tables (Dover, New York, 1964).

[28] T. Fukushima, Celest. Mech. Dyn. Astron. 105, 305
(2009).

[29] C.M. Will, Living Rev. Relativity 9, 3 (2006), http://
www.livingreviews.org/lrr-2006-3.

OBSERVABLES FOR BOUND ORBITAL MOTION IN . . . PHYSICAL REVIEW D 85, 044049 (2012)

044049-17

http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1016/0003-4916(76)90240-2
http://dx.doi.org/10.1016/0003-4916(76)90240-2
http://dx.doi.org/10.1103/PhysRevD.83.044009
http://dx.doi.org/10.1103/PhysRevD.83.044009
http://dx.doi.org/10.1103/PhysRevLett.100.171101
http://dx.doi.org/10.1103/PhysRevLett.100.171101
http://dx.doi.org/10.1103/PhysRevD.78.024035
http://dx.doi.org/10.1103/PhysRevD.78.024035
http://dx.doi.org/10.1209/0295-5075/88/30008
http://dx.doi.org/10.1103/PhysRevD.81.044020
http://dx.doi.org/10.1103/PhysRevD.81.124044
http://dx.doi.org/10.1088/0264-9381/19/10/314
http://dx.doi.org/10.1088/0264-9381/19/10/314
http://dx.doi.org/10.1103/PhysRevD.69.044015
http://dx.doi.org/10.1103/PhysRevD.69.044015
http://dx.doi.org/10.1103/PhysRevD.67.084027
http://dx.doi.org/10.1088/0264-9381/26/13/135002
http://dx.doi.org/10.1088/0264-9381/26/13/135002
http://dx.doi.org/10.1103/PhysRevD.76.084036
http://dx.doi.org/10.1103/PhysRevD.76.084036
http://dx.doi.org/10.1103/RevModPhys.70.427
http://dx.doi.org/10.1103/RevModPhys.70.427
http://dx.doi.org/10.1088/0264-9381/24/7/007
http://dx.doi.org/10.1088/0264-9381/24/7/007
http://dx.doi.org/10.1007/s10569-009-9228-z
http://dx.doi.org/10.1007/s10569-009-9228-z


[30] JPL’s Horizons System, http://ssd.jpl.nasa.gov/?horizons.
The values for peri- and apoapsis are taken from 01/12/
2010 to 01/12/2011 in 1-day time steps; the values for the
inclination from 01/12/2001 to 01/12/2011 in 10-day time
steps.

[31] S. Pireaux, J.-P. Rozelot, and S. Godier, Astrophys. Space
Sci. 284, 1159 (2003).

[32] W. Miller, J. Math. Phys. (N.Y.) 13, 1393 (1972).
[33] A.W. Kerr, J. C. Hauck, and B. Mashhoon, Classical

Quantum Gravity 20, 2727 (2003).
[34] G. V. Kraniotis and S. B. Whitehouse, Classical Quantum

Gravity 20, 4817 (2003).
[35] G. Lauricella, Rend. Circ. Mat. Palermo 7, 111

(1893).
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