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Under certain conditions, sound waves in a fluid may be governed by a Klein-Gordon equation on an

‘‘effective spacetime’’ determined by the background flow properties. Here we consider the draining

bathtub: a circulating, draining flow whose effective spacetime shares key features with the rotating black

hole (Kerr) spacetime. We present a complete investigation of the role of quasinormal (QN) mode and

Regge pole (RP) resonances of this system. First, we simulate a perturbation in the time domain by

applying a finite-difference method, to demonstrate the ubiquity of ‘‘QN ringing.’’ Next, we solve the

wave equation in the frequency domain with the continued-fraction method, to compute QN and RP

spectra numerically. We then explore the geometric link between (prograde and retrograde) null geodesic

orbits on the spacetime, and the properties of the QN/RP spectra. We develop a ‘‘geodesic-expansion’’

method which leads to asymptotic expressions (in inverse powers of mode number m) for the spectra, the

radial functions, and the residues. Next, the role of the Regge poles in scattering and absorption processes

is revealed through the application of the complex angular momentum method. We elucidate the link

between the Regge poles and oscillations in the absorption cross section. Finally, we show that Regge

poles provide a neat explanation for ‘‘orbiting’’ oscillations seen in the scattering cross section.
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I. INTRODUCTION

Black holes (BHs)—‘‘trapped’’ regions of spacetime—
are a key element of Einstein’s theory of general relativity.
Although perhaps once viewed as mathematical curiosi-
ties, astronomers have now compiled a range of compelling
evidence for their existence. Black holes are a key ingre-
dient in modern theories of galaxy formation, quasars,
accretion disks, gamma ray bursts, and supernovae. Yet,
even if black holes were nothing more than a theorist’s
‘‘thought experiment,’’ they would still have provoked the
development of theoretical physics. In the 1970s, Hawking
and others showed that quantum field theory in curved
spacetime implies that black holes are not completely
black: they must radiate thermally, with a negative heat
capacity. Furthermore, black holes seem to have a well-
defined entropy that scales with the horizon area [1]. This
realization has inspired myriad (and ongoing) attempts to
consistently combine relativity and field theory in the
strong-field regime.

There is more to black holes than Hawking radiation. A
key property of a black hole is that it bends and traps light.
Light rays may orbit a black hole in the vicinity of a
‘‘photon sphere’’ which lies somewhat outside the horizon
(at r ¼ 3rh=2 for the Schwarzschild BH, where rh is the
horizon radius). The existence of an unstable photon orbit

gives rise to various interesting effects, such as the strong-
field lensing of light from a distant source passing close to
a black hole. In particular, the photon orbit is intimately
linked to characteristic ‘‘damped resonances’’ that appear
when waves interact with a black hole. Mathematically,
damped resonances are manifest as poles in the scattering
matrix S. The poles occur at complex frequencies and at
complex angular momenta, and the corresponding modes
are known as quasinormal (QN) and Regge pole (RP)
modes, respectively [2–6]. In this paper, we investigate
QN and RP modes and their physical consequences, in
the setting of a simple rotating ‘‘black hole analogue’’ [7].
It seems unlikely that we will ever study black holes

directly in the laboratory. Yet, as Unruh [8] noted three
decades ago, we may study analogues: artificial systems (in
various media) which exhibit some key kinematic features
of black holes [9]. For example, sound waves in fluid flows
which are inviscid, irrotational, and barotropic are gov-
erned by the same wave equation as a scalar field in a
curved spacetime, namely [7],

h� ¼ 1ffiffiffiffiffiffijgjp @�

� ffiffiffiffiffiffi
jgj

q
g��@��

�
¼ 0; (1)

where here g�� is the effective metric (with inverse g
�� and

determinant g). Note that in this context, g�� depends

algebraically on the local properties of the fluid flow, and
it does not (in general) represent a solution of the Einstein
equations. Nevertheless, it is an intriguing prospect that, by
studying sound waves on a background flow, one may
understand better the propagation of fields on a curved
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spacetime. In recent years, a wide range of black hole
analogues in various media have been proposed and, in-
deed, studied, in the laboratory [10–14]. A surge of recent
experimental activity appears to be bearing fruit, as evi-
denced by a recent claim of experimental observation of
correlations related to Hawking radiation in a wave tank
[15]. In this experiment, instead of a black hole analogue, a
white hole analogue is used. A further example of a simple
‘‘white hole’’ analogue in fluids is the so-called circular
hydraulic jump [16].

One of the simplest analogue models is the so-called
draining bathtub (DBT), or draining vortex, described in
[7]: a two-dimensional circulating flow with a sink at the
origin. In 2002, Schützhold and Unruh [17] described a
possible experimental realization of the ‘‘bathtub’’ idea,
wherein gravity waves propagate in a flowing fluid in a
shallow basin of varying height hðrÞ. Nondispersive long-
wavelength perturbations are governed by an effective
geometry with line element ds2 ¼ g��dx

�dx�, where

ds2 ¼ �c2d~t2 þ
�
drþDd~t

r

�
2 þ

�
rd ~�� Cd~t

r

�
2
: (2)

Here the constants of circulation (C) and draining (D) [18]
relate to the background flow velocity v0 of the fluid,
namely,

v 0 ¼ �Dr̂=rþ C�̂=r: (3)

We assume that D> 0, so that the system acts as a black,
rather than white, hole. In the model described in Ref. [17],
the speed of the perturbation in the fluid c is set by
c2 ¼ agh1, where ag is the acceleration due to gravity

and h1 is the height of the fluid far from the center. Note
that we assume we are within the linear dispersion regime,
so that the perturbations propagate with a constant speed
(i.e. c is independent of frequency). The analogue event
horizon (where the inward flow rate exceeds c) lies at
rh ¼ D=c, and the analogue ergosphere (where the flow

becomes supersonic, jv0j � c) has a boundary at re ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þD2

p
=c [7]. Small perturbations �v to the flow, v ¼

v0 þ �v, may be expressed in terms of a gradient of a
potential �v ¼ �r�, and the potential field � satisfies
the Klein-Gordon equation (1) with effective metric (2).
Henceforth we set the speed of the perturbation equal to
unity (c ¼ 1).

There are several key motivations for considering the
DBT. First, as described above, the DBT may perhaps be
realized in the laboratory. Second, the DBT provides a
useful ‘‘toy model’’ for the most astrophysically relevant
black hole, i.e. the Kerr solution. For example, both the
DBT and the Kerr solution possess a horizon and an
ergosphere, and can exhibit superradiance; but whereas
the angular momentum of the (non-naked) Kerr black
hole is constrained, J � M2, the angular momentum of
the DBT is (in principle) unbounded. This follows as a
consequence of their differing symmetry: the DBT is

cylindrically symmetric, whereas the Kerr solution is ax-
ially symmetric. A third reason is simplicity: the DBT is
arguably the simplest asymptotically flat rotating space-
time that can be envisaged (see also the cosmic string [19]).
It serves as a testing ground for developing calculation
methods that can be extended to Kerr geometry.
Given such motivations, it is no surprise to find that the

spectrum of quasinormal modes of the DBT has already
received some attention [20,21]. On the other hand, the
Regge pole spectrum has not been considered. Given the
close relationship between QN and RP modes, we believe
that a comprehensive study of the resonances of the DBT is
now justified. Here we can go many steps beyond existing
work to show (i) how quasinormal resonances arise in
time-domain simulations of a small perturbation in the
flow, (ii) how QN and RP resonances are closely related
to the properties of the corotating and counterrotating null
orbits, (iii) how complex angular momentum methods
[22–24] may be applied to compute absorption and scat-
tering cross sections [25,26], (iv) how the fine structure of
the absorption cross section is related to the Regge pole
spectrum [27,28], and (v) how ‘‘orbiting’’ oscillations in
the scattering cross section are also related to the Regge
pole spectrum.
The remainder of this paper is structured as follows. In

Sec. II we study perturbations and null geodesics in the
DBT effective spacetime. In Sec. III we evolve Gaussian
initial data in the time domain and identify the quasinormal
mode ringing signal. We apply the continued-fraction
method to obtain the frequency spectrum of the DBT QN
modes. We extend the geodesic-expansion method of
Refs. [29,30] and apply it to find the QN modes of the
DBT. We validate the expansion method formulas by com-
paring with numerical results from the continued-fraction
method. In Sec. IV we extend the expansion method to find
approximations for the Regge poles, and again check
against numerical data. In Sec. V we harness the power
of the complex angular momentum method to understand
the key features of the DBTabsorption and scattering cross
sections. In Sec. VA we show that the absorption cross
section�absð!Þ of the DBT [25] may be expressed in terms
of the Regge poles [27,28], and we derive a simple ‘‘geo-
metric’’ approximation for the cross section. In Sec. VB
we show that orbiting oscillations which arise in the scat-
tering cross section are also related to the Regge poles. We
extend the geometric expansion method (in Appendix A) to
obtain an approximation for the residues of the Regge
poles, which we use to derive a simple geometric approxi-
mation for orbiting at large scattering angles. We validate
our approximations against numerical data. We conclude
with our final remarks in Sec. VI.

II. THE DRAINING BATHTUB

The draining bathtub was briefly described in the pre-
vious section, and we direct the reader to Ref. [7] for more
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details. In the lab-based coordinates f~t; r; ~�g, the effective
geometry is described by the line element (2). Follow-
ing [20], it is convenient to introduce an alternative coor-

dinate system ft; r; �g via dt¼d~t�Ddr=ðrfÞ, d� ¼
d ~�� CDdr=ðr3fÞ, with �ðr ! 1Þ ! ~� and

fðrÞ ¼ 1�D2=r2: (4)

The line element (2) then takes the form

ds2 ¼ �fðrÞdt2 þ fðrÞ�1dr2 þ ðrd�� Cdt=rÞ2: (5)

Henceforth we will work with these (non-lab-based) coor-
dinates exclusively.

A. Perturbations

Small perturbations to the background flow, �v ¼
�r�, are governed by the Klein-Gordon equation (1)
with line element (5). Let us now decompose � in azimu-
thal modes, namely,

�ðt; r; �Þ ¼ 1ffiffiffi
r

p X1
m¼�1

c mðt; rÞeim�: (6)

Since � is a real field, the symmetry relation c �
m ¼ c�m

follows. Inserting Eq. (6) into Eq. (1) leads to the wave
equation�

�
�
@

@t
þ iCm

r2

�
2 þ @2

@r2�
� VmðrÞ

�
c mðt; rÞ ¼ 0; (7)

where

VmðrÞ ¼ fðrÞ
�
m2 � 1=4

r2
þ 5D2

4r4

�
; (8)

and the tortoise coordinate is defined by dr� ¼ f�1dr, or,
explicitly,

r� ¼ rþD

2
ln

��������r�D

rþD

��������: (9)

A perturbation of compact support in the vicinity of the
hole satisfies the boundary conditions

lim
r�!�1½@t þ iCm=D2 � @r� �c m ¼ 0; (10)

lim
r�!þ1½@t þ @r� �c m ¼ 0: (11)

B. Geodesics

According to the eikonal approximation, very short-
wavelength perturbations propagate along null geodesics
of the effective spacetime (5), i.e.

�� expð�ik�x
�Þ; k�k

� ¼ 0; k�k�;� ¼ 0: (12)

Hence, by investigating the null geodesics of the line
element (5) we may understand high-frequency wave
propagation. Let us consider a geodesic with tangent vector

k� ¼ ð _t; _r; _�Þ, where the overdot denotes differentiation
with respect to an affine parameter. Geodesics have two
constants of motion, i.e., energy and angular momentum,

E ¼
�
1�D2 þ C2

r2

�
_tþ C _�; L ¼ �C _tþ r2 _�;

respectively. For a null geodesic (k�k� ¼ 0) we may write

the ‘‘energy equation’’ as

_r 2 þ VgeoðrÞ ¼ E2; (13)

where

VgeoðrÞ ¼
�
1�D2 þ C2

r2

�
L2

r2
þ 2CLE

r2
: (14)

Let us consider a null geodesic impinging from infinity.
Its ‘‘impact parameter’’ b may be defined as the perpen-
dicular distance (measured at infinity) between the geode-
sic and a parallel line that passes through the origin,

b � L=Eþ C:

Here b is defined as a displacement that may take either
sign, allowing us to distinguish between corotating (þ) and
counterrotating (�) geodesics. Now, if jbj is large, the
geodesic will be scattered; if jbj is small, the geodesic
will be absorbed (i.e. it will pass through the horizon).
Between these regimes is a ‘‘critical’’ geodesic, which is
neither scattered nor absorbed but instead ends in perpetual
orbit at r ¼ r�c . By solving simultaneous conditions
VgeoðrcÞ ¼ E2 and dVgeo=drðrcÞ ¼ 0, we find a pair of

critical geodesics given by

b�c ¼ �C� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ C2

p
; (15)

r�c ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ C2
p

jb�c � Cj
�
1=2

: (16)

Note that b�c is defined to be negative. For C> 0, geo-
desics with b > C (L > 0) corotate with the system,
whereas geodesics with b < C (L < 0) counter-rotate.
It is natural to define l � b� C, which is positive for

corotating geodesics and negative for the counterrotating
ones, so that

l�c � b�c � C ¼ �2C� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ C2

p
: (17)

Trajectories of null geodesics impinging from spatial in-
finity upon a draining bathtub are illustrated in Ref. [25].

III. QUASINORMAL MODE RESONANCES

With these preliminaries established, let us now turn our
attention to QN modes. We start in Sec. III A by demon-
strating QN resonances in a perturbation encroaching upon
a black hole, by evolving Gaussian initial data in the time
domain. In Sec. III B we recap the theory of QN modes as
poles of the Green function in the frequency domain, and in
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Sec. III C we describe the symmetries of the spectrum and
provide an exact solution for the nonresonantm ¼ 0mode.
Next, we apply two frequency-domain methods to deter-
mine the spectrum: the numerical method of [21], and the
geodesic-expansion method of [29,30]. We validate our
results, compare with the Kerr spectrum, and give a geo-
metric interpretation. Henceforth we set rh ¼ D ¼ 1 for
convenience, unless otherwise stated.

A. Quasinormal modes in the time domain

To study the phenomenon of QN mode ringing, let us
consider the evolution of a small perturbation to the sys-
tem. For concreteness, we take an initial condition of the
form

c mðt ¼ 0; r�Þ ¼ exp½�ðr� � r�0Þ2=ð2�2Þ�; (18)

@tc mðt ¼ 0; rÞ ¼ 0; (19)

where r�0 and�2 are arbitrary constants. Now, we simulate
the evolution of this initial perturbation by applying finite-
difference methods to the wave equation (7). There are
many possible methods; we choose the ‘‘method of lines’’
(described e.g. in Ref. [31] and Sec. 4.2 of Ref. [32]), using
second-order differencing on spatial slices and the fourth-
order Runge-Kutta method to advance in time. This
method was chosen primarily for its good stability proper-
ties: it is numerically stable provided that the time step � is
small enough (typically we took � ¼ h=2 for our evolu-
tions, where h is the spatial grid spacing). We made the
spatial domain large enough in r� so that the ‘‘physical’’
perturbation did not encounter the spatial boundaries
during the simulation run.

Typical results are given in Fig. 1, which shows the
response c mðt; rÞ at fixed radius r ¼ 10rh as a function

of time, for an initial condition of the form (19). The
logarithmic scale on the vertical axis shows that, at inter-
mediate times, the response is apparently dominated by
exponentially damped ringing. This response is typical of
systems with an unstable geodesic orbit (or, equivalently, a
peak in the potential barrier). Ringing may be understood
in terms of QN modes with characteristic complex fre-
quencies !�

mn which depend on parameters of the system
(C and D) rather than details of the initial perturbation.
The time-domain signal in Fig. 1 clearly shows the

imprint of the least-damped QN mode. In later sections,
we find that (for m � 0) the least-damped mode is the
retrograde (rather than prograde) mode. Figure 1 shows
that the damping rate and ringing frequency of this mode
decrease as the circulation rateC increases; in Sec. III E we
relate this behavior to the properties of geodesics. The
ringing frequency increases with mode number m.
Figure 2 shows that, at very late times, the signal is
dominated by a power-law decay,

c ðt; rÞ � t��;

where

� ¼
�
2jmj þ 1; @tc jt¼0 � 0;

2jmj þ 2; @tc jt¼0 ¼ 0:
(20)

In other words, the decay is one power of t more rapid in
the special case of time-symmetric initial data [such as
Eq. (19)]. For further discussion of power-law decay in the
DBT context, see Sec. IIE in Ref. [20].
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FIG. 1 (color online). Illustrating the ‘‘quasinormal ringing’’
response as a function of time t of a draining bathtub to a
Gaussian initial perturbation. Here the value of c ðt; rÞ at a fixed
radius r ¼ 10rh is shown, for various values of the ‘‘circulation’’
C of the bathtub, C ¼ 0; . . . ; 2. As the circulation rate increases,
the ringing frequency and the damping rate decrease.
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FIG. 2 (color online). Log-log plot illustrating ‘‘power-law
decay’’ in modes m ¼ 0; . . . ; 3 for a perturbation of a draining
bathtub. At late times, the perturbation decays as c / ðt=rhÞ��,
where � ¼ 2jmj þ 1 for generic initial data and � ¼ 2jmj þ 2
for time-symmetric initial data, @tc ðt ¼ 0; rÞ ¼ 0, which is
shown here. The decay rate is independent of the circulation C.
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B. Quasinormal modes in the frequency domain

It is well known that the origin of QN ringing and power-
law decay may be understood by considering the decom-
position of Green’s function in the frequency domain (see,
for example, [33,34]). Let us briefly recap the argument
here. A formal solution of Eq. (7) with an arbitrary initial
condition c 0

mðxÞ � c mðt ¼ 0; xÞ, _c 0
mðxÞ � @tc mðt; xÞjt¼0

may be written as

c mðt; xÞ ¼
Z
½Gðx; x0; tÞ _c 0

mðx0Þ þ @tGðx; x0; tÞc 0
mðx0Þ�dx0;

(21)

where x ¼ r�, x0 ¼ r0�, and G is the (retarded) Green’s
function defined by�

@2

@r2�
�

�
@

@t
þ iCm

r2

�
2 � VmðrÞ

�
G ¼ �ðtÞ�ðx� x0Þ; (22)

and G ¼ 0 for t < 0. Green’s function may be written in
terms of an inverse Fourier transform

Gðx; x0; tÞ ¼ 1

2�

Z 1þi	

�1þi	
Ĝðx; x0; !Þe�i!td!; (23)

with 	 positive and real. The frequency-domain function Ĝ
is constructed in the following way:

Ĝðx; x0; !Þ ¼ � 1

2i!Ain
m!

(
uinm!ðxÞuupm!ðx0Þ x � x0

uinm!ðx0Þuupm!ðxÞ x � x0:
(24)

Here uinm!ðrÞ (‘‘in’’) and u
up
m! (‘‘up’’) are solutions of the

homogeneous equation�
d2

dr2�
þ

�
!� Cm

r2

�
2 � VmðrÞ

�
uðrÞ ¼ 0 (25)

that are, respectively, ingoing at the horizon and outgoing
at infinity, satisfying the following asymptotic boundary
conditions:

uinm!ðr�Þ �
(
e�i ~!r� r� ! �1
Aout
m!e

þi!r� þ Ain
m!e

�i!r� r� ! þ1;
(26)

and

uupm!ðr�Þ �
(
Bout
m!e

þi ~!r� þ Bin
m!e

�i ~!r� r� ! �1
eþi!r� r� ! þ1;

(27)

where ~! � !�mC=D2. By considering the Wronskian,
one may establish certain relationships between these con-
stants, for example, !Ain

m! ¼ ~!Bout
m!.

The frequency-domain Green’s function Ĝ given in
Eq. (24) has poles at frequencies for which Ain

m! ¼ 0.
Such poles do not lie on the real frequency axis, but rather
in the lower half of the complex frequency plane. For t > 0,
the contour of integration in Eq. (24) may be closed in the
lower half-plane, as described e.g. in Refs. [33,34], enclos-
ing the poles. By Cauchy’s theorem there arises a sum over
residues of these poles, which is known as a ‘‘QN mode

sum.’’ The QN mode sum manifests itself as the damped
ringing response seen e.g. in Fig. 1. Furthermore, there

exists a branch point in Ĝ at zero frequency, which neces-
sitates a branch cut along the negative imaginary axis. The

integral of Ĝ along either side of the branch cut is asso-
ciated with the power-law decay at late times, as observed
in Fig. 2. With this in mind, let us now consider the QN
spectrum, i.e. the set of frequencies defined by Ain

m! ¼ 0.

C. The quasinormal mode spectrum

1. The m ¼ 0 mode

The m ¼ 0 mode is isotropic and independent of C, and
furthermore, Eq. (25) has a simple closed-form solution in
this case. The ‘‘in’’ mode is

uin0!ðrÞ ¼ r1=2e�i
ði
Þi
�ð1� i
ÞI�i
ði!rf1=2Þ; (28)

where 
 � !D and I�ðzÞ is a modified Bessel function of
the first kind [35]. In this case, the boundary condition
constants are

Aout
0! ¼ ð2�i
Þ�1=2e�i
ði
Þi
�ð1� i
Þ; (29)

Ain
0! ¼ ie�
Aout

0!: (30)

The ‘‘up’’ mode is

u
up
0!ðrÞ ¼

ð2i�!rÞ1=2
2 sinhð�
Þ ½e

�
Iþi
ði!rf1=2Þ

� e��
I�i
ði!rf1=2Þ�: (31)

From Eq. (30) we infer that Ain
0! has no zeros in the

complex-! plane. This leads us to conclude that there
are no quasinormal modes for m ¼ 0. The solutions for
higher modes m � 0 also have closed-form expressions,
but in terms of the lesser-known confluent Heun functions
(see e.g. [36]).

2. Symmetries of the spectrum

Through our time-domain simulations we found that QN
ringing is a key feature in the response of higher modes
(m � 0). Although only one QN mode frequency is appar-
ent in the time-domain data of Fig. 1, for each modem � 0
there is in fact an infinite number of damped overtones
present in the QN spectrum, labeled by n ¼ 0; 1; . . . ;1.
For a given m, n, there is a pair of modes: one corotating
(þ) and one counterrotating (�) with the circulating flow,
with frequencies !�

mnðCÞ. The spectrum has the following
symmetries:

!�
m;nðCÞ ¼ �!���m;nðCÞ (32)

and

!�
m;nðCÞ ¼ !	�m;nð�CÞ; (33)

where ‘‘*’’ denotes complex conjugation. Note that (for
C> 0) the corotating mode oscillates and decays faster
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than the counterrotating mode, i.e. jReð!þ
mnÞj � jReð!�

mnÞj
and jImð!þ

mnÞj � jImð!�
mnÞj (with equality if C ¼ 0), and

the frequencies scale linearly with 1=rh.

D. The continued-fraction method

The continued-fraction method is a fast and accurate
numerical method for determining QN frequencies. It was
first applied to determine the QN spectrum of black holes
in Ref. [37], and was adapted to the draining bathtub case
in Ref. [21]. Here we briefly recap the method, giving some
results in Sec. III G.

The starting point is an ansatz for the QN wave function,

c m!ðrÞ ¼ ei!r

�
r� 1

rþ 1

��i ~!=2 X1
k¼0

akð1� r�1Þk: (34)

It was shown in Ref. [21] that the coefficients ak satisfy a
four-term recurrence relation, and, by making use of
Gaussian elimination, it may be reduced to a three-term
relation,

�kakþ1 þ 
kak þ �kak�1 ¼ 0: (35)

Here �k, 
k, and �k are complex coefficients that depend
upon the frequency ! and also upon m, C, and D. For
Eq. (34) to represent a valid QN mode solution, the sumP

kak must converge to a finite value. This condition is
equivalent to the following continued-fraction condition:


0 � �0�1


1�
�1�2


2�
�2�3


3� . . . ¼ 0: (36)

Finding the roots of Eq. (36) in the complex-frequency
domain is a straightforward task for a numerical minimi-
zation algorithm. High numerical accuracy for the QN
frequencies may be obtained.

In the left plot of Fig. 3 we show the dependence of the

‘‘fundamental’’ (n ¼ 0) mode onm and on the rotation rate

C of the acoustic hole. The spectrum exhibits the symme-

tries (32) and (33). In the nonrotating case (C ¼ 0) the two

modes !þ
mn and !�

mn are symmetric under reflection in the

imaginary axis. The introduction of rotation (C � 0)

breaks this symmetry. The corotating (þ) mode increases

the magnitude of its real and imaginary parts, whereas the

counterrotating mode (�) moves in the opposite way. In

the limit of very large C, the imaginary part of the least-

damped (n ¼ 0) counterrotating mode asymptotes to zero,

whereas the imaginary part of the corotating mode in-

creases without bound.
Somewhat different behavior is observed in the spec-

trum of equatorial modes (m ¼ l) of the scalar field of the
Kerr BH, illustrated in the right plot of Fig. 3. In the Kerr
case, the relevant rotation parameter is a ¼ J=M (rather
than C), where J and M are the angular momentum and
mass of the BH, respectively. As in the DBT case, the
corotating (þ) modes oscillate more rapidly than the
counterrotating modes (�), jReð!þ

lmnÞj � jReð!�
lmnÞj.

However, unlike the DBT, the imaginary part of both
modes (�) is found to decrease in magnitude as the rota-
tion rate increases.
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FIG. 3 (color online). Left panel: QN mode spectrum of the draining bathtub. Right panel: QN mode spectrum of the equatorial
modes of the scalar field on Kerr spacetime. The left plot shows the fundamental (n ¼ 0) quasinormal mode frequencies!�

mn of modes
m ¼ �1 and �2, for a range of circulation rates, C ¼ 0; 0:2; 0:4; . . . ; 2:0. For each mode m � 0 there are two QN frequencies !�

m . In
the noncirculating case (C ¼ 0), the spectrum has the symmetry !þ

m ¼ �!��
m . Circulation creates a difference between corotating

(!þ
m) and counterrotating (!�

m) modes: Counterrotating modes oscillate and decay more slowly than corotating modes [jReð!þ
mÞj>

jReð!�
mÞj and jImð!þ

mÞj> jImð!�
mÞj]. The spectrum obeys the symmetries of Eqs. (32) and (33). The right plot shows the fundamental

(n ¼ 0) quasinormal mode frequencies !�
lmnrh of equatorial (jmj ¼ l) modes m ¼ 0;�1 and �2 of the scalar field on the Kerr

spacetime, for a range of the black hole rotation rates a=M ¼ 0, 0.2, 0.4, 0.6, 0.8, 0.99. Corotating modes oscillate more rapidly than
counterrotating modes, jReð!þ

lmnÞj � jReð!�
lmnÞj. In general, both corotating and counterrotating modes become less damped as the

rotation rate increases.
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E. Geometric interpretation

This behavior may be understood through an approxi-
mate formula for the QN frequencies [38,39],

!�
mn 
 ��m� i��ðnþ 1=2Þ: (37)

Here, �� is the orbital frequency of the prograde (þ) or
retrograde (�) null orbit, and �� is the corresponding
Lyapunovexponent [40,41]. In the case of theDBT,we have

�� ¼ 1=l�c ; �� ¼ 1=r�c ; (38)

where l�c and r�c are given in Eqs. (17) and (16), respec-
tively. Since r�c and l�c increase in magnitude with C, the
magnitude of the real and imaginary parts of!�

mn decreases
with C (and the opposite is true for rþc , lþc , and !þ

mn). By
comparison, for the equatorial modes of the Kerr BH, one
has instead

�� ¼ 1=b�c ; �� ¼ 1� 2a=b�cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb�c Þ2 � a2
p ; (39)

where

r�c ¼ 2M½1þ cosð23cos�1ð	a=MÞÞ�; (40)

b�c ¼ �3
ffiffiffiffiffiffiffiffiffiffi
Mr�c

q
� a; (41)

for the equatorial orbit [39]. Expanding �� gives

�� ¼ ð27Þ�1=2

�
1� 2a2

27
	 10

ffiffiffi
3

p
243

a3 þOða4Þ
�
: (42)

Clearly, for both corotating and counterrotating equatorial
orbits on Kerr black holes, �� decreases with jaj. This
‘‘explains’’ the observation in the right plot of Fig. 3 that the
damping decreases with jaj.

In Ref. [30] a more accurate approximation for the QN
modes of the Kerr BH was found using a geodesic-
expansion method, which builds upon the understanding
of the properties of the null orbits. Let us now apply this
method in the DBT case.

F. The geodesic-expansion method

First let us rewrite the function uðrÞ appearing in
Eq. (25) using the following ansatz [29,30]:

umðrÞ ¼ ðrÞ exp
�
i
Z r�

�ðr0Þdr0�
�
; (43)

where

� ¼
�
!� Cm

r2

��
1� Clc

r2

��1
�
1� r2c

r2

�
: (44)

Note that here rc ¼ r�c and lc ¼ l�c , i.e. representing either
the corotating or counterrotating cases, as defined in
Eqs. (16) and (17), respectively; we drop the� superscript
here for clarity. Substituting ansatz (43) into the radial
equation (25) leads to an equation for the function ðrÞ,
namely,

f00 þ ðf0 þ 2i�Þ0 þ
�
i�0 þ l2cð!� Cm

r2
Þ2

r2ð1� Clc
r2
Þ2

� ðm2 � 1
4Þ

r2
� 5D2

4r4

�
 ¼ 0; (45)

where 0 denotes differentiation with respect to r. Now, to
seek the QN frequencies !mn and radial wave functions
ðrÞ, we introduce an expansion in terms of inverse powers
of m, namely,

lc!mn ¼ X1
q¼�1

m�q$ðnÞ
q ; (46)

¼
�
�nþXn

i¼0

X1
j¼0

aðnÞij m
�j�n�i

�Y1
q¼0

expðm�qSðnÞq ðrÞÞ; (47)

where � � 1� r�c =r. Here$
ðnÞ
q and aðnÞij are dimensionless

coefficients, and SðnÞq ðrÞ are smooth radial functions. To
determine these unknowns, we impose a condition of
regularity upon the solution at r ¼ rc.
Let us illustrate the approach by computing the QN

frequencies and radial wave functions for the fundamental
mode (n ¼ 0) for the corotating case. Substituting the
expansions in Eqs. (46) and (47) into the radial equation
(45), and then rewriting it in terms of the powers of m
associated with coefficients of the expansion, leads to the
following system of equations:

O ðm2Þ: ð$�1 � r2c�l2c=2
r2

Þ2
r2ð1� ðr2c�l2c=2Þ

r2
Þ2
� 1

r2
¼ 0 ) $�1 ¼ 1; (48)

O ðm1Þ: 2r2cðr2 � ½r2c � l2c=2�Þ
lcr

5
þ 2i

lc

�
1� ½r2c � l2c=2�

r2

��
1� r2c

r2

�
S00 þ

2$0lc
r2

¼ 0; (49)

etc., where the superscript n has been suppressed for simplicity. Equation (48) is identically satisfied through the choice
$�1 ¼ 1. To solve Eq. (49) we impose that S0ðrÞ is regular at r ¼ rc, which leads to$0 ¼ �ilc=2rc and to the first-order
differential equation

ðr� rcÞðrþ rcÞ dS
ð0Þ
0

dr
¼ � r2c

r
� l2c

2rc

�
1� lcC

r2

��1
: (50)
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The radial function S0 may be obtained by integrating this
equation. In subsequent equations at orders Oðm0Þ and
higher, the second derivative S000 appears, which may be
obtained by differentiating (50). The higher-order equa-
tions are solved in a similar way: taking the equation
at Oðm1�kÞ, we first impose the continuity condition at
r ¼ rc to obtain $k, and next solve to obtain S0k.

Using a symbolic algebra package (e.g. MAPLE or
MATHEMATICA), this procedure may be automated, and

the expansion may be taken to higher orders. We have
computed the expansion of the QN frequency up to the
order Oðm�9Þ. Below, we quote the expansion of the
frequency of a general overtone n (¼N � 1=2) up to order
Oðm�4Þ:

lc!mn ¼ m� ilc
rc

N þm�1

�
1

128

l2c
r4c

ð5l2c � 16r2cÞ � 3

32

l4c
r4c

N2

�
þm�2i

�
1

4096
l3cð5l4c � 144l2cr

2
c þ 384r4cÞ 1

r7c
N

þ 1

1024
l5cð23l2c � 80r2cÞ 1

r7c
N3

�
þm�3 1

r10c

�
� 1

1 048 576
l4cð64 640l2cr4c � 21 040r2cl

4
c þ 2125l6c � 57 344r6cÞ

þ 1

131 072
l4cð3456l2cr4c � 976r2cl

4
c þ 75l6c � 4096r6cÞN2 þ 5

65 536
l6cð896r4c � 592l2cr

2
c þ 91l4cÞN4

�
þOðm�4Þ:

(51)

Note that, for a given m, this expression yields two QN

frequencies: !þ
mn obtained using corotating geodesic pa-

rameters (lþc , rþc ) and !�
mn obtained using counterrotating

geodesic parameters (l�c , r�c ). The frequency expansion

exhibits the symmetries (32) and (33), as may be confirmed

with the aid of the relations r�c ðCÞ¼r	c ð�CÞ and
l�c ðCÞ¼�l	c ð�CÞ.

G. Validation

In Table I we compare the QN frequencies found via
Eq. (55) with numerically accurate values obtained via the

TABLE I. QN frequencies of the fundamental mode (n ¼ 0) for m ¼ 1; . . . ; 5. The second column gives the frequencies determined
via the continued-fraction method of Sec. III D. The third column gives the frequencies estimated from the expansion method, Eq. (51).
The numeral in parentheses indicates the absolute error in the last displayed digit, where the error in the expansion method was
estimated from the magnitude of the final terms in the series, Eq. (51). Note that the value marked with an asterisk ( � ) was obtained by
truncating the series at Oðm�3Þ.

D ¼ 1, C ¼ 0, symmetric modes (�)

m Continued-fraction method Expansion method

1 �0:406 832 619 667 2ð2Þ � 0:341 236 118 125ð2Þi �0:40ð1Þ� � 0:345ð8Þi�
2 �0:952 728 087 724 74ð6Þ � 0:350 739 495 731 7ð2Þi �0:9524ð9Þ � 0:3511ð2Þi
3 �1:468 540 696 625 23ð5Þ � 0:352 425 532 936 0ð2Þi �1:468 54ð6Þ � 0:352 444ð8Þi
4 �1:976 452 714 356 0ð1Þ � 0:352 959 421 262 4ð2Þi �1:976 453ð8Þ � 0:352 961ð1Þi
5 �2:481 187 497 561 6ð1Þ � 0:353 188 337 832 78ð6Þi �2:481 188ð2Þ � 0:353 188 6ð1Þi

D ¼ 1, C ¼ 1, counterrotating modes (�)

m Continued-fraction method Expansion method

1 �0:149 014 850 655 5ð1Þ � 0:194 512 342 012 7ð2Þi �0:14ð1Þ � 0:200ð8Þi
2 �0:387 575 071 122 0ð2Þ � 0:193 030 720 897 4ð1Þi �0:387 53ð6Þ � 0:192 96ð9Þi
3 �0:604 016 701 621 4ð2Þ � 0:192 205 549 982 74ð1Þi �0:604 014ð4Þ � 0:192 204ð3Þi
4 �0:815 581 286 876 1ð1Þ � 0:191 851 672 318 2ð3Þi �0:815 581 1ð5Þ � 0:191 851 5ð3Þi
5 �1:025 307 846 759 3ð1Þ � 0:191 675 396 010 8ð2Þi �1:025 307 8ð1Þ � 0:191 675 38ð6Þi

D ¼ 1, C ¼ 1, corotating modes (þ)

m Continued-fraction method Expansion method

1 þ1:130 976 390 811 41ð2Þ � 0:448 534 419 366 3ð3Þi þ1:134ð9Þ � 0:445ð7Þi
2 þ2:374 228 676 707 2ð2Þ � 0:457 973 063 466 50ð6Þi þ2:374 21ð3Þ � 0:457 91ð2Þi
3 þ3:594 328 223 431 1ð3Þ � 0:460 094 999 020 2ð3Þi þ3:594 327ð2Þ � 0:460 093ð2Þi
4 þ4:808 084 694 673 3ð2Þ � 0:460 883 279 151 83ð4Þi þ4:808 084 5ð3Þ � 0:460 883 1ð2Þi
5 þ6:019 221 756 567 0ð3Þ � 0:461 257 656 114 5ð2Þi þ6:019 221 73ð6Þ � 0:461 257 63ð3Þi
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continued-fraction method of Ref. [21], and reobtained
here in Sec. III D. At largem, we find excellent agreement.
At smallm, the approximation is not so good. For instance,
for m ¼ 1 the most accurate estimate was found by
truncating the series at Oðm�3Þ, suggesting that Eq. (55)
is in fact an asymptotic series. In Fig. 4 we plot the
difference between continued-fraction and geodesic-

expansion results, to confirm that Eq. (55) is indeed valid
to the stated order in the large-jmj regime.

IV. REGGE POLE RESONANCES

RPs are closely related to QN modes [42]. Both types of
resonance are associated with the zeros of Ain

m!. Whereas
QN modes occur at real values of m (and complex !), the
RPs occur for real values of ! (and complex m). That is,
m!n is a Regge pole angular momentum if

Ain
m!ð!;m!nÞ ¼ 0: (52)

A. Methods

Given the close relationship between QN modes and
RPs, it is no surprise to find that methods used for QN
modes can be easily adapted to locate RPs [24,43–45]. For
instance, the continued-fraction method (Sec. III D) may
be used without modification, if m is allowed to become
complex. Furthermore, the geodesic-expansion method
(Sec. III F) can be easily modified to find RPs [29]. One
may either repeat the arguments of Sec. III F or take the
following simple steps: (i) assume that the Regge poles
have the expansion of the form

m!n ¼ 	�1!þ 	0 þ 	1!
�1 þ . . . ; (53)

(ii) substitute the expansion for QN frequencies into the
above equation, and (iii) solve order by order in m to find
the expansion coefficients 	k. We find

m!n¼ lc!þ ilc
rc

Nþ
�
3l3cN

2

32r4c
þ lcð16r2c�5l2cÞ

128r4c

�
!�1� iN

�
lc

4096r7c
ð�304r2cl

2
cþ5l4cþ896r4cÞþ l3c

1024r7c
ð16r2cþ23l2cÞN2

�
!�2

þ
�
lcð�73728r6cþ74880r4cl

2
c�22640r2cl

4
cþ2125l6cÞ

1048576r10c
� lcð36864r6c�7808r4cl

2
c�1616r2cl

4
cþ75l6cÞ

131072r10c
N2

� l3cð384r4cþ560r2cl
2
cþ455l4cÞ

65536r10c
N4

�
!�3þOð!�4Þ; (54)

where N ¼ nþ 1=2. Again, as for Eq. (51), we note that
this expression yields two separate values, m�

!n, obtained
by using either corotating or counterrotating geodesic pa-
rameters (l�c , r�c ). We note that it is straightforward to take
the expansion to much higher orders if desired. Finally, it is
relatively straightforward to find Regge poles by direct
integration methods, because (unlike quasinormal modes),
RP modes are not divergent in the limits r� ! �1.

B. Spectrum

The Regge pole spectrum has the following symmetries:

m�
!;nðCÞ ¼ �m���!;nðCÞ (55)

and

m�
!;nðCÞ ¼ �m	

!;nð�CÞ: (56)

The Regge pole spectrum in the complex-m plane is
illustrated in Fig. 5. For !> 0, the corotating (þ) modes
lie in the first quadrant, and the counterrotating (�) modes
lie in the fourth quadrant. In the nonrotating case, the
spectrum is symmetric, mþ

!n ¼ �m�
!n. For C> 0, the

real and imaginary parts of mþ
!n decrease with C, whereas

the real and imaginary parts of �m�
!n increase with C, as

expected from Eq. (54).
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FIG. 4 (color online). Validation of the frequency expansion,
Eq. (55). The log-scaled plot shows the real and imaginary parts
of � as a function of mode number m, for the cases C ¼ 0 and
C ¼ 1 (and D ¼ 1). Here � � !CF �!exp, where !CF is the

QN frequency obtained via the continued-fraction method and
!exp is the frequency estimate given by Eq. (55). The plot shows

that the imaginary (real) part of � scales as m�4 (m�5), as
predicted by Eq. (55).
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V. APPLICATIONS OF THE COMPLEX ANGULAR
MOMENTUM METHOD

In this section we show that Regge poles play an im-
portant role in both absorption and scattering processes;
their role is revealed through the application of the so-
called complex angular momentum (CAM) method. The
CAM method makes a link between certain oscillations in
cross sections (see below) and the poles of the scattering
matrix SðmÞ in the complex-m plane, i.e. the Regge poles.
The CAM method was successfully applied to scattering
by a Schwarzschild black hole in [23], and was recently
extended to treat absorption [27,28,46]. We believe this
represents its first application to a rotating spacetime.

A. Absorption cross section

The absorption cross section�abs of the draining bathtub
was studied in Ref. [25]. It may be obtained from a sum
over partial-wave contributions, via

�abs ¼ 1

!

X1
m¼�1

�
1�

��������A
out
m!

Ain
m!

��������2
�
: (57)

At high frequencies, the absorption cross section is seen to

approach the ‘‘geometric’’ capture cross section, �
ðgeoÞ
abs ¼

jbþc j þ jb�c j ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ C2

p
. In the nonrotating case, C¼0,

�abs displays regular damped oscillations with increasing
frequency. With increasing C, these oscillations become
less regular (cf. Fig. 7).

Recent papers [27,28,46] on the universality of high-
frequency absorption cross sections for spherically sym-
metric black holes use CAM methods [22,23,42,47] to
show how oscillations in the absorption cross section

(with frequency !) are directly related to the Regge pole
spectrum.
To apply CAM methods, we must employ a suitable

analytic continuation into the complex-m plane. Let us
therefore define

�abs ¼ 1

!

X1
m¼�1

�ðmÞ; (58)

where

�ðmÞ ¼ 1� Aout
m!ðAout

m�!Þ�
Ain
m!ðAin

m�!Þ�
: (59)

A series such as the one above can be expressed as a
contour integral using the Watson transformation, i.e.

�abs ¼ i

2!

Z
C

ei�m

sinð�mÞ�ðmÞdm; (60)

where now m takes complex values. Here the contour of
integration C encloses in a clockwise sense all (and only)
the poles of the integrand that lie on integer values on the
real axis at m ¼ �1; . . . ;þ1, i.e.Z

C
¼

Z
Cþ

�
Z
C�

; where
Z
C�

¼
Z 1�ic

�1�ic
; (61)

for some small positive real value c. See Fig. 6 for a
graphical representation of the contour. Next, we use the
identity ei�m ¼ e�i�m þ 2i sinð�mÞ to obtain

�abs ¼ �ðintÞ
abs þ i

2!

Z
Cþ

ei�m�ðmÞ
sinð�mÞ dm

� i

2!

Z
C�

e�i�m�ðmÞ
sinð�mÞ dm; (62)

where

�ðintÞ
abs ¼ 1

!

Z 1

�1
�ðmÞdm: (63)
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FIG. 5 (color online). Regge pole spectrum of the draining
bathtub. For three frequencies j!j ¼ 0:25, 0.5, and 1.0, we plot
points for rotation rates C=rh ¼ 0; 0:1; 0:2; . . . ; 1, showing the
fundamental (n ¼ 0) Regge pole valuesm�

!nrh in the complex-m
plane. Corotating and counterrotating modes are shown; they
exhibit the symmetries (55) and (56). For C> 0, the corotating
(counterrotating) modes lie in the upper (lower) half-plane.

FIG. 6. Contour integration in the complex-m plane. The
circles show the positions of the poles of 1= sinðm�Þ, at integer
values of m. The stars illustrate the positions of the poles (for
!> 0, C> 0) of SðmÞ, i.e. the Regge poles, for overtones n ¼
0; . . . ;1. The contour Cþ is closed in the upper half-plane, and
the contour C� is closed in the lower half-plane.
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The contour Cþ may be closed in the upper half-plane,
enclosing poles of �ðmÞ at mþ

!n and m��
!n. Likewise, the

contour C� may be closed in the lower half-plane, enclos-
ing the poles of �ðmÞ at m�

!n and mþ�
!n. This leads to a sum

of residues, that is,

�abs ¼ �ðintÞ
abs � 2�

!
Re

X
�

X1
n¼0

e�i�m�
!;n

sinð�m�
!nÞ�

�
!n: (64)

Here ��
!n denotes the residue of �ðmÞ,

��
!n ¼ Resm!m�

!n
½�ðmÞ�; (65)

and we have made use of the symmetry relation

Res m!m��
!n
½�ðmÞ� ¼ ð��

!nÞ�: (66)

Equation (64) is an exact expression which may be com-
puted numerically. The sum over overtones converges
rapidly, due to the damping effect of the imaginary part
of the Regge pole. The residues may be computed with a

numerical scheme based on integration of the radial equa-
tion (25), using

��
!n ¼ �

�
Aout
m!ðAout

m�!Þ�
��
!nðAin

m�!Þ�
�
m¼m�

!n

; (67)

where Ain
m! 
 ��

!nðm�m�
!nÞ þ . . . in the vicinity of a

Regge pole. The integral over frequency can also be per-
formed in a straightforward manner. Numerical results are
shown in Fig. 7. We find a very good agreement with the
results of the partial-wave method of Ref. [25].
To better understand the geometric meaning of Eq. (64)

in the high-frequency limit, we may proceed by making
some simplistic approximations:

�ðmÞ 
 �ðlþc !�mÞ�ðm� l�c !Þ; (68)

where �ð�Þ is the Heaviside step function, and

m�
!;n¼0 
 l�c !þ il�c

2r�c
þOð!�1Þ; (69)
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FIG. 7 (color online). Absorption cross section as a function of the frequency, for C ¼ 0 (left plots) and C=rh ¼ 1 (right plots). In the
upper plots, the solid line shows the absorption cross section �abs computed from the partial-wave sum [25]; the dashed line shows �abs

computed numerically from the complex angular momentum expression [Eq. (64)]. Note that these two lines lie very close together.
The dotted line shows the simple geometric approximation [Eq. (71)], which is valid in the high-frequency regime. The lower plots
show the separate contributions from Regge pole sums and the corotating and counterrotating integrals [Eq. (62)].
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and furthermore

��
!n 
 ���

2�
þOð!�1Þ; (70)

where �� ¼ jl�c =r�c j. Neglecting the higher overtones
leads to the simple approximation

��
abs ¼ jl�c j½1þ 4���e����

sincð2�jl�c j!Þ�; (71)

where �abs ¼ �þ
abs þ ��

abs and sincðxÞ ¼ sinðxÞ=x.
Equation (71) makes it clear that the cross section ap-
proaches the geometric capture cross section in the high-
frequency limit. Furthermore, the cross section exhibits
damped oscillations with increasing frequency, due to the
Regge pole contribution, which are controlled by the geo-
metric quantities (l�c and r�c ).

Note that a somewhat more accurate approximation may
be obtained by using an improved approximation
[cf. Eq. (19) in Ref. [27]] for the transmission factor,

�ðmÞ 


8>>>><
>>>>:

�
1þ exp

�
�2� ½ð!lþc Þ2�m2�

2m�þ

���1
m> 0�

1þ exp

�
�2� ½ð!l�c Þ2�m2�

2m��

���1
m< 0:

(72)

In Fig. 7 we compare the results of the partial-wave
calculation of Ref. [25] with a numerical calculation based
on the exact Regge pole expression, Eq. (64), and the
‘‘geometric’’ high-frequency approximation, Eq. (71). It
is clear from the lower right plot of Fig. 7 that the corotat-
ing (counterrotating) orbits are responsible for oscillations
in the profile with a higher (lower) frequency and smaller
(larger) amplitude. The superposition of corotating and
counterrotating effects creates a rather irregular profile,
in contrast with the more regular profile exhibited in the
nonrotating case (left plots).

B. Scattering cross sections and orbiting

Various studies of monochromatic planar-wave scatter-
ing by black holes [48–51] have shown that there may arise
regular oscillations in the scattering cross section, whose
angular width is inversely proportional to incident wave-
length. This phenomenon is called orbiting [52,53], or
alternatively, ‘‘spiral scattering’’ [49]. In essence, such
oscillations arise due to interference between pairs of rays
which pass in opposite senses around the black hole. A
study of scattering by the DBT [54,55] has recently dem-
onstrated that orbiting oscillations also arise in this case.

[Note that, in three-dimensional scattering, orbiting is
supplemented by another effect: a ‘‘glory.’’ A glory is a
bright spot (or ring) in the forward- or backward-scattering
directions, whose width (amplitude) decreases (increases)
linearly with frequency. Semiclassically, a glory is created
by a one-parameter family of geodesics scattering into the
same solid angle. This is not possible in 2D; hence the
glory effect is absent in the DBT case.]

In this section, we apply the CAM method to obtain a
deeper understanding of orbiting oscillations in the scat-
tering cross section. Let us begin with the partial-wave
expression for the scattering amplitude,

f!ð�Þ ¼ �
X1

m¼�1
½SðmÞ � 1�eim�; (73)

where � ¼ ð2i�!Þ�1=2 and the ‘‘scattering matrix’’ SðmÞ
(which is scalar-valued in this case) is defined by

SðmÞ � iei�mAout
m!=A

in
m!: (74)

We note that, with this definition, the scattering matrix has
the following symmetry:

Sð�m;CÞ ¼ e�2i�mSðm;�CÞ: (75)

The differential cross section is simply d�=d� ¼ jf!j2.
We will adopt the convention that the scattering angle is in
the range 0 � �< 2� (rather than �� � �<�).
As in Sec. VA, the key step is to apply a Watson trans-

formation [52] to convert the partial-wave series (73) into a
contour integral:

f!ð�Þ ¼ i�

2

Z
C

~SðmÞeim�

sinð�mÞ dm; (76)

where ~SðmÞ ¼ e�i�mSðmÞ.
Let us proceed by recasting (76) into the form

f!ð�Þ ¼ �
Z þ1

�1
SðmÞeimð��2�Þdm

þ i�

2

Z
Cþ

~SðmÞeim�

sinð�mÞ dm

� i�

2

Z
C�

~SðmÞeimð��2�Þ

sinð�mÞ dm:

In the high-frequency limit, we may neglect the first in-
tegral, because it has no stationary phase points in the
range 0<�< 2�. Furthermore, we may evaluate the
second and third terms by closing the contours Cþ and
C� in the upper and lower half-planes, respectively.
Applying Cauchy’s theorem leads us to

f!ð�Þ 
 ���
X1
n¼0

�
eim

þ
!n�

sinð�mþ
!nÞ ~s

þ
!n þ eim

�
!nð��2�Þ

sinð�m�
!nÞ ~s

�
!n

�
;

(77)

where the residues are defined as follows,

~s�
!n � Resm!m�

!n
~SðmÞ: (78)

The ‘‘fundamental’’ mode (n ¼ 0) gives the dominant
contribution, and the sum over overtones appears to be
exponentially convergent.
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1. High-frequency approximation

The geodesic-expansion method led us to expressions
for the Regge poles and corresponding wave functions,
which are valid in the high-frequency regime. Now, by
combining this method with standard WKB techniques,
we may also obtain a low-order approximation for the
residues (78). As the calculation is rather lengthy, we quote
the key results here, and give a fuller exposition in
Appendix A.

In the high-frequency limit, the RP wave function is
approximately

u!nðrÞ 

�jr� rcj
rþ rc

�
n
�

r

rþ rc

�
expði!r� i ~!ðr� � rÞÞ;

(79)

where ~! ¼ !� Cm�
!n=r

2
h. Here we have chosen the nor-

malization such that u!nðrÞ 
 ei!r� in the large-r limit.
The residue is approximately

~s�
!n 
 �8ð�i!rcÞN

�
64r2c
l2c

�
n e�2i�

ð2�Þ1=2n! ; (80)

where

� � !rc � ~!
rh
2

ln

�
rc � rh
rc þ rh

�
: (81)

Orbiting oscillations in the cross section jf!j2 arise from
interference between corotating (þ ) and counterrotating
(�) contributions to (77). The angular oscillation fre-
quency is given by Reðmþ

!n �m�
!nÞ 
 !ðlþc þ jl�c jÞ ¼

4!re at lowest order (where re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þD2

p
=c).

Therefore, the angular width of the orbiting oscillations
at high frequency is simply

�� 
 �

2!re
: (82)

The imaginary part of mþ
!n (or m

�
!n) determines the rate of

attenuation with scattering angle � (or 2���).

2. Numerical results

Figure 8 shows a comparison between the high-
frequency approximation for the residues (80) and accurate
values computed using a numerical method based on direct
integration. We find a good agreement, suggesting that the
analytic approximation Eq. (80) can be used to capture the
key features of orbiting.
Figure 9 compares the CAM approximation for orbiting

(77) with accurate numerical results obtained by summing
the partial-wave series [55]. Two CAM approximations are
shown; for the first approximation we computed the RPs
and residues numerically (for low overtones n ¼ 0; . . . ; 4),
and for the second approximation we used the asymptotic
analytic results, (54) and (80).
The agreement is found to be good, particularly at large

scattering angles. In other words, the Regge pole approxi-
mation, given in (77), accounts rather well for the orbiting
oscillations. In particular, the asymptotic results (given in
closed form in terms of geodesic parameters r�c and l�c )
provide an excellent description in the semiclassical (high-
frequency) regime.
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FIG. 8 (color online). Regge pole residues ~s�!m in the complex plane. The plots show the residues defined in Eq. (78) for the
fundamental (n ¼ 0) modes of a DBT, for the cases C ¼ 0 (nonrotating) (left plot) and C=D ¼ 0:5 (right plot). The blue and red
crosses (solid lines) show the numerically determined residues for ‘‘prograde’’ (þ) and ‘‘retrograde’’ (� ) modes, for frequencies
!rh ¼ 1:0; 1:1; 1:2; . . . ; 4:0. The dotted lines show the high-frequency approximation, Eq. (80).
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VI. FINAL REMARKS

In this paper we have focused our attention on the
quasinormal frequencies and Regge poles of the draining
bathtub, a simple system which may be studied in the lab
and which has been suggested as a simple (though inexact)
analogue for the Kerr spacetime [17]. Our aim was to bring
together a variety of techniques, both old [21] and new
[28–30,56], to build up a unified picture of the resonances
of a simple non-spherically-symmetric system, for the first
time.
We studied the QN resonances numerically in both the

time domain (Sec. III A) and the frequency domain
(Sec. III B). For the former we developed a purpose-built
finite-difference code, and for the latter we applied the
continued-fraction method (developed in Ref. [21]). We
provided a clear geometric interpretation (Sec. III E) for
our numerical results, in terms of the properties of the
corotating and counterrotating photon/phonon orbits of
the spacetime (Sec. II B). The geometric interpretation
neatly explains the similarities and differences between
the DBT and rotating black hole QN spectra (see Fig. 3).
Furthermore, the geometric interpretation may be lever-
aged to obtain an expansion of QN frequencies in inverse
powers of m, as we showed in Sec. III F.
In Sec. IV we demonstrated how methods developed to

investigate QN modes may be simply adapted to investi-
gate the Regge pole spectrum (see also e.g. [28]). The
relevance of the Regge poles is revealed by the complex
angular momentum method [47], which we explored in
Sec. V. Regge poles may be used to account for oscillations
seen in the absorption and scattering cross sections. First,
in Sec. VA, we extended a method of [27,28] which
revealed the role of Regge poles in fine-structure oscilla-
tions in the absorption cross section �abs. We believe this
represents the first application of this work to a non-
spherically-symmetric spacetime. We showed (Fig. 7)
that the superposition of diffraction effects linked to the
properties of corotating and counterrotating orbits creates a
rather irregular fine structure [28] in �absð!Þ when the
system is rotating. Next, in Sec. VB, we applied the
CAM method to obtain a geometric approximation for
the orbiting oscillations in the scattering cross section. To
make this possible, we used the geodesic-expansion
method [56] to develop new approximations for the resi-
dues of the scattering matrix (Appendix A), which are valid
in the high-frequency limit.
Let us briefly highlight some important analytic results

herein: (i) at late times, perturbations of the DBT undergo
power-law decay with an index� given by Eq. (20); (ii) the
isotropic (m ¼ 0) mode possesses a simple analytic solu-
tion, Eqs. (28) and (31); (iii) asymptotic expansions for QN
and RP frequencies in terms of geometric quantities are
given by Eqs. (51) and (54), and they are good approx-
imations in the large-jmj and large-j!j regimes, respec-
tively (Fig. 4); (iv) the absorption cross section may be
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FIG. 9 (color online). Orbiting and the CAM approximation.
These plots show the scattering cross section d�=d� ¼
jf!ð�Þj2 as a function of scattering angle, with a coupling
!rh ¼ 4, for three cases: C ¼ 0 (nonrotating), C ¼ 0:2rh,
and C ¼ 1:0rh. The plots compare the cross section found
from the partial-wave series (red, solid line) with the cross
section found from the RP approximation (77) (dotted line),
using only the lowest modes (n ¼ 0; . . . ; 4). The blue dotted line
shows the RP approximation with numerically determined RPs
and residues. The magenta dotted line shows the RP approxi-
mation using asymptotic expressions (54) and (80), for n ¼ 0
only.
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expressed in terms of Regge poles via Eq. (64); (v) at large
frequencies, the simple ‘‘geometric’’ formula, Eq. (71),
provides a good approximation to �abs (see Fig. 7);
(vi) the scattering amplitude at large angles is approxi-
mated by the Regge pole formula (77); (vii) in the high-
frequency limit, the RP residues [required for (vi)] are
given by Eq. (80).

In conclusion, we have illustrated that a simple analogue
system (the DBT) possesses a spectrum of resonances
which, in addition to being of interest in their own right,
can improve our understanding of the resonances of a
rotating black hole. Whereas black holes are remote celes-
tial entities, analogues may be investigated in the lab today
[15]. We hope that a laboratory investigation of the reso-
nances of the DBT will soon be undertaken. Here, exper-
imentalists face the challenge ofmaintaining the stability of
a converging flow, particularly at the point at which the flow
becomes supersonic. It may be easier to instead use a
diverging supersonic flow, which would instead represent
a white hole analogue. For example, a hydraulic jump [16]
extended to a rotating setup may be of interest. It has to be
noted, though, that the boundary conditions used to deter-
mine resonances of a white hole are different from the ones
used in the corresponding black hole case [57,58]. A further
avenue for investigation is the effect of high-frequency
dispersion on the resonance spectrum. For example, it has
been argued that superluminal dispersion creates continu-
ous zones in the QN mode spectrum of Bose-Einstein con-
densates [59]. Dispersion would certainly affect the validity
of the short-wavelength (i.e. large-m and large-!) approx-
imations developed here, and would presumably disrupt the
direct link between the properties of orbiting geodesics and
the spectrum of resonances. Of further interest are ‘‘pinned
vortices’’ in superfluids, which resemble (to a certain ex-
tent) three-dimensional but nondraining versions of the
DBT; it has recently been suggested that here bound states
propagating along the vortex (similar to ‘‘whispering gal-
lery’’ modes) may arise [60].

To summarize, the key message from the present work is
that the presence of distinct prograde and retrograde null
geodesic orbits on a rotating (effective) spacetime leaves
its clear imprint on the resonance spectrum. In turn, the
superposition of corotating and counterrotating resonances
generates a host of potentially observable effects, for ex-
ample, (i) in QN ringing, (ii) in the fine structure of the
absorption cross section, and (iii) in the orbiting diffraction
effect in scattering. Here, we have applied a range of
methods to investigate (i)–(iii) for the rather ‘‘idealized’’
geometry of the draining bathtub. It is our hope that these
methods can now be extended to investigate rotating ana-
logue systems of current experimental interest.
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(FAPESPA) for partial financial support. S. D. thanks the
Universidade Federal do Pará (UFPA) in Belém for kind
hospitality, and acknowledges financial support from the
Engineering and Physical Sciences Research Council
(EPSRC) under Grant No. EP/G049092/1. L. C. and L.O.
would also like to acknowledge partial financial support
from Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior (CAPES). L. C. thanks the Abdus Salam
International Centre for Theoretical Physics (ICTP) for
kind hospitality. The authors thank Ednilton Oliveira for
helpful discussions.

APPENDIX A: REGGE POLE RESIDUES

In this section we apply the geodesic-expansion method
to obtain an asymptotic approximation for the Regge pole
residues which is valid in the high-frequency limit. The
method follows the outline given in Appendix A of
Ref. [56], where a similar calculation was performed for
the (spherically symmetric) Schwarzschild black hole.
Here, the situation is complicated somewhat by the rotation
of the system (C � 0).
Recall that the residue is defined by Eq. (78). Here we

will use the overbar notation �m ¼ m�
!n to represent the

Regge pole value. To find the residue, we perturb the
azimuthal number slightly away from its Regge pole value,
m � �mþ � (where � is small), to determine the first-order
change in Ain

m!. Away from the RP value, the ‘‘global’’
wave function ansatz (43) is no longer valid: its continuity
breaks down near r 
 rc. Instead, we may find regular
solutions in an interior region close to r ¼ rc and match
these onto exterior solutions (in regimes r & rc and
r * rc), to obtain Ain

m! ¼ Oð�Þ to first order. In other
words, we combine the geodesic-expansion method with
a standard WKB approach.

1. Interior solution

Let us begin with the radial equation (25) and first make

the substitution uinm ¼ f�1=2XðrÞ, to obtain

d2X
dr2

þUðrÞX ¼ 0; (A1)

where

U ðrÞ ¼ f�2

��
!�Cm

r2

�
2 � f

�
m2 � 1=4

r2
� 7D2

4r4

�
þD4

r6

�
:

Now, to find a solution valid in the vicinity of r ¼ rc, we

make the change of variables r ¼ rc þ �!�1=2z, where

� � lc
4

ffiffiffiffiffi
2

rc

s
: (A2)

Substituting (A2) into (A1), with the assumption that ! is
large, brings us to the following equation,
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d2X
dz2

þ½z2�2iðnþ�þ1=2ÞþOð!�1=2Þ�X¼0; (A3)

where � � �i�rc=lc. Note that in our derivations we
make use of the following identities: r2c � Clc ¼ 1

2 l
2
c ¼

2ðr2c �D2Þ ¼ 2ðD2 � ClcÞ. The solutions of Eq. (A3) are
the parabolic cylinder functions Dnþ�ðð�1þ iÞzÞ and

Dnþ�ðð1� iÞzÞ. We use only the former solution, because

(as we shall see) it matches onto an ‘‘exterior’’ solution
which is purely ingoing at the horizon. That is, we choose

X ¼ Dnþ�ðð�1þ iÞzÞ: (A4)

2. Exterior solutions

In the exterior regimes r & rc and r * rc, we require a
pair of solutions u�ðrÞ which (i) are approximate solutions
to the radial equation in the large-! limit and (ii) have
well-defined ‘‘ingoing’’/‘‘outgoing’’ behavior in the limits
r� ! �1. To obtain these solutions, we start with an
ansatz of the form (43), specifically,

u�m ¼ �ðrÞ exp
�
�i

Z r

rc

�ðr0Þf�1ðr0Þdr0
�

(A5)

with � as defined in Eq. (44), and �ðrÞ of the form

� 

�
1� r

rc

�
n
expðS�0 ðrÞÞ: (A6)

To find explicit solutions, we expand the exponent � at
orders (i) !1 and (ii) !0, and (iii) obtain S�0 by solving an

equation like (49). After these steps [and finding some
cancellation between terms at stages (ii) and (iii)], we
reach the result

u�mðrÞ ¼
�jr� rcj
rþ rc

��N�1=2
�

r

rþ rc

�
e�i!r

�
r�D

rþD

�	i ~!D=2
;

(A7)

where ~! ¼ !�mC=D2.

3. Matching

Let us now introduce three solutions,

u> ¼ aþuþ þ a�u�; r * rc;

u0 ¼ Dnþ�ðð�1þ iÞzÞ; r� rc;

u< ¼ bþuþ; r & rc;

(A8)

where aþ, a�, and bþ are coefficients to be determined. To
match these solutions together in the transition regions, we
make use of the following asymptotic forms:

u0 �
�
2n=2e�i�n=4jzjneþiz2=2 z ! �1
2n=2e3i�n=4jzjneþiz2=2 þ ��ðnþ 1Þð2�Þ1=2jzj�ðnþ1Þ2�ðnþ1Þ=2e�3i�ðnþ1Þ=4e�iz2=2 z ! þ1 (A9)

and

u� � AF�ðBjzjÞ�N�1=2e�iz2=2; (A10)

with A ¼ 1=2, B ¼ �=½2rc!1=2�, and

F� ¼ exp

�
�i

�
!rc � ~!D

2
ln

�
rc �D

rc þD

���
: (A11)

By matching the asymptotic forms, it follows immediately
that

Aout
m!

Ain
m!

¼ aþ

a�
¼ ðF�Þ2B�2N2Ne3i�N=2

�ð2�Þ1=2�ðnþ 1Þ : (A12)

This leads us to the final (approximate) result for the
residue, given in Eq. (80).
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