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We develop a semianalytical approach, based on the post-Newtonian expansion and on the affine

approximation, to model the tidal deformation of neutron stars in the coalescence of black hole-neutron

star or neutron star-neutron star binaries. Our equations describe, in a unified framework, both the system

orbital evolution, and the neutron star deformations. These are driven by the tidal tensor, which we expand

at 1=c3 post-Newtonian order, including spin terms. We test the theoretical framework by simulating black

hole-neutron star coalescence up to the onset of mass shedding, which we determine by comparing the

shape of the star with the Roche lobe. We validate our approach by comparing our results with those of

fully relativistic, numerical simulations.
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I. INTRODUCTION

Coalescing binaries composed of neutron stars (NS)
and/or black holes (BH), are among the most promising
sources of gravitational waves (GWs) to be detected by
gravitational wave interferometers like Virgo and LIGO
[1]. These systems are also interesting since they are
thought to be related to short gamma-ray burst [2].

The process of coalescence has been studied mainly
using post-Newtonian (PN) and fully relativistic, numeri-
cal simulations. PN expansion [3] has the advantage of
providing a semianalytic description of the evolution of the
system, but it is poorly convergent in the strong field limit;
therefore it is appropriate to study the inspiral phase only.
These limitations have been overcome by PN resummed
formulations like effective-one-body approach [4], but
these approaches do not describe the dynamical features
of the stellar deformation. Moreover, in the standard PN
expansion the compact objects are treated as pointlike up to
the 4.5 (included) post-Newtonian order. Finite size effects
are, formally, of order 5 PN; however their contribution is
larger than what a naive counting of PN orders may suggest
[5]. Tidal deformations have recently been included in the
PN framework through the ‘‘Love number’’ approach
[6,7], which assumes that the tidal field is proportional to
the quadrupole momentum (see below). The effects of tidal
deformations on the orbital motion have been studied in
[8,9].

Fully relativistic codes are the most powerful tool to
investigate the latest phases of the inspiral and merger (see
[10] for a review on the subject). They are, however, not
exempt from drawbacks: their computational cost is high,
therefore the parameter space cannot be explored at large;
furthermore, initial data solvers are still unable to provide
accurate initial data for binaries with nonaligned spins, and
may introduce spurious numerical effects which, if not
appropriately cured, affect the subsequent evolution of
the system. These problems are of particular relevance in
BH-NS binaries, where the lack of symmetry makes more

difficult to follow the entire process of coalescence by fully
relativistic simulations. For these reasons, the process has
been studied in the literature using some simplifying as-
sumptions, or for a restricted set of parameters. For in-
stance, in [11–14] the inspiral is modeled as a sequence of
quasiequilibrium circular orbits with decreasing radius; in
[11,12] the process is studied by fully relativistic simula-
tions, whereas [13,14] use the affine approach (see below).
In [15,16] Einstein’s equations are evolved assuming
that the black hole is nonrotating, and for large values of
the mass-ratio q ¼ MBH=MNS, whereas in [17–20] q takes
values q � 5; in [20,21] the black hole is assumed to rotate
with spin parallel to the orbital angular momentum, and
different values have been considered. For a recent review
on fully relativistic simulations of BH-NS binaries see [22]
(the literature on NS-NS coalescing binaries is much more
extended, and we do not report it here).
In this paper we develop a semianalytic approach to

study BH-NS and NS-NS coalescence, by merging two
different frameworks: the PN approach, which accurately
describes the system orbital motion, and the affine model
[13,14,23–26], which describes the stellar deformations
induced by the tidal field. To this aim, we compute the
tidal tensor associated to the PN metric of a two-body
system, defined in terms of the PN Riemann tensor and
of the local tetrad of the deformed body

CðiÞðjÞ ¼ R����e
�
ð0Þe

�
ðiÞe

�
ð0Þe

�
ðjÞ; (1)

up to Oð1=c3Þ. This tensor was derived with a different
approach in [27–29] up to Oð1=c2Þ; our expression coin-
cides with that of [29] and also includes Oð1=c3Þ terms,
associated to the spins of the compact objects.
In the affine model the NS is described as a deformable

ellipsoid, subject to its self-gravity, to internal pressure
forces and to the tidal field of the companion. In the original
formulation of this approach, the NS structure was consid-
ered at a Newtonian order, assuming a polytropic equation
of state (EOS) [23–26]. A first improvement was introduced
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in [13,14], where general relativity was taken into account
in the description of the stellar structure, and nonpolytropic
EOSs were considered. This approach was used to study
quasiequilibrium configuration sequences of BH-NS sys-
tems, in order to estimate the critical distance at which the
NS is disrupted by the tidal interaction [13], to determine
the corresponding cut-off frequency in the emitted gravita-
tional wave signal [14,30], and to estimate the mass of the
torus which forms after the NS is disrupted [31].

In this paper we further improve the affine model in-
troducing a more accurate description of the orbital motion
and of the tidal interaction. Our approach differs from
existing work on NS tidal deformation in compact binaries
in the following aspects.

(i) In [13,14,25,26,31,32] the affine model was used
assuming that the NS follows a timelike geodesic
of Kerr’s spacetime; this approximation fails when
the mass-ratio q is low. In addition, time-dilation
factors were neglected.
Furthermore, most works employing the affine
model [13,14,25,26] do not evolve the dynamical
equations of stellar deformation. Rather, they find,
at each value of the orbital radius, the corresponding
stationary configuration describing the deformed
star. In [31,32] the dynamical equations were solved;
however, while the orbital evolution was described in
PN coordinates, the BH tidal field was expressed in
the Boyer-Lindquist coordinates of the Kerr metric
describing a single BH; neglecting the difference
between these coordinate systems yields a loss of
accuracy of the model.
These problems are solved in the fully consistent
approach presented in this paper, where the BH-NS
or NS-NS systems are described by a two-body PN
metric, which holds for any value of the mass-ratio q.
The tidal tensor itself is expressed in the PN coor-
dinates, and the proper time of each compact body is
expressed in terms of the PN time coordinate,
through the appropriate Lorentz factor. Our approach
is valid up to the onset of mass shedding, which
occurs when the deformed star crosses the Roche
lobe; after that, it can no longer be applied, since the
assumption that the star is a deformed ellipsoid is
significantly violated. We describe the orbital motion
of the compact bodies using the 3.5 PN equations for
pointlike objects, with next-to-leading-order tidal
corrections; the NS tidal deformation is driven by
the tidal tensor of the 3 PN metric. The dynamical
equations are a system of (nonlinear) ordinary dif-
ferential equations in time.

(ii) NS tidal deformations have also been studied in a
series of papers [6,7,33–36], where the deformation
properties have been encoded in a set of numbers,
the Love numbers, which relate the quadrupole ten-
sor (or, more generally, the multipole moments of

the star) to the tidal tensor. This approach is
grounded on the adiabatic approximation, i.e., on
the assumption that the orbital evolution timescale
is much larger than the timescale needed for the star
to set into a stationary configuration. In this approxi-
mation, the quadrupole tensor is proportional to the
tidal tensor:

QðiÞðjÞ ¼ �CðiÞðjÞ; (2)

with � constant. The Love number � can be com-
puted by studying the response of a single star to an
external tidal tensor [6,7,34,35]. This model has
been employed to determine the effect of tidal de-
formation on the orbital motion of a NS in a binary
system [8,29,33,36].
We also compute the Love number � (see Sec. III),
without assuming the adiabatic approximation: the
stellar deformation is found by solving dynamical
equations.

To test the accuracy of our approach, we compare the
results with the existing literature on BH-NS binaries. As
a preliminary check, we verify that our PN description of
the orbital motion accurately reproduces the fully relativ-
istic results [18,20,37]. Then, we verify that the onset of
mass shedding we determine, is consistent with the results
of fully relativistic simulations [18,20,37]. Finally, we
check that the stellar deformations predicted by our model
are consistent with existing computations of the Love
number [6,7,34,35].
This paper focuses mainly on the theoretical framework,

and on its validation by comparison with the existing
literature, where available. The tool we develop will be
used in future works to study the dynamics of compact
binaries.
The plan of the paper is the following. In Sec II we

describe the model. In Sec. III we assess the validity of our
approach, by comparing the results with the literature. In
Sec. IV we draw the conclusions.

II. THE MODEL

We use notations and conventions introduced in [13],
where the affine model (partially improved with respect to
the original formulation [23,24]) is widely discussed. In the
following m1, m2 are the masses of the two compact
objects; we shall consider the tidal deformation of the
NS with mass m1 and radius RNS; the companion, with
mass m2, can either be a BH or a NS. Furthermore, we
define m ¼ m1 þm2 and � ¼ �=m ¼ m1m2=m

2, and the
mass ratio q ¼ m2=m1.

A. Improved affine model

The basic assumption of the affine model is that the NS,
deformed by the tidal field, maintain an ellipsoidal shape; it
is an S-type Riemann ellipsoid, i.e., its spin and vorticity

V. FERRARI et al. PHYSICAL REVIEW D 85, 044045 (2012)

044045-2



are parallel, and their ratio is constant [38]. The deforma-
tion equations are written in the star principal frame, i.e.,
the frame comoving with the star, whose axes coincide
with the ellipsoid principal axes. In what follows, a1 is the
axis which points toward the companion; a2 and a3 are the
axes orthogonal to a1, with a2 lying in the orbital plane;
the indices 1,2,3 label the corresponding directions.
Surfaces of constant density inside the star form self-
similar ellipsoids and the velocity of a fluid element is a
linear function of the coordinates xi in the principal frame.
Under these assumptions, the infinite degrees of freedom of
the stellar fluid motion can be reduced to five [23–25], and
are associated to dynamical variables governed by a set of
nonlinear differential equations, which describe the evolu-
tion of the stellar deformation. These variables are the three
principal axes of the ellipsoid ai (i ¼ 1, 2, 3) and two
angles, c , �, defined as

dc

d�
¼ �;

d�

d�
¼ �; (3)

where � is the NS proper time, and � is the ellipsoid
angular velocity, measured in the parallel transported
frame associated with the star center of mass. c is the
angle between the principal frame and the parallel trans-
ported frame. � is defined as follows:

� ¼ a1a2
a21 þ a22

	; (4)

where 	 is the vorticity along the axis x3 in the principal
frame. The NS internal dynamics is described in terms of
the Lagrangian

L I ¼ TI �U�V ; (5)

where TI is the fluid kinetic energy,U is the internal energy
and V is the star self-gravity. In the original approach
introduced by Carter and Luminet, these are defined in a
Newtonian framework

TI ¼ 1

2

Z
v2dMB; (6)

U ¼
Z 


�
dMB; (7)

V ¼ �G

2

Z dMBdM
0
B

jx� x0j ¼
Z

dMBr@r�Newt; (8)

where MB is the baryonic mass, � the mass density, 
 the
Newtonian energy density, �Newt the gravitational poten-
tial; all these quantities are solutions of the Newtonian
equations of stellar structure. Furthermore, dMB ¼ �d3x
andV satisfies the virial theorem, which states that, in the
spherical configuration, V ¼ �3�, where

� ¼
Z p

�
dMB ¼

Z
pd3x: (9)

The variation of the Lagrangian (5) gives the equations of
motion for the five dynamical variables ai, c , �.
In [23,24] it was shown that, under the affine hypothesis,

the integrals in Eqs. (6)–(8) and their variations, can be
expressed in terms of integrals on the fluid variables com-
puted for the spherical configuration (ai ¼ RNS), and of
functions of the dynamical variables. With this simplifica-
tion, the equations of motion can easily be found. In the
following, a superscript hat will denote quantities com-
puted for the spherical star. T andV expressed in terms of
the ‘‘hatted’’ quantities and of the dynamical variables are

TI ¼
X
i

1

2

�
dai
d�

�
2 M̂
R2
NS

þ 1

2

M̂
R2
NS

��
a1
a2

���

�
2
a22

þ
�
�� a2

a1
�

�
2
a21

�
(10)

V ¼ 1

2
V̂RNS

Z 1

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða21 þ �Þða22 þ �Þða23 þ �Þ

q ; (11)

where M̂ is the scalar quadrupole moment

M̂ ¼ 1

3

Z
sph

X
i

ðxiÞ2dMB (12)

(the subscript sph means that the integration is performed

on the spherical star) and V̂ is the self-gravity potential of
the spherical star.
The procedure to make explicit the dependence of the

internal energy U on the dynamical variables is more
subtle. The internal energy variation dU can be written as

dU ¼ X
i

�

ai
dai: (13)

The pressure integral � given by Eq. (9) can not be
factorized in a spherical integral and a function of the
axes; however, it can be expressed as

� ¼ a1a2a3
R3
NS

Z
sph

pð�Þd3x; (14)

where pð�Þ is the fluid equation of state, and � is the
rescaled mass density

� ¼ �̂
R3
NS

a1a2a3
(15)

with �̂ mass density in the spherical configuration. When
ai ¼ RNS, the pressure integral � reduces to the spherical

pressure integral �̂.
A first improvement to this approach was introduced in

[13], where the Newtonian description of the NS equilib-
rium configuration was replaced by the relativistic equa-
tions of stellar structure (TOV)
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@rsms ¼ 4
̂r2s@rs p̂ ¼ �G
ð
̂þ p̂=c2Þðms þ 4p̂r3s=c

2Þ
rsðrs � 2Gms=c

2Þ :

(16)

Here 
̂ is the relativistic mass-energy density in the
spherical configuration, rs is the radial coordinate in a
Schwarzschild frame associated to the nonrotating NS,
and msðrsÞ is the gravitational mass enclosed in a sphere
of radius rs. We remark that this is a major change, since
the relativistic radius is smaller than the Newtonian radius
by �10%� 20%. We also remark that the Schwarzschild
coordinate rs is different from the radial coordinate in the

Newtonian frame r ¼ P
iðx2i Þ1=2. The self-gravity integral

V̂ was changed accordingly, as

V̂ ¼
Z
sph

dMBrs@rs�TOV; (17)

where �TOV is an effective relativistic gravitational poten-
tial of the spherical star, defined in terms of the TOV
equations as follows

�̂@rs�TOV ¼ G
ð
̂þ p̂=c2Þðms þ 4r3sp̂=c

2Þ
rsðrs � 2Gms=c

2Þ : (18)

With this definition the virial theoremZ
sph

rs@rs�TOVdMB ¼ �3
Z
sph

p̂

�̂
dMB (19)

is still satisfied, with p̂ solution of the TOV Eqs. (16) and �̂
baryon mass density. As shown in Sec. II E, some terms in
the dynamical equations cancel in the spherical limit, only
if the virial theorem is satisfied. A nonexact cancellation of
these terms would lead to strong instabilities.

A further improvement, whichwe introduce in this paper,
consists in a careful treatment of the coordinate frames. To
describe the integrals in the spherical configuration, the
relevant coordinate systems are: (i) the Schwarzschild
frame, with radial coordinate rs, in which the TOV Eqs.
(16) are expressed; (ii) the Newtonian frame for a spherical
star fxig, whichwe now replacewith the corresponding 1 PN
post-Newtonian frame [3], with isotropic radial coordinate

r ¼ P
iðx2i Þ1=2 and metric (for a single star)

ds2 ¼ �
�
1� 2V

c2
þ 2V2

c4

�
dt2 þ

�
1þ 2V

c2

�
�ijdx

idxj; (20)

where VðrÞ � G
R1
r

msðr0Þ
r02 dr0. Following [39] the transfor-

mation between the post-Newtonian isotropic radial coor-
dinate and the Schwarzschild coordinate inside the star is
given by

r ¼ rs

�
1� VðrsÞ

c2

�
: (21)

The scalar quantity dMB can be expressed, in the
Schwarzschild frame, in terms of the corresponding spatial

three-metric �ij
schw:

dMB ¼ �̂
ffiffiffiffiffiffiffiffiffiffiffi
�schw

p
d3x ¼ �̂r2s

�
1þGmsðrsÞ

rsc
2

�
drs sin�d�d�:

(22)

The integrand in the quadrupole moment (12) is
expressed in the post-Newtonian coordinates, i.e., it is r2 ¼
r2sð1� 2VðrsÞ=c2Þ. The integrals V̂ , �̂, M̂ then take the
form

V̂ ¼ �3�̂ �̂¼ 4
RRNS

0 p̂

�
1þ GmsðrsÞ

rsc
2

�
r2sdrs

M̂ ¼ 4

3

Z RNS

0
�̂

�
1� 2VðrsÞ

c2
þGmsðrsÞ

rsc
2

�
r4sdrs:

(23)

B. The post-Newtonian metric

To derive the equations describing the orbital motion of
the binary and the tidal tensor, we shall use a 3 PN metric
written in harmonic coordinates (fx� ¼ ct; x; y; zg):

g00 ¼ �1þ 2V

c2
� 2V2

c4
þ 8

c6

�
X̂ þ ViVi þ V

6

�

þ 32

c8

�
T̂ � VX̂

2
þ R̂iVi � VViVi

2
� V4

48

�
þOð10Þ

(24)

g0i¼� 4

c3
Vi� 8

c5
R̂i�16

c7

�
Ŷiþ1

2
ŴijVjþ1

2
V2Vi

�
þOð9Þ

(25)

gij ¼�ij

�
1þ 2

c2
Vþ 2

c4
V2þ 8

c6

�
X̂þVkVkþV3

6

��

þ 4

c4
Ŵijþ16

c6

�
Ẑijþ1

2
VŴij�ViVj

�
þOð8Þ; (26)

where the potentials V, Vi, X̂, Ŵij, R̂i, Ŷi, Ẑij, are defined in

terms of retarded integrals over the source densities
[40,41]. We stress that the potential V appearing in the
metric of the two-body system (24)–(26), is different from
the potential V in Eq. (20), which is the metric of a single
star. Since these potentials are written as expansions of
powers of 1=cn, in the following we shall identify the order

of expansion with a superscript index. Thus, Vð0Þ defines
the scalar potential of order 0 in 1=c, Vð2Þ is the 1=c2 term
and so on.

C. The orbital motion

Following [42], we assume that the orbit evolves as a
slow adiabatic inspiral of a quasicircular orbit, i.e., the
energy lost through gravitational waves is balanced by a
change of the total binding energy E of the system

dE

dt
¼ �F ; (27)
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where E and the GW flux F are expressed in terms of the
PN variable

x ¼
�
Gm!

c3

�
2=3

; (28)

being ! ¼ d�=dt the orbital frequency. Equation (27)
yields

dx

dt
¼ � F

dE=dx
: (29)

We neglect the orbital eccentricity because, due to gravi-
tational wave emission, the orbit circularizes well before
the latest stages of the inspiral which we are studying [43].
We use the approach named ‘‘Taylor T4 approximant’’
[44,45], in which the right-hand side of Eq. (29) is ex-
panded to 3.5 PN order including spin terms. We also
include the effects of the NS tidal deformation on the
orbital motion, up to next-to-leading-order [8]. The orbital
phase �ðtÞ and the orbital frequency ! are computed by
numerically integrating the following ODEs

dx

dt
¼ dx

dt

��������pp
þdx

dt

��������tidal
(30)

d�

dt
¼ c3

Gm
x3=2 (31)

where the point-particle contribution reads

dx

dt

��������pp
¼ 64

5

�

m
x5

X7
k¼0

akx
k=2 (32)

with the coefficient ak given in Appendix A, and the tidal
term is given by

dx

dt

��������tid
¼32m1�2

5m7

�
12

�
1þ11

m1

m

�
x10þ

�
4421

28
�12263

28

m2

m

þ1893

2

m2
2

m2
�661

m3
2

m3

�
x11

�
þ1$2; (33)

where �2 is the Love number of the body 2, and 1 $ 2
means the same terms but whit the label 1 and 2 exchanged.
As we discuss in Section III B, the values of the Love
number for different stellar models can be computed with
our approach, and agree with the values obtained in the
literature [7].

The orbital separation r12 is evaluated through the PN
expression for � ¼ Gm=r12c

2, which is known up to order
3 PN, including spin terms [46], and is found solving the
equation

d�

dt
¼ dx

dt

�
1þ 2x

�
1� �

3

�
þ 5

2
x3=2

�
5

3
s‘ þ ��‘

�

þ 3x2
�
1� 65

12
�

�
þ 7

2
x5=2

��
10

3
þ 8

9
�

�
s‘ þ 2��‘

�

þ 4x3
�
1þ

�
� 2203

2520
� 41

192
2

�
�þ 229

36
�2 þ �2

81

��
;

(34)

where � ¼ m1�m2

m and the spin variables are defined as

follows

s ‘ ¼ c

G

S

m2
¼ c

G

S1 þ S2

m2
(35)

�‘ ¼ c

G

�

m2
¼ c

Gm

�
S2

m2

� S1

m1

�
; (36)

Si ¼ ðG=cÞm2
i ~aiŝi are the spin angular momenta of bodies

i ¼ 1, 2, with dimensionless spin parameters ~ai and unit
direction vectors ŝi.
It is important to remark that the adiabatic inspiral of the

orbital motion and the ‘‘adiabatic approximation’’ for the
Love number, are two different approximations: the first
assumes that the orbital timescale is much larger than that
associated to the gravitational wave energy loss (orbital
adiabatic approximation); the second assumes, as men-
tioned in the Introduction and in Sec. III B, that the orbital
timescale is much larger than the timescale associated to
the NS internal dynamics (Love number adiabatic approxi-
mation). In this paper, we use the orbital adiabatic approxi-
mation, but we drop the Love number adiabatic
approximation.

D. Post-Newtonian tidal deformations

Tidal interactions in binary systems have been studied
by many authors in the framework of general relativity (see
for instance [47,48]. They are described by the equation of
geodesic deviation:

D2��

D�2
þ R�

���u
�u��� ¼ 0; (37)

where R�
��� is the Riemann tensor, D=D� ¼ u�r�, and,

in the present case, u� is the 4—velocity of the star center
O� and �� is the separation 4—vector between O� and a
generic fluid element. By introducing an orthonormal tet-
rad field fe�ðiÞg (i ¼ 0; . . . ; 3) associated with the frame

centered in O�, parallel transported along its motion, and
such that e�ð0Þ ¼ u�, Eq. (37) can be cast in the form [49]

d2�ðiÞ

d�2
þ CðiÞ

ðjÞ�
ðjÞ ¼ 0; (38)

where the �ðiÞ ¼ eðiÞ� ��, and CðiÞ
ðjÞ are the components of

the relativistic tidal tensor, defined in Eq. (1). In the affine

approach, Eq. (38) applies with �ðiÞ replaced by ai.
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In the following subsections, starting from the 3 PN
metric given in Eqs. (24)–(26), we write the explicit ex-
pression of the parallel transported tetrad, and compute the
tidal tensor assuming equatorial motion.

1. The parallel transported tetrad

The orthonormal tetrad associated to the PN metric
(24)–(26), satisfies the Fermi-Walker transport equations
(expressed in terms of the coordinate time t, rather than of
the proper time of O�) [50]:

de
�
ð�Þ
dt

¼ �
�
� e�ð�Þ; (39)

where

�
�
� ¼ ��

�
��v

� � 1

c2
g��ða�v� � a�v�Þ; (40)

a� is the 4—acceleration of O� and v� ¼ dx�=dt, � ¼ 0,
3 its coordinate velocity, with v0 ¼ c. The tetrad vectors
are [50]:

etðtÞ ¼ ~etðtÞ ejðtÞ ¼ ~ejðtÞ etðjÞ ¼ ~etðjÞ
ejðxÞ ¼ cos�~ejðxÞ þ sin�~ejðyÞ
ejðyÞ ¼ � sin�~ejðxÞ þ cos�~ejðyÞ ejðzÞ ¼ ~ejðzÞ

where

~etðtÞ ¼ 1þ 1

c2

�
V þ v2

2

�
þOð4Þ

~ejðtÞ ¼
vj

c
þ

�
V þ v2

2

�
vj

c3
þOð5Þ

~etðjÞ ¼
vj

c
þOð3Þ

~ejðkÞ ¼ �j
k

�
1� V

c2

�
þ vjvk

2c2
þOð4Þ;

(41)

and

� ¼ 1

c2
Qxy (42)

is the angle describing geodesic precession and frame
dragging, given in terms of the antisymmetric matrix Q
defined as

Qðt; t0Þ ¼
Z t

t0

½v� ðrV � aÞ � r� ðVv� 2VÞ�dt: (43)

V ¼ fVig is the post-Newtonian potential, associated with
the components g0i of the PN metric (25), and t0 is an
arbitrary integration constant.

Equations (41) reduce to those given in Ref. [50] with
the identification V2 ¼ �c , ��ijV ¼ �ij and Vi ¼ � 1

4gi.

2. The tidal tensor

Having defined the tetrad field, we have explicitly com-
puted (with the help of the symbolic manipulation software
MAPLE and the package GRTENSOR) the Riemann and the

tidal tensors, up to order 1=c3. The general structure of
the tidal tensor components in terms of the derivatives of
the PN potentials, is given in Appendix B; here we show, as
an example, the component CðxÞðxÞ:

CðxÞðxÞ¼�@2xxV
ð0Þþ 1

c2

�
�4@2xtV

ð0Þ
x þ4vy@2xxV

ð0Þ
y

�4vy@2xyV
ð0Þ
x �ð@yVð0ÞÞ2�@2xxV

ð2Þ

�
�
@2ttþðvyÞ2ð@2yyþ2@2xxÞþ2vy@2yt�vxvy@2xy

�
Vð0Þ

þ2@2xxV
ð0ÞVð0Þþ2ð@xVð0ÞÞ2

�
� 4

c3

�
ð@2xtþvy@2xyÞVð1Þ

x

�vy@2xxV
ð1Þ
y þ1

4
@2xxV

ð3Þ
�

(44)

where [40,41]

Vð0Þ ¼ Gm1

r1
þ 1 $ 2

Vð2Þ ¼ Gm1

�
Gm2

�
� r1

4r312
� 5

4r1r12
þ r22

4r1r
3
12

�

þ�ðn1 � v1Þ2
2r1

þ 2v2
1

r1

�
þ 1 $ 2

Vð3Þ ¼ �2G
ijkv
i
1S

j
1@k

�
1

r1

�
þ 1 $ 2

Vð0Þ
i ¼ Gm1v

i
1

r1
þ 1 $ 2

Vð1Þ
i ¼ �G

2

ijkS

j
1@k

�
1

r1

�
þ 1 $ 2:

(45)

To hereafter we omit the parentheses to indicate the tetrad
components of the tidal tensor. In Eqs. (45) 1 $ 2 means
the same term but with the labels 1 and 2 exchanged; r1 ¼
jx� y1j and n1 ¼ ðx� y1Þ=r1, where x is the field point
and y1ðtÞ the trajectory of m1 (and similarly for m2); v1 ¼
dy1ðtÞ=dt is the coordinate velocity, r12 ¼ r1 � r2 the
relative displacement between the two masses, and v12 ¼
v1 � v2 the relative velocity. 
ijk is the 3—dimensional

antisymmetric Levi-Civita symbol with 
123 ¼ 1, and Sj1 is
the spin-vector.
The steps needed to evaluate the tidal tensor at the center

of the NS (i.e., at location 1 in our conventions) are the
following:
(1) estimate the various derivatives of the PN potentials

V, Vi;
(2) compute the tidal tensor at the source location

½Ci
j�1 ¼ Ci

jðx ! y1Þ, and apply a regularization

procedure;
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(3) express all quantities in the two-body center of mass
frame;

(4) switch to the star principal frame defined in
Section II A.

The second point requires further clarifications. Since
the PN metric refers to pointlike sources, the PN potentials
(45) diverge when computed at the source locations
x ! y1 and x ! y2. To remove this divergence, we apply
the Hadamard regularization procedure [40], which we
briefly describe. Let Fðx; y1; y2Þ be a function depending
on the field point x and on the two source locations y1, y2,
and admitting, when x approaches y1, an expansion of the
form

Fðx; y1; y2Þ ¼
X
k

rk1fkðn1; y1; y2Þ k 2 Z: (46)

The regularized value of F at the point 1 is the Hadamard
part finie, which is the average, with respect to the direc-
tion n1, of the k ¼ 0 term in the sum (46):

ðFÞ1 ¼ Fðy1; y1; y2Þ ¼
Z d�ðn1Þ

4
f0ðn1; y1; y2Þ: (47)

We use this procedure to evaluate ðVÞ1, ðViÞ1 and their
derivatives at the source point. We remark that the regu-
larization procedure should be applied separately on
the Riemann tensor and on the orthonormal tetrad.
However, at the PN order we are considering, it is perfectly

equivalent to apply the regularization procedure directly to

the tidal tensor CðiÞðjÞ ¼ R����e
�
ð0Þe

�
ðiÞe

�
ð0Þe

�
ðjÞ.

We now express the point-particle positions y1;2 in the

system center of mass frame, by the following coordinate
transformation [51]

yi1 ¼
�
m2

m
þ �

m1 �m2

m
P
�
ri12 þOð4Þ;

yi2 ¼
�
�m1

m
þ �

m1 �m2

m
P
�
ri12 þOð4Þ;

(48)

where

P ¼ 1

c2

�
v2
12

2
� Gm

2r12

�
þOð4Þ: (49)

Finally, we express Ci
j in the principal frame using the

rotation matrix

T ¼
cosc sinc 0
� sinc cosc 0

0 0 1

0
@

1
A (50)

where c is defined by Eq. (3)

dc

d�
¼ �: (51)

The complete form of the tidal tensor c ¼ TCTT is given
by:

cxx ¼ �Gm2

2r312
f1þ 3 cos½2c l�g þ G

4c2r412

�
½6Gm2

2 þ 5Gm�þ 3 _r212m1�r12�ð1þ 3 cos½2c l�Þ � 6 _�2m2r
3
12ð1þ cos½2c l�Þ

þ 6m2r
2
12

�
m2

2

m2
þ 2�

�
_� _r12 sin½2c l�

�
þ 3GSz2

mc3r312

�
_�ðm2 �m1Þ þ ðm2 � 5m1Þ _� cos½2c l� þ _r12

ðm2 þ 3m1Þ
r12

sin½2c l�
�

(52)

cyy¼�Gm2

2r312
f1�3cos½2c l�gþ G

4c2r412

�
½6Gm2

2þ5Gm�þ3 _r212m1�r12�ð1�3cos½2c l�Þ�6 _�2m2r
3
12ð1�cos½2c l�Þ

þ�6m2r
2
12

�
m2

2

m2
þ2�

�
_� _r12 sin½2c l�

�
þ 3Sz2
mc3r312

�
_�ðm2�m2Þ� _�ðm2�5m1Þcos½2c l�� _r12

ðm2þ3m1Þ
r12

sin½2c l�
�

(53)

czz ¼ Gm2

r312
� G

c2

�
3
Gm2

2

r412
þ 5

2

Gm�

r412
þ 3

2

m1� _r212
r312

� 3

r12
m2

_�2

�
� 6Gðm2 �m1ÞSz2

mc3r312

_� (54)

cxy ¼ 3Gm2

2r312
sin½2c l�þ 3G

4c2r412

�
2m2r

2
12

�
m2

2

m2
þ 2�

�
_� _r12 cos½2c l�� ½6Gm2

2þ 5Gm�þ 3 _r212m1�r12� 2 _�2m2r
3
12� sin½2c l�

�

� 3GSz2
mc3r412

f _r12ðm2þ 3m1Þcos½2c l�þ _�ðm2� 5m1Þr12 sin½2c l�g (55)

where the lag angle c l ¼ c ��þ � describes the misalignment between the axis a1 and the line between the two
objects. In the tidal tensor components the dot indicates differentiation with respect to the coordinate time t. In the
principal frame, the geodesic deviation equation for the tidal deformation can be written as
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d2ai
d�2

þ cijaj ¼ 0: (56)

It should be stressed that, as noted in [3], if the system is
in quasicircular inspiral, the radial motion is due only to
gravitational back-reaction; consequently _r12 ’ ðn12v12Þ �
1=c5 and can be neglected.

3. Comparison with previous expressions
of the tidal tensor

As a first check, we compare the tidal tensor derived in
[48] for a test particle (� ! 0) moving along a geodesic,
with our tidal tensor. This tensor has been used in the
literature to study tidal effects in binary systems using a
quasistationary approach [13,25], or evolving the orbital
equations, assuming quasicircular orbit [31]. Let us con-
sider, as an example, the cxx component for a nonrotating
BH. Equation (70) of Ref. [48] gives

cschxx ¼ Gm2

r3s

�
1� 3

r2s þ K

r2s
cos½c l�2

�
; (57)

where

K ¼ L2
z

c2
¼ 1

c2

�
d�

d�

�
2
r4 ¼ 1

c2

�
d�

dt

�
2
r4 þO

�
1

c4

�
; (58)

and rs is the radial distance in Schwarzschild coordinates.
In order to compare Eq. (57) with Eq. (52) we need to
express cschxx in terms of the same radial coordinate adopted
for the PN expansion

rs ¼ r12

�
1þ Gm2

2c2r12

�
2
: (59)

We find (up to 1=c3 terms)

cschxx ¼ �Gm2

2r312
ð1þ 3 cos½2c l�Þ þ 3Gm2

2c2r412
fGm2

þ 3Gm2 cos½2c l� � _�2r312 � _�2r312 cos½2c l�g:
(60)

This expression coincides with our Eq. (52), in the limit
� ! 0 and _r12 ’ 0.

We would like to make a further remark about the
difference between the tidal tensor (57), derived from the
Schwarzschild metric assuming that m1 follows a timelike
geodesic of the Schwarzschild spacetime, and that derived
from a two-body post-Newtonian metric. For a particle in
circular orbit, the constant K given in Eq. (58) is

K

r2s
¼ Gm2

rsc
2 � 3Gm2

: (61)

The former equation diverges for rs ! 3Gm2=c
2. This

divergence is present also in the tidal tensor components,
as shown by Eq. (57), and it may affect the evaluation of
tidal effects even if the distance between the interacting
bodies is larger than (but close to) rs ¼ 3Gm2=c

2.

Conversely, as stressed in [3], such divergence does not
appear in the PN equations of motion, and consequently
the tidal tensor components (52)–(54) are free of this
unphysical behavior.
On the other hand, as � ! 0 our approach loses accu-

racy, since in the test particle limit the PN expansion is
poorly convergent [3].
As a second check we compare our tidal tensor with that

used in [8], previously derived in [27] up to order �1=c2

with a completely different approach, based on a multipole

expansion. Comparing �Gij
2 (Eq. (2.2) of [8]) with our

tensor Cij, truncated to order �1=c2, we find that (renam-

ing m1 $ m2) they coincide.

E. Internal dynamics

The internal dynamics of the NS is described using the
Hamiltonian approach in the affine approximation [23,25],
recently improved to take into account general relativistic
effects [13]:

H ¼ H T þH I (62)

where H I describes the NS internal structure, and H T

describes the tidal interaction. H I is obtained directly
from the internal Lagrangian LI (5). The tidal
Hamiltonian H T is obtained from the tidal Lagrangian
(built up with the coefficients cij, Eqs. (52)–(54)):

L T ¼ � 1

2
cijIij; (63)

where

I ¼ M̂ � diag
�
ai
RNS

�
2

is the inertia tensor of the star in the principal frame.
In deriving the dynamical equations from the

Hamiltonian (62), we use the PN time coordinate t, which
is related to the proper time of the star center of mass � by
the relation d� ¼ �ðtÞ�1dtwhere the redshift factor �ðtÞ is:

�ðtÞ¼1þ 1

c2

�
m2

2

m2

v2
12

2
þGm2

r12

�
þ 1

8c4r212

�
4G2ðm2

2�3m�Þ

þ4Gr12

�
�m1� _r12þm2

m3
ð4m3

1þ11m2
1m2þ14m1m

2
2

þ5m3
2Þv2

12

�
þm2

2

m4
ð4m2

1�4m�þ3m2
2Þr212v4

12

�
: (64)

It should be mentioned that in previous works, where the
affine approach including relativistic corrections was used
[13,25,31], the contribution of the redshift factor was ne-
glected, i.e., it was assumed t ’ �.
We also remark that H T ’ �LT , since LT does not

depend on the conjugate momenta.
The equations of motion for the variables qi ¼

fc ; �; a1; a2; a3g and their conjugate momenta pi ¼
fpc ; p�; pa1 ; pa2 ; pa3g are:
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da1
dt

¼ RNS

�ðtÞ
pa1

M̂
(65)

da2
dt

¼ RNS

�ðtÞ
pa2

M̂
(66)

da3
dt

¼ RNS

�ðtÞ
pa3

M̂
(67)

dpa1

dt
¼ M̂

�ðtÞ
�
�2 þ�2 � 2

a2
a1

��þ 1

2

V̂

M̂
R3
NS

~A1

þ R2
NS

M̂

�

a21
� cxx

�
a1 (68)

dpa2

dt
¼ M̂

�ðtÞ
�
�2 þ�2 � 2

a1
a2

��þ 1

2

V̂

M̂
R3
NS

~A2

þ R2
NS

M̂

�

a22
� cyy

�
a2 (69)

dpa3

dt
¼ M̂

�ðtÞ
�
1

2

V̂

M̂
R3
NS

~A3 þ R2
NS

M̂

�

a23
� czz

�
a3 (70)

d�

dt
¼ �

�ðtÞ (71)

dp�

dt
¼ 1

�ðtÞ
dC
d�

¼ 0 (72)

dc

dt
¼ �

�ðtÞ (73)

dpc

dt
¼ 1

�ðtÞ
dJz

d�
¼ M̂

RNS

cxy
�ðtÞ ða

2
2 � a21Þ; (74)

where

~A i �
Z 1

0

du

ða2i þ uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða21 þ uÞða22 þ uÞða23 þ uÞ

q ; (75)

Jz is the NS angular momentum, and C is the conjugate
momentum associated to �:

C ¼ M̂
R2
NS

½ða21 þ a22Þ�� 2a1a2��

Jz ¼ M̂
R2
NS

½ða21 þ a22Þ�� 2a1a2��:
(76)

C can be interpreted as the circulation of the fluid [25], i.e.,
the line integral of the four-velocity on a closed worldline
enclosing the system. In absence of viscosity, C is a con-
stant of motion.

It is worth mentioning that, in the spherical configuration
(ai ¼ RNS), the integrals (75) can be solved analytically,

finding ~Ai ¼ 2=ð3R3
NSÞ; furthermore, thevirial theorem (19)

implies that V̂ ¼ �3�̂. Consequently, in the spherical

limit the terms in V̂ and� in Eqs. (68)–(70) cancel:

�
1

2

V̂

M̂
R3
NS

~Ai þ R2
NS

M̂

�

a2i

�
sph

¼ 0: (77)

This property is crucial to ensure a stable evolution. Indeed,
the system (65)–(74) admits an equilibrium solution, for
which the star is spherical and nonrotating, and the tidal
tensor vanishes, only if the property (77) is satisfied. If such
solution exists, the tidal deformation induced by the inter-
action is basically a perturbation of the equilibrium con-
figuration, and the system of equations is well behaved.
Conversely, if the cancellation (77) is not exact, the system

becomes unstable, because the terms in V̂ and� are larger
than other terms and the equations are nonlinear.We remark
that the validity of Eq. (77) is guaranteed in our approach,
because the virial theorem is satisfied exactly, as discussed
in Sec. II A.

F. Roche lobe and mass shedding

In the next section we shall compare the results obtained
by numerically integrating the equations of motion
(65)–(74) for a a BH-NS coalescence, with those published
in the literature; we shall evolve the equations up to an
orbital separation, rshed, at which mass shedding sets in.
In order to find the value of rshed, we estimate the Roche

lobe radius of the NS during the inspiral. It defines the
region surrounding the star where a particle of mass
m0 	 m1 is bounded to the NS gravitational attraction.
Following the strategy adopted in [52], we estimate
the three-body potential for masses m0 	 m1 � m2 (at
Newtonian order) for equatorial orbits in the x� y plane:

Uðx; yÞ ¼ � Gm1

jx� y1j �
Gm2

jx� y2j �
1

2
!2x2 (78)

where y1=2 are the m1=2 displacement vectors, and the last

term is the centrifugal contribution with

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þm2Þ

r312

s
:

Since Uðx; yÞ takes its maximum, URl, on the surface
defining the Roche lobe, we compute numerically
Uðx; yÞ, finding the Roche lobe on the x� y plane. Mass
shedding starts when the star, which is stretched along the
direction of the axis a1, touches the Roche lobe.
We also determine the location of the 3 PN ICO

(Innermost Circular Orbit), rICO; to this aim we minimize
the total binding energy of the BH-NS system, including
the spin contribution [46]. If rshed > rICO, the NS is dis-
rupted before the merger.
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It should be noted that the affine approach is intrinsically
nonlinear, since it takes into account nonlinear hydrody-
namical effects. It can also describe mode oscillations, if
excited (see, for instance, [26] and, in a similar framework,
[53]. However, it does not account for nonlinearities in the
tidal tensor; since these effects are of the order of
ðRNS=r12Þ5 [6], which never exceed�10�4, they can safely
be discarded.

Higher multipoles (octupole, etc.) of the tidal field are
also neglected in our approach. It has been shown [5,6] that
they are a factor �ðRNS=r12Þ2 smaller than the quadrupole
term. This quantity can become as large as �0:15 as
r12 ! rshed, therefore, our approach becomes less accurate
in the latest stages of the inspiral. We plan to improve our
model computing higher multipole contributions to the
tidal field, in future publications.

III. DYNAMICAL TESTS

To validate our approach, we have integrated the dy-
namical Eqs. (30)–(34) and (65)–(74) to simulate BH-NS
binary coalescences. In order to compare our results with
the existing literature, we assume that the neutron star is
irrotational (i.e., we set C ¼ 0), while the black hole can
rotate.

A. Fully relativistic simulations

We compare our results with fully relativistic simula-
tions from three groups, who have kindly shared the re-
quired data with us: the Potsdam group [37] (which we
denote by AEI); the Urbana group [20] (URB); the Kyoto/
Tokyo group [18] (KT). All simulations (including ours)
use the same � ¼ 2 polytropic equation of state. The
values of the mass ratio q ¼ m2=m1 ¼ MBH=MNS, of the
BH spin parameter ~a ¼ a=MBH, and of the NS compact-
ness C ¼ MNS=RNS are:

(1) AEI simulations: q ¼ 5, ~a ¼ 0, C ¼ 0:1, 0.125,
0.15;

(2) URB simulations: q ¼ 3, ~a ¼ 0, 0.75, C ¼ 0:145;
(3) KT simulations: q ¼ 2, 3, ~a ¼ 0, C ¼ 0:145.
In order to check the validity of our PN formulae, and to

determine the time offset toff between our simulations and
the fully relativistic simulations, as a preliminary check we
compare the orbital motion. For each simulation, knowing
toff , we can compare the time tshed at which our model
predicts the onset of mass shedding with the time it occurs
in the corresponding fully relativistic simulation. To evalu-
ate toff we follow the strategy adopted in [54]: we demand
that the PN and the numerical gravitational wave frequen-
cies agree at some fiducial frequency !m, defining toff as

the time for which _�PNðtoffÞ ¼ !m.
We remark that since the frequency of the m ¼ 2 com-

ponent of the gravitational wave, �GW ¼ 2�, is a gauge
invariant quantity (see for instance [54–56] and references
therein), it is an appropriate quantity for our comparisons.
On the contrary, it is impossible to directly compare the

radial coordinates, since the gauge used by fully relativistic
simulations is different from our gauge, and furthermore it
changes dynamically during the simulation [55]. Note that
here m is the harmonic index, not the total mass as in the
rest of the paper.
The comparison with the URB and KT data is shown in

Fig. 1, where we plot�GW versus time (both normalized to
the total mass of the binary). Our profiles are indicated in
Fig. 1 with a dashed line, which ends at the onset of mass-
shedding. The URB and KT profiles are shown by a
continuous line.
As expected [54–58], the PN (and EOB) description of

the inspiral phase is in good agreement with fully relativ-
istic simulations. The oscillations in the URB, KT curves
shown in Fig. 1, are due to the fact that their initial data
have a residual eccentricity, while our orbits are quasicir-
cular. A comparison with the AEI data gives similar
results.
In order to assess the accuracy of our evaluation of the

onset of mass shedding, we consider the evolution of the
NS central density, �cðtÞ, which is a gauge invariant quan-
tity. We compare our profiles, with those evaluated by the
AEI group for the parameters indicated above. The results
are shown in Fig. 2, where the AEI profiles are plotted with
a solid line, and our data with a dashed line. In the AEI
curves, at some point the central density sharply drops
down. This signals the transition to a new equilibrium
configuration and hence the possible transfer of mass
from the star to the black hole. Determining accurately in
the numerical simulations when this transfer begins, is not
trivial (tiny amounts of matter are lost from the stellar
surface already at large separations). However, it is rea-
sonable to assume that the transfer of mass takes place in
the transition between the two different values of the
central density and therefore in a time interval of 0.75 ms
for the C ¼ 0:1 model or of 0.25 ms for the C ¼ 0:15
model (clearly, the smaller the compactness the slower
the transfer process) [37]. Overall, therefore, we can take
the decrease of �c to roughly mark the stage in which the
star fills up the Roche lobe. The dashed line for our �cðtÞ
ends at the onset of mass shedding. This occurs just before
the steep decrease of the AEI curves, for the models with
compactnessC ¼ 0:1, 0.125. For the caseC ¼ 0:15, rICO is
reached before mass-shedding sets in; therefore, the dashed
line in the bottom panel of Fig. 2 ends at an earlier time
with respect to the sharp drop of the solid line. We also note
that the values of the central density in our simulations and
in AEI’s, agree quite well for the models with C ¼ 0:1 and
C ¼ 0:125. For the model with C ¼ 0:15, the AEI data
show an increase of the central density at earlier times,
probably due to spurious numerical effects.
As a further check, we have compared our estimate of

the onset of mass shedding with snapshots of the URB and
KT simulations. In Fig. 3, we show these snapshots at the
time t ¼ tshed, which we evaluate for the different models.
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FIG. 2 (color online). (Color online) The NS central density (normalized to the squared total mass of the binary) is plotted, as a
function of time (normalized to the binary total mass), for the AEI simulations (solid line) and for our simulations (dashed line).

FIG. 1 (color online). (Color online) We plot the gravitational wave frequency�GW versus time, both normalized to the total mass of
the binary. The URB, KT data are indicated by a solid line, and our data by a dashed line. The dashed lines stop at r12 ¼ rshed, where
the deformed star touches the Roche lobe.
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At that time, in the URB and KT simulations the NS starts
showing a cusp, indicating a mass flow.We remark that this
kind of comparison should be considered as purely quali-
tative, since the stellar boundary in the snapshots corre-
sponds to a threshold value of the stellar density, the choice
of which is arbitrary.

We would also like to remark that to compare the results
of our approach with those of fully relativistic simulations
is not an easy task. In particular, a ‘‘clean’’ comparison of
the stellar shape deserves further investigations in close
interaction with numerical relativity groups, and will be
considered in future works.

B. Love number

A different kind of check can be performed by evaluat-
ing the Love number which, as discussed in the
Introduction, encodes the deformation properties of the
star. When a weak tidal field induces a deformation on a
spherical star, the star (traceless) quadrupole moment is
proportional to the tidal field [6,7] (see also the general-
izations discussed in [34,35]):

Qij ¼ ��cij ¼ � 2

3
k2R

5
NScij: (79)

Equation (79) (which is written in the principal frame) is
based on the ‘‘Love number adiabatic approximation’’
discussed in Section II A C; since it assumes that the
timescale of the orbital evolution (and then of the tidal
tensor changes) is much larger then that needed for the star

to set into a stationary configuration, this assumption may
not be correct in the latest phase of the inspiral; however, it
is satisfied when the star and the companion are sufficiently
far apart.
In our model, the NS quadrupole moment in the princi-

pal frame is

Qij ¼ M̂
R2
NS

ðaiaj � a2�ijÞ (80)

where a2 � ða21 þ a22 þ a23Þ=3, and cij is given in

Eqs. (52)–(55). In order to compare the Love number k2
predicted by our approach with those determined by
Hinderer [7], which we denote by kH2 , we have evaluated
k2 using Eqs. (79) and (80), for the same NS models,
assuming a polytropic equation of state with different
values of the adiabatic index � and of the compactness
C, by setting the binary system at the orbital separation of
r12 � 180 km. As shown in Table I, our results agree with
those of [7] within a few percent.
We remark that the Love number approach was gener-

alized in [34,35], where other Love numbers were intro-
duced; however, the leading tidal effect is encoded in k2.

IV. CONCLUDING REMARKS

In this article we have developed a post-Newtonian-
affine (PNA) approach which allows to model the tidal
deformations of a neutron star in compact binary coales-
cences. To validate the model through a comparison with
the results of fully relativistic, numerical simulations, we
have solved the dynamical equations for BH-NS binary
systems. The tests we have made show a good agreement
with those results.
The PNA approach can be useful in many respects. It

may complement numerical relativity studies of binary
coalescence because, due to its much lower computational
cost, it enables to study a large set of models, exploring a
wide range of parameters. Furthermore, like all semiana-
lytic approaches, it would be helpful to dig the physical
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FIG. 3 (color online). (Color online) Snapshots corresponding
to t ¼ tshed which we evaluate integrating our equations. Upper
panels: URB simulations with C ¼ 0:145, ~a ¼ 0, 0.75, q ¼ 3.
Lower panels: KT simulations with C ¼ 0:145, ~a ¼ 0, q ¼ 2, 3.

TABLE I. The Love number k2, evaluated for different values
of the NS compactness C, and of the polytropic index �, is
compared with the values obtained in [7] for the same stellar
models.

C � k2 kH2

0.10 1.830 0.0920 0.0931

0.15 1.830 0.0551 0.0577

0.20 1.830 0.0297 0.0327

0.10 2.000 0.1221 0.1220

0.15 2.000 0.0767 0.0776

0.20 2.000 0.0444 0.0459

0.10 2.423 0.1817 0.1780

0.15 2.423 0.1198 0.1170

0.20 2.423 0.0737 0.0721

V. FERRARI et al. PHYSICAL REVIEW D 85, 044045 (2012)

044045-12



features of the process out of the numerical artifacts which
may affect the fully relativistic simulations.

Since the PNA approach does not assume the ‘‘Love
number adiabatic approximation,’’ it would allow to test
the validity domain of this assumption. Indeed, using the
PNA framework, it would be possible to determine under
which conditions the NS deformation is characterized by a
set of constant coefficients, and to find their behavior, if
they change during the inspiral.

Finally, we would like to remind that the production of
initial data for fully relativistic simulations is a very deli-
cate task. Typically, initial data are plagued by spurious
effects like, for instance, a nonphysical eccentricity (com-
pact binaries are known to circularize well ahead the latest
stages of the inspiral); it is difficult to produce truly general
initial data (for instance, with nonaligned spins). The PNA
approach could be used to produce initial data for fully
relativistic simulations, complementing existing initial
data solvers.

These aspects, and the extension of the PNA approach to
the study of NS-NS coalescences, will be the matter of
future works.
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APPENDIX A: POST-NEWTONIAN EXPRESSIONS
FOR THE ORBITAL MOTION

In this Appendix we write explicitly the post-Newtonian
coefficients ak of the Taylor T4 approximant Eq. (30), for
spinning bodies in quasicircular orbits, with spins aligned
with the direction of the Newtonian orbital angular mo-
mentum vector [45]:

a0¼1; a1¼0; a2¼�743
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�11�

4
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Here �E is Euler’s constant and � ¼ m1

m
~a1 þ m2

m
~a2, with ~a1;2 dimensionless spin parameters defined in section II C.

APPENDIX B: THE TIDAL TENSOR

We show the nonvanishing components of the tidal tensor Ci
j up to the 1=c3 order, as functions of the PN potentials:

Cxx ¼ �@2xxV
ð0Þ þ 1

c2

�
�4@2xtV

ð0Þ
x þ 4vy@2xxV

ð0Þ
y � 4vy@2xyV

ð0Þ
x � ð@yVð0ÞÞ2 � @2xxV

ð2Þ �
�
@2tt þ ðvyÞ2ð@2yy þ 2@2xxÞ

þ 2vy@2yt � vxvy@2xy

�
Vð0Þ þ 2@2xxV

ð0ÞVð0Þ þ 2ð@xVð0ÞÞ2
�
� 4

c3

�
ð@2xt þ vy@2xyÞVð1Þ

x � vy@2xxV
ð1Þ
y þ 1

4
@2xxV

ð3Þ
�
; (B1)
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Cyy ¼ �@2yyV
ð0Þ þ 1

c2
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