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A point particle of small mass m moves in free fall through a background vacuum spacetime metric g0ab
and creates a first-order metric perturbation h1retab that diverges at the particle. Elementary expressions are

known for the singular m=r part of h1retab and for its tidal distortion determined by the Riemann tensor in a

neighborhood of m. Subtracting this singular part h1Sab from h1retab leaves a regular remainder h1Rab . The self-

force on the particle from its own gravitational field adjusts the world line at OðmÞ to be a geodesic of

g0ab þ h1Rab . The generalization of this description to second-order perturbations is developed and results in

a wave equation governing the second-order h2retab with a source that has an Oðm2Þ contribution from the

stress-energy tensor of m added to a term quadratic in h1retab . Second-order self-force analysis is similar to

that at first order: The second-order singular field h2Sab subtracted from h2retab yields the regular remainder

h2Rab , and the second-order self-force is then revealed as geodesic motion of m in the metric g0ab þ h1R þ
h2R.
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I. OVERVIEW

Recent, impressive fully relativistic numerical analysis
has been brought to bear on a black hole binary system
with a mass ratio of 100 to 1 [1,2], and the evolution is
followed for two full orbits before coalescence. The two
disparate length scales of an extreme or intermediate mass-
ratio binary pose a challenge for numerical relativists to
resolve the geometry in the vicinity of the small object
while efficiently analyzing the remainder of spacetime and
providing gravitational wave trains for a number of orbits.
Second-order perturbation theory in general relativity
might more efficiently meet the challenge of the difficult
numerical problems of extreme and intermediate mass-
ratio binaries.

Early descriptions of second-order perturbation theory
[3–10] have focused on perturbations with no matter
sources and are typically limited to metrics with a sub-
stantial amount of symmetry. However, Habisohn [11]
presents a fully general description of matter-free
second-order perturbation theory for a background vacuum
spacetime metric g0ab.

Rosenthal [12–14] was first to describe a formal ap-
proach to second-order perturbation theory which includes
a small-mass �-function point source. However, an actual
application of his approach does not appear to be
straightforward.

The heart of this manuscript extends Habisohn’s [11]
second-order analysis to allow for a perturbing �-function
point mass. Our formalism is closely related to the tradi-
tional description of linear perturbation theory.

We begin in Sec. II with the formal expansion of the
Einstein tensor, for a metric gab þ hab, in powers of hab.
First-order perturbation theory is summarized in Sec. III

for the case that the source is a �-function object of small
massm. In the test mass limitmmoves along a geodesic �0

of the background metric g0ab. With a finite mass m the

metric is perturbed by the retarded field h1retab at first order in

m, and m’s worldline deviates from �0 by an amount of
OðmÞ asm itself interacts with h1retab as a consequence of the

first-order gravitational self-force as described in Sec. IV.
Throughout this manuscript we assume that the effects of
m’s spin and multipole structure on its motion are insig-
nificant when compared with the self-force effects.
The extension of Habisohn’s [11] second-order analysis

to allow a �-function point source demands careful con-
sideration of the singular behavior of the metric in a
neighborhood of m as described in Sec. V. Ultimately the
wave equation for the second-order h2retab appears in

Eq. (26) as one might have expected, and the self-force
analysis at second order is seen to be similar in style to the
analysis at first order.
The application of second-order perturbation theory for

a small mass still requires an effort which is strongly
dependent upon the details of the actual problem of inter-
est. Practical considerations are emphasized in Sec. VI.

A. Notation and conventions

In a neighborhood of a geodesic �0 of the background
metric g0ab we use locally inertial and Cartesian (LIC)

coordinates [15] where the timelike coordinate is t, the
spatial indices i, j, k and l run from 1 to 3, the spatial
coordinates are xi and r2 � xixj�ij. In addition LIC coor-

dinates have special properties on �0: the coordinate t is
the proper time, the spatial coordinates are all zero xi ¼ 0,
the metric is the flat Minkowski metric �ab, and all first
coordinate derivatives of g0ab vanish. Second derivatives of
g0ab on �0 determine a curvature length and time scale R,

and the components of the Riemann tensor then scale as*det@ufl.edu
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1=R2 and their time derivatives along �0 scale as 1=R3.
After some fine-tuning of the coordinates [15–17], the
metric in a neighborhood of �0 may be put into the form

g0abdx
adxb ¼ �abdx

adxb � xixjR0
titjðdt2 þ �kldx

kdxlÞ

� 4

3
xixjR0

ikjtdtdx
k þOðr3=R3Þ; (1)

where the superscript 0 on the components of the Riemann
tensor implies that it is to be evaluated on �0. Also, both
R0
titj and R0

ikjt are symmetric and tracefree in the indices i

and j as consequences of the vacuum Einstein equations.
Much of our analysis takes place in the buffer zone [16],

a region spatially surrounding �0 where m � r � R. In
the buffer zone r is small enough compared to the curva-
ture length scale, r � R, that the curvature of g0ab is

barely apparent, and we have the luxury of being able to
expand the actual metric g0ab þ hretab away from flat space-

time in powers of two simultaneously small numbers, m=r
and r=R.

II. EXPANSION OF THE EINSTEIN TENSOR

We consider a perturbation hab of a given metric gab,
and expand the Einstein tensor of the sum Gabðgþ hÞ in
terms of increasing powers of hab so that formally

Gabðgþ hÞ ¼ GabðgÞ þGð1Þ
abðg; hÞ þGð2Þ

abðg; hÞ þ � � � ;
(2)

where Habisohn [11] describes an individual term in this
expansion by

GðnÞ
ab ðg; hÞ ¼

1

n!

�
dn

d�n Gabðgþ �hÞ
�
�¼0

: (3)

This notation implies that the operatorGðnÞ
ab ðg; hÞ returns an

expression that scales as ðhabÞn. For n ¼ 1 and gab being a
vacuum solution of the Einstein equation,

2Gð1Þ
abðg; hÞ ¼ �rcrchab �rarbh

c
c þ 2rðarchbÞc

� 2Ra
c
b
dhcd þ gabðrcrch

d
d �rcrdhcdÞ;

(4)

where ra is the derivative operator compatible with the
metric gab. Habisohn [11] provides the following expres-

sion for Gð2Þ
abðg; hÞ in his Eq. (3.1),

Gð2Þ
abðg; hÞ ¼ 1

2h
cdrarbhcd þ 1

4ðrah
cdÞrbhcd

þ ðr½chd�aÞrchdb � 1
4C

dð2rðahbÞd �rdhabÞ
� hcd

�
rcrðahbÞd � 1

2rcrdhab

�

þ
�
1
8C

dCd � 1

4
hcdrerehcd � 3

8ðrehcdÞrehcd

þ 1
4h

cdrcCd þ 1
4ðrdhceÞrchde

�
gab (5)

where

Cd � 2rchcd �rdhc
c: (6)

III. FIRST-ORDER PERTURBATION
THEORY FOR A POINT MASS

We next consider the consequences of adding an object
of small size and small mass m, with m � R, to the
vacuum spacetime whose metric is g0ab.
With a global coordinate system ðT; XiÞ, the stress-

energy tensor for m moving on a geodesic �0 of g
0
ab is

Tabð�0Þ ¼ m
uaubffiffiffiffiffiffiffiffiffiffi�g0
p d�

dT
�3ðXi � �i

0ðTÞÞ; (7)

where �i
0ðTÞ gives the spatial position of the geodesic as a

function of T, and the four-velocity ua,
ffiffiffiffiffiffiffiffiffiffi�g0

p
, and proper

time � are all functions of T along the worldline.
The dominant effect of Tabð�0Þ on the spacetime metric

results in the retarded metric perturbation h1retab proportional

to m which solves

Gabðg0 þ h1retÞ ¼ 8�Tabð�0Þ þOðm2Þ; (8)

with appropriate boundary conditions. The superscript 1 on
any metric perturbation implies that h1retab is OðmÞ, for

example. Later we use h2retab for an Oðm2Þ metric perturba-

tion and we also use hretab � h1retab þ h2retab þOðm3Þ.
For this linear perturbation problem, we expand the

Einstein tensor in Eq. (8) using Eq. (2) and isolate the
terms linear in m to obtain the first-order perturbation
equation,

Gð1Þ
abðg0; h1retÞ ¼ 8�Tabð�0Þ: (9)

The Bianchi identity implies for arbitrary hab that if gab
is a vacuum solution of the Einstein equation, then

raGð1Þ
abðg; hÞ ¼ 0; (10)

perhaps as a distribution. An integrability condition for
Eq. (9) thus requires that Tabð�0Þ be divergence-free. The
assumption that the worldline of m is a geodesic �0 of g

0
ab

guarantees that raTabð�0Þ ¼ 0 and that the integrability
condition is satisfied.
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IV. FIRST-ORDER GRAVITATIONAL SELF-FORCE

After h1retab is found using Eq. (9) there are several ways

of calculating, understanding and interpreting the gravita-
tional self-force [17–23]. Our favorite is to note that h1retab is

naturally decomposed within a neighborhood of �0 into
two complementary parts

h1retab ¼ h1Sab þ h1Rab: (11)

The first part h1Sab is the linear piece of the singular field
hSab which is a special solution of

Gabðg0 þ hSÞ ¼ 8�Tabð�0Þ (12)

with the notable features that hSab: (1) may be expanded in

powers of m, (2) is local to m and does not depend upon
boundary conditions, (3) is accessible via an asymptotic
expansion [17–21] each term of which is singular or of
limited differentiability on �0, and (4) does not exert a
force onm itself, just as the Coulomb field of an electron at
rest exerts no net force on the electron.

The substitution hSab ¼ h1Sab þ h2Sab þOðm3Þ, with h2Sab ¼
Oðm2Þ, into Eq. (12) and the expansion of the Einstein
tensor results in two equations, the first linear in m and the
second quadratic,

Gð1Þ
abðg0; h1SÞ ¼ 8�Tabð�0Þ (13)

Gð1Þ
abðg0; h2SÞ ¼ �Gð2Þ

abðg0; h1SÞ: (14)

The inhomogeneous, linear singular field h1Sab looks like
a Coulomb m=r field being tidally distorted by the
Riemann tensor of g0ab. We qualitatively describe h1Sab,
using LIC coordinates associated with �0, as

h1Sab �
m

r

�
1þ x2

R2
þ � � �

�
; (15)

only the scaling of the leading terms are shown, and this
scaling is valid in the buffer zone, wherem � r � R. We
distinguish x from r to emphasize that x=r is generally
finite but discontinuous C�1 in the limit r ! 0. The domi-
nant term, scaling as just m=r, represents the linear in m
terms in an m=r expansion of the Schwarzschild metric, as
given in Eq. (A6) in Appendix A. The second term in the
parentheses reflects the quadrupole distortion of the m=r
field that is induced by the external Riemann tensor’s tidal
effects which scale as x2=R2, as given by the terms pro-
portional to m in Eq. (A8).

The complement of h1Sab is the homogeneous regular

field h1Rab ¼ h1retab � h1Sab, from Eq. (11), which solves

Gð1Þ
abðg0; h1RÞ ¼ 0: (16)

The regular field h1Rab is smooth on �0 and, thus, qualita-

tively described in a neighborhood of �0 by

h1Rab �
m

R
þ mx

R2
þmx2

R3
þ � � � ; (17)

with the LIC coordinates associated with �0. Each term
takes the form of an external multipole moment propor-
tional to m.
The regular field h1Rab is added to g0ab to create the

external metric

gextab � g0ab þ h1Rab; (18)

which governs the geodesic motion ofm. After all, h1Rab is a
homogeneous solution of Eq. (16) with no variation over a
length scale comparable to m. An observer in a neighbor-
hood of m, with no a priori knowledge of the global
spacetime, could measure the actual metric g0ab þ h1Rab þ
h1Sab at OðmÞ and could distinguish the singular behavior of

h1Sab from the remainder g0ab þ h1Rab . However, the observer
would be unable to distinguish h1Rab from g0ab in the combi-

nation g0ab þ h1Rab at linear order via local measurements

only because g0ab þ h1Rab is a smooth solution of the vacuum

Einstein equations at linear order. The observer would then
naturally note that the worldline of m is a geodesic �0 þ
�1R of the metric g0ab þ h1Rab . The difference between the

two worldlines is denoted �1R and reflects the effects of
what is often called the gravitational self-force, even
though there is neither a force on m nor an acceleration
of its worldline within the external metric g0ab þ h1Rab .
It is apparent that an OðmÞ coordinate transformation of

the original LIC coordinates for �0 would remove the
dipole term in Eq. (17) and put the sum g0ab þ h1Rab into

the same form as displayed in Eq. (1), with OðmÞ changes
in the components of the external Riemann tensor.
In an application h1retab is typically found numerically

while h1Sab (or its approximation, cf. Sec. VI) is found

analytically, then h1Rab ¼ h1retab � h1Sab gives the regular re-

mainder (or its approximation) which is used to determine
the self-force and the appropriate geodesic �0 þ �1R of
g0ab þ h1Rab .

V. SECOND-ORDER PERTURBATION THEORY

We assume that we have solved a first-order self-force
problem of interest and have, in hand, h1retab , h1Sab, h

1R
ab , the

initial geodesic �0 of g0ab and the self-force modified

geodesic �0 þ �1R of g0ab þ h1Rab .
For the second-order problem we also require h2Sab which

can be determined via an asymptotic expansion of Eq. (14),
and scales as

h2Sab �
m2

r2

�
1þ x2

R2
þ � � �

�
(19)

with LIC coordinates. The dominant term, scaling as
m2=r2, is the term quadratic in m in an m=r expansion of
the Schwarzschild metric, as given in Eq. (A7) for n ¼ 2.
The second term in the parentheses reflects the quadrupole
distortion of the m2=r2 field that is induced by the external
Riemann tensor’s tidal effects which scale as x2=R2, as
given by the Oðm2Þ terms in Eq. (A8).
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To understand second-order perturbation theory requires
understanding two distinct and critical roles played by the
first-order regular field h1Rab . First, the stress-energy tensor

ofm is Tabð�0 þ �1RÞ, where the argument implies that the
worldline ofm is now a geodesic of g0ab þ h1Rab . The change
in the stress-energy tensor resulting from the first-order
self-force is

Tabð�0 þ �1RÞ � Tabð�0Þ
¼ m�

�
uaubffiffiffiffiffiffiffi�g
p d�

dT

�
�3½Xi � �i

0ðTÞ�

�m
uaubffiffiffiffiffiffiffiffiffiffi�g0
p d�

dT
�j
1R

@

@Xj �
3½Xi � �i

0ðTÞ�; (20)

where the � operation reflects the OðmÞ change in the
quantity in parentheses which follows from changing the
metric to g0ab þ h1Rab from g0ab. Thus the difference between
the two stress-energy tensors is a distribution of Oðm2Þ
with support on �0 and consists of terms with a �-function
and with a gradient of a �-function.

A second effect of h1Rab on the second-order problem is

the modification of the tidal environment of m by h1Rab
which becomes an OðmÞ part of the external metric as in
Eq. (18). This creates OðmÞ changes in the external
Riemann tensor’s multipole moments. These changes are
responsible for Oðm2Þ corrections to h1Sab which we label

h2Syab . Thus the singular field is not derived solely from the

initial geodesic and the background metric g0ab, rather it
specifically includes effects from the self-force modifica-
tion of the geodesic and from the additional Oðm2Þ tidal
distortion of h1Sab caused by h1Rab , and these Oðm2Þ contri-
butions to the singular field constitute h2Syab .

The presence of h1Rab in the external metric g0ab þ h1Rab
modifies the tidal effects of the external Riemann tensor on
the singular field and Eq. (15) becomes

h1Sab þ h2Syab �m

r

�
1þ x2

R2

�
1þ m

R

�
þ � � �

�
; (21)

where we are now using LIC coordinates for the geodesic
�0 þ �1R of g0ab þ h1Rab . The m=R term in the parentheses

adds an Oðm2Þ contribution to hSab; however, the Oðm2Þ
h2Sy is naturally grouped with h1Sab because its presence in

Eq. (21) algebraically resembles part of h1Sab in Eq. (15)

much more than any part of h2Sab in Eq. (19).

Through second order the singular field is thus repre-
sented by

hSab ¼ h1Sab þ h2Syab þ h2Sab þOðm3Þ: (22)

An immediate application of this notation is in the
recognition that

Gð1Þ
abðg0 þ h1R; h1S þ h2SyÞ ¼ 8�Tabð�0 þ �1RÞ þOðm3Þ;

(23)

which is the natural extension of Eq. (13) to second order.
The presence of h1Rab as part of the external metric in the

first argument of Gð1Þ
ab requires the addition of h2Syab to the

second argument. We have already described h1Rab in

Eq. (11), and it is natural then to define h2Rab via

h2retab ¼ h2Rab þ h2Syab þ h2Sab: (24)

We now confront the second-order problem which re-
quires a solution for h2retab from

Gabðg0 þ h1ret þ h2retÞ ¼ 8�Tabð�0 þ �1RÞ þOðm3Þ;
(25)

when we are given the metric perturbations h1retab , h1Rab , h
1S
ab,

h2Syab , h2Sab, and the worldlines �0 and �0 þ �1R. We expand

the left-hand side about g0ab, rearrange some terms, and

substitute for Gð1Þ
abðg0; h1retÞ from Eq. (9) to obtain

Gð1Þ
abðg0; h2retÞ ¼ 8�Tabð�0 þ �1RÞ � 8�Tabð�0Þ

�Gð2Þ
abðg0; h1retÞ: (26)

This wave equation for h2retab is the primary formal result of

this manuscript. At the source each stress-energy term is
OðmÞ; however, their difference is a distribution with sup-
port on �0 and is of Oðm2Þ as given in Eq. (20).
The integrability condition for Eq. (26) is easily satisfied

away from �0 because thereG
ð1Þ
abðg0; h1retÞ ¼ 0 and the fact

that for any hab if Gð1Þ
abðg0; hÞ ¼ 0 then it follows that

raGð2Þ
abðg0; hÞ ¼ 0, as shown by Habisohn [11] in his

Eq. (3.7). Thus the divergence of the right-hand side is
zero away from �0. The discussion of the integrability
condition in a neighborhood of �0 is deferred until just
after Eq. (31) below.
Equation (26) becomes surprisingly transparent after

some analysis (while cavalierly dropping terms of Oðm3Þ
along the way) when hretab is reexpressed with the substitu-

tions h1retab ¼ h1Rab þ h1Sab and h2retab ¼ h2Rab þ h2Sab þ h2Syab .

Then the substitutions for the stress-energy tensors from
Eqs. (13) and (23) lead to

Gð1Þ
abðg0; h2R þ h2Sy þ h2SÞ
¼ Gð1Þ

abðg0 þ h1R; h1S þ h2SyÞ �Gð1Þ
abðg0; h1SÞ

�Gð2Þ
abðg0; h1R þ h1SÞ: (27)

Use of the identity in Eq. (B3) modifies the right-hand side
(rhs) with the result that

Gð1Þ
abðg0; h2R þ h2Sy þ h2SÞ
¼ Gð1Þ

abðg0 þ h1R; h1S þ h2SyÞ �Gð2Þ
abðg0; h1SÞ

�Gð2Þ
abðg0; h1RÞ �Gð1Þ

abðg0 þ h1R; h1SÞ: (28)

On the rhs, the fourth term cancels that part of the first
term which is linear in h1Sab. The terms linear in h2S on the
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left-hand side and quadratic in h1S on the rhs cancel from
Eq. (14). The terms linear in h2Sy on each side of the
equation cancel up to a term of Oðm3Þ, which is ignored.
When the dust has settled what remains is

Gð1Þ
abðg0; h2RÞ ¼ �Gð2Þ

abðg0; h1RÞ; (29)

which reveals obvious consistency for this second-order

perturbation formalism: When h1Sab, h
2Sy
ab and h2Sab correctly

capture their respective parts of the singular behavior of the
retarded field, the regular remainder h1Rab þ h2Rab appears as

a source-free metric perturbation at second order in m as
described by Habisohn [11]. The integrability condition for
Eq. (29) is satisfied in a manner similar to that for Eq. (26)
away from �0.

The second-order self-force is similar to the first-order
self-force. In a neighborhood of m, h2retab is naturally de-

composed into two complementary parts, h2retab ¼
h2Rab þ ðh2Syab þ h2SabÞ, where h2Syab þ h2Sab exerts no force on

m itself. The second-order self-force then movesm along a
geodesic of g0ab þ h1Rab þ h2Rab .

The sanguine simplicity of Eq. (29) hides the complexity
of its application. It might appear as though h2Rab may be

solved only in terms of h1Rab in a neighborhood of �0, but

what is lacking is the description of the boundary condition
which is typically given as a condition on the retarded field
hretab. To find h2Rab it is necessary first to find h1retab and to

evaluate h1Sab as an asymptotic expansion in a neighborhood

of �0; these lead to h1Rab ¼ h1retab � h1Sab. With h1Rab the self-

force modification of the worldline may be determined. At

this point h2Syab and h2Sab are accessible via asymptotic ex-

pansions and h2retab could be evaluated via Eq. (26). Only

then is h2Rab able to be determined.

VI. PRACTICAL CONCERNS

In most situations, only an asymptotic approximation
hsab to the exact hSab is likely to be known, and as a

consequence an actual application of the formalism de-
scribed above is not as elementary as it might appear. In
this case, hrab � hretab � hsab is an approximation to the

actual regular field hRab. With these approximations some

concerns appear in a neighborhood of the �-function point
source m. The proper evaluation of the self-force, via hrab,
requires that hrab match both the value and first coordinate

derivatives of hRab on �0. In turn, this requires that the

difference hSab � hsab be zero on �0, and also, with LIC

coordinates, that all first coordinate derivatives of this
difference also be zero on �0.

Experience [24–30] has shown that in numerical work if
the difference hSab � hsab of these two singular fields is

increasingly more differentiable, then the numerical analy-
sis will be increasingly more accurate.

In some self-force analyses [31]

h1Sab ¼ h1sab þOðmx4=rR4Þ and

h2Syab þ h2Sab ¼ h2syab þ h2sab þOðm2x4=r2R4Þ:
(30)

We assume henceforth that we have such a precisely
described approximation hsab to hSab.
For first-order analyses, the integrability condition re-

quired for using Eq. (9) to solve for h1retab is easily satisfied.

The approximation for h1sab is then accurate enough that h
1r

is C2 on �0, and the accuracy of the computed self-force
effects are not limited by this approximation.
To derive a second-order equation for h2rab follow the

same instructions as for Eq. (29) while using hrab and hsab
instead of hRab and h

S
ab, and do not use Eqs. (13) and (14) or

(23) for substitutions. The result is

Gð1Þ
abðg0; h2rÞ ¼ �Gð2Þ

abðg0; h1rÞ � ½Gð2Þ
abðg0; h1sÞ

þGð1Þ
abðg0; h2sÞ� þ ½8�Tabð�0 þ �1rÞ

�Gð1Þ
abðg0 þ h1r; h1s þ h2syÞ�

� ½8�Tabð�0Þ �Gð1Þ
abðg0; h1sÞ�: (31)

The integrability condition for using Eq. (31) to solve for
h2r is satisfied everywhere except, perhaps, precisely on �0

where the analysis entails some modest difficulty. The

order terms associated with h1sab and h2syab þ h2sab (given

above) provide an estimate for the behavior of the source
on the right-hand side in a neighborhood of �0. Most of the
terms on the right-hand side are either distributions or
differentiable and well-behaved on �0. The uncertainty

involving the source is dominated by the Gð2Þ
abðg0; h1sÞ and

Gð1Þ
abðg0; h2sy þ h2sÞ terms; each of these scales as two

spatial derivatives of m2x4=r2R4, which is
Oðm2x2=r2R4Þ and finite but discontinuous on �0. The
divergence of this term is then Oðm2x=r2R4Þ which di-
verges on �0. However, the integral of this divergence
(contracted with a smooth test vector field of order unity)
over a small volume of radius r� about m is then
Oðm2r2�=R4Þ. If we choose r� such that m, r�, and R are
related by

r2�=R & m � r� � R; (32)

then it follows that the integrated divergence over the
volume of radius r� is Oðm3=R3Þ. For r > r� the integra-
bility condition is satisfied. Thus, the integrability condi-
tion fails only at Oðm3Þ which does not hinder the analysis
at Oðm2Þ. No fundamental difficulty prevents solving
Eq. (31) for h2rab. The resultant h2rab is C1 on �0 and is

sufficient to find second-order self-force effects.

VII. SUMMARYAND CONCLUSIONS

Upon reflection, Eq. (26) describes the second-order
perturbation problem for a �-function point mass in a quite
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satisfactory manner and is the primary result of this manu-
script. The metric perturbation h2retab may be determined

directly, and the hSab, h
R
ab decomposition of hretab is only

required for determining the effects of the self-force.
It is notable that the representation of a small massm by

a �-function point source works as well at second order as
it does at first order.
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APPENDIX A: NONLINEAR PERTURBATION
THEORYAND TIDAL DISTORTION

OFA SMALL BLACK HOLE

The simplest example of nonlinear perturbation theory
in general relativity involves perturbing flat spacetime by
putting a small, spherical object of mass m down on the
origin of Minkowski space. Outside the object the geome-
try must be the Schwarzschild metric from Birkhoff’s
theorem.

The usual coordinates of Minkowski space form an LIC
coordinate system because the spatial origin xi ¼ 0 is a
geodesic, and the other LIC conditions are clearly satisfied.
We define a covariant vector in the radial direction via ni ¼
rir. With a Schwarzschild black hole of mass m present at
the spatial origin, the metric takes the unfamiliar form

gschwab dxadxb ¼ �
�
1� 2m

r

�
dt2 þ r

r� 2m
nknldx

kdxl

þ ð�kl � nknlÞdxkdxl: (A1)

An alternative description of this form of the
Schwarzschild metric is

gschwab ¼ �ab þ 0h
S
ab; (A2)

where 0h
S
ab is to be identified as the singular field from self-

force analysis, and the leading subscript 0 implies that this
monopole part of the singular field is spherically symmet-
ric. From Eq. (A1) it follows that

0h
S
abdx

adxb ¼ ðgschwab � �abÞdxadxb

¼ 2m

r
dt2 þ 2m

r� 2m
nknldx

kdxl: (A3)

The nth-order part of 0h
S
ab scales asm

n and may be isolated

with

0h
nS
ab �

mn

n!

�
dn

dmn h
S
ab

�
m¼0

: (A4)

This provides the formal representation

hSab ¼ X1
n¼1

hnSab: (A5)

For our elementary example, the first term in this sum is

0h
1S
abdx

adxb ¼ 2m

r
dt2 þ 2m

r
nknldx

kdxl; (A6)

and for n > 1

0h
nS
abdx

adxb ¼
�
2m

r

�
n
nknldx

kdxl: (A7)

In this treatment of the Schwarzschild metric the singular
features of 0h

nS
ab are identified, and the absence of a regular

field hRab is assured by the flat nature of the initial

Minkowski metric.
A more subtle example places a Schwarzschild black

hole in a region of spacetime that is empty but has slowly
changing curvature from some distant source. In that case
the metric of a black hole placed on the origin of the LIC
coordinate system of Eq. (1) would be perturbed by the
background curvature and could be analyzed by use of the
Regge-Wheeler [32] formalism. The boundary condition at
large r requires that the perturbed metric approach the form
given in Eq. (1). The boundary condition as r ! 2m re-
quires that the perturbation be well-behaved on the future
event horizon of the small black hole. In the time-
independent limit the wave equations for the metric per-
turbations admit analytic solutions which satisfy the
boundary conditions [17].
The dominant tidal effects present in both h1Sab and h2Sab

are seen in the quadrupole l ¼ 2 terms of Eq. (9) of [17],
which we reproduce here as

2h
S
abdx

adxb ¼ R0
titjx

ixj½ð4m=r� 4m2=r2Þdt2
þ 2m2=r2ð�kl � nknlÞdxkdxl�
þ 8m

3r
xixjR0

ikjtdx
kdtþOðmx3=rR3Þ

þOðm2x2=rR3Þ þOðm3x2=r2R3Þ (A8)

The order terms here result from the possible slow time
dependence of the tidal field.
A more extensive analysis of hSab in a similar style is

given in [20]. An alternative treatment in a dramatically
different style is given in [21].

APPENDIX B: USEFUL IDENTITY

An identity used in deriving Eqs. (29) and (31) results
from considering two different expansions of the same
expression Gðg0 þ h1R þ h1SÞ. On the one hand, treating
h1Rab þ h1Sab as a single quantity, it expands to be
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Gð1Þ
abðg0; h1R þ h1SÞ þGð2Þ

abðg0; h1R þ h1SÞ þOðm3Þ:
(B1)

On the other hand, first grouping h1Rab with g0ab while

expanding in powers of h1Sab, and subsequently expanding

in powers of h1Rab , it becomes

Gð1Þ
abðg0; h1RÞ þGð2Þ

abðg0; h1RÞ þGð2Þ
abðg0; h1SÞ

þGð1Þ
abðg0 þ h1R; h1SÞ þOðm3Þ: (B2)

Equating these two expressions reveals that

Gð2Þ
abðg0; h1retÞ ¼ Gð2Þ

abðg0; h1SÞ þGð2Þ
abðg0; h1RÞ

þGð1Þ
abðg0 þ h1R; h1SÞ �Gð1Þ

abðg0; h1SÞ
þOðm3Þ: (B3)
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