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In the present paper, we focus on building simple nonperturbative analytical relativistic models of

magnetars. With this purpose in mind, we first develop a method for generating exact interior solutions to

the static and axisymmetric Einstein-Maxwell-hydrodynamic equations with anisotropic perfect fluid and

with pure poloidal magnetic field. Then, using an explicit exact solution, we present a simple magnetar

model and calculate some physically interesting quantities as the surface ellipticity and the total energy of

the magnetized star.
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I. INTRODUCTION

The soft gamma repeaters (SGR) are spectacular phe-
nomena occurring in the visible Universe. The giant flares
detected so far show that the peak luminosities are of order
1044–1046 erg=s. One of the most promising and widely
accepted explanations are the magnetars [1]. Magnetars are
believed to be neutron stars with an ultra strong magnetic
field responsible for the observed giant flares. The huge
amount of energy released in the giant flares can be ex-
plained by the existence of ultra strong magnetic fields
with strength of the order (or larger than) 1014–1015 Gauss
[2,3]. The giant flares SGR 0526� 66, SGR 1900þ 14
and SGR 1806� 20 detected so far reveal the existence of
characteristic quasi periodic oscillations in the range of
tenths of Hz to kHz [4,5]. These oscillations are believed to
be seismic vibrations of the magnetars. If the hypotheses is
true this will provide us with a tool to investigate the stellar
interior. That is why the quasi periodic oscillations were
intensively studied in the past years [6–15] (and references
therein).

The study of the stellar interior by the quasiperiodic
oscillations require adequate models of the internal struc-
ture of the magnetars. In general, our understanding of
magnetars as soft gamma repeaters is intimately related
to the understanding their internal structure and the con-
struction of adequate models within general relativity.
Clearly, the building of completely realistic magnetar mod-
els is a formidable task. However, various simple relativ-
istic models, more or less realistic, could be built and these
models provide us with valuable physical insight into the
internal structure of magnetars [16–25]. The existing
simple magnetar models are based on Einstein-Maxwell
equations coupled to the perfect fluid hydrodynamical
equations. In modeling magnetar equilibrium configura-
tions two main approaches have been followed so far. The
first approach is to numerically solve the coupled systems
of equations [16,17,20,22]. The second approach is

perturbative—magnetar equilibrium configurations are
studied by using perturbative techniques, i.e. the
Einstein-Maxwell-hydrodynamic equations are solved by
linearizing them about a known static and spherically
symmetric background solution of Einstein-hydrodynamic
equations and then expanding the perturbed equations in
tensor harmonics [18,19,21,23–25]. Because of the linear
character of the perturbative equations, one can consider in
a relatively simple manner more complicated magnetic
field configurations as the simultaneous presence of poloi-
dal and toroidal magnetic fields.
In the present paper, we also address the problem of

constructing equilibrium configurations of neutron stars
with ultra strong magnetic fields within the framework of
general relativity. Contrary to the previous approaches
mentioned above, our approach here is fully analytical
and nonperturbative and based on exact solutions. Exact
solutions provide a route to better and deeper understand-
ing of the inherent nonlinear character of gravity and its
interaction with matter. On the other hand, the exact solu-
tions could serve as tests for checking the computer codes
which is important for the advent of numerical relativity.
More precisely, in this paper we find exact interior solu-
tions to the coupled Einstein-Maxwell-hydrodynamic
equations describing static (nonrotating) equilibrium con-
figurations of strongly magnetized neutron stars. The in-
teraction of the neutron star fluid with the magnetic field is
also taken into account to some extent.

II. SETTING OF THE PROBLEM AND
EXACT SOLUTIONS

Our starting point is the coupled Einstein-Maxwell-
hydrodynamic equations

R��¼8�

�
T���1

2
Tg��

�
þ2

�
F��F�

��1

4
F2g��

�
; (1)

r�F
�� ¼ 4�J�; (2)

r½�F��� ¼ 0; (3)*yazad@phys.uni-sofia.bg

PHYSICAL REVIEW D 85, 044030 (2012)

1550-7998=2012=85(4)=044030(6) 044030-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.044030


where T�� and TEM
�� ¼ 1

4� ðF��F�
� � 1

4F
2g��Þ are the

energy-momentum tensors of the neutron matter and the
electromagnetic field, respectively. J� is the current
which sources the electromagnetic field.

Analytically solving of the coupled Einstein-Maxwell-
hydrodynamic equations in the general case is a desperate
task and therefore we need some simplifying assumptions.
We will assume that the configurations (and the spacetime
itself) are strictly static (nonrotating) and axially symmet-
ric. In mathematical terms, our assumptions mean that
there exist one hypersurface orthogonal timelike Killing
vector � and one spacelike axial Killing vector �, commut-
ing with � and with closed periodic orbits shrinking down
to zero on the axis of symmetry. In adapted coordinates, the
Killing vectors can be written in the usual form � ¼ @=@t
and � ¼ @=@� where t is the time coordinate and � is the
azimuthal angle around the axis of symmetry. Our geomet-
rical assumptions impose restrictions on the possible
configurations of the electromagnetic field and the
energy-momentum tensor of the neutron star matter.
More precisely, they require the absence of meridional
convective currents and electric field. The geometric as-
sumptions require also the four-velocity of the neutron
matter to be aligned with the timelike Killing vector �.

The invariance of the Maxwell two-form F under the
axial Killing field � and the absence of meridional currents
allow us to introduce a magnetic potential � defined by
d� ¼ i�F. The Maxwell two-form then is given by

F ¼ e�2u� ^ d�; (4)

where e2u ¼ gð�;�Þ. The magnetic field B measured by a
comoving observer with four-velocity v� is B ¼ iv ? F
where ? is the Hodge dual.

In the models studied so far, the neutron matter has
been described by an isotropic perfect fluid with T�� ¼
ð�þ pÞv�v� þ pg�� where �, p and v� are the energy

density, the pressure and the four-velocity of the fluid. The
description of the neutron star matter as an isotropic perfect
fluid is not completely satisfactory because it neglects the
interaction of the neutron matter with the ultra strong
magnetic field. This problem is highly nontrivial and ex-
tremely difficult to be solved completely. From first prin-
ciples, it is clear that the strong magnetic field yields
anisotropy in the neutron star matter and this should be
taken into account in the energy-momentum tensor of the
matter. Indeed, since the neutron has anomalous magnetic
momentum the neutron matter will react to the strong
magnetic field by polarizing itself due to the coupling of
the neutron spin to the magnetic field. Things can get even
more complicated if we take into account the possible
manifestation of some quantum effects like the spin-spin
interactions which can drive the system to some kind
of ferromagnetic-like state. In this context we should also
note that the origin of the ultra strong magnetar
magnetic fields is not completely clear and some sort of

ferromagnetic-like phase transition could give contribu-
tion. Even more, the estimated magnetic field on the
magnetar surfaces mentioned above exceeds in fact the
QED critical magnetic field value Bc � 1013G which
shows that the nonlinear Euler-Heisenberg electrodynam-
ics should be probably used instead of the linear Maxwell
electrodynamics. The above arguments show that the
proper description of the strong magnetic fields in the
magnetars and the properties of the neutron matter require
subtle and extremely complicated microscopic theory. The
microscopic description of the magnetars is far beyond
the scope of this paper, where we are interested in the
averaged macroscopic description which is astrophysically
relevant.
From a macroscopic point of view, we can describe the

interaction (response) of the neutron matter with (to) the
ultra strong magnetic field by adding an anisotropic term to
the energy-momentum tensor of the isotropic perfect fluid.
The anisotropy will manifest itself in different pressures
along the meridional planes of magnetic field and in trans-
verse direction. Indeed, according to the statistical physics
[26], the pressure along the magnetic field is p ¼ ��
while in transverse direction ptr ¼ ��� B� ¼ p� B�
where � is the grand canonical potential and � is the
magnetization. In general, the dependencies �ðBÞ and
�ðBÞ should be highly nonlinear and can be determined
only by the microscopic theory. In an ultra strong magnetic
field, as we mentioned, most of the neutron spins should be
oriented in the direction of the magnetic field which means
that �> 0. This shows that ptr <p in ultra strong mag-
netic field. As we will see later, the exact solutions predict
the same behavior for the transverse pressure for realistic
equations of state.
The only anisotropic term which we can add and which

is orthogonal to the meridional planes and consistent
with the geometrical symmetries we imposed, is of the
form 	eð�Þ�eð�Þ� where 	 is a scalar and eð�Þ� is the

unit vector along the axial Killing field �. In other words,
we consider the following neutron star matter energy-
momentum tensor

T�� ¼ ð�þ pÞv�v� þ pg�� þ 	eð�Þ�eð�Þ�: (5)

The energy-momentum tensor (5) can be also written in the
form

T ¼ �v � vþ ðpþ 	Þeð�Þ � eð�Þ
þ p½gþ v � v� eð�Þ � eð�Þ�; (6)

which shows that p is the fluid pressure in the meridional
planes where the magnetic field lays and ptr ¼ pþ 	 is
the pressure in direction orthogonal to the meridional
planes and therefore orthogonal to the magnetic field.
Armed with the energy-momentum tensor (5) we can

write down the dimensionally reduced equations. Here we
will perform the dimensional reduction with respect to the
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spacelike axial Killing vector �. For this purpose we need
to introduce the three-dimensional Lorentzian metric

H ¼ e2ug� � � �; (7)

where e2u ¼ gð�;�Þ. In local coordinates, Eq. (7) can be
written in the form

ds2 ¼ g��dx
�dx� ¼ e2ud�2 þ e�2uHijdx

idxj: (8)

The covariant derivative associated with the metric Hij

will be denoted by Di. Then for the reduced system of
equations we obtain

DiD
iu ¼ �4�e�2uð�� pÞ � e�2uDi�Di�� 4�	e�2u;

(9)

R ðHÞij ¼ 8�ð�þ pÞvivj þ 8�ð�� pÞe�2uHij

þ 2DiuDjuþ 2e�2uDi�Dj�; (10)

Diðe�2uDi�Þ ¼ 4�e�4uJ�; (11)

along with the contracted Bianchi identity

ð�þ pÞDiUþDip ¼ �e�2uJ�Di�þ 	Diu: (12)

Here, RðHÞij is the Ricci tensor with respect to the three-

metric Hij, e
2U ¼ �gð�; �Þ and J� ¼ ��J�.

Our main task now is to solve the system of coupled
partial differential equations (9)–(12). Our strategy for
solving (9)–(12) is to ‘‘add nonlinearly’’ magnetic field
to a known static and axisymmetric solution to Einstein-
hydrodynamic equations (i.e. without magnetic field) de-
scribed by the set f�0; p0; v0

i ; u
0; H0

ijg. In order to do so we

partially follow [27], where a method for generating exact
charged interior solutions was developed. We shall as-
sume1 that u and � depend on the space coordinates
through one function 
, i.e. u ¼ uð
Þ and � ¼ �ð
Þ.
Substituting into Eq. (10), we find

R ðHÞij ¼ 8�ð�þ pÞvivj þ 8�ð�� pÞe�2uHij

þ 2

��
du

d


�
2 þ e�2u

�
d�

d


�
2
�
Di
Dj
: (13)

If we impose the relations

Hij ¼ H0
ij; 
 ¼ u0; � ¼ �0e2uð
Þ�2
;

p ¼ p0e2uð
Þ�2
; vi ¼ e
�uð
Þv0
i

(14)

and

d�

d

¼ �euð
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
duð
Þ
d


�
2

s
; (15)

we obtain that Eq. (10) is automatically satisfied since
f�0; p0; v0

i ; u
0; H0

ijg is a solution to the static, axisymmetric

Einstein-hydrodymanic equations by definition. Then we
can use Eqs. (9) and (11) to find 	 and J�:

	¼�ð�0�p0Þe2uð
Þ�2


�
1�duð
Þ

d


�

�e2uð
Þ

4�

�
d2uð
Þ
d
2

þe�2uð
Þ
�
d�ð
Þ
d


�
2
�
Di
D

i
; (16)

J� ¼ � d�ð
Þ
d


ð�0 � p0Þe2uð
Þ�2


þ e4uð
Þ

4�

d

d


�
e�2uð
Þ d�ð
Þ

d


�
Di
D

i
: (17)

It can be checked that Eq. (12) is automatically satisfied.
Let us summarize the results in the following:
Proposition Let f�0; p0; v0

i ; u
0 ¼ 
;H0

ijg be a solution to
the Einstein-hydrodynamic equations with isotropic per-
fect fluid and uð
Þ is an arbitrary function of 
 with

ðduð
Þd
 Þ2 � 1. Then f�; p; 	; vi; Hij ¼ H0
ij; uð
Þ;�ð
Þ; J�g

given by (14)–(17) form a solution to the Einstein-
Maxwell-hydrodynamic equations (9)–(12).
This proposition allows to construct exact interior solu-

tions with arbitrary equation of state for the background
solution. The only exception is the case with stiff equation
of state �0 ¼ p0 which is very special and will not be
considered here.
The four-dimensional metric can be easily recovered

form the data we have. Namely, if

ds20 ¼ e2
d�2 þ g0ijdx
idxj (18)

is the spacetime metric of the Einstein-hydrodynamic so-
lution, then

ds2 ¼ e2uð
Þd�2 þ e�2uð
Þþ2
g0ijdx
idxj (19)

is the spacetime metric of the Einstein-Maxwell-
hydrodynamic solution,2 i.e of the magnetized solution.
From a physical point of view, we have to impose some

restrictions on the functional dependence u ¼ uð
Þ. More

1In fact, the assumption that u and � depend on the spatial
coordinates through one function 
 can be relaxed at the begin-
ning. We may follow another approach to the problem. We may
use the SLð2; RÞ symmetries of the ‘‘vacuum part’’ of the
equations, i.e. the isometries of the two-dimensional metric
dl2 ¼ du2 þ e�2ud�2. In order to generate exact solutions to
our equations, we may impose the vacuum symmetries on the
whole system by requiring the fluid terms in (13) to be invariant
under the vacuum symmetries. In this way, we generate magne-
tized solutions to our system from known solutions without
magnetic field. Within this approach, the functions u and � of
the magnetized solutions also depend only on the function u0 ¼

 of the seed solution. Since the accent of the present paper is on
astrophysics, we follow a more ‘‘phenomenological approach’’
without involving too much mathematics.

2Indeed, taking into account thatHij ¼ H0
ij we can expressHij

in the form Hij ¼ H0
ij ¼ e2u

0
g0ij ¼ e2
g0ij. Substituting then into

Eq. (8), we obtain Eq. (19).
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precisely, in order for the new solution to possess a well-
defined axis of symmetry, the function uð
Þ should be of
the form

uð
Þ ¼ 
þ fðe2
Þ; (20)

where fð
Þ is a regular function with fð0Þ ¼ 0. In this way,
the new solution will inherit the axis of symmetry from the
background solution used for its generation.

III. EXPLICIT EXACT SOLUTION

Now we consider a physically interesting and realistic
explicit solution with 	 and J� vanishing on the star

surface. The solution is obtained by requiring uð
Þ and
�ð
Þ to satisfy the equations of the affinely parameterized
geodesics of the two-dimensional metric dl2 ¼
du2 þ e�2ud�2, i.e. the equations3

d2uð
Þ
d
2

þ e�2uð
Þ
�
d�ð
Þ
d


�
2 ¼ 0; (21)

d

d


�
e�2uð
Þ d�ð
Þ

d


�
¼ 0: (22)

This requirement considerably simplifies Eqs. (16) and
(17). The solution of the above equations is

e2uð
Þ ¼ e2


ð1þ b2e2
Þ2 ; (23)

�ð
Þ ¼ b
e2


1þ b2e2

; (24)

where b is an arbitrary parameter.4 One can see that uð
Þ is
of the form (20) and therefore the solution has a well-
defined axis of symmetry. The physical meaning of the
parameter b can be uncovered as follows. For the strength
of the magnetic field, we have

~B 2 ¼ 1

2
F2 ¼ e�2


�
d�ð
Þ
d


�
2
g0ij@i
@j


¼ 4b2

ð1þ b2e2
Þ4 g
0ij@ie


@je

: (25)

Taking into account the space is locally Euclidian in the
small neighborhood of the axis and the fact that e2
jaxis ¼
0, it is not difficult to find the strength B0 of the magnetic
field on the axis

B2
0 ¼ 4b2: (26)

In fact, B0 is also the strength of the magnetic field on the
north or south pole of the star surface. So the parameter b
can be interpreted as being one half of the north pole
magnetic field strength, i.e. b ¼ 1

2B0.

In order to be more specific, we will consider a spheri-
cally symmetric background solution. Also, we will
present the background solution in the widely used
Schwarzschild coordinates r and � with

g0�� ¼ r2; g0�� ¼ e2
 ¼ r2sin2�: (27)

Substituting then in the general formulae of the previous
section, we obtain the following magnetized solution:

ds2¼�2ðg0ttdt2þg0rrdr
2þr2d�2Þþ��2r2sin2�d�2; (28)

� ¼ ��2�0; p ¼ ��2p0; (29)

� ¼ 1

2
��1B0r

2sin2�; (30)

	 ¼ � 1

2
B2
0�

�3ð�0 � p0Þr2sin2�; (31)

J� ¼ �B0�
�4ð�0 � p0Þr2sin2�; (32)

where

� ¼ e
�uð
Þ ¼ 1þ b2e2
 ¼ 1þ 1

4
B2
0r

2sin2�: (33)

The nonzero components of the magnetic field are

Br ¼ �B0�
�1

ffiffiffiffiffiffiffi
g0rr

q
cos�; (34)

B� ¼ B0�
�1 r sin�ffiffiffiffiffiffiffi

g0rr
p : (35)

We see that when the background solution has a well-
defined boundary at r ¼ R corresponding to the star sur-
face where p0ðRÞ ¼ 0, the same is true for the magnetized
solution, i.e. pðRÞ ¼ 0 since p ¼ ��2p0. Moreover, if �0

also vanishes on the star surface the same holds for 	 and
J� according to (31) and (32). As we should expect, the

anisotropy pressure 	 is yielded by the magnetic field and
vanishes for zero magnetic field. Also, as we discussed in
Sec. II, the transverse pressure ptr ¼ pþ 	 should be
smaller than p in strong magnetic field. Indeed, we see
that for realistic equations of state for the background
solutions, i.e. for �0 � p0, we have 	 � 0.
In order to describe the way in which the magnetic field

deforms the star, we consider the space metric on the star
surface, namely

dl2s ¼ R2ð�2
sd�

2 þ��2
s sin2�d�2Þ; (36)

where �s ¼ 1þ 1
4B

2
0R

2sin2�. The circumference about

the equator (� ¼ �=2) is

3In more detailed description, these equations are obtained as
follows. We consider a two-dimensional space with coordinates
x� ¼ ðu;�Þ and diagonal metric G�� ¼ diagð1; e�2uÞ. The af-
finely parameterized geodesics of the metric G��, with affine
parameter 
, are then d2x�

d
2 þ �
�
��

dx�

d

dx�

d
 ¼ 0 where �
�
�� are the

Cristoffel symbols. Calculating explicitly ��
�� for the metric

G�� and substituting into the geodesic equations we obtain
Eqs. (21) and (22).

4The other parameter has been appropriately chosen in order to
have a well-defined axis.
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Le ¼
Z 2�

0
��1

s Rd� ¼ 2�R

1þ 1
4B

2
0R

2
; (37)

while for the polar circumference (� ¼ const) we have

Lp ¼ 2
Z �

0
�sRd� ¼ 2�R

�
1þ 1

8
B2
0R

2

�
: (38)

The surface ellipticity "surf is given by

"surf ¼
Le � Lp

Lp

(39)

and "surf < 0 for B0 � 0. Therefore, for the solution under
consideration the magnetic field elongates the star along
the magnetic field—the star is prolate in shape.5 For
small B2

0R
2 we have "surf � � 3

8B
2
0R

2. Here we should

note that the numerical and perturbative models with
pure poloidal magnetic field predict positive surface ellip-
ticity. The reason for that discrepancy is the fact that the
perturbative and numeric models consider the neutron star
matter as pure isotropic perfect fluid without taking into
account the anisotropy caused by the interaction with
magnetic field.

The next physical quantity we shall consider is the total
energy M concentrated in the star

M ¼ � 1

4�

Z
Star

Rt
t

ffiffiffiffiffiffiffi�g
p

d3x

¼
Z
Star

�
�þ 3pþ 	þ 1

4�
~B2
� ffiffiffiffiffiffiffi�g
p

d3x: (40)

Taking into account (14) and (16), we find

M ¼ M0 þ 1

2
B2
0

Z R

r¼0

Z �

�¼0

�
��2

�
sin2�

g0rr
þ cos2�

�

� 2���1ð�0 � p0Þr2sin2�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jg0ttjg0rr
q

r2 sin�drd�;

(41)

where

M0 ¼
Z
Star

ð�0 þ 3p0Þ
ffiffiffiffiffiffiffiffiffiffi
�g0

q
d3x (42)

is the total energy of the background solution. The explicit
form of M depends of the background solution but we can
give a good approximation by using the simple
Schwarzschild interior solution [28,29] as a representative
example of a background solution. The Schwarzschild
interior solution is characterized by a constant energy

density �0 ¼ 3M0=4�R
3 and the metric and the pressure

are given by

ds20 ¼ �
�
3

2

�
1� 2M0

R

�
1=2 � 1

2

�
1� 2M0

R3
r2
�
1=2

�
2
dt2

þ dr2

1� 2M0

R3 r2
þ r2ðd�2 þ sin2�d�2Þ;

p0 ¼ 3M0

4�R3

� ð1� 2M0

R3 r2Þ1=2 � ð1� 2M0

R Þ1=2
3ð1� 2M0

R Þ1=2 � ð1� 2M0

R3 r2Þ1=2
�
:

(43)

The mass-radius ratio satisfies the inequality 2M0=R <
8=9. Substituting the interior Schwarzschild solution into
(41) and performing calculations up to terms in the order
B2
0R

2, we find

M¼M0þ1

3
B2
0R

3

�
1�1

5
B2
0R

2

��
1�2M0

R

�
þOððB0RÞ4Þ:

(44)

IV. CONCLUSION

In this paper, we presented a simple method for generat-
ing exact interior solutions to the static and axisymmetric
Einstein-Maxwell-hydrodynamic equations with aniso-
tropic perfect fluid. On this base, we can build simple
nonperturbative analytical relativistic models of the mag-
netars. To the best of our knowledge these are the first
nonperturbative analytical relativistic models of the mag-
netars with arbitrary equation of state. As an illustration,
we gave an explicit realistic exact interior solution for the
magnetars and on its base we calculated the surface ellip-
ticity of the star and its energy.
The present work could be extended in several

directions. It would be interesting and important to inves-
tigate more general configurations of the magnetic
field, i.e. a mixture of poloidal and toroidal magnetic fields.
The next interesting extension is to add rotation to the star.
The mentioned possible extensions are very challenging
due to the highly nonlinear character of the Einstein
equations. We hope, however, that some progress could
be made.
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proposition may give positive ellipticity. In those cases, however,
the current J� and anisotropy pressure 	 do not vanish on the
star surface.
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