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parameterizing a possible minimal relaxation of locality, with respect to semiclassical black hole
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I. INTRODUCTION

The unitarity crisis or black hole (BH) information
problem challenges the pillars of modern physics: quantum
mechanics (QM), Lorentz/diffeomorphism invariance, and
locality. In short, Hawking’s argument for BH evaporation
[1] yields information loss [2], and it has been argued that
there is no consistent scenario with these pillars intact.1

Locality, in particular, seems a weak link in quantum
gravity, and there have been suggestions to modify it
[8–13] in some way. However, such modification should
be subtle as locality is a basic principle of local quantum
field theory (LQFT), which describes observed phenomena
extremely well. Generally, we observe that quantum
information is well localized in spacetime, and moreover
generic nonlocality leads to causality paradoxes.

One thus seeks a consistent dynamics describing deeper
relations between quantum information and spacetime and
its symmetries, where locality may be approximate but not
exact, yet consistent unitary evolution is intact.

Assuming QM, a useful tool is an effective quantum
information-theoretic parameterization, with a simple
Hilbert-space description of the dynamics. Such an ap-
proach has been used, e.g. in [14–17,7,18]. Approximate
locality suggests we decompose the overall Hilbert space

into a product of Hilbert spaces Ĥ and H corresponding
to states inside and outside a BH, with evolution providing
specific ‘‘small’’ couplings between these.

Such a framework is general enough to describe local
evolution, but also nonlocal modifications. Our approach
will seek a conservative alternative [13] to complementar-
ity/holography [9,10], staying as close as possible to
LQFT, with minimal, controlled allowance for nonlocality,
as needed for unitary evolution. In particular, in the evo-

lution of [1], Ĥ is effectively infinite dimensional, but
unitarity and other indicators suggest an effective number

of BH degrees of freedom NðMÞ ¼ logðdimĤ Þ at BH
mass M that is finite, e.g. given by the Bekenstein-
Hawking [1,19] entropy,

NðMÞ ¼ SBHðMÞ: (1.1)

A problem is how to describe physical unitary evolution
incorporating such finite information content for a BH.
We will begin by reviewing the familiar scenario of

Hawking evaporation [1], to make contact with such an
effective Hilbert-space description. Then, we will describe
models for unitary but nonlocal evolution. Such models at
the least may guide understanding of the constraints on
unitary scenarios, but might also guide deeper understand-
ing of the principles of quantum gravity.

II. HAWKING EVAPORATION

We take rotation to be an inessential complication and
consider a Schwarzschild metric,

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2: (2.1)

This form is valid in general spacetime dimension D,
although one may particularly focus on D ¼ 4 where
fðrÞ ¼ 1� 2M=r. Hawking radiation is conveniently an-
alyzed by introducing tortoise coordinates, via dr�=dr ¼
1=fðrÞ. Near infinity, r� � r, but as the horizon r ¼ R is
approached, r� ! �1. Consider a free field �, with gen-
eral spin. Solutions of the corresponding wave equation
may be written as a sum of terms

�J ¼ uJðr; tÞ
rD=2�1

YJð�Þ; (2.2)

where J labels angular momentum and YJ is an appropriate
spherical harmonic. In terms of ðr�; tÞ, uJ satisfies a two-
dimensional wave equation with effective potential that
vanishes at r� ¼ �1, and has a maximum �J2=R2.
Further details appear in, e.g., [4].
The quantum field outside the BH may be expanded in

modes�J;!, of energy !, and creation/annihilation opera-

tors, as � ¼ P
J

R
d!ð�J;!aJ;! þ H:c:Þ. As reviewed in

[4], the Hawking state is found by determining the trans-
formation between the coordinate x� ¼ t� r�, in which
the ‘‘out’’ vacuum is naturally defined, and appropriate
coordinates for defining an ‘‘in’’ vacuum. One may also

choose corresponding modes [4,20] �̂J;! inside the hori-

zon, with mode operators âJ;!. Then, the ‘‘in’’ vacuum

evolves to the Hawking state, which takes the form
*giddings@physics.ucsb.edu
1For reviews see [3–7].
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jc i ¼ c
X

fnJ;!g
e�H=2Tjfn̂J;!gijfnJ;!gi: (2.3)

Here, nJ;! are occupation numbers, T ¼ ðD� 3Þ=4�R is

the temperature,

H ¼ X
J

Z
d!!nJ;! (2.4)

is the Hamiltonian in the Fock basis we have chosen, and c
is a constant. Tracing out the internal states gives a thermal
density matrix.

In order to match to an effective Hilbert-space descrip-
tion, it is useful to choose a wave packet basis. For
example, a simple set of complete, orthonormal states
investigated in [1,20] is, with integer k and n,

uJ;k;n ¼ ��1=2
Z ðkþ1Þ�

k�
d!e2�i!n=�uJ;!: (2.5)

These have frequency ! ’ k� and are localized about
x� ¼ 2�n=� with width 1=�. The variable � is an arbitrary
choice; it is convenient to take � * 1=R. Other, smoother,
wave packet bases may be chosen, but (2.5) is simple and
intuitive. The Hamiltonian H may be easily reexpressed in
such a basis.

We can now describe an effective Hilbert-space model
for evolution governed by H, following discussion of [14–
17,7,18]. It is convenient to do so by describing the modes
and their state in terms of a time slicing. One such choice is
a nice slicing, as described in [21,15,7,13]; in the particular
realization of [13], the slice St asymptotes to the constant t
slice at r ¼ 1; inside the horizon and in the far past it
asymptotes to r ¼ rc. In the static BH geometry slices at
different t are just t-translates of this slice; with decreasing
BH mass minor adjustments to such slices are needed.

On such slices, evolution of the state (2.3) in a basis such
as (2.5) may be pictured as follows. First, excited quanta at
r � R simply evolve outwards. Quanta at r < R evolve
inwards; in the nice slice description they then freeze at
r ¼ rc, though evolution would continue in a ‘‘natural’’
slicing [13] approaching r ¼ 0. Finally, the evolution pro-
duces paired quanta from r ¼ R. When their wavelength
on the slice is � !�1, the pair is nearly indistinguishable
from vacuum, e.g by gravitational scattering [12], but when
their wavelength reaches its asymptotic value �!�1, the
quanta separate from each other and the horizon and travel
into/out of the BH.

Excited quanta typically have !� T � 1=R and are
emitted every time �t� R. Thus, in a simple model (see
e.g. [7]) we consider one species of particle and ignore
spin, set � ¼ 1=R, and only keep the states with k ¼ 1, so
! ¼ 1=R, and with occupation number zero or one. Then,
evolution can be described in time steps of size �t, as
follows. First, it suffices to describe evolution of a basis
of states for the combined black hole and external Hilbert

spaces, Ĥ �H . Such a basis can be written in terms of

states jâijai, where, for example, the states jâi and jai are
bases for Ĥ andH . The general combined state (and thus
general initial state) takes the form

P
âacâajâijai. We

describe jâi and jai in terms of strings of qubits, and model
evolution for �t as

jâijai ! Ûjâi � 1ffiffiffi
2

p ðj0̂ij0i þ j1̂ij1iÞ �Ujai: (2.6)

Here, U and Û are unitary operators that we may think of
as describing evolution given by (2.4) of the external wave
packets away from the black hole, and of the internal wave
packets, respectively. Different slicings/mode descriptions

yield different U, Û, but equivalent evolution. In addition
to this evolution, an entangled pair of quanta is produced
from the horizon.
When backreaction is included, M decreases an amount

�1=R in each time step, and so shrinks to near zero at a
time Tevap � RSBH. The late-time external state, with

OðSBHÞ quanta, is found by tracing over internal states in
(2.6) [or in (2.3)]

� ¼ Tr
Ĥ
ðjc ihc jÞ; (2.7)

and is mixed, with entropy S ¼ �Trð� log�Þ � SBH.
Barring a remnant scenario (which is argued on other
grounds [22,23] to be unphysical) the black hole and
internal Hilbert space disappear, leaving this mixed state.
This is Hawking’s basic argument [2] for information
loss—which ultimately conflicts with energy conservation
[24].

III. MODELS OF UNITARY EVOLUTION

The basic conflict between QM/energy conservation,
locality, and Lorentz/diffeomorphism invariance that arises
in the previous scenario has been called the ‘‘information
paradox.’’ It was argued in [15,13] (see also [25,11,12])
that this is not a true paradox, in that we do not have a sharp
derivation of the state (2.3) and density matrix (2.7) in a
perturbative framework that takes into account backreac-
tion. However, as discussed in [25,11,12,15,13], it seems
evident that some amount of nonlocality with respect to the
semiclassical picture is needed to avoid the essential argu-
ment for lost information. This section will model a kind of
nonlocal evolution apparently needed for unitarity, in the
effective Hilbert-space approach.
As one guide, we begin with the expectation that the

internal Hilbert space of the BH shrinks, and contains no
information when M ! 0. A candidate parameterization

for NðMÞ ¼ logðdimĤ Þ is (1.1), but one could also con-
sider other functions decreasing to zero. This contrasts
with the evolution (2.6), in which NðMÞ increases by one
in each step (being trivially incautious in distinguishing
bits and nats).
We can model unitary evolution, in which NðMÞ de-

creases by one at each step, in different modifications of
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(2.6). One is, separating off the leftmost qubit and choosing
a basis element jâi for the remaining internal Hilbert space,

j0̂ijâijai ! Ûjâi � j0̂ij0i �Ujai;
j1̂ijâijai ! Û0jâi � j0̂ij1i �Ujai;

(3.1)

which is effectively unitary. Moreover, if the rightmost

internal qubit is always in a definite state, here j0̂i, it can
be forgotten or ‘‘erased’’ with impunity. Thus, internal
information is transmitted to the external state, and NðMÞ
decreases by one.2

In (3.1) information is relayed from the leftmost of
NðMÞ qubits. In case of a general unitary transformation

Û in the preceding time step, this has no invariant meaning.

One may take different models for Û (also with infalling

matter—see below). One is simply Û ¼ 1, in which case
the leftmost qubit from evolution (2.6) would not be occu-
pied until a time t� RSBH, and so information return only
begins at this time. Another is a random unitary [14,17,27].
This can be thought of as a model of fast-scrambling
[16,28]. Different models may be distinguished [13] by
this retention time Tr, describing how long it takes the
infalling quanta to mix with the escaping qubits. Note that,
even with rapid mixing, the effect of a given infalling
quantum initially has tiny effect on the outgoing state,
but later in evolution discussion of [16] can apply. Note
also that in the semiclassical/Hawking picture (2.6), Tr ¼
1, and in this sense the longest possible [14] Tr,
�RSBHðMÞ, is most conservative.

Equation (3.1) represents a big departure from (2.6),
particularly if present in early evolution of the BH. One
may consider alternatives with smaller departures. One is

j0̂ij0̂ijâijai ! Ûjâi � 1ffiffiffi
2

p ðj0̂ij0i þ j1̂ij1iÞ �Ujai;

j0̂ij1̂ijâijai ! Ûjâi � j0̂ij1i �Ujai
j1̂ij0̂ijâijai ! Ûjâi � j1̂ij0i �Ujai;

j1̂ij1̂ijâijai ! Ûjâi � 1ffiffiffi
2

p ðj0̂ij0i � j1̂ij1iÞ �Ujai;

(3.2)

which, with Û ¼ 1, does not alter the Hawking state until
�Tevap � RSBH. Other simple generalizations clearly exist,

including using other pairs.3 Yet another alternative (also
generalizable) uses other states, e.g. j10i, j100i, that have
small amplitude for occupancy in the Hawking state (2.3):

jq̂1q̂2ijâijai ! Ûjâi � 1ffiffiffi
2

p ðj0̂ij0i

þ j1̂ij1iÞ � j0̂00̂00ijq01q002 i �Ujai; (3.3)

where q1, q2 ¼ 0 or 1, independently.
The unitary evolution laws (3.1), (3.2), and (3.3) are

clearly nonlocal with respect to the semiclassical geometry
of the BH. One may worry that there is a more serious
objection, namely, that anything but the evolution (2.6)
[or (2.3)] produces a state that an infalling observer sees
as very singular, giving a large departure from expected
BH behavior. [The pairing in (2.3) yields cancellations [12]
between the contributions of the quanta, interacting with an
infalling observer].
Here, allowing such modest nonlocality can be an asset.

In the given basis, we can think of the state of paired quanta

near the horizon as being of the form 1ffiffi
2

p ðj0̂ij0i þ j1̂ij1iÞ
until the time these quanta have wavelength�R, on which
time scale the transitions like in (3.1), (3.2), and (3.3) occur.
So, departures from the Hawking state only arise for quanta
with wavelengths of order the horizon size. One may
imagine these departures as arising from some new non-
perturbative, perhaps collective, effect of the quantum BH.
This evolution results in modifications to Oð1Þ quanta per
time R, that an infalling observer sees as having energy
1=R—apparently for a large black hole, a very small effect.
Such effects seem particularly small if they modify, for
example, graviton states—these would be essentially in-
detectable for an infalling observer.
Modifications to LQFT evolution like those described

in [13] and modeled here are apparently the minimal
required to extract information from a BH. Note that U in
(3.1), (3.2), and (3.3) is taken to describe evolution as in
LQFT. In general evolution, the inside is only expected to
be governed by LQFT for a typical time �R it takes a
quanta to fall into the strong curvature domain; after that

we have few constraints on Û. One can artificially freeze
this evolution in a nice slicing. However, this becomes an
extreme construction when extended over long times, and,
in particular, a perturbative LQFT quantization on nice
slices has been argued to be problematic [12,15,25]. This
motivates the departure from LQFTof the types (3.1), (3.2),
and (3.3) (and generalizations), which depart from LQFT

in the Û-evolution for qubits deep inside the BH and being
relayed outside the BH, and for the qubits in a region of
size�R receiving the information. Note also that spacelike
communication in flat space can be related to acausal
communication, by a boost. But, the BH geometry breaks
the boost symmetry, fixing a frame with respect to which
the evolution can be causal [13].
Evolution of types (3.1), (3.2), and (3.3) represent differ-

ent pictures with the common feature that a net one qubit is
relayed from inside to outside at each step in time.
Equation (3.1) is a big change to (2.3), in which quanta
are not produced paired with internal Hawking excitations.

2Note also a relation with the final-state picture of [26]; if a
given internal qubit first transitions to a given canonical state,
this qubit may then be unitarily forgotten. See also [18].

3Note that a version where one internal qubit is imprinted in a
pair does not relay a net bit of information [7,29].
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It is a simple model for evolution if true Hawking radiation
is not present, such as could occur in a general massive
remnant scenario [8] or special cases of it such as fuzzballs

[30]. Equation (3.2), with Û ¼ 1, postpones significant
modification until t� RSBH when the BH has shrunk
appreciably. After this time, it departs from the Hawking
state, but has some of its features, in particular, the same
average outward flux. And, (3.3) yields extra outward flux,

in addition to Hawking evaporation; again with Û ¼ 1 this
may be postponed to t� RSBH. Straightforward general-
izations of (3.1), (3.2), and (3.3) clearly exist.

IV. REFINEMENTS AND ENHANCEMENTS

Various refinements are possible, to bring our models
closer to a complete description. First, one can clearly
generalize evolution of types (3.1), (3.2), and (3.3) to in-
corporate the many different modes in (2.3). There is cor-
responding flexibility in which modes (3.1), (3.2), and (3.3)
imprint the information, though wemay assume they act on
modes in a region of size OðRÞ near the BH and only on
modes close to their asymptotic wavelengths (i.e. not highly
blueshifted). One may also choose different evolutions
corresponding to different rates of reduction of the size
NðMÞ of the BH Hilbert space, though (1.1) seems natural.

One may also incorporate infalling matter, e.g. in modes
with wavelength � R. The LQFT description of this is a
straightforward extension of the discussion in Sec. II, and

we might expect its evolution by Û until it reaches strong
curvature to be approximately that of LQFT.4 After this,

again there are few constraints on the subsequent Û
evolution on such modes. One attractive possibility is
that a particle of wavelength � R is ‘‘broken up’’ into a
collection of the internal modes described above, before
the information is relayed (and unoccupied bits erased) in
transformations like (3.1), (3.2), and (3.3). Note that
since the entropy in infalling matter does not exceed
SBHðMÞ, we are not in danger of having more information
encoded in the BH than can be relayed by these evolution
rules.
When faced with a failure of classical mechanics in the

atom, Bohr introduced a simple phenomenological model
with new rules to capture the correct physical behavior;
this led to the development of the profound formalism of
quantum mechanics. If the world is quantum mechanical
and yet locality holds to a good approximation, we can
likewise consider simple models of unitary black hole
evolution. Because of the apparent failure of LQFT to
describe this evolution, such a model no longer resides
within that framework—new principles are needed. These
models may clarify constraints on unitary evolution,
and may be, as with Bohr’s atom and quantum mechanics,
guides to a deeper understanding of the more basic
and complete nonlocal mechanics describing quantum
gravity.
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