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A path integral measure for gravity should also preserve the fundamental symmetry of general

relativity, which is diffeomorphism symmetry. In previous work, we argued that a successful implemen-

tation of this symmetry into discrete quantum gravity models would imply discretization independence.

We therefore consider the requirement of triangulation independence for the measure in (linearized)

Regge calculus, which is a discrete model for quantum gravity, appearing in the semi–classical limit of

spin foam models. To this end we develop a technique to evaluate the linearized Regge action associated

to Pachner moves in 3D and 4D and show that it has a simple, factorized structure. We succeed in finding a

local measure for 3D (linearized) Regge calculus that leads to triangulation independence. This measure

factor coincides with the asymptotics of the Ponzano Regge Model, a 3D spin foam model for gravity. We

furthermore discuss to which extent one can find a triangulation independent measure for 4D Regge

calculus and how such a measure would be related to a quantum model for 4D flat space. To this end, we

also determine the dependence of classical Regge calculus on the choice of triangulation in 3D and 4D.
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I. INTRODUCTION

Many approaches to quantum gravity, such as spin foams
[1], group field theories [2], (causal) dynamical triangula-
tions [3,4] and Regge quantum gravity [5], rely on a path
integral approach. A (nonperturbative) path integral has to
be regularized to make it well defined. In the process of this
regularization, several choices have to be made, that differ
in the various approaches. Broadly, one can understand
these choices as deciding on a measure on the space of
all geometries. This includes various aspects, such as to
define the space of geometries, for example, the space of all
triangulations with fixed edge lengths in dynamical trian-
gulations versus the space defined by allowing all possible
edge lengths (satisfying generalized triangle inequalities)
in a fixed triangulation such as in Regge calculus, or some
generalized discrete geometric spaces, as appearing in loop
quantum gravity [6,7]. A related question is whether to
include a sum over triangulations, such as in (causal)
dynamical triangulations and group field theories, or even
over two-complexes as suggested for spin foammodels [8].
Alternatively, the path integral may just include an inte-
gration over geometric data associated to a given, fixed,
discretization. For discussions on the relation between
these approaches, see [9–11].

One reason for these many different suggestions is that
the space of all (discrete) geometries and its relation to the
corresponding continuum space needs to be better under-
stood [12,13]. Many difficulties are rooted in the role of
diffeomorphism symmetry, by which the space of metrics
has to be quotiented to obtain the space of geometries.
Discretizations obscure the role of diffeomorphisms, see
[10,14] for a discussion. In particular, for a precise notion
of diffeomorphism symmetry in the discrete [10], one can
show that this symmetry is broken for 4D Regge gravity

[15]. However, if this symmetry would hold in discrete
gravity, one could hope for a unique anomaly-free (with
respect to diffeomorphisms) measure [16]. As is also ar-
gued in [16,17], the implementation of this symmetry into
discrete gravity (of Regge type, i.e. with geometric data on
a fixed triangulation or discretization) would make such a
theory triangulation or discretization independent. In this
case there would also be no need of summing over
triangulations, which is often employed to obtain a
triangulation-independent theory.
One can expect to find such a discretization-independent

theory for 3D gravity, which is a topological theory, i.e.
there are no local physical (propagating) degrees of free-
dom. In fact, we will succeed to find a triangulation invari-
ant path integral description for 3D (linearized) Regge
calculus. 4D gravity features local propagating degrees of
freedom and a discretization independent model will re-
quire a nonlocal structure and moreover control over the
solutions of the system [18]. Nevertheless, as argued in
[16], the choice of path integral measure is important for
the convergence of the model, also under a renormalization
flow, which might be employed to find improved discreti-
zations [19]. Moreover, 4D classical Regge gravity is
invariant under a set of certain local changes of the trian-
gulation. One might therefore ask also for invariance of the
path integral under this set of local changes.
In this work we will concentrate on finding a measure in

a (Euclidean) Regge calculus setup, that is as much trian-
gulation independent as possible. Before explaining this in
more detail, we will shortly review different measures
suggested so far in the literature [20]. One method would
be to discretize the (formal) continuum path integral

Icont ¼
Z Y

x;���

dg��ðxÞ
Y
x

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg��

q
ÞÞ� expð�SEHÞ: (1.1)
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Here, SEH is the (Euclidean) Einstein Hilbert continuum

action and ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg��Þ

q
Þ� is a factor which can be obtained

from the DeWitt metric on (geometric) superspace [21].
More specifically the DeWitt measure [21] prescribes
� ¼ 0 in 4D and� ¼ �1 in 3D. However, also other values
of � have been suggested [20], for instance � ¼ �ðDþ 1Þ
for the Misner measure [22], where D is the dimension of
space time. A priori it is not clear which choice to prefer
[20].

Regge calculus [5] provides a discretization SR of the
Einstein Hilbert action SEH, defined on a triangulation. The
metric data are replaced by edge lengths le associated to

the edges of the triangulation. As
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg��Þ

q
gives the local

space time volume a natural discretization of this factor is
given by the volumes V� of the top-dimensional simplices
�, i.e. 4-simplices in 4D and tetrahedra in 3D. A straight-
forward discretization of (1.1) is then given by [20]
(modulo numerical constants)

Idiscr ¼
Z Y

e

dl2e
Y
�

V�
� expð�SRÞ: (1.2)

Concerning the range of integration, it will always be
understood that the generalized triangle inequalities are
satisfied. These require positive volume for all (sub-) sim-
plices and are therefore equivalent to restricting the inte-
gration in the continuum path integral (1.1) to positive
definite metrics. Apart from this requirement of triangle
inequalities (which are technically very difficult to imple-
ment) the measure used in(1.2) has the advantage of being
especially simple, in particular, local.1 The simplicity is
also a reason why � ¼ 0 in 4D seems to be preferred [20].

In this paper, we will consider a requirement of triangu-
lation independence for the path integral measure. This
requirement is also connected [16] with a discrete notion of
diffeomorphism invariance [17]. Hence, asking for trian-
gulation independence amounts to requiring an anomaly
free measure with respect to the diffeomorphisms, see also
[23] for a discussion in the spin foam context.

Specifically we ask for invariance of the (linearized)
model defined by (1.2) under Pachner moves [24]. These
are local changes of the triangulation, that act ergodically,
i.e. two topologically equivalent triangulations can always
be transformed into each other by a sequence of Pachner
moves. Restricting the measure to the local ansatz (1.2) we
will find that our results suggest to fix the parameter � to
� ¼ � 1

2 both in 3D and in 4D. Interestingly this conforms

completely with the semiclassical analysis [25,26] of the

Ponzano-Regge model [27] in 3D. This is a triangulation-
independent (spin foam) model for 3D quantum gravity,
based on discrete variables. The case of 4D is much more
involved. First, being an interacting theory with propagat-
ing degrees of freedom, one cannot expect to obtain a
triangulation-independent model, with just local interac-
tions, as in the Regge action [18]. Indeed, we will precisely
show in which sense the (linearized) 4D Regge action fails
to be triangulation independent. Although the semiclassi-
cal analysis of the 4D models [28,29] could show that the
Regge action appears in a ℏ ! 0 limit of the amplitudes,
the corresponding measure factor has not been specified
yet as a function of the geometric variables. For future
work it will be interesting to compare in more detail the
spin foam results with Regge gravity. Also, a measure
ambiguity shows up in choosing so-called edge and face
amplitudes [8,23,30]. These ambiguities could also be
restricted by asking for as much triangulation indepen-
dence as possible, similar to the method proposed here.
Hence it would be very interesting to study the behavior of
spin foam amplitudes under Pachner moves [31].
There are also other suggestions for the Regge measure,

which are non–local. As these are far more complicated
explicit computations they have mostly been restricted to
2D. The Regge–Lund measure [20,32,33] is obtained by
discretizing first the DeWitt super metric and then taking
the determinant (whereas in (1.2) this is performed the
other way around). The result is given by

IRL ¼
Z Y

e

dl2e
Y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGee0 Þ

q
expð�SRÞ (1.3)

where

Gee0 ¼ �D!
X
�

1

V�
�

@V�

@lele0
(1.4)

and � is another ambiguous parameter. As the determinant
has to be taken of a matrix, which is indexed by all the
edges of the triangulation, the result is potentially quite
nonlocal. Further discussion of this measure can be found
in [20,33].
In 3D, where gravity is a topological theory, we will find

that a local measure is sufficient to guarantee triangulation
independence of the (linearized) theory. In 4D, as previ-
ously mentioned, one cannot expect to find complete tri-
angulation independence for the path integral as already
the action is not triangulation independent. (More pre-
cisely, it is the Hamilton-Jacobi function as a functional
of the boundary data that is not invariant under the change
of the bulk triangulation.) One can, however, ask for in-
variance under a restricted set of Pachner moves, under
which the action happens to be invariant. These are
the 4� 2 and 5� 1 moves (but not the 3� 3 move).
Nevertheless, also for these moves we will find that a factor
appears that features a certain nonlocal structure. At this
stage it seems, however, more promising to construct

1Another suggestion is to use a measure of the form
Q

el
�1
e dle,

which is scale invariant. (The Regge action without cosmologi-
cal constant term is invariant—up to an overall factor—under
global rescaling of the edge lengths.) However, this measure did
not lead to satisfying results in numerical simulations, see [13]
and references therein.
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improved measures and actions directly by coarse graining
and the method of perfect discretizations [16,18,19].

Ultimately, another criterion that any quantum gravity
model has to satisfy is to display the correct large scale
limit. Also, here a measure term could be essential. For
investigations in 2D Regge, see for instance [34]; for
discussion of the influence of the measure in the context
of dynamical triangulations, see [35,36]. Another sugges-
tion for constructing a measure for Regge gravity is to mod
out a certain subgroup of the continuum diffeomorphism
group [37]. This results again in a highly nonlocal measure,
where explicit results are mostly restricted to 2D.

In the next section, we introduce the Regge action and its
expansion up to second order. This requires the calculation
of its Hessian matrix, which will be one of the main
subjects of this work. Furthermore, we discuss the concept
of Pachner moves and briefly present the Pachner moves in
3D and 4D. Section III deals with a general method to
compute the Hessian matrix in 3D and presents the appli-
cation of this method to the Regge actions associated to the
Pachner moves. Then we examine invariance of the path
integral under Pachner moves and define a suitable mea-
sure factor. The results for 3D will be summarized in
Sec. IV. In Sec. V, we extend our method to compute the
Hessian matrix in 4D, examine invariance of the path
integral under Pachner moves and discuss a suitable mea-
sure. The results in 4D are then summarized in Sec. VI. We
conclude this work with a discussion of our results in
Sec. VII.

II. LINEARIZED REGGE CALCULUS

The Regge action (which we will denote by S in the
following) provides a discretization of the Einstein Hilbert
action for gravity. It is defined on a triangulation, the
geometry is a piecewise flat one, and the geometric data
are encoded in the lengths of the edges in this triangulation.
For Regge type actions based on different geometric var-
iables nearer to spin foams, specifically areas and angles,
see [38,39].

In the following we will consider the Euclidean path
integral for the Regge discretization of gravity on a given
3D or 4D triangulation

Z
leje�@M

Y
e�bulk

dle�ðleÞ expf�Sg: (2.1)

Here, leje�@M denotes the boundary conditions, which we

take to be fixed length variables for the edges in the
boundary triangulation. �ðleÞ is a suitable measure factor.
In (2.1), not all edge lengths combinations are allowed
since the edge lengths have to satisfy generalized triangle
inequalities, i.e. all the (2D, 3D and, in case, 4D) volumes
have to be positive. The (Euclidean) Regge action in
arbitrary dimensionD can bewritten in the following form:

S :¼ � X
h�bulk

Vh

�
2�� X

�D�h

	ð�
DÞ

h

�

� X
h�bdry

Vh

�
�� X

�D�h

	ð�
DÞ

h

�
; (2.2)

where �D denotes D-simplices, i.e. D-dimensional simpli-
ces with Dþ 1 vertices, h denotes ‘‘hinges,’’ i.e. D�
2-simplices, Vh is the volume of a hinge and 	ð�

DÞ
h denotes

the internal dihedral angle in the D-simplex �D at the
hinge h. The terms in brackets in (2.2) define the bulk
and boundary deficit angles

!ðbulkÞ
h

:¼ 2�� X
�D3h

	ð�
DÞ

h (2.3)

!
ðbdryÞ
h

:¼ k�� X
�D3h

	ð�
DÞ

h ; (2.4)

where k depends on the number of pieces one is gluing
together at this boundary. If there are only two pieces, we
have k ¼ 1.
The dihedral angles are complicated functions of the

lengths variables, so that the integral in (2.1) cannot be
computed analytically. Additionally, one has to take the
generalized triangle inequalities for the range of integra-
tion into account.
To circumvent this issue, we consider linearized Regge

calculus in which one chooses a classical background

solution (for the edge lengths) lð0Þe satisfying the triangle
inequalities and one quantizes, i.e. integrates over, the
perturbations 
e around it.
Therefore, consider a small perturbation around a back-

ground solution

le ¼ lð0Þe þ 
e (2.5)

and expand the Regge action up to second order in the
perturbation variables 
e:

S ¼ Sð0Þj
le¼lð0Þe

þ @S

@le

��������le¼lð0Þe


e þ 1

2

@2S

@le@le0

��������le¼lð0Þe


e
e0 :

(2.6)

The background edge lengths lð0Þe are defined as the solu-
tion to the Regge equations,

@S

@le
¼ �X

h�e

@Vh

@le
!h ¼ 0; (2.7)

such that the first order term in (2.6) vanishes for the bulk
edges. More specifically, we take the background solution

to be (locally) flat, that is !ðbulkÞ
h ¼ 0. (This is exactly the

equation of motion in 3D.) The second order term is
defined by the matrix of second derivatives, that is the
Hessian.
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In three dimension, one obtains due to the Schläfli
identity2

@2S

@le@le0
¼ �@!e

@le0
: (2.8)

In four dimensions, we obtain (using again the Schläfli
identity)

@2S

@le@le0
¼ �X

h

@Ah

@le0

@!h

@le
� X

h�bulk

@2Ah

@le@le0
!ðbulkÞ

h

� X
h�bdry

@2Ah

@le@le0
!

ðbdryÞ
h : (2.9)

The bulk deficit angles!ðbulkÞ
h vanish on a flat (background)

solution.
For the evaluation of these Hessian matrices, we will

need the first derivatives of the dihedral angles with respect
to the length variables. A formula valid for simplices of
arbitrary dimension D can be found in [40]:

@~	kl
@lhm

¼ 1

D2

lhm

sinð~	klÞ
VhVm

V2
ðcosð~	khÞ cosð~	mlÞ

þ cosð~	kmÞ cosð~	hlÞ þ cosð~	klÞðcosð~	khÞ cosð~	kmÞ
þ cosð~	lhÞ cosð~	lmÞÞÞ: (2.10)

In (2.10), ~	kl denotes the dihedral angle (in a D-simplex)
between the two D� 1-simplices formed without the ver-
tices k and l, respectively. lhm is the length of the edge
between vertices h and m. Vh denotes the volume of the
(D� 1) simplex formed without vertex h in the
D-simplex. V is the volume of the respective D-simplex.

In case the dihedral angle ~	kl and the edge lhm do not
share a vertex, which implies that ðklÞ ¼ ðhmÞ, i.e. the
hinge is formed without the vertices h and m in the
D-simplex, Eq. (2.10) simplifies using the convention

cos~	ll ¼ �1:

@~	hm
@lhm

¼ 1

D2

lhm

sin~	hm

VhVm

V2
ð1�cos2 ~	hmÞ

¼ 1

D2

lhmVhVm

V2
sin~	hm¼ 1

DðD�1Þ
lhmVhm

V
: (2.11)

This result (2.11) will be crucial for an alternative deriva-
tion of the matrix elements of the Hessian (2.11) in Sec. III.
This alternative derivation applies to configurations defin-
ing Pachner moves, which we will discuss in the next
section.

A. Pachner moves

Pachner moves are local changes of the triangulation
which, if applied consecutively, allow to go from any

triangulation of a given manifold to any other triangulation
of that manifold [24]. In quantum Regge calculus, one
usually fixes the triangulation and just integrates over the
edge lengths in this given triangulation. Given this defini-
tion, the question arises of how the result depends on the
choice of triangulation. Note that the triangulation is only
an auxiliary structure, which is inserted in order to regu-
larize the (continuum) path integral. Hence it would be
advantageous, if the path integral (with or without given
boundary triangulation and condition) would depend mini-
mally on the choice of (bulk) triangulation. In case the path
integral does not depend at all on the triangulation, we do
not even need to take any refinement limit (here of the bulk
triangulation only), as the result will not change under
refinement. Such a strong version of discretization inde-
pendence can actually be expected in 3D, in which gravity
is a topological theory, describing the dynamics of only
global (topological) variables. Indeed we will find a
measure that will render the path integral discretization
independent in this sense. (That the linearized action is
invariant under refinements has been shown in [18].)
Locally this discretization independence implies that the
path integral is form invariant ‘‘under Pachner moves,’’
More precisely, we will consider here Pachner moves aris-
ing by integrating out certain edges in the triangulation, so
that the remaining edges still define a triangulation. The
form of the (discretized) path integral should then be
invariant.
We will consider a similar requirement in 4D. This

defines, however, a theory with local degrees of freedom,
where not even the (linearized) action is invariant under
change of triangulation [18,41,42]. This broken invariance
can however be isolated into one of the Pachner moves, the
3� 3 move. Hence, we can at least ask whether it is
possible to define a measure that would render the path
integral invariant under the remaining Pachner moves.
An x� y Pachner move changes a complex of x

D-simplices into one with y D-simplices without changing
the boundary triangulation. Here, the parameters x, y are
related by xþ y ¼ Dþ 2. Since the boundary is not
changed, the Pachner moves act locally in the triangulation.
This also allows us (for the cases with x > y) to consider the
initial configuration of x D simplices, to integrate out the
bulk edges and to reinterpret the resulting partition function
as one for the complex with y simplices. Note also that the
x� y and the y� x move are inverse to each other.
In the following sections, we will introduce the Pachner

moves in 3D and 4D and shortly point out some points
pertaining to the dynamics defined by Regge calculus.

B. Pachner moves in 3D

Here we have two Pachner moves, 3� 2 and 4� 1 (and
their inverses). Note that the equation of motion for 3D
Regge calculus requires flatness, i.e. vanishing deficit
angles.

2The Schläfli identity
P

h��ðDÞVh�	
ð�ðDÞÞ
h ¼ 0 ensures that

terms with second derivatives of the dihedral angles vanish.
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1. 3� 2 move

The first Pachner move we will consider is the 3� 2
move, see Fig. 1. In the initial configuration three tetrahedra
(0123), (0124), and (0134) share an edge (01). This is the
only bulk edge. Removing (i.e. integrating out) this edge
and introducing a triangle (123) we obtain a configuration
of two tetrahedra (0234) and (1234) sharing this triangle.

As there is only one bulk edge in the initial configura-
tion, we will also have only one equation of motion. This
equation of motion requires the vanishing of the bulk
deficit angle !01 and in this way fixes the length l01 of
the edge (01) as a function of the boundary edge lengths.

2. 4� 1 move

The other Pachner move in 3D we are going to discuss is
the 4� 1 move. Here in the initial configuration, four
tetrahedra share one vertex. This configuration can be
obtained by subdividing a tetrahedron (1234) into four
tetrahedra by placing one vertex 0 into the tetrahedron
and connecting 0 with the other four vertices. In the
4� 1move, this vertex 0 and the adjacent edges are removed,
leaving us with one tetrahedron (1234), see also Fig. 2.

In the initial configuration with four tetrahedra, there are
four bulk edges, and hence four equations of motion. These
again require that the (four) bulk deficit angles have to
vanish, i.e. that the complex has to be flat. We know that we
can easily construct such solutions by placing a vertex into
the (flat) tetrahedron (1234) and determining the lengths of
the four bulk edges. There is, of course, a three-
dimensional parameter space of where to place the inner
vertex exactly, hence the solutions are not uniquely deter-
mined. This is the well-known gauge freedom in Regge
calculus on flat solutions [10,40,43–45], a discrete remnant
of the diffeomorphism symmetry in the continuum. From
this, it follows that of the four equations of motions only
one is independent and that we have to expect three null
modes in the Hessian matrix of the system, signifying three
gauge degrees of freedom. Further discussions and exten-
sions to the case with cosmological constant can be found
in [10,15,19].

C. Pachner moves in 4D

1. 4� 2 move

This Pachner move is very similar to the 3� 2 move in
3D, see Fig. 3. The initial configuration is one with four
4-simplices, (01234), (01234), (01245), and (01345), shar-
ing one edge (01). All the other edges are boundary edges.
Removing this edge and introducing a tetrahedron (2345),
we obtain a configuration with two 4-simplices (02345)
and (12345) sharing this tetrahedron.
As there is only one bulk edge, we again have only one

equation of motion for the initial configuration. A (flat)
solution can always be constructed in the following way:
The boundary triangulation is the same as for two 4-
simplices sharing one tetrahedron. Such a configuration
can always (i.e. for all boundary edge lengths satisfying the
appropriate inequalities) be embedded into flat 4D space.
We can hence straightforwardly determine the distance
between the vertices 0 and 1 in the induced metric, which
defines the length of the edge (01).
In some exceptional cases there might be also solutions

with curvature [15], however this seems to be rather a
discretization artifact. For the perturbative solutions
around flat space we are interested in, we can note that
the linearized equations of motion have a unique (flat)
solution for all (linearized) boundary perturbations.

2. 5� 1 move

The 5� 1 is again analogous to the 4� 1 move in 3D.
In the initial configuration five 4-simplices share one ver-
tex (0) which is adjacent to five bulk edges. Removing this

FIG. 1. 3� 2 move. The two tetrahedra can be split into three
by connecting the two vertices separated by the shared triangle.
The dashed line in the three tetrahedra configuration is the
dynamical edge.

FIG. 2. 4� 1 move. The tetrahedron is split into four by
placing one additional vertex inside the tetrahedron and con-
necting it to the remaining vertices in the boundary giving four
internal edges (dashed).

FIG. 3. 4� 2 move. By connecting the vertices (0) and (1) the
two 4-simplices are split into four with one bulk edge, here
drawn dashed.
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vertex and the adjacent edges we are left with just one
simplex (12345), see also Fig. 4

Also here, we can construct for all boundary configura-
tions flat solutions to the equations of motion. These can be
found by placing the vertex (0) into the (flat) 4-simplex
(12345) and determining the induced lengths of the edges
ð0xÞ, where x ¼ 1; . . . ; 5. For given boundary data there is
a four-parameter space of such solutions, according to the
four parameters describing the position of the vertex inside
the 4-simplex. Hence, we can expect four null modes for
the Hessian of this configuration.

3. 3� 3 move

We are left with the 3� 3 move, which is significantly
different from all the other Pachner moves discussed so far.

Assume three 4-simplices (01234), (01235), and
(01245) sharing one triangle (012). Note that this configu-
ration does not include a triangle (345), as neither of the
three 4-simplices contains the three vertices (3), (4), (5).

The 3� 3 move rebuilds this configuration into three
4-simplices (01345), (02345), and (12345) which share the
triangle (345) and do not include the triangle (012), see
also Fig. 5.

In contrast to all other Pachner moves discussed so far
the 3� 3 move does not involve dynamical edges, i.e. all
edges are in the boundary and therefore included in both
configurations. We therefore do not have an equation of
motion. Note however that, again in contrast to the other

Pachner moves, not all boundary configurations define a
flat geometry. That is, in both configurations we have only
one bulk triangle. The vanishing of the deficit angle for this
bulk triangle gives one condition for the length of the
boundary edges. In case this condition is violated, we do
have a curved configuration. In particular, even on a flat
background, we can have a curvature excitation, if the
boundary perturbations do not satisfy the linearized flat-
ness condition.
In the following section, we will specify the Hessian

matrix of the Regge action associated to the various con-
figurations appearing in the Pachner moves. We could start
with the formula (2.10) for the derivatives of the dihedral
angles to obtain the derivatives of the deficit angles, so that
these can be combined to give the entries in the Hessian.
This procedure would however result in very lengthy for-
mulas and not use the flatness of the background solution.
We will use an alternative strategy, which will produce a
quite enlightening structure for the Hessian, and for which
we present some auxiliary formulas in the next section.

III. COMPUTATION OF THE
HESSIAN MATRIX IN 3D

In this section, we will compute the matrix elements of
the Hessian matrix. To do so, one has to compute terms of
the form @!

@l for which we will present a general strategy

similar to [46,47]. We need to extend the ideas in [46,47] in
order to also obtain the matrix elements of the Hessian
indexed by edges in the boundary. First we will derive two
auxiliary formulas, which is the subject of the next section.

A. Auxiliary formulas

For concreteness, we will derive the auxiliary formulas
for the initial configuration of the 3� 2 move (see Fig. 1)
with the bulk edge (01) as described in the previous sec-
tion. Assume that this configuration can be embedded into
flat (three-dimensional) space, i.e. R3. This implies that for
instance l01, the edge length of the dynamical edge (01), is
fixed as a function of all other edge lengths. Hence there
is one relation which all edge lengths have to satisfy, which
is !01 ¼ 0, i.e. the deficit angle at the edge (01) vanishes.
(Note that this relation can also be derived by requiring that
the Cayley-Menger determinant of this configuration,
giving the square of the 4D volume, vanishes.) As there
is one condition, at least two edge lengths have to be varied
in order to preserve this relation. Therefore, consider var-
iations of exactly two edge lengths, l and l0. Alternatively,
one can interpret l0 as a function of l, where all other edge
lengths are (fixed) parameters. We will derive a relation
between the edge variations �l and �l0 or alternatively the

partial derivative @l0
@l .

For example, consider l0 ¼ l23 and l ¼ l34. We vary l23
and l34 such that !01 ¼ 0, i.e. the triangulation is still
embeddable in flat space. This implies

FIG. 4. 5� 1 move. The 4-simplex is split into five 4-
simplices by placing one vertex inside the 4-simplex and con-
necting it to the boundary vertices, hence obtaining five bulk
edges (dashed lines).

FIG. 5. 3� 3 move. Three 4-simplices sharing the triangle
(012) and not containing (345) are rebuilt into three 4-simplices
sharing the triangle (345) and not including triangle (012). The
shared triangles are drawn dashed in this figure. Note that all
edges are boundary edges and are contained in both configura-
tions, so the configurations are determined by the shared triangle.
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0 ¼ �!01 ¼ ��	ð0123Þ01 � �	ð0124Þ01 � �	ð0134Þ01

¼ ��	ð0123Þ01 � �	ð0134Þ01 ; (3.1)

where 	ð01xyÞ01 is the dihedral angle at edge (01) in the

tetrahedron ð01xyÞ. �	ð0124Þ01 ¼ 0 since it neither depends

on l23 nor on l34, as these edges are not part of the
tetrahedron (0124).

Using Eq. (2.11), we obtain

@	ð0123Þ01

@l23
¼ l01l23

6V�4

;
@	ð0134Þ01

@l34
¼ l01l34

6V�2

; (3.2)

where V�i denotes the volume of the tetrahedron formed
by all vertices except i, e.g. �4 ! ð0123Þ, such that V�4 ¼
Vð0123Þ. Since �	

ð0123Þ
01 (�	ð0134Þ01 ) can only depend on l23 (l34

respectively), we can use Eqs. (3.2) in (3.1) and obtain

@l23
@l34

¼ � l34
l23

V�4

V�2

: (3.3)

In general, one finds (for a five vertex configuration with
vanishing Cayley-Menger determinant) [46,47]��������@lij

@ljk

��������¼
��������ljkV �k

lijV�i

��������: (3.4)

The actual sign depends on the geometric configuration
under consideration.

In addition to relation (3.4), we need an analogous
relation between deviations of edges not sharing a vertex.
This can be derived from (3.4): Consider variations of three
edge lengths lij, ljk, and lkm such that !01 ¼ 0. That is, lij
can be understood as a function of ljk and lkm. Then

�lij ¼
@lij
@ljk

�ljk þ
@lij
@lkm

�lkm: (3.5)

Now we restrict the variations further by requiring
�lij ¼ 0, such that we have to additionally understand ljk
as a function of lkm, that is lij ¼ lijðljkðlkmÞ; lkmÞ. Thus one
obtains for (3.5)

0 ¼ @lij
@ljk

@ljk
@lkm

�lkm þ @lij
@lkm

�lkm (3.6)

) @lij
@lkm

¼ � lij
ljk

ljk
lkm

: (3.7)

With (3.4) we find (see also [47])�������� @lij
@lkm

�������� ¼
��������lkmV �kV �m

lijV�iV �j

��������: (3.8)

To summarize (3.4) and (3.8),��������@lij
@ljk

��������¼
��������ljkV �k

lijV�i

��������;
�������� @lij
@lkm

��������¼
��������lkmV �kV �m

lijV�iV �j

��������
where in fact (3.4) is a special case of (3.8).

In the following section, we will use relations (2.11),
(3.4), and (3.8) to compute terms of the form @!

@l .

B. Computation of @!
@l

The Hessian of the Regge action has entries of the form
@!
@l , which we have to evaluate on configurations where

!ðbulkÞ ¼ 0. As in the previous section, we consider the
initial configuration of the 3� 2 move. We will start with

the calculation of @!01

@l01
, which is the derivative of the bulk

deficit angle with respect to the bulk edge length.
The equation of motion for the perturbations 
01 around

the flat solution lð0Þ01 is given by

0 ¼ X
b

@2S

@lb@l01

b þ @2S

@l01@l01

01

¼ �X
b

@!01

@lb

b � @!01

@l01

01: (3.9)

Here, b indicates edges in the boundary triangulation, and
the sum is over all such edges.
Now we know that these equations of motion specify


01, such that the linearized deficit angle at (01) is still flat.
That is, if we choose the boundary perturbations, such that
for instance only 
23 � �l23 is nonvanishing, we know that
the ratio of 
01 � �l01 and 
23 � �l23 has to satisfy (3.8).
This specifies the ratio of the derivatives @!01=@l01 and
@!01=@l23. For the latter derivative, as l23 is only included
in one of the three tetrahedra we have via (2.11),

@!01

@l23
¼ �@	ð0123Þ01

@l23
¼ � l01l23

6V�4

: (3.10)

This finally gives��������@!01

@l01

��������¼
��������l01l236V�4

�l23
�l01

�������� ¼
ð3:8Þ

��������l
2
01

6

V�0V�1

V�2V�3V�4

��������: (3.11)

The actual sign is determined by the geometry and dis-
cussed in the next section. Note that we could have also
used the lengths l24 or l34 instead of l23, which would have
however all lead to the same result.

Next, we consider terms of the form @!01

@lb
, i.e. derivatives

of the deficit angle at the bulk edge with respect to a
boundary edge length. Note that for b ¼ 23, 24, 34, the
result is already given by (the analogue of) (3.10).
To find the derivative with respect to the remaining

boundary lengths consider again (3.9) with all boundary
perturbations vanishing except, say 
0i � �l0i. Then, with
the same line of arguments as used previously we can
conclude

@!01

@l0i
¼ � @!01

@l01

�l01
�0i

(3.12)

and hence
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��������@!01

@l0i

�������� ¼
ð3:4Þ

��������l01l0i6

V�0

V �jV �k

��������; (3.13)

where i 2 f2; 3; 4g and j, k are such that i, j, k ¼ 2, 3, 4.
Again, the sign is determined by the geometry under
consideration.

Note that due to the symmetry of second derivatives of
the Regge action, we have

@!e

@le0
¼ @!e0

@le
: (3.14)

Hence, we can deduce terms of the form @!b

@l01
from @!01

@lb
.

Thus only terms of the form @!b
@lb0

remain to be computed, i.e.

derivatives of exterior angles with respect to boundary
edge lengths.

To this end, remember that the initial configuration of
the 3� 2 Pachner move is flat. During the Pachner move
the edge (01) is removed and replaced by a triangle (234),
such that neither the intrinsic geometry (i.e. flatness) nor
the extrinsic geometry (the embedding into flat space) of
the boundary changes. In particular, we will have that the

extrinsic curvature angles!ð3Þ
b ðlb0 ; l01ðlb0 ÞÞ ¼ !ð2Þ

b coincide

in the initial and finial configuration of the Pachner moves,
involving three or two tetrahedra, respectively. Here we
understand l01 as a function of the boundary lengths lb0 as it
is determined by the requirement of flatness.

Now varying just one boundary edge length lb0 , together
with l01 ¼ l01ðlb0 Þ as function of this length, we obtain

d!ð2Þ
b

dlb0
¼ d!ð3Þ

b

dlb0
¼ @!ð3Þ

b

@lb0
þ @!ð3Þ

b

@l01

@l01
@lb0

(3.15)

) @!ð3Þ
b

@lb0
¼ d!ð2Þ

b

dlb0|{z}
@!

ð2Þ
b

@l
b0

� @!ð3Þ
b

@l01|{z}
@!01
@l
b0

@l01
@lb0

: (3.16)

This gives finally

@!ð3Þ
b

@lb0
¼ @!ð2Þ

b

@lb0
þ s

lblb0

6

V�iV �jV �mV �nQ
n
V �n

(3.17)

for b ¼ ðijÞ and b0 ¼ ðmnÞ. Here, s ¼ �1 denotes a sign
that will be determined in the next section.

Determining the sign of @le
@le0

In the previous section, we have seen that in order to
compute the full expression for the matrix elements of the

Hessian, the actual sign of the derivatives of the form @le
@le0

has to be determined. To be more precise, one only needs to

determine the signs of @l01
@lb

, where one has to treat the cases

in which lb shares a vertex with l01 and where it does not
share a vertex separately.

We start with the case where lb shares a vertex with l01,
e.g. l0i with i 2 f2; 3; 4g. In the derivation of the formula

for @!01

@l0i
, we considered variations of the edge lengths l01

and l0i, while keeping all other edge lengths fixed, under
the condition that the triangulation is supposed to remain
flat. This allowed us to understand l01 as a function of l0i,
l01 ¼ l01ðl0iÞ. To determine the sign of this dependence,
consider Fig. 6:
Assume that we enlarge l0i slightly, i.e. �l0i > 0. If we

do not change l01 as well, the condition !01 ¼ 0 will be
violated since all other edge lengths are fixed. However, if
one allows l01 to vary as well, the vertex (0) will be
‘‘pushed’’ away from the vertex i, but since the edge
lengths l0j and l0k are fixed, l01 has to be increased, i.e.

�l01 > 0. Hence

�l0i > 0 ) �l01 > 0)
ð3:4Þ

�l01
�l0i

¼ l0iV�i

l01V�1

: (3.18)

We follow a similar line of argumentation for terms of

the form
@lij
@l01

, with i, j 2 f2; 3; 4g. Consider Fig. 7:
Assume that we slightly increase lij, i.e. �lij > 0. Since

the edge lengths lik and ljk are fixed, the vertex k is being

‘‘pulled’’ towards the edge ðijÞ. Furthermore the edge
lengths l0i, l0j and l0k are fixed, such that the vertex (0) is

FIG. 6. As one increases the edge lengths l03, one also has to
increase l01 in order to keep the triangulation flat, i.e. !01 ¼ 0.

FIG. 7. As one increases the edge lengths l23, one has to
decrease l01 in order to keep the triangulation flat, i.e. !01 ¼ 0.
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‘‘dragged’’ towards the edge ðijÞ. This configuration can
only remain flat, if l01 is decreased, i.e. �l01 < 0. Hence:

�lij > 0 ) �l01 < 0)
ð3:8Þ

�l01
�lij

¼ � lijV�iV �j

l01V�0V�1

: (3.19)

This is also consistent with (3.10).

C. Summary for the 3� 2 move

Let us summarize the results of the previous paragraphs.
(i) In case either edge ðijÞ or the edge ðkmÞ is in the

bulk, one obtains

Hð3Þ
ðijÞ;ðkmÞ :¼

@2S

@lkm@lij
¼ � @!ij

@lkm

¼ ð�1Þsiþsjþskþsm
lijlkm
6

V�iV �jV �kV �mQ
n
V �n

(3.20)

where

si ¼
8<
: 1 if i 2 f0; 1g
0 else

(3.21)

and the product in the denominator runs over all
vertices in the triangulation.

(ii) In case both the edges ðijÞ and ðkmÞ are in the
boundary, one obtains

Hð3Þ
ðijÞ;ðkmÞ :¼

@2S

@lkm@lij
¼ �@!ð3Þ

ij

@lkm

¼ ð�1Þsiþsjþskþsm
lijlkm
6

V�iV �jV �kV �mQ
n
V �n

� !ð2Þ
ij

@lkm

(3.22)

where !ðiÞ
km denotes the exterior angle at the (bound-

ary) edge ðkmÞ in the i tetrahedra configuration, si is
defined as above.

Notice the simple form of the Hessian,

Hð3Þ
ðijÞ;ðkmÞ ¼ Hð2Þ

ðijÞ;ðkmÞ þ chðijÞhðkmÞ; (3.23)

in particular that the second summand in (3.23) factorizes.

(Here, Hð2Þ
ðijÞ;ðkmÞ ¼ 0 if either ðijÞ of ðkmÞ equals (01).)

We have now all the prerequisites to discuss the (form-)
invariance of the path integral associated to the 3� 2
move.

D. Invariance of the path integral

For the 3� 2 move, we have to consider an expression
of the following form:

P3�2¼
Z
d
01�ðlÞexp

�
� X

ðijÞ;ðkmÞ

1

2
Hð3Þ

ðijÞ;ðkmÞ
ij
km

�
; (3.24)

where:
(i) �ðlÞ is a measure factor, which we assume to only

depend on the background variables l, such that the
configuration is flat.

(ii) Hð3Þ
ðijÞ;ðkmÞ is the ðijÞðkmÞ-matrix element of the

Hessian in the three tetrahedra configuration, which
we computed in the previous section, see (3.20) and
(3.22).

(iii) Since 
01 is the only dynamical edge (variation) in
the configuration under discussion, the sign of

Hð3Þ
ð01Þ;ð01Þ is crucial for the convergence of (3.24).

In the sign convention introduced in Eq. (2.2)

Hð3Þ
ð01Þ;ð01Þ > 0, such that (3.24) converges.

We can easily perform the integral in (3.24) as it is a
(partial) Gaussian integration. For an integral of the form

I ¼
Z

dq1 . . . dqr exp

�
� 1

2
~qTM ~qg (3.25)

where M is a real, symmetric, positive-definite n�
n-matrix and ~q ¼ ðqiÞ denotes a vector with i ¼
1; . . . ; r; rþ 1; . . . n. Splitting the matrix M accordingly
into submatrices

M ¼ W0 V
VT U0

� �
; (3.26)

we can write

I ¼ ð2�Þr=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðW0Þ

p exp

�
� 1

2
~uTU ~u

�
with

U :¼ U0 � VTW�1
0 V: (3.27)

Using this result for the 3� 2 move (3.24), we identify

W0 ¼ Hð3Þ
ð01Þ;ð01Þ ¼ �@!01

@l01
(3.28)

ðU0Þb;b0 ¼ �@!ð2Þ
b

@lb0|{z}
Hð2Þ

b;b0

þ @!01

@lb

@l01
@lb0

(3.29)

ðVÞð01Þ;b ¼ �@!01

@lb
: (3.30)

Furthermore, requiring form invariance of (3.24) implies

P3�2 / exp

�
� X

ðijÞ�ð01Þ;ðkmÞ�ð01Þ

1

2
Hð2Þ

ðijÞðkmÞ
ij
km

�
(3.31)

such that in order to show that (3.24) is invariant (on the

level of the action), one has to show that U ¼ Hð2Þ, which
implies
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� @!01

@lb

@l01
@lb0

¼
�
@!01

@l01

��1 @!01

@lb

@!01

@lb0
: (3.32)

Note that we have already proven that (3.32) holds due to
the identity (3.12). This shows form invariance of the
action.

For the invariance of the measure �ðlÞ in (3.24), we
examine the contribution from the Gaussian integral:

ffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðW0Þ

p ¼
ffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð3Þ

ð01Þ;ð01Þ
q ¼

ffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� @!01

@l01

q ¼
ffiffiffiffiffiffiffiffiffi
12�

p
l01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�2V�3V�4

V�0V�1

s
:

(3.33)

Hence, choosing the measure factor as

�ðlÞ ¼
Q
e

leffiffiffiffiffiffiffi
12�

pQ
�

ffiffiffiffiffiffi
V�

p (3.34)

we obtain a partition function, invariant under 3� 2
Pachner moves. Here, e denotes the edges and � the
tetrahedra in the triangulation.

E. 4� 1 move

For 3D gravity, in addition to the 3� 2 move, we have
also to consider the 4� 1move. This move amounts to the
subdivision of one tetrahedron, denoted by (1234), into
four by adding one additional vertex (0), placing it inside
the original tetrahedron and connecting it with all of the
remaining vertices, see Sec. II B 2.

In contrast to the 3� 2 move, the edge lengths of the
new edges, i.e. the position of the new vertex inside
the original tetrahedron, is not uniquely fixed. In fact, the
action is invariant under translations of the vertex (0)
inside the tetrahedron (1234), such that one expects the
Hessian matrix to have three null eigenvectors. In order to

compute this matrix, terms of the form @!e

@le0
have to be

evaluated just as in the 3� 2 move. Following a similar
derivation as in the previous section, one arrives at the
following terms:

(i) In case either the edge e ¼ ðijÞ or edge e0 ¼ ðkmÞ
are in the bulk, one obtains

@2S

@lkm@lij
¼ð�1Þsiþsjþskþsmþ1

lijlkm
6

V�iV �jV �kV �mQ
n
V �n

(3.35)

where

si ¼
�
1 if i ¼ 0

0 else
: (3.36)

(ii) In case both edges are in the boundary, one obtains

@2S

@lkm@lij
¼ð�1Þsiþsjþskþsmþ1

lijlkm
6

V�iV �jV �kV �mQ
n
V �n

�@!ð1Þ
ij

@lkm

(3.37)

where !ð1Þ denotes an exterior dihedral angle in the
one tetrahedron configuration.

Again, notice the simple form of the Hessian,

Hð4Þ
ðijÞ;ðkmÞ ¼ Hð1Þ

ðijÞ;ðkmÞ þ chðijÞhðkmÞ; (3.38)

with a factorizing summand. This form of the Hessian
makes the appearance of null vectors obvious.

1. Null eigenvectors

Since the pure bulk part Hð4Þ
ð0iÞ;ð0jÞ of the Hessian matrix

factorizes, we can easily examine the condition for null
vectors ~v:X

j

Hð0iÞ;ð0jÞvj ¼ ch0i
X
j

h0jvj ¼! 0: (3.39)

Hence, due to the factorizing form of the Hessian, we just
have one condition for the null vectors. Therefore the
Hessian has three null eigenvectors, and of the four bulk
degrees of freedom three are gauge.
Furthermore, we have to discuss the sign of the Hessian.

The only nonvanishing eigenvalue of the submatrix
Hð0iÞ;ð0jÞ can also easily be determined due to the factoriz-

ing form to be
P

jHð0jÞ;ð0jÞ. This gives a negative eigen-

value, hence the Gaussian integral would not be
convergent. This is a trace of the conformal mode problem
in Euclidean gravity: the kinematic term of the conformal
mode comes with the ‘‘wrong’’ sign, so that the Euclidean
action is not bounded from below. We see that the Pachner
moves allow a nice isolation of this mode problem into the
4� 1 moves. We will change the global sign for the action
of the 4� 1 move, such that the integral (over the one
nongauge mode) converges. This can be understood as
selecting a complex contour for the integration for the
conformal and the other modes separately, see [48] for a
discussion in the continuum.

2. Invariance of the path integral

Similar to the 3� 2 move, we have to consider

P4!1 ¼
Z Y

i

d
0i�ðlÞ exp
�
� X

ðijÞ;ðkmÞ

1

2
Hð4Þ

ðijÞ;ðkmÞ
ij
km

�

(3.40)

where �ðlÞ is again a measure factor, which we assume to
depend only on background variables l, which have to
make up a flat configuration. (3.40) is again a partial
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Gaussian integral but with three gauge degrees of freedom,
for which we will modify the general method of Sec. III D.

Again, the general form for the Gaussian integral is

I ¼
Z

dq1 . . . dqr exp

�
� 1

2
~qTM ~q

�
: (3.41)

Since there are gauge degrees of freedom, one integrates
over the matrix M is singular. Assume that there are m
gauge degrees of freedom such that we can split ~q in the
following way:

~q ¼ ðq1; . . . ; qr�m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼: ~w

; qr�mþ1; . . . ; qr|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼: ~g

; qrþ1; . . . ; qn|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼: ~u

Þ: (3.42)

(Here we assume that the transformation between
qr�mþ1; . . . ; qr and the m gauge parameters is not singu-
lar.) This implies the following split for the matrix M:

M ¼
W0 Vg V

VT
g G0 Z0

VT ZT
0 U0

0
BB@

1
CCA; (3.43)

where W0 is nonsingular. Integrating out the degrees of
freedom summarized in ~w, one obtains

I ¼ ð2�Þððr�mÞ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðW0Þ

p exp

�
� 1

2
ð ~gTG ~gþ ~gTZ ~u

þ ~uTZT ~gþ ~uTU ~uÞ
�

(3.44)

with

G ¼ G0 � VT
gW

�1
0 Vg; (3.45)

Z ¼ Z0 � VT
gW

�1
0 V; (3.46)

U ¼ U0 � VTW�1
0 V: (3.47)

Applying this formalism to the problem under discussion,
one identifies (here i, j � 0, 1)

ðW0Þð01Þ;ð01Þ ¼ Hð4Þ
ð01Þ;ð01Þ ¼ �@!01

@l01
;

ðG0Þð0iÞ;ð0jÞ ¼ @!01

@l0i

@l01
@l0j

;

ðU0Þb; b0 ¼ Hð1Þ
b;b0 þ

@!01

@lb

@l01
@lb0

;

ðVgÞð01Þ;ð0iÞ ¼ � @!01

@l0i
ðVÞð01Þ;b ¼ � @!01

@lb
;

ðZ0Þð0iÞ;b ¼ @!01

@l0i

@l0i
@lb

: (3.48)

We therefore obtain

ðGÞð0iÞ;ð0jÞ ¼ @!01

@l0i

@l01
@l0j

þ
�
@!01

@l01

��1 @!01

@l0i

@!01

@l0j
¼ð3:12Þ 0

(3.49)

ðZÞð0iÞ;b ¼ @!01

@l0i

@l01
@lb

þ
�
@!01

@l01

��1 @!01

@l0i

@!01

@lb
¼ð3:12Þ 0

(3.50)

ðUÞb;b0 ¼ Hð1Þ
b;b0 þ

@!01

@lb

@l01
@lb0

þ
�
@!01

@l01

��1 @!01

@lb

@!01

@lb0
¼ð3:12ÞHð1Þ

b;b0 : (3.51)

This proves form invariance of the action, as the remaining
term in the exponential corresponds to the action of the
tetrahedron (1234) (after we have rotated back the global
sign of the action).
Note that after having only integrated over 
01, the other

bulk variables 
0i; i ¼ 2, 3, 4 do not appear anymore in the
exponential.
Let us first consider how the measure factor is modified

by the Gaussian integration over 
01. The additional factor
is given by ffiffiffiffiffiffiffi

2�
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðW0Þ

p ¼
ffiffiffiffiffiffiffiffiffi
12�

p
l01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�2V�3V�4

V�0V�1

s
: (3.52)

If we consider�ðlÞ in (3.40) to be the same measure which
gives an invariant amplitude under the 3� 2move, namely

�ðlÞ ¼
Q
e

leffiffiffiffiffiffiffi
12�

pQ
�

ffiffiffiffiffiffi
V�

p (3.53)

where e includes all boundary and bulk edges and � the
four tetrahedra of the initial configuration, we obtain

P4�1 ¼
Q
b

lbffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�V�0

p exp

�
�X

b;b0

1

2
Hð1Þ

b;b0
b
b0

� Z Q
i�1

l0iffiffiffiffiffiffiffi
12�

p d
0i

V�1

:

(3.54)

The remaining integral over the variables 
02; . . . ; 
04

can be identified with an integration over the gauge orbit,
which is given by the displacement of the inner vertex (0).
As one can show [47,49], see also Appendix A, the follow-
ing identity between integration measures holds:

d3x�0 ¼
Q

i¼2;3;4

l0idl0i

6V�1

: (3.55)

Here, d3x�0 is the integration measure of the Euclidean

coordinates x�0 , � ¼ 1, 2, 3 of the vertex (0). The
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displacement of this vertex corresponds exactly to the
gauge action of the discrete remnant of the diffeomor-
phisms [10,45,50]. Hence, we will replace the last factor
in (3.54) by 1. This can be understood as resulting from a
gauge fixing procedure, including the appropriate
Faddeev-Popov determinant. (The numerical factors are
chosen to conform with the integration measure found for
the 3� 2 move, however it is not possible to fix them
uniquely.)

IV. SUMMARY FOR 3D GRAVITY

For a general 3D triangulation, we define the path in-
tegral for linearized Regge calculus by

P :¼
Z Q

e

leffiffiffiffiffiffiffi
12�

pQ
�

ffiffiffiffiffiffi
V�

p Y
e�bulk

d
e exp

�
� 1

2

X
e;e0

He;e0
e
e0

�
: (4.1)

le is the length of the edge e, V� is the volume of the
tetrahedron �, 
e is the edge length perturbation of the
edge e and He;e0 is the e-e

0 matrix element of the Hessian

matrix of the Regge action. The considerations conducted
in the previous section show that (4.1) is invariant under
Pachner moves, in case one follows the gauge fixing and
sign rotation procedure for the 4� 1 move discussed
above. Hence, (4.1) does not depend on the choice of
bulk triangulation and in this sense it is discretization
independent.

Here we assigned the numerical prefactor ð12�Þ�1=2 to
the edges of the triangulation (as the � factors result from
integration over edges). Another possibility would be to
associate this preactor to the tetrahedra of the triangulation,
in which case one needs to appropriately adjust the nu-
merical constant in the gauge fixing prescription for the
4� 1 move.

Amazingly, the path integral measure which we found
for linearized Regge calculus, coincides with the semiclas-
sical limit of the Ponzano-Regge model [25–27]. This is a
triangulation-independent3 spin foam model for 3D quan-
tum gravity. Here the numerical prefactors (also given by

ð12�Þ�1=2) are associated to the tetrahedra.
It would be interesting to see whether this correspon-

dence can be extended to 3D Regge calculus with a cos-
mological constant. This theory can be (classically)
formulated in a triangulation independent way, by using
curved tetrahedra [19,39]. The corresponding quantization
is given by the Turaev-Viro model [51], for which the
semiclassical limit has been obtained [52]. Hence, (4.1)
should give a triangulation independent amplitude for lin-
earized Regge calculus with a (positive) cosmological
constant by replacing le and V� by their respective counter-
parts on the sphere, i.e. sinðleÞ, where le 2 ½0; ��, andV �,
the determinant of the Gram matrix.

V. COMPUTATION OF THE
HESSIAN MATRIX IN 4D

We are now going to discuss the 4D case. We will
proceed as for 3D, that is first determine the matrix ele-
ments of the Hessian and then consider the path integral for
the Pachner moves. It will turn out that the 4� 2 and 5� 1
moves behave very similarly to the 3� 2 and the 4� 1
moves, respectively, in 3D. There is however an additional
Pachner move in 4D, namely, the 3� 3, which is signifi-
cantly different and thus responsible for the nontrivial
dynamics of 4D Regge gravity.
The Hessian of the Regge action is given by

@2S

@lij@lmn

¼ �X
stu

@Astu

@lmn

@!stu

@lij
� X

stu2bulk

@2Astu

@lij@lmn

!ðbulkÞ
stu

� X
stu2bdry

@2Astu

@lij@lmn

!ðbdryÞ
stu ; (5.1)

where !stu is the deficit angle at the (bulk or boundary)
triangle ðstuÞ. In the following, we will not discuss the last
two terms in (5.1) because wewill consider flat background

solutions, i.e. !ðbulkÞ ¼ 0. That is, the second term in (5.1)
vanishes and the third term is unaffected by Pachner
moves, since the extrinsic geometry, defined by the embed-
ding into flat space, is not changed. (Furthermore, this term
is only multiplied by boundary perturbations, which are not
integrated over in the path integrals.)
Hence we define a reduced Hessian matrix

HðijÞ;ðkmÞ :¼ �X
�

@A�

@lij

@!�

@lkm
(5.2)

which can be rewritten as the product of the following two
matrices:

H ¼ �

@A�1

@l01

@A�2

@l01
. . .

@A�1

@l02

. .
.

..

.

0
BBBBBB@

1
CCCCCCA

@!�1

@l01

@!�1

@l02
. . .

@!�2

@l01

. .
.

..

.

:

0
BBBBBB@

1
CCCCCCA (5.3)

Here, the index summation is over all triangles in the
triangulation. So, as in 3D, we have to compute terms of

the form @!�

@le
. To this end we will proceed similarly as in

the 3D case, as described in the next sections.

A. 4� 2 move

1. Auxiliary formulas

As in 3D, we will need additional formulas to derive all
entries of the Hessian matrix in a compact way. We start
with the derivatives of the dihedral angles at a given
triangle with respect to the length of the opposite edge
(2.11)3also requiring a gauge fixing procedure for the 4� 1 moves
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@	ðijkmnÞ
ijk

@lmn

¼ lmnAijk

12V
;

where Aijk denotes the area of the triangle ðijkÞ, lmn is the

lengths of the edge ðmnÞ and V is the volume of the
4-simplex ðijkmnÞ.

Now given a flat triangulation with six, i.e. Dþ 2,
vertices, we will consider edge length variations of at least
two edges under the condition that the triangulation
remains flat, i.e. the deficit angles are vanishing, ! ¼ 0.
Then, along the same line of arguments as in 3D, we obtain
[53]:

(i) In case the varied edges share a vertex:��������@lij
@ljk

��������¼
��������ljklij

V �k

V�i

�������� (5.4)

(ii) In case the varied edges do not share a vertex:�������� @lij
@lkm

��������¼
��������lkm
lij

V �kV �m

V�iV �j

�������� (5.5)

where V �k denotes the volume of the 4-simplex
formed without the vertex k. To determine the sign
of the derivatives in (5.4) and (5.5) one has to
consider the geometric setup in detail. Note that
(5.4) and (5.5) are the exact 4D analogues of (3.4)
and (3.8), respectively.

2. Computation of @!
@l

Consider the 4� 2move, that is two 4-simplices (02345)
and (12345), which share one common tetrahedron (2345).
By connecting vertices (0) and (1), the two
4-simplices are split into four, namely ð01ijkÞ. This edge
is the only bulk edge in the configuration with 4-simplices.
As for the 3� 2 move, we can use two facts to specify the
matrix elements of the Hessian. Namely, on the one hand
that the equations of motions for the perturbation variable

01 require flatness, on the other hand that lengths pertur-
bations around flat space have to satisfy Eqs. (5.4) and (5.5).
The equation of motion is given byX

e�ð01Þ
Hð01Þ;e
e þHð01Þð01Þ
01 ¼ 0: (5.6)

But as the perturbative solutions are also flat, the perturba-
tion variables 
e have to satisfy the relations (5.4) and (5.5).
Hence considering boundary data, such that only one

e � 0 for e ¼ ðkmÞ � ð01Þ and 
01 � 0, we can deduce��������Hð01Þ;ðkmÞ

Hð01Þ;ð01Þ

��������¼
���������l01
�lkm

��������¼
��������lkm
l01

V �kV �m

V�0V�1

��������: (5.7)

To specify the (reduced) Hessian even further, we can
use that the linearized deficit angles also have to vanish.
That is consider variations of two edge lengths, here
�l01 ¼ 
01 and �l34 ¼ 
34. Using that the linearized
deficit angle �!012 has to vanish, we obtain

0 ¼ �!012 ¼ � @	ð01234Þ012

@l34
�l34 þ @!012

@l01
�l01 (5.8)

¼ð2:11Þ � l34A012

12V�5

�l34 þ @w012

@l01
�l01 (5.9)

)
��������@!012

@l01

��������¼
��������l01A012

12V�5

�l34
�l01

�������� ¼ð5:5Þ
��������l01A012

12

V�0V�1

V�3V�4V�5

��������:

(5.10)

This can be repeated for all bulk deficit angles:��������@!01i

@l01

��������¼
��������l01A01i

12

V2
�0
V2
�1
V�iQ

n
V �n

��������: (5.11)

The sign is again determined by the geometry under
consideration.
The rest of the derivations proceed in the same way as

for the 3� 2 move. That is, for the derivation of the bulk
deficit angle with respect to a boundary edge length lb we
obtain

@!01i

@lb
¼ �@!01i

@l01

@l01
@lb

: (5.12)

To determine the derivatives of the (boundary) exterior
angles, one again uses that these angles agree in both
configurations of the 4� 2 move. This results in

��������@!
ð4Þ
ijk

@l01

��������¼
��������l01Aijk

12

V�0V�1V�iV �jV �kQ
n
V �n

�������� (5.13)

and furthermore in

@!ð4Þ
ijk

@lb
¼ @!ð2Þ

ijk

@lb
� @!ð4Þ

ijk

@l01

@l01
@lb

: (5.14)

The missing signs are dependent on the geometry under
discussion and determined by similar considerations as in
Sec. . To summarize the results for the 4� 2 move:
(i) In the case that either the triangle or the edge is in the

bulk:

@!ð4Þ
ijk

@lmn

¼ ð�1Þsiþsjþskþsmþsnþ1
lmnAijk

12

V�iV �jV �kV �mV �nQ
p
V �p

(5.15)

where

si ¼
�
1 if i 2 f0; 1g
0 else

: (5.16)

(ii) In the case that both triangle and edge are in the
boundary:
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@!ð4Þ
ijk

@lmn

¼ ð�1Þsiþsjþskþsmþsnþ1
lmnAijk

12

� V�iV �jV �kV �mV �nQ
p
V �p

þ @!ð2Þ
ijk

@lmn

(5.17)

Note that as in 3D, the formulas for @!
@l factorize.

3. Hessian matrix

In order to complete the calculation for the (reduced)

Hessian matrix, the terms @A�

@lij

@!�

@lkm
have to be summed

up, where

@Aijk

@lij
¼ lij

8Aijk

ðl2ik þ l2jk � l2ijÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼:Fij;k

: (5.18)

Note that (5.18) is only nonvanishing for four triangles in
the triangulation for a given edge ðijÞ. This implies (in case
either ðopÞ or ðmnÞ are in the bulk)

Hð4Þ
ðopÞ;ðmnÞ ¼ �X

ðijkÞ

@Aijk

@lop

@!ijk

@lmn

¼ � X
k�o;p

@Aopk

@lop

@!opk

@lmn

(5.19)

¼ X
k�o;p

1

8

loplmn

12
ð�1Þsoþspþskþsmþsn

V �oV �pV �mV �nQ
l

V�l

V �kFop;k

¼ ð�1Þsoþspþsmþsn
loplmn

96

V �oV �pV �mV �nQ
l

V�l|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
symmetric inðopÞ$ðmnÞ

X
k�o;p

ð�1ÞskV �kFop;k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Dop

(5.20)

whereDop is a factor independent of the choice of ðmnÞ. In
case ðopÞ and ðmnÞ are in the boundary, we obtain

Hð4Þ
ðopÞ;ðmnÞ ¼ Dopð�1Þsoþspþsmþsn

loplmn

96

V �oV �pV �mV �nQ
l

V�l

� X
k�o;p

lop
8Aopk

Fop;k

@!ð2Þ
opk

@lmn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Hð2Þ

ðopÞ;ðmnÞ

: (5.21)

Hð4Þ andHð2Þ are equal to matrices of second derivatives of

the Regge action up to symmetric terms. Hence, Hð4Þ and
Hð2Þ are also symmetric matrices. From this, it follows that
the factor Dop is the same for all choices of op:

D :¼ Dop ¼ Dmn: (5.22)

Note that the elements H4
ðijÞ;ð01Þ satisfy the relation (5.7).

4. Invariance of the path integral

We have to consider

P4�2 ¼
Z

d
01�ðlÞ exp
�
� X

ðijÞ;ðkmÞ

1

2
Hð4Þ

ðijÞ;ðkmÞ
ij
km

�

(5.23)

where the measure factor �ðlÞ is supposed to depend only

on the background edge lengths l. Note that Hð4Þ
ð01Þ;ð01Þ > 0

such that (5.23) converges. (Note that in (5.23), we did not
include boundary terms which only depend on the bound-
ary perturbations.)
The computation is analogous to Sec. III D. That is to

show (form) invariance of the action, i. e.

P4�2 / exp

�
� X

ðijÞ�ð01Þ;ðkmÞ�ð01Þ

1

2
Hð2Þ

ðijÞðkmÞ
ij
km

�
; (5.24)

we have to prove that

Hð4Þ
ðijÞ;ðmnÞ ¼ ½Hð4Þ

ð01Þ;ð01Þ��1Hð4Þ
ðijÞ;ð01ÞH

ð4Þ
ð01Þ;ðmnÞ

þHð2Þ
ðijÞ;ðmnÞ ,ð5:14Þ �X

k�i;j

@Aijk

@lij

@wijk

@l01

@l01
@lmn

¼
� X
k�0;1

@A01k

@l01

@w01

@l01

��1
�X
k�i;j

@Aijk

@lij

@wijk

@l01

�

�
� X
k�0;1

@A01k

@l01

@w01k

@lmn

�
: (5.25)

ðijÞ and ðmnÞ denote two boundary edges. Applying (5.14)
to the last term on the right-hand side of (5.25) gives

� X
k�0;1

@A01k

@l01

@!01k

@lmn

�
¼ð5:14Þ �

� X
k�0;1

@A01k

@l01

@w01k

@l01

�
@l01
@lmn

;

(5.26)

which shows that (5.25) holds.
For the measure factor, we examine the contribution

from the Gaussian integral:ffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð4Þ

ð01Þ;ð01Þ
q ¼

ffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� P

k�0;1

@A01k

@l01

@!01k

@l01

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
192�

p
l01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�2V�3V�4V�5

V�0V�1

s
1ffiffiffiffi
D

p : (5.27)

Apart from the additional factor 1ffiffiffi
D

p , (5.27) is of a similar

form as (3.33) for the 3� 2 move in 3D. Hence, the
invariant measure factor �ðlÞ should be proportional to

BIANCA DITTRICH AND SEBASTIAN STEINHAUS PHYSICAL REVIEW D 85, 044032 (2012)

044032-14



�ðlÞ ¼
Q
e

leffiffiffiffiffiffiffiffi
192�

pQ
�

ffiffiffiffiffiffiffi
V�

p (5.28)

where e denotes the edges and � the 4-simplices in the
triangulation. However, with this form we will still get
factors of 1ffiffiffi

D
p by applying 4� 2 Pachner moves. The factor

D does not factorize into contributions that could be asso-
ciated to 4-simplices or other subsimplices. It is rather a
sum of terms involving the edge lengths of the entire
triangulation associated to the 4� 2 move. We will there-
fore defer the discussion of this factorD until after we have
considered all the Pachner moves in 4D.

B. 5� 1 move

Let us now consider the 5� 1move in 4D. Again, many
derivations will be similar to the ones for the 4� 1move in
3D. The 5� 1 move corresponds to the subdivision of one
4-simplex, denoted by (12345), into five by adding one
additional vertex (0), placing it inside the original
4-simplex and connecting it with all of the remaining
vertices, see Sec. II C 2.

Here, the edge lengths of the new edges, i.e. the position
of the new vertex inside the original 4-simplex, are not
uniquely fixed. Accordingly, there is a 4-parameter set of
solutions and we expect to find four null modes in the
Hessian.

The derivation of the matrix elements for the Hessian
proceeds as for the 4� 2 move. We arrive at the following
terms:

(i) In case either the edge e ¼ ðopÞ or edge e0 ¼ ðmnÞ
are in the bulk, one obtains

Hð5Þ
ðmnÞ;ðopÞ ¼ ð�1Þsoþspþsmþsnþ1

loplmn

96

V �oV �pV �mV �nQ
l

V�l

� X
k�o;p

ð�1ÞskFop;kV �k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼Dð5Þ

(5.29)

where

si ¼
�
1 if i ¼ 0
0 else

(5.30)

and Fop;k is defined as in the previous section. Note

that, as for the 4� 2 move, the factor Dð5Þ does not
depend on the choice of indices ðopÞ in (5.29).

(ii) In case both edges are in the boundary, one obtains

Hð5Þ
ðmnÞ;ðopÞ ¼ ð�1Þsoþspþsmþsnþ1

loplmn

96

� V �oV �pV �mV �nQ
l

V�l

Dð5Þ þHð1Þ
ðopÞ;ðmnÞ (5.31)

where Hð1Þ
ðopÞ;ðmnÞ denotes the ðopÞ-ðmnÞ matrix ele-

ment of the Hessian of the one 4-simplex
configuration.

This gives all matrix elements of the Hessian of the 5� 1
move. In the next section, we will discuss the pure bulk
terms more closely, in particular, with respect to null
eigenvectors.

1. Null eigenvectors

In this section, we examine the pure bulk terms of the
Hessian matrix, i.e. Eq. (5.29) for edges ð0iÞ and ð0jÞ for
arbitrary i, j. Then (5.29) can be rewritten as

Hð5Þ
ð0iÞ;ð0jÞ ¼ � l0il0j

96

V2
�0
V�iV �jQ
l

V�l

Dð5Þ

¼ l0iV�i|{z}
h0i

l0jV �j|{z}
h0j

ð�1ÞDð5Þ V�0

96V�1V�2V�3V�4V�5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

: (5.32)

So, as in 3D, the bulk terms in the Hessian Hð5Þ
ð0iÞ;ð0jÞ

factorize

Hð5Þ
ð0iÞ;ð0jÞ ¼ ch0ih0j: (5.33)

Hence, following the argument in Sec. III E 1, we can

conclude that Hð5Þ
ð0iÞ;ð0jÞ features four null vectors. The one

nonvanishing eigenvalue is again given by
P

jHð0jÞ;ð0jÞ,
which amounts to a negative value. We will proceed as
for the 4� 1 move and change the global sign for the
action associated to the 5� 1 move. This can again be
interpreted as taking care of the conformal factor problem
in Euclidean gravity [48].

2. Invariance of the path integral

Similar to the 4� 2 move, we have to consider

P5�1 ¼
Z Y

i

d
0i�ðlÞexp
�
� X

ðijÞ;ðkmÞ

1

2
Hð4Þ

ðijÞ;ðkmÞ
ij
km

�

(5.34)

where�ðlÞ is a measure factor, which we assume to depend
only on the background variables l, making up a flat
configuration. (5.34) is again a partial Gaussian integral
but with four gauge degrees of freedom. The treatment of
this integral will be completely analogous to the 4� 1
move. Because of the gauge modes, we will first integrate
only over 
01.
This integration will result in an exponential that is

independent of the other variables 
0i; i ¼ 2, 3, 4, 5. To
show that we obtain the action associated to the one remain-
ing simplex (12345), we need to invoke the identities
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Hð5Þ
ðijÞ;ðmnÞ ¼ ½Hð5Þ

ð01Þ;ð01Þ��1Hð5Þ
ðijÞ;ð01ÞH

ð5Þ
ð01Þ;ðmnÞ þHð1Þ

ðijÞ;ðmnÞ ,ð5:14Þ

� X
k�i;j

@Aijk

@lij

@wijk

@l01

@l01
@lmn

¼
� X
k�0;1

@A01k

@l01

@w01k

@l01

��1
� X
k�i;j

@Aijk

@lij

@wijk

@l01

�

�
� X
k�0;1

@A01k

@l01

@w01k

@lmn

�
: (5.35)

Similar to (5.25), we apply (5.14) to the last term in (5.35),
which givesX

k�0;1

@A01k

@l01

@!01k

@lmn

¼ � X
k�0;1

@A01k

@l01

@!01k

@l01

@l01
@lmn

: (5.36)

This proves (5.35) and hence form invariance of the line-
arized action under the 5� 1 move.

The measure factor �ðlÞ in (5.34) changes by the 
01

integration by a factorffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð01Þ;ð01Þ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
192�

p
l01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�2V�3V�4V�5

V�0V�1

s
1ffiffiffiffiffiffiffiffiffi
Dð5Þp (5.37)

which turns out to be of a similar form as the contribution
in the 4� 2move. If we consider�ðlÞ in (5.34) to be given
by

�ðlÞ ¼
Q
e

leffiffiffiffiffiffiffiffi
192�

pQ
�

ffiffiffiffiffiffiffi
V�

p ; (5.38)

we obtain for the path integral

P5�1 ¼
Q
b

lbffiffiffiffiffiffiffiffi
192�

pffiffiffiffiffiffi
V�0

p 1ffiffiffiffiffiffiffiffiffi
Dð5Þp exp

�
�X

b;b0

1

2
Hð1Þ

b;b0
b
b0

�

�
Z Q

i�1

l0iffiffiffiffiffiffiffiffi
192�

p d
0i

V�1

: (5.39)

Also, here the remaining integral can be identified with an
integration over the gauge orbit, which is again given by
the displacement of the inner vertex (0). In 4D, we have the
identity

d4x�0 ¼
Q

i¼2;3;4;5

l0idl0i

24V�1

(5.40)

where d4x�0 is the integration measure for the Euclidean

coordinates x�0 , � ¼ 1, 2, 3, 4 of the vertex (0). Hence we

will replace the remaining integral in (5.39) by 1.

C. 3� 3 move

In addition to the 5� 1 and 4� 2 moves, the set of
Pachner moves in 4D includes the 3� 3 move. Here, a
complex of three 4-simplices is replaced with another

complex of three 4-simplices, such that the boundary tri-
angulation is not changed. This move does not involve any
bulk edge, hence, differing from all the other moves con-
sidered so far, we do not have an equation of motion
associated to this move.
There is another essential difference to the other Pachner

moves, namely, that the action is not invariant under 3� 3
moves. Evaluating the (full) Regge action for the two
configurations of the 3� 3 move, one finds a difference
that grows quadratically with the deficit angle of the (only)
bulk triangle [41]. Hence the action is not invariant in
general under 3� 3 moves; in fact, such an invariance
applies only on flat configurations. This violation of the
invariance of the action holds also for the quadratic action
of the linearized theory, as can be expected from the
behavior in the full theory and as can be checked
explicitly on configurations with nonvanishing (linearized)
curvature.
The derivation of the (reduced) Hessian matrix for the

3� 3move proceeds in a slightly different way, as we now
have to take into account that the boundary perturbations
might describe curvature. The result will however have the
same structure as for the other Pachner moves.
To start the derivation note that in both configurations A

(with simplices (01234), (01235), (01245)) and B (with
simplices (01345), (02345), (12345) there is only one bulk
triangle, namely (012) and (345), respectively, in A and B).
The vanishing of the linearized deficit angles defines
boundary perturbations in flat directions:

X
ðijÞ

@!A
012

@lij

ij ¼ 0 ¼ X

ðijÞ

@!B
345

@lij

ij: (5.41)

For such flat variations 
ij we can again derive, along

the same arguments as in Sec. VA1, the relations (5.5)�������� 
ij


km

��������¼
��������lkmlij

V �kV �m

V�iV �j

��������: (5.42)

Note that Eq. (5.41) also implies that the gradients of the
deficit angles in the two configurations are parallel to each
other. That is, the space of flat boundary perturbations 
ij

in both configurations is the same, the linearized curvature
will however have different values in the general case, if
evaluated on the same set of (non–flat) boundary perturba-
tions 
ij.

Now, starting with the derivatives

@!A
012

@l34
¼ � @	01234012

@l34
¼ � l45A123

12V�5

;

@!B
345

@l12
¼ � @	12345345

@l12
¼ � l12A345

12V�0

(5.43)

and using (5.41) and (5.42), assuming that only two appro-
priately chosen length perturbations 
ij, 
mn are not
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vanishing, we can obtain all other derivatives of the bulk
deficit angle in both configurations. The signs can again be
determined as in Sec. .

The result is given by

@!A
012

@lij
¼ ð�1ÞsAi þsAj þ1 lijA012

12

V�0V�1V�2V�iV �jQ
p
V �p

@!B
345

@lij
¼ ð�1ÞsBi þsBj þ1 lijA345

12

V�3V�4V�5V�iV �jQ
p
V �p

: (5.44)

Here, we defined the sign factors as

sAi ¼
�
1 if i 2 f0; 1; 2g
0 else

; sBi ¼
�
1 if i 2 f3; 4; 5g
0 else

:

(5.45)

With the understanding that !A
345 	 0 ¼ !B

012, we can

write the relation between the derivatives as

@!A
opk

@lij
� @!B

opk

@lij
¼ ð�1ÞsAi þsAj þsAoþsApþsA

k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ð�1ÞsBi þ...þsB

k
þ1

� lijAopk

12

V �oV �pV �kV�iV �jQ
p
V �p

; (5.46)

where ðopkÞ is either the set (012) or (345). Note that
(5.46) is consistent with (5.45) under change A $ B, i.e.
change of sign.

We will soon discover that (5.46) holds also for the other
(boundary) angles. To this end, we use that the linearized
boundary extrinsic curvature angles coincide in both con-
figurations A and B, if evaluated on flat boundary pertur-
bations. Hence we can conclude that the difference of the
gradients of a given boundary angle has to be proportional
to the gradient of one of the bulk angles, i. e.

@!A
mnl

@lij
� @!B

mnl

@lij
¼ cAmnl

@!A
012

@lij
: (5.47)

Again we can start with an especially simple derivative, i.e.

@!A
345

@l12
¼ � l12A345

12

V�3V�4V�5V�1V�2Q
p
V �p

;
@!B

345

@l12
¼ 0 (5.48)

to get hold of all the other derivatives of this exterior
curvature angle. In this way, we obtain

@!A
opk

@lij
�@!B

opk

@lij
¼ð�1ÞsAi þsAj þsAoþsApþsA

k
lijAopk

12

V �oV �pV �kV�iV �jQ
p
V �p

(5.49)

for all the boundary and bulk angles.
To finally arrive at the (reduced) Hessian, we have to

multiply this result (5.49) with the area derivatives as in

(5.19). This allows us to express the difference of the
(reduced) Hessians in the A and B configurations as

HA
ðopÞ;ðmnÞ�HB

ðopÞ;ðmnÞ

¼ð�1ÞsAoþsApþsAmþsAn|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼ð�1ÞsBi þ...þsBp

loplmn

96

V �oV �pV �mV �nQ
l

V�l

X
k�o;p

ð�1ÞsAkþ1|fflfflfflfflffl{zfflfflfflfflffl}
¼ð�1ÞsBk

Fop;kV �k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:DA

:

(5.50)

Also, hereD does not depend on the choice of indices o,
p in (5.50). Note that DA ¼ �DB. Unless DA ¼ DB ¼ 0,
the (quadratic) action of the linearized theory is different in
the A and the B configuration. This equalityDA ¼ DB ¼ 0
does not hold on general (flat) background configurations,
but might hold in very symmetric cases.
Furthermore, a measure of the form

�ðlÞ ¼
Q
e

leffiffiffiffiffiffiffiffi
192�

p
ffiffiffiffiffiffiffiffiffiffiQ
l

V�l

r (5.51)

is only invariant under the 3� 3 move in the case that

V�0V�1V�2 ¼ V�3V�4V�5: (5.52)

Again, this equality does not hold for generic cases.

VI. SUMMARY FOR 4D GRAVITY

4D classical Regge calculus is invariant under the 4� 2
and 5� 1 moves, but not under the 3� 3 moves. Our
calculations provided the evidence for the linearized the-
ory, in particular, isolating the invariance breaking term for
the 3� 3 move.
But this invariance behavior also holds for the full

theory: there is always a flat solution to the equation of
motions associated to the 4� 2 and 5� 1 Pachner moves.
Hence the contribution from the bulk to the Hamilton-
Jacobi function is vanishing. The Hamilton-Jacobi func-
tion is therefore just given by the boundary terms, which do
not change under the 4� 2 and 5� 1 moves.
Concerning the quantum theory for linearized Regge

Calculus in 4D, we define the path integral for general
triangulations as

P :¼
Z Q

e

leffiffiffiffiffiffiffiffi
192�

pQ
�

ffiffiffiffiffiffiffi
V�

p Y
e�bulk

d
e exp

�
� 1

2
He;e0
e
e0

�
: (6.1)

le denotes the length of edge e, V� the volume of 4-simplex
�, 
e is the edge length perturbation of edge e and He;e0 is

the e-e0 matrix element of the Hessian matrix of the Regge
action.
In the previous section, we have shown that (6.1) is

invariant—modulo the factor D—under 4� 2 and 5� 1
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Pachner moves (using the gauge fixing conventions dis-
cussed above), but in general not under the 3� 3 Pachner
move. The noninvariance under 3� 3 moves is already
present in the classical theory and should be overcome by
constructing a perfect discretization [14–16,18,19].

It might be possible to implement a full invariance of the
path integral under either the 4� 2 or the 5� 1move, that is

by including the factor
ffiffiffiffi
D

p
into the measure. For the

4� 2 moves, one would need to associate a corresponding
factor to the edges of the triangulation, for the 5� 1 move
rather to the vertices. (Alternatively, one would have to
change the gauge fixing procedure for the 5� 1 move, i.e.
the factor associated to the gauge orbit, but this seems to be
rather unnatural.) Still, there are several open questions left to
address, as how to generalize the definition of the D factors
to more complicated triangulations (the bulk edges in the
Pachner moves are always shared by four triangles) and how
the D factors associated to boundary edges or vertices will
interfere. Furthermore, the factor D is slightly nonlocal, but
its actual form might be due to the linearized theory.

Here, it might be helpful to reconsider the topological
BF theory, from which gravity can be obtained by imple-
menting (simplicity) constraints. This is the route followed
by spin foams. The advantage of this approach is that a
triangulation invariant path integral can be constructed for
BF theory. To apply this to Regge calculus, one would
need a formulation based on the same geometric variables
as used in 4D BF theory. Such a formulation is provided by
area-angle Regge calculus [38]. The corresponding action
can also be split into a piece describing a topological
theory and constraints acting in the same way as the
simplicity constraints. Studying this action might help to
construct a triangulation independent quantum theory de-
scribing flat space dynamics. For other work in this direc-
tion, related to BF theory, see [54–56].

Despite all these subtleties and drawbacks, the simple
form of the Hessian matrix for all Pachner moves and its
similar form to the 3D case are remarkable. Therefore, it
will be very interesting to compare our results to spin foam
asymptotics and possibly help to fix measure ambiguities
(by requiring invariance under Pachner moves) there.

VII. DISCUSSION

In this work, we provided extensive analytical calcula-
tions for linearized Regge calculus, very much enlighten-
ing the structure of the theory. In particular we obtained the
linearized Regge actions associated to all the Pachner
moves in 3D and 4D, explicitly showing that the Regge
action4 is invariant under all Pachner moves, with the
exception of the 3� 3 move. We isolated the gauge sym-
metries and the conformal factor problem, which both are
potential sources for divergencies. Amazingly the structure
of the linearized Regge actions associated to the Pachner

moves lead in all cases to a very transparent factorizing
structure, similar in 3D and in 4D. These formulae might
be also helpful in other contexts, for instance in a canonical
formulation of Regge calculus [42] or in numerical larger
scale calculations.
Furthermore, we proposed a dynamical principle to fix

the measure for Regge calculus, namely, to consider the
behavior of the theory under Pachner moves. Restricting to
a local ansatz as in (1.2), this fixes the measure uniquely.
Indeed, the invariance under change of triangulation is
related to an implementation of diffeomorphism symmetry
[10,14,16,19]. This condition can therefore be understood
as requiring an anomaly-free measure, which can be ex-
pected to be unique. A simple reason for this is that for a
theory completely invariant under changes of the triangu-
lation, there is also no (bulk) discretization scale. That is,
the only discretization scale is provided by the boundary
data. For compact manifolds without boundary the contin-
uum limit is even trivial, as such a limit would be obtained
via a refinement of the triangulation [17]. In other words, a
triangulation-independent path integral provides already
the continuum result.
This is the reason why we cannot expect to obtain a fully

triangulation-independent local theory in 4D. However,
one might ask for invariance of the quantum theory under
the same set of local triangulation changes under which the
local classical theory is invariant. Such a set can be under-
stood as trivial subdivisions of the triangulation, as the
associated equations of motions lead to flat spacetime.
The question, therefore, is whether one can define a topo-
logical subsector of the theory [6,55], which would provide
a quantum description of flat space dynamics, see also [56].
Such an invariance of the theory under trivial subdivisions
seems also be crucial to realize scenarios as proposed in
[17], i. e. the convergence of the theory to a topological
sector, under refinement.
We found a path integral measure for linearized Regge

calculus, which provides such an invariance, in 4D modulo
a factor, which features a certain nonlocal structure. In 3D,
we found an exactly invariant measure, which also coin-
cides with the asymptotics of the (triangulation indepen-
dent) Ponzano Regge model. This is quite astonishing, as
we performed a calculation in the linearized theory.
Furthermore, the Ponzano Regge model includes in addi-
tion also a sum over orientations, which we do not consider
here.5 The question arises whether this result can be ex-
tended to the full nonlinear theory and shed light on the
problem, whether to include a sum over orientations into a
quantum gravity path integral or not [57,58].

4This invariance result holds also for the full theory.

5In this work, we considered a background triangulation with
positive orientation. The results can however be extended to
Pachner moves leading to negatively oriented simplices. In this
case, the Regge action has to be adjusted to take the negative
orientation of these simplices into account; the measure does not
need to be changed, however.
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The factor appearing in 4D, disturbing invariance at least
under the 5� 1 and 4� 2 moves, is related to a trans-
formation from area to length variables. It might therefore
be helpful, in order to further enlighten this issue, to
consider area-angle Regge calculus [38,39]. This formula-
tion allows a split into a topological theory, which would
be triangulation independent, and constraints. Another
possibility to obtain path integral measures is a derivation
from the canonical theory, which has recently became
available for Regge calculus [42]. Indeed, the path integral
measure is important to obtain correlation functions, which
are annihilated by the Hamiltonian constraints [16].

A fully triangulation-independent theory can be con-
structed via the method of perfect discretizations
[15,16,18,19], which is based on a Wilsonian renormaliza-
tion flow. This has the advantage of providing at the same
time information on the continuum limit of the theory.
Here, two different strategies can be thought of. One is
based on local considerations, namely, to study the behav-
ior of a given theory under local refinements, e.g. Pachner
moves, see for instance [31] for related studies in
(topological) spin foam models. This can result in recur-
sion relations, whose fixed points provide the continuum
limit (and perfect discretization) of the path integral, see
[16] for an example in 1D. Another strategy is to extract the
large scale behavior, which might depend on the choice of
measure [13,59]. First steps toward extracting large scale
behavior of (simplified) spin foam models via real space
renormalization can be found in [60].
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APPENDIX A: EUCLIDEAN
INTEGRATION MEASURE

The usual Lebesgue measure of D-dimensional
Euclidean space can be rewritten with respect to the edge
lengths of a (nondegenerate) D-simplex [49].

Assume Dþ 1 vertices making up a D-simplex em-
bedded in RD, their positions given by f ~xigi¼0;...;D, such

that the D-simplex is not degenerate, i.e. its D-volume is
nonvanishing. Next, we define the position of the vertices
of the D-simplex with respect to one of its vertices by

defining ~li :¼ ~xi � ~x0. Since the D-simplex is nondegen-

erate, the set of vectors f~ligi¼1;...;D form a (nonorthonormal)

basis of RD, where the lengths of the vectors ~li give the
edge lengths l0i of the D-simplex. To write the Lebesgue
measure in these coordinates, one has to compute
the Jacobian of the linear function which maps the

orthonormal basis f ~eig to f~lig. To simplify notation, we
will denote ~y :¼ ~x0.

YD
i¼1

l0idl0i ¼
YD
i¼1

d

�
l20i
2

�
¼ YD

i¼1

d

�ð ~y� ~xiÞ2
2

�

¼ YD
i¼1

dyi

��������det
�
@

@yj
ð ~y� ~xiÞ2

2

���������; (A1)

where the determinant in the last term is the Jacobian of the
coordinate transformation. For the matrix elements of the
Jacobian, one obtains

@

@yj
ð ~y� ~xiÞ2

2
¼ ~ej 
 ð ~y� ~xiÞ: (A2)

Given (A2), the Jacobian can be rewritten in terms of the
volume of the D-simplex:

j detð ~ej 
 ð ~y� ~xiÞÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðð ~y� ~xjÞ 
 ð ~y� ~xiÞÞ

q
¼ D!V:

(A3)

Using (A2) and (A3) in (A1) gives

YD
i¼1

l0idl0i ¼
YD
i¼1

dyiD!V (A4)

) YD
i¼1

dyi ¼
Q

D
i¼1 l0idl0i
D!V

: (A5)

From (A5), one obtains (3.53) in 3D and (5.40) in 4D.

APPENDIX B: DETERMINANT FORMULA FOR D

In the calculations of the Hessian matrix in 4D, see
Sec. V, we have encountered the factors Dop (see for

instance (5.19)) which are slightly nonlocal. In this section,
we will present a different way to compute these factors in
terms of a determinant of a matrix which will additionally
allow us to show that (some) factors Dop are equal without

using that the Hessian matrix is symmetric.
Consider six vertices embedded in R4 making up a

triangulation which can be modified by one of the
Pachner moves discussed in Sec. II C. We define the posi-
tion vectors of the vertices with respect to vertex (0), which
we place in the origin of the coordinate system for sim-
plicity. Hence the position vector of vertex ðiÞ is defined by
~xi 	 ~xi � ~x0, its components are denoted by xia with a ¼
1, 2, 3, 4. Given this definition, consider the following
determinant:

det

x11 x21 . . . x51

x12 x22 . . .

..

. . .
.

x14 x24 . . . x54

ð ~x1Þ2 ð ~x2Þ2 . . . ð ~x5Þ2

2
66666666664

3
77777777775
: (B1)
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We will show that this determinant is proportional to the
factors D0i, for i ¼ 1; . . . ; 5.

The determinant of a matrix remains unchanged if a
scalar multiple of one of its rows/columns is added to
one of its rows/columns, respectively. Hence, we will sub-
tract xia times the ath row from the last for 1 � a < 5. Then
one obtains for instance for i ¼ 1

det

x11 x21 . . . x51

x12 x22 . . .

..

. . .
.

x14 x24 . . . x54

0 ð ~x2Þ2 � ~x2 
 ~x1 . . . ð ~x5Þ2 � ~x5 
 ~x1

2
66666666664

3
77777777775
: (B2)

The terms in the last row can be rewritten as

ð ~xkÞ2 � ~xk 
 ~x1 ¼ 1

2
ðð ~xkÞ2 � ð ~x1Þ2 þ ð ~xk � ~x1Þ2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼l2
0k
�l2

01
þl2

1k

¼ 1

2
F01;k;

(B3)

where F01;k is the same factor as in (5.18). Expanding (B2)

with respect to the last row, the subdeterminants of the
matrix correspond to (oriented) volumes of 4-simplices
(see (A3)). Hence, one obtains

det½. . .�|fflfflffl{zfflfflffl}
ðB:2Þ

¼ 4!
X5
i¼2

ð�1Þi�1siF01;iV�i / D01 (B4)

where si are appropriate sign factors taking into account
the orientation of the volumes. By analogous considera-
tions, one computes the other factors D0j, j ¼ 2, 3, 4, 5,

from the same determinant, which implies that these fac-
tors are all equal (although the symmetry of the Hessian
matrix has not been used). The signs si depend on the
relative orientation of the vectors ~xi of the respective
4-simplex and hence they depend on the geometry under
discussion. We would like to demonstrate that explicitly
with the example of the 4� 2 move.
Consider the D01 for the 4� 2 move, see (5.19). Four of

the five edge vectors ~xi of the vertices, defined with respect
to the vertex (0), form a basis of R4 since the 4-simplices
are not degenerated. In the following, we assume that
~x2; . . . ; ~x5 is a positively oriented orthonormal basis.
Hence, we can rewrite the determinant (B2) as

det

P
5
i¼2 vi ~xi ~x2 ~x3 ~x4 ~x5

0 F01;2 F01;3 F01;4 F01;5

" #
(B5)

where the vi are the coefficients of ~x1 in the basis formed
by ~x2; . . . ; ~x5. Note that the configuration of the 4� 2move
can be chosen such that vi > 0. If (B5) is expanded with
respect to the last row, the submatrices are of the following
form:

det

�X5
i¼2

vi ~xi ~xj ~xk ~xl

�
¼ �ijklvi; (B6)

where �ijkl is the Levi-Cevita symbol in 4D. Hence, the

signs si in (B4) are alternating, which, together with the
alternating signs ð�1Þi�1 verifies formula (B4).
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