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We extend the discrete Regge action of causal dynamical triangulations to include discrete versions of

the curvature squared terms appearing in the continuum action of ð2þ 1Þ-dimensional projectable

Hořava-Lifshitz gravity. Focusing on an ensemble of spacetimes whose spacelike hypersurfaces are

two-spheres, we employ Markov chain Monte Carlo simulations to study the path integral defined by this

extended discrete action. We demonstrate the existence of known and novel macroscopic phases of

spacetime geometry, and we present preliminary evidence for the consistency of these phases with

solutions to the equations of motion of classical Hořava-Lifshitz gravity. Apparently, the phase diagram

contains a phase transition between a time-dependent de Sitter-like phase and a time-independent phase.

We speculate that this phase transition may be understood in terms of deconfinement of the global

gravitational Hamiltonian integrated over a spatial two-sphere.
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I. CONNECTIONS

An intriguing body of evidence hinting at a deep
connection between Hořava-Lifshitz gravity1 and causal
dynamical triangulations has recently accumulated in the
literature. First, one of us demonstrated consistency of the
spectral dimension computed in Hořava-Lifshitz gravity
with the spectral dimension measured in causal dynamical
triangulations in 3þ 1 dimensions [1]. Benedetti et al.
then verified within causal dynamical triangulations [2]
the prediction of Hořava-Lifshitz gravity for the behavior
of the spectral dimension in 2þ 1 dimensions [1]. Next,
Ambjørn et al. exhibited the remarkable resemblance of
the phase diagram of causal dynamical triangulations [3] to
the phase diagram of Lifshitz matter systems [4] as exem-
plified by the Lifshitz scalar field [5]. These authors and
one of us also conjectured [3,5] that the apparent tricritical
point of the former phase diagram could correspond to the
tricritical limit of Hořava-Lifshitz gravity with dynamical
critical exponent z equal to the dimension of space. Then,
both Benedetti et al. and Ambjørn et al. noted the com-
patibility of certain solutions of Hořava-Lifshitz gravity
with the minisuperspace model fit to the expectation value

of the geometries emerging from causal dynamical trian-
gulations [2,3]. Recently, Sotiriou et al. successfully fit the
behavior of the spectral dimension of causal dynamical
triangulations at intermediate scales to a dispersion rela-
tion derived from Hořava-Lifshitz gravity [6]. Just days
ago, Budd argued that the kinetic term in the semiclassical
effective action of causal dynamical triangulations exhibits
a Hořava-Lifshitz-like form [7].
This mounting evidence motivated us to extend the

Regge action—or, more precisely, the discrete path integral
measure—used in causal dynamical triangulations to in-
clude dependence on the broader class of terms appearing
in the action of Hořava-Lifshitz gravity. Our purpose is
threefold: first, to test the applicability of causal dynamical
triangulations to modified classical theories of gravitation;
second, to explore quantum Hořava-Lifshitz gravity with
nonperturbative techniques; and, third, to illuminate fur-
ther the links between Hořava-Lifshitz gravity and causal
dynamical triangulations. As an initial step toward these
goals, we have begun to investigate an appropriate reduc-
tion of ð2þ 1Þ-dimensional projectable Hořava-Lifshitz
gravity using causal dynamical triangulations. This model,
though removed from the phenomenologically interesting
case of 3þ 1 dimensions, serves as a simplified yet non-
trivial beginning for our research.
After briefly introducing the formalisms of Hořava-

Lifshitz gravity and causal dynamical triangulations in
Sec. II, we explain our adaptation of causal dynamical
triangulations to Hořava-Lifshitz gravity in Sec. III.
We present the results of our initial numerical studies—
evidence for the existence of extended phases of geometry,
the structure of these phases, and their relation to the
classical solutions—in Sec. IV. Finally, we summarize
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our conclusions and discuss ongoing and future work in
Sec. V. To streamline our presentation, we relegate to
Appendix A the construction of the relevant classical solu-
tions of Hořava-Lifshitz gravity, and to Appendix B certain
geometric properties of causal dynamical triangulations.

II. BACKGROUND

A. Hořava-Lifshitz gravity

Hořava-Lifshitz gravity is a field theory of the dynami-
cal metric on spacetime manifolds that carry the additional
structure of a preferred foliation by spacelike hypersurfa-
ces. The relevant set of gauge symmetries is then the group
DiffFðMÞ of diffeomorphisms of the spacetime manifold
M that preserve the preferred foliation F. The foliation
structure leads to one important novelty: the possibility of
anisotropic scaling with a nontrivial dynamical scaling
exponent z measuring the degree of anisotropy between
space and time. In Minkowski spacetime the relativistic
scaling is thus replaced by the anisotropic scaling

t ! ~t ¼ bzt; (2.1a)

x ! ~x ¼ bx (2.1b)

for constant b > 0. Starting with z > 1 at short distances
markedly improves the ultraviolet behavior of the theory,
potentially rendering it power-counting renormalizable.

One might be tempted to rewrite this theory in a man-
ifestly relativistic fashion by integrating in the remaining
part of the group DiffðMÞ of full spacetime diffeomor-
phisms. This procedure leads to a reformulation of the
model as a specific scalar-tensor theory with higher-
derivative interactions in which the spacelike hypersurfa-
ces of constant scalar field dynamically determine the
leaves of the foliation F. Such a relativistic rewriting is
only equivalent to the original nonrelativistic formulation
at the classical level with, moreover, subtle regularity
conditions on the scalar field’s dynamics. At the quantum
level the relativistic rewriting immediately besets the
theory with the notorious problem of time, whereas the
nonrelativistic nature of the original formulation of
Hořava-Lifshitz gravity potentially renders the spacetime
metric’s dynamics more directly compatible with quantum
mechanics. Additionally, as we shall show, the original
formulation of Hořava-Lifshitz gravity is nicely suited to
the framework of causal dynamical triangulations, which
also utilizes a preferred foliation structure in the micro-
scopic definition of the path integral for gravity.

In a local smooth coordinate chart ðt;xÞ adapted to the
preferred foliation F, DiffFðMÞ consists of all reparamet-
rizations of the form

t ! ~t ¼ fðtÞ; (2.2a)

x ! ~x ¼ �ðt;xÞ (2.2b)

for arbitrary functions f and � . Note that, although
reparametrizations of the space coordinates may be time

dependent, reparametrizations of the time coordinate must
be space independent. Given its preferred foliation, the
structure of Hořava-Lifshitz gravity is naturally discussed
in the Arnowitt-Deser-Misner formalism [8]. In this for-
malism the spacetime metric tensor gðt;xÞ is decomposed
into the metric tensor �ðt;xÞ on a spacelike hypersurface�
of constant time coordinate t, the shift vector Nðt;xÞ, and
the lapse function Nðt;xÞ such that one can reassemble the
standard line element as

ds2 ¼ �N2ðt;xÞdt2 þ �ijðt;xÞ½dxi þ Niðt;xÞdt�
� ½dxj þ Njðt;xÞdt�: (2.3)

Note, however, that recombining the spatial metric tensor,
the shift vector, and the lapse function into the spacetime
line element (2.3) is somewhat misleading since, in the
regime with z > 1, different terms contributing to ds2 carry
different scaling dimensions.
The shift vector and the lapse function play the role of

gauge fields associated with DiffFðMÞ. Since the time
coordinate reparametrizations (2.2a) are independent of
the space coordinates, a natural choice is to also restrict
the corresponding gauge field Nðt;xÞ to be only a function
of the time coordinate. We choose to make this restriction,
yielding the so-called projectable version of the theory.
(See, for instance, [9–13].) Of course, we have interest in
studying the more general nonprojectable version in which
the lapse function is a spacetime field and of which the
projectable version is a dynamical limit. The gauge symme-
tries then permit new terms in the action involving spatial
derivatives of the lapse function; finding the appropriate
realization of such terms in the framework of causal dy-
namical triangulations is beyond the present work’s scope.
We instead focus on the projectable version of Hořava-
Lifshitz gravity, which has a particularly clear translation
into the language of causal dynamical triangulations.
Employing the Arnowitt-Deser-Misner decomposition

of the metric tensor, we now construct the action of
projectable Hořava-Lifshitz gravity. We aim to build a
power-counting renormalizable unitary classical theory of
gravitation. Even in relativistic gravity, including higher
curvature terms can render the theory renormalizable
[14,15]; typically, however, such terms come at the cost of
sacrificing perturbative unitarity and propagating unphys-
ical degrees of freedom [16]. These issues stem from the
inclusion of higher temporal derivative terms, which nec-
essarily accompany higher spatial derivative terms in a
relativistic theory. By only permitting higher spatial deriva-
tives, we can, in principle, avoid problemswith perturbative
unitarity and unphysical degrees of freedom.Working in the
Arnowitt-Deser-Misner formalism allows for the rather
straightforward inclusion of higher spatial derivatives and
exclusion of higher temporal derivatives, as we desire in
constructing the action of Hořava-Lifshitz gravity.
We build the general action in d spatial dimensions as

the sum of a kinetic term quadratic in temporal derivatives
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and a potential term of mass dimension 2d in spatial
derivatives. The dynamical critical exponent z thus equals
d. Accordingly, we form the kinetic term from invariants of
@t�ðt;xÞ. This derivative alone is not covariant under
DiffFðMÞ, but the extrinsic curvature tensor Kðt;xÞ of a
spacelike hypersurface � satisfies this criterion. With
Kðt;xÞ having components

Kijðt;xÞ ¼ 1

2NðtÞ ½@t�ijðt;xÞ � riNjðt;xÞ � rjNiðt;xÞ�
(2.4)

for the covariant derivative r associated with �ðt;xÞ, the
most general kinetic term invariant under DiffFðMÞ is

1

16�G

Z
M

dtddx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
NðtÞ½Kijðt;xÞKijðt;xÞ��K2ðt;xÞ�:

(2.5)

Here the parameter � arises from the generalized DeWitt
supermetric compatible with the theory’s gauge symme-
tries, and Kðt;xÞ is the trace of the extrinsic curvature
tensor Kðt;xÞ [10,17].

We form the potential term from invariants of �ðt;xÞ and
its spatial derivatives. The most general potential term is

1

16�G

Z
M

dtddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
NðtÞV½�ðt;xÞ�; (2.6)

where V½�ðt;xÞ� is a scalar functional of the spatial metric
tensor and its spatial derivatives up to order 2d. Putting
together (2.5) and (2.6), the action of projectable Hořava-
Lifshitz gravity is

SHL½gðt;xÞ�¼ 1

16�G

Z
M

dtddx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
NðtÞ

�fKijðt;xÞKijðt;xÞ��K2ðt;xÞ�V½�ðt;xÞ�g:
(2.7)

Note that the coupling constantG is related but not equal to
the Newton constant GN: the low energy Newton constant
GN is determined by rescaling the time coordinate by an
effective speed of light factor selected so that the term
linear in the spatial Ricci scalar within V½�ðt;xÞ� is
correctly normalized with respect to the kinetic term
[10,17]. This rescaling also dictates how the constant
term in V½�ðt;xÞ� relates to the low energy cosmological
constant.

For d > 2, with the anticipated z ¼ d scaling at short
distances, there is a proliferation of marginal and relevant
contributions to the potential term; for d ¼ 2, however, the
most general action containing only the marginal and
relevant terms for z ¼ 2 is quite compact:

SHL½gðt;xÞ� ¼ 1

16�G

Z
M

dtd2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
NðtÞ

� ½Kijðt;xÞKijðt;xÞ � �K2ðt;xÞ
� �R2

2ðt;xÞ þ �R2ðt;xÞ � 2�� (2.8)

with R2ðt;xÞ the Ricci scalar of the spatial metric tensor
�ðt;xÞ and the coupling constant � related to the low
energy cosmological constant by the rescaling described
above. The potential term’s relative simplicity in
ð2þ 1Þ-dimensional projectable Hořava-Lifshitz gravity
further motivates our initially studying this case.
The equations of motion (A2) derived from variation of

the action (2.8) with respect to the spatial metric tensor are
independent of the coupling constant �: for d ¼ 2 the R2

term is a total derivative, and the Gauss-Bonnet theorem
determines its integral over a spacelike hypersurface � of
the preferred foliation in terms of the Euler number of �.
Similarly, the equations of motion (A1) obtained from
variation of the action (2.8) with respect to the shift vector
are also insensitive to �. The coupling constant � does,
however, appear in the equation of motion derived from
variation of the action (2.8) with respect to the lapse
function. Since the lapse function only depends on the
time coordinate, its equation of motion takes the form of
a spatially integrated Hamiltonian constraint

H ? ¼ 0 (2.9)

for the global Hamiltonian

H? ¼
Z
�
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
½Kijðt;xÞKijðt;xÞ � �K2ðt;xÞ

þ �R2
2ðt;xÞ � �R2ðt;xÞ þ 2��: (2.10)

At this stage there is an additional choice to make
beyond that of restricting to projectable Hořava-Lifshitz
gravity. Recall the distinction that arises between noncom-
pact and compact spatial topology when imposing the local
Hamiltonian constraint in relativistic theories of gravity.
In the former case, after imposing appropriate asymptotic
falloff conditions and accounting for possible boundary
contributions, the zero mode H? of the local
Hamiltonian constraint does not vanish on physical states.
Instead, this mode is one of the conserved asymptotic
charges, namely, the total energy. In the latter case the
zero mode H? of the local Hamiltonian constraint van-
ishes on all physical states since the relativistic gauge
symmetries mix it together with the other gauge symmetry
generators.
Now, in Hořava-Lifshitz gravity, as pointed out in

[5,18,19], this situation is somewhat different: while the
case of noncompact spatial topology remains essentially
unchanged, a novelty arises in the case of compact spatial
topology. Imposing the vanishing of H? on physical
states is not mandatory: either one may treat H? as a
gauge symmetry generator and thus impose the condition
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H? ¼ 0, or one may treat H? as a conserved global
charge measuring the energy levels of physical states in the
Hilbert space. Of course, the second option requires us to
check that this Hamiltonian’s spectrum is bounded from
below on physical states. This novel situation was explic-
itly encountered in [19] whose authors constructed from
bosonic systems on a rigid lattice the renormalization
group fixed points corresponding to the free field limit of
Hořava-Lifshitz gravity with z ¼ 2 and z ¼ 3. There the
specific choices that one could make at the level of the
microscopic lattice Hamiltonian gave rise to the option of
imposing or not imposing the condition H? ¼ 0 for the
effective low energy gravitons.

When we discretize the action (2.8) in Sec. III for use as
a functional on simplicial manifolds, we find that the
second option—treating H? as a conserved global
charge—appears more natural in the setting of causal
dynamical triangulations. The geometric restrictions de-
rived by employing simplices of fixed edge lengths suggest
that the lapse function has been effectively set to a con-
stant, though without leading in any discernible way to the
imposition of the constraint (2.9). Also, the R2 term with
coupling constant � in the action (2.8) does not affect any
observables for the topological reasons stated above. The
value ofH? does, however, depend on �, which suggests
that enforcing the constraint (2.9) is not completely con-
sistent. In Sec. IVC, where we compare the geometries
emerging from our numerical simulations to the classical
solutions for the constraint (2.9) not imposed, we find
evidence supporting our selection of the second option.
These comparisons are, moreover, not without weight: as
briefly discussed in [5] and further demonstrated in [20],
the classical phase diagram for the theory with variable
lapse differs significantly from that of the present setting.
The classical theory that we quantize in Sec. IV is thus
defined by the action (2.8) for fixed lapse.

B. Causal dynamical triangulations

The causal dynamical triangulations approach aspires to
define the continuum limit of a quantum theory of
gravity by appealing solely to those nonperturbative
tools applied with great success to the quantization
of local gauge field theories. (See [21,22] for reviews.) In
particular, the approach invokes a lattice regularization of
the path integral for gravity and then utilizes the renormal-
ization group to explore its continuum limit. In causal
dynamical triangulations one thus attempts to define this
path integral as the partition function of a statistical model
of dynamical geometry. (See [23,24] for recent reviews.)
As in several previous programs of lattice quantization of
gravity, the statistical ensemble of geometries is comprised
of simplicial manifolds triangulated by a fixed set of
ðdþ 1Þ-simplices. In 2þ 1 dimensions this set consists
of those three-simplices or tetrahedra pictured in
Fig. 1.

The novel feature of causal dynamical triangulations lies
in the imposition of an additional restriction on the geome-
tries permitted to enter the path integral: these simplicial
manifolds must possess a global foliation by spacelike
hypersurfaces of constant discrete time. The global folia-
tion was originally introduced to enable a Wick rotation
from Lorentzian to Riemannian signature. The causal
structure of a Lorentzian triangulation could thus be faith-
fully retained in its Wick rotated version, only the latter
triangulation being amenable to numerical analysis
[25–27]. A simplicial manifold is endowed with the folia-
tion structure as follows: every spacelike hypersurface, all
of a chosen fixed topology, is triangulated with equilateral
d-simplices, and then the vertices of adjacent spacelike
hypersurfaces are connected by timelike edges so as to
produce only the ðdþ 1Þ-simplices of the fixed set.
Spacelike edges have length squared l2SL ¼ a2, defining a

lattice spacing for the triangulation, and timelike edges
have length squared l2TL ¼ ��a2 for �> 0 [25,26]. Note
that our parameter � corresponds to the parameter �
typically used in the causal dynamical triangulations
literature.
More concretely, one aims to approximate the path

integral for general relativity,

Z½�ðtf;xÞj�ðti;xÞ� ¼
Z �ðtf;xÞ

�ðti;xÞ
Dgðt;xÞeiSEH½gðt;xÞ�; (2.11)

by the path sum

Z½�fj�i� ¼
X
T

1

CT
eiSR½T �: (2.12)

In (2.11) the path integral is taken over all physically
distinct spacetime metric tensors gðt;xÞ interpolating be-
tween the initial and final boundary geometries specified
by the spatial metric tensors �ðti;xÞ and �ðtf;xÞ, and SEH
denotes the Einstein-Hilbert action

SEH½gðt;xÞ�¼ 1

16�GN

Z
M

dtddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðt;xÞ

q
½Rðt;xÞ�2��:

(2.13)

In (2.12) the path sum is taken over all causal triangulations
T interpolating between the initial and final boundary

FIG. 1. From left to right: the (3, 1)-, (2, 2)-, and (1, 3)-
tetrahedra. The abscissa indicates the number of vertices on an
initial triangulated spacelike hypersurface, and the ordinate
indicates the number of vertices on the next triangulated space-
like hypersurface.
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geometries specified by the triangulations �i and �f

[25,26], and SR denotes the Regge action

SR½T � ¼ 1

8�GN

X
h2T

Ah�h � �

8�GN

X
s2T

Vs: (2.14)

Here, h is a ðdþ 1� 2Þ-dimensional hinge having
area Ah and deficit angle �h, and Vs is the spacetime
volume of a ðdþ 1Þ-simplex [28]. The measure factor 1

CT

is the inverse of the order of the automorphism group ofT ,
included to account for discrete symmetries arising in the
structure of T .

Before proceeding further with our discussion of causal
dynamical triangulations, we make a few clarifying
remarks on the implications of the above prescription for
regularizing the continuum path integral (2.11). The re-
striction to simplicial manifolds admitting a preferred
foliation effectively changes the path integral measure
and integration domain. Even though we continue to em-
ploy the Regge action, these changes may result in our
model belonging to a universality class different from that
of Euclidean dynamical triangulations. In 1þ 1 dimen-
sions, where the path sum (2.12) can be evaluated analyti-
cally, this is known to be the case [29]: by preventing the
birth of baby universes, the foliation requirement alters the
critical exponents, indicating that Euclidean and causal
dynamical triangulations occupy different universality
classes. In higher dimensions the same situation seems
very likely to hold true; otherwise, we should expect our
model to fall into one of the universality classes in which
no smooth macroscopic limit exists, and the spacetime
geometry exhibits a branched polymer or crumpled
behavior.

The change in the path integral measure and integration
domain may also translate into a change in our theory’s
effective action such that it no longer assumes the general
relativistic form. Recall that, although we may locally treat
the choice of a preferred foliation as a gauge choice, we
cannot generally make such a choice globally. A gauge
choice typically introduces a Jacobian into the path integral
measure, and a mismatch between the path integral mea-
sure and the gauge choice can lead to a breaking of the
gauge symmetry. Starting with the Regge action, the ques-
tion of whether counterterms sensitive to the preferred
foliation are generated thus remains open. If such counter-
terms appear, then the resulting effective action likely
corresponds to Hořava-Lifshitz gravity at some particular
values of its couplings. The Regge action’s bare coupling
constants GN and � are only indirectly related to the
continuum renormalized values of the Newton constant
and the cosmological constant at long distances, so we
must not naively identify the former with the latter.

Continuing with our discussion of causal dynamical
triangulations, the action (2.14) simplifies considerably
for the simplicial manifolds contributing to our ensemble
since only a small set of simplices with fixed geometries is

used to construct them. Still, the path sum (2.12) has
resisted all attempts at analytical computation for d > 1,
so exploration of its properties has primarily employed
numerical techniques. In particular, Markov chain
Monte Carlo methods are used to simulate the path sum
(2.12) [27,30–38]. To render the path sum (2.12) amenable
to such an analysis, we must first Wick rotate the real time
action (2.14) to imaginary time, a well-defined process
owing to the foliated structure of causal dynamical trian-
gulations. We perform the Wick rotation by analytically
continuing the parameter� in the lower half complex plane
[26]. For our case of interest—2þ 1 dimensions with
spacelike hypersurfaces having the topology of S2 and
periodic time coordinate having the topology of the one-
sphere S1—the Regge action becomes

SðEÞCDT ¼ �k0N0 þ k3N3 (2.15)

after Wick rotation and application of various topological
relations for � ¼ 1 [32]. Here,N0 is the number of vertices
andN3 is the number of three-simplices in the triangulation
T . The coupling constants k0 and k3 are related to the bare
couplings GN and � as

k0 ¼ a

4GN

; (2.16a)

k3 ¼ a3�

48
ffiffiffi
2

p
�GN

þ a

4GN

�
3

�
cos�1 1

3
� 1

�
: (2.16b)

We have thus transformed the path sum (2.12) into the
statistical partition function

Z½�fj�i� ¼
X
T

1

CT
e�SðEÞ

CDT
½T �: (2.17)

Computer simulations of the partition function (2.17) in
both 2þ 1 and 3þ 1 dimensions have thus far provided
considerable support for the existence of an extended phase
of geometry possessing not only a semiclassical limit on
large scales, but also a quantum regime on small scales
[2,27,30,32–39]. In particular, the average observed ge-
ometry matches well that of (possibly deformed)
Euclidean de Sitter spacetime at both the classical and
semiclassical levels [2,27,30,32–37,39]. Furthermore,
studies of the spectral dimension of this extended phase
of geometry have revealed an apparent dimensional reduc-
tion to effective two dimensionality on small scales
[2,38,39]. This phenomena of dynamical dimensional re-
duction—particularly, the extrapolated value of the mini-
mal dimensionality—has elicited comparisons of causal
dynamical triangulations to both the asymptotic safety
approach and Hořava-Lifshitz gravity. In the former theory
the effective change in the spectral dimension apparently
results from large anomalous dimensions near the non-
trivial fixed point, while in the latter theory the spectral
dimension flows to the short distance value of 2 as a result
of the anisotropic scaling near the Gaussian fixed point
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[1,40]. Further evidence for such dimensional reduction
has also surfaced in other approaches to the quantization of
general relativity [41].

As in Euclidean dynamical triangulations, additional
phases of geometry also emerge [42]. At first these phases
were viewed as unphysical, but current interpretations
favor their role as further phases in the vicinity of a multi-
critical fixed point [3]. Specifically, in both 2þ 1 and
3þ 1 dimensions there exists a phase characterized by
spacelike hypersurfaces that effectively decouple from
one another [32,34,38], and in 3þ 1 dimensions a second
additional phase, distinguished by its large Hausdorff di-
mension, appears [34,38]. Recently, Ambjørn et al. have
argued that the transition between this last phase and the
physical phase is of second order [31]. This finding raises
the possibility of rigorously defining a continuum limit of
causal dynamical triangulations.

III. A DISCRETE ACTION FOR
HO �RAVA-LIFSHITZ GRAVITY

We now derive a discrete form of the action (2.8) suit-
able for analysis with the techniques of causal dynamical
triangulations. As above, we assume a topology of
S2 � S1, primarily motivated by the relative ease of nu-
merically analyzing such compact spacetimes. As in the
lattice regularizations of local quantum field theories
[21,22], the precise details of the discretization do not
matter since universality ensures that many of the details
at the lattice spacing scale become irrelevant in the long
distance limit. Our primary goal in constructing a discrete
analogue of the action (2.8) is thus to build an action
sufficiently specific so that the continuum limit lies in the
universality class of Hořava-Lifshitz gravity yet suffi-
ciently generic so that the continuum limit does not depend
on all of the renormalized coupling constants in this uni-
versality class. Of course, we can only judge whether or not
we have achieved these goals once we have thoroughly
studied the quantum theory of the model defined below.

Working from the continuum action (2.8), we allow two
technical criteria to guide our construction of its discrete
version: first, the discrete action should manifestly reduce
to the Regge action used in causal dynamical triangulations
when the bare coupling constants � and � assume their
general relativistic values, and, second, the transfer matrix
corresponding to the discrete action defined on the space
of boundary geometries should yield a well-defined
Hamiltonian. These two criteria apply to the classical
discrete action constructed below. In the quantum theory
defined via the path integral based on this action, we
naturally anticipate a nontrivial relationship between the
bare coupling constants and the renormalized coupling
constants. Depending on this relationship, the quantum
theory’s long distance continuum limit may or may not
be relativistic.

To implement the first criterion, we use the Gauss-
Codazzi equation,

Rðt;xÞ ¼ R2ðt;xÞ � ½K2ðt;xÞ � Kijðt;xÞKijðt;xÞ�
þ total derivative; (3.1)

to rewrite the action (2.8) as

SHL½gðt;xÞ� ¼ 1

16�G

Z
M

dtd2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðt;xÞ

q
½Rðt;xÞ � 2��

þ 1� �

16�G

Z
M

dtd2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
NðtÞK2ðt;xÞ

� �

16�G

Z
M

dtd2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
NðtÞR2

2ðt;xÞ
(3.2)

up to irrelevant boundary terms. We neglect the term in the
action (2.8) with coupling constant � as it contributes only
an additive constant for the spacetime manifolds under
consideration. In this form the action (3.2) straightfor-
wardly reduces to the Einstein-Hilbert action (2.13) when
the coupling constants � and � take on their general
relativistic values of 1 and 0. We use the discrete action
(2.15) for the Einstein-Hilbert portion of the action (3.2),
leaving us the task of determining the discrete analogues of
the K2 and R2

2 terms. We construct these terms below,
postponing discussion of the second criterion.

A. Curvature squared terms in Regge calculus

There exist well-established prescriptions for construct-
ing the Ricci scalar and the trace of the extrinsic curvature
tensor in Regge calculus. The former is defined in terms of
deficit angles �h about ðdþ 1� 2Þ-dimensional hinges h
of a ðdþ 1Þ-dimensional simplicial manifold [28]:Z

M
dtddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðt;xÞ

q
Rðt;xÞ ¼ 2

X
h2T

Ah�h: (3.3)

The latter is defined in terms of angles c h between the
normal vectors to the two d-simplices intersecting at the
ðdþ 1� 2Þ-dimensional hinge h within the spacelike
hypersurface � of a ðdþ 1Þ-dimensional simplicial
manifold [43,44]:Z

�
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
Kðt;xÞ ¼ X

h2�

Ahc h: (3.4)

Technically, these curvatures have a distributional defini-
tion on the hinges, which complicates the construction of
curvature squared terms. In particular, simply taking the
square of (3.3) or (3.4) to define the discrete versions of the
R2
2 or K

2 terms leads to a mathematically ill-defined con-
tinuum limit [45]. Accordingly, we adhere to the philoso-
phy of [45,46] when building discrete analogues of
curvature squared terms, adopting the alternative scheme
of volume sharing. As discussed in [45], we make the
identification
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Z
�
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
R2ðt;xÞ ! X

o2O	ðT Þ
VðsÞ
o

�
�oVo

VðsÞ
o

�
2

(3.5)

for a curvature scalar Rðt;xÞ, where the curvature density
is assigned to the object o, O	ðT Þ is the set of all objects o
on the spacelike hypersurface � labeled by discrete time
coordinate 	 in the triangulation T , Vo is the appropriate

volume of the object o, and VðsÞ
o is the share volume of the

object o, namely, the volume of all top-dimensional objects
containing o. Using this schemewe now address the R2

2 and
K2 terms in turn.

1. R2
2 term

For the R2
2 term there are clear choices for the objects o

and the top-dimensional objects containing o: since the
Ricci scalar characterizes the intrinsic geometry of a two-
dimensional spacelike hypersurface, the objects o are ver-
tices v and the top-dimensional objects are spacelike tri-
angles 4. This is completely consistent with the usual
prescription for the Ricci scalar in Regge calculus. For a
vertex v the deficit angle is

�v ¼ 2�� �

3
N4ðvÞ (3.6)

for the number N4ðvÞ of spacelike triangles containing v,
the volume is

Vv ¼ 1; (3.7)

and the share volume is

VðsÞ
v ¼ X

4�v

A4 ¼
ffiffiffi
3

p
4

a2N4ðvÞ (3.8)

since all of the spacelike triangles are equilateral.
Employing (3.5) and noting that the most natural discreti-
zation of the time integral isZ

dtNðtÞ ! X
	

ffiffiffiffi
�

p
a; (3.9)

we make the identification

Z
M
dtd2x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
NðtÞR2

2ðt;xÞ!
X
	

X
v2V	ðT Þ

ffiffiffiffi
�

p
a

ð6�N4ðvÞÞ2
N4ðvÞ

(3.10)

up to multiplicative factors, where V	ðT Þ denotes the set
of vertices v belonging to the spacelike hypersurface
labeled by the discrete time coordinate 	.

2. K2 term

For the K2 term the choices of objects o and top-
dimensional objects containing o are not as clear. The
extrinsic curvature captures in part how the spacelike
hypersurface is embedded in the spacetime manifold.
The discrete analogue of the K2 term must reflect this

geometric information, requiring that we appropriately
account for how tetrahedra connect to the spacelike hyper-
surface. This observation suggests that we take tetrahedra
as the top-dimensional objects contributing to the share
volume. Furthermore, in the continuum K2 scales as an
inverse length squared, implying that the objects o are
spacelike triangles. We thus need to assign a deficit
angle �4 to a spacelike triangle. We largely follow the
treatment of [47]. Consider a spacelike hypersurface of the
triangulation T . For each spacelike triangle we may
define a future-directed normal vector at the center of the
(3, 1)-tetrahedron of which it forms the base. A natural
measure of extrinsic curvature at the common edge e
between two adjacent spacelike triangles is the deficit of
the angle that the normal vector traces out as it is parallel
transported from its own (3, 1)-tetrahedron to the adjacent
(3, 1)-tetrahedron. In Fig. 2 we illustrate this construction
for the particular case of three (2, 2)-tetrahedra stacked
between the two adjacent spacelike triangles. In general,
the deficit angle for the common edge is

�e ¼ 1

i
ð�� 2
ð3;1ÞL � 
ð2;2ÞL N"

ð2;2ÞðeÞÞ (3.11)

with 
ð3;1ÞL and 
ð2;2ÞL the Lorentzian dihedral angles about

spacelike edges and N"
ð2;2ÞðeÞ the number of future-directed

(2, 2)-tetrahedra attached to the common edge e. We give

the values of 
ð3;1ÞL and 
ð2;2ÞL in Appendix B. We thus assign
to a spacelike triangle the deficit angle

�4 ¼ 1

i
ð3�� 6
ð3;1ÞL � 
ð2;2ÞL N"

ð2;2Þð4ÞÞ; (3.12)

which, we note, is reminiscent of a trace. The volume of a
spacelike triangle is

FIG. 2. An embedding in three dimensions of two (3, 1)-
tetrahedra (solid black) joined by three (2, 2)-tetrahedra (thin
black), all sharing a common edge. A vector perpendicular to the
triangular base of a (3, 1)-tetrahedron rotates through an angle

�� 2
ð3;1ÞL � 3
ð2;2ÞL as it is parallel transported across the com-

mon edge.
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V4 ¼
ffiffiffi
3

p
4

a2; (3.13)

and the share volume is

VðsÞ
4 ¼ 4Vð3;1Þ

L þ Vð2;2Þ
L N"

ð2;2Þð4Þ (3.14)

with Vð3;1Þ
L and Vð2;2Þ

L the Lorentzian three-volumes of the

respective tetrahedra. We give the values of Vð3;1Þ
L and Vð2;2Þ

L

in Appendix B. The share volume assumes this value since
a given spacelike triangle has four (3, 1)-tetrahedra and

N"
ð2;2Þð4Þ (2, 2)-tetrahedra in its immediate future.

According to the prescription (3.5), we make the identifi-
cationZ

M
dtd2x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
NðtÞK2ðt;xÞ

!X
	

X
42TSL

	 ðT Þ
a4

j3��6
ð3;1ÞL �
ð2;2ÞL N"
ð2;2Þð4Þj2

4Vð3;1Þ
L þVð2;2Þ

L N"
ð2;2Þð4Þ (3.15)

up to multiplicative factors, where TSL
	 ðT Þ denotes the set

of spacelike triangles 4 belonging to the spacelike hyper-
surface labeled by the discrete time coordinate 	.

The discretization (3.15) of the K2 term does not,
however, respect our second criterion. Following [26], to

ensure the existence of a well-defined Hamiltonian on the
space of boundary geometries, we must make (3.15) time-
reversal invariant. A straightforward calculation shows that
this invariance guarantees positivity of the squared transfer
matrix, which, along with the transfer matrix’s symmetry,
yields a well-defined Hamiltonian [26]. To realize time-
reversal invariance, we add an analogous term for past-
directed (2, 2)-tetrahedra. The complete discrete analogue
of the K2 term is

X
	

X
42TSL

	 ðT Þ
a4
�j3�� 6
ð3;1ÞL � 
ð2;2ÞL N"

ð2;2Þð4Þj2
4Vð3;1Þ

L þ Vð2;2Þ
L N"

ð2;2Þð4Þ

þ j3�� 6
ð3;1ÞL � 
ð2;2ÞL N#
ð2;2Þð4Þj2

4Vð3;1Þ
L þ Vð2;2Þ

L N#
ð2;2Þð4Þ

�
: (3.16)

Note that we did not require such an adjustment for the R2
2

term since it depends only on the intrinsic geometry of the
spacelike hypersurface.

B. Imaginary time action

Putting together (3.10) and (3.16), our discrete action for
Hořava-Lifshitz gravity becomes

SHL½T � ¼ SCDT½T � þ 1� �

16�G

X
	

X
42TSL

	 ðT Þ
a4

2
4j3�� 6
ð3;1ÞL � 
ð2;2ÞL N"

ð2;2Þð4Þj2
4Vð3;1Þ

L þ Vð2;2Þ
L N"

ð2;2Þð4Þ þ j3�� 6
ð3;1ÞL � 
ð2;2ÞL N#
ð2;2Þð4Þj2

4Vð3;1Þ
L þ Vð2;2Þ

L N#
ð2;2Þð4Þ

3
5

� �

16�G

X
	

X
v2V	ðT Þ

ffiffiffiffi
�

p
a

ð6� N4ðvÞÞ2
N4ðvÞ : (3.17)

Wick rotating the action (3.17) to imaginary time, we find that

SðEÞHL½T � ¼ �k0N0 þ k3N3 þ 1� �

16�G

X
	

X
42TSL

	 ðT Þ
a4
�ð3�� 6
ð3;1ÞE � 
ð2;2ÞE N"

ð2;2Þð4ÞÞ2
4Vð3;1Þ

E þ Vð2;2Þ
E N"

ð2;2Þð4Þ þ ð3�� 6
ð3;1ÞE � 
ð2;2ÞE N#
ð2;2Þð4ÞÞ2

4Vð3;1Þ
E þ Vð2;2Þ

E N#
ð2;2Þð4Þ

�

þ �

16�G

X
	

X
v2V	ðT Þ

ffiffiffiffi
�

p
a

ð6� N4ðvÞÞ2
N4ðvÞ : (3.18)

We give the values of 
ð3;1ÞE , 
ð2;2ÞE , Vð3;1Þ
E , and Vð2;2Þ

E in
Appendix B. We use the action (3.18) for a ¼ 1 and � ¼
1 in the path integral quantization analyzed below. The
value of the length a has no a priori physical meaning, and
any value of the parameter �> 1

2 is permitted.

IV. A LATTICE QUANTIZATION OF
HO �RAVA-LIFSHITZ GRAVITY

A. Numerical implementation

Following the analyses of [27,30–38], we explore the
partition function

Z½�fj�i� ¼
X
T

1

CT
e�SðEÞ

HL
½T � (4.1)

employing Markov chain Monte Carlo methods. In our
simulations so far, we have fixed the topology of the space-
like hypersurfaces to be that of S2 and have fixed the total
number T of spacelike hypersurfaces, introducing a
discrete time coordinate 	 that enumerates these hyper-
surfaces. In the simulations reported below, we have set
T ¼ 64. Additionally, we impose periodic boundary con-
ditions on this time coordinate, endowing it with the to-
pology of S1. Consequently, the initial triangulated
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spacelike hypersurface �i and the final triangulated
spacelike hypersurface �f of each causal triangulation T
entering the partition function (4.1) are identified.

Next, we hold the number N3 of tetrahedra in each
triangulation T approximately fixed; otherwise, the

weights e�SðEÞ
HL

½T � appearing in the partition function (4.1)
may grow without bound, eventually causing our computer
code to crash. To implement the constraint of a fixed
number of tetrahedra, we add to the action (3.18) a term
of the form �jN3 � �N3j, where � is a Lagrange multiplier
and �N3 is the target number of tetrahedra. Essentially, this
Lagrange multiplier term modifies the value of the cou-
pling constant k3. In all of the simulations reported below,
we have set � ¼ 0:02 and �N3 to approximately 10 200.
These parameter values typically yield a 1% variation in
N3 over any given ensemble. This number of tetrahedra is
sufficiently large for physical effects clearly to outweigh
finite size effects and sufficiently small for our limited
computing resources to survey a reasonable portion of
the coupling constant space.

Finally, we tune to a set of coupling constants
fk0; �; �; kc3ðk0; �; �Þg on the critical surface of the cou-

pling constant space defined by the partition function (4.1)
for a fixed N3. As our notation suggests, we first select
values for k0, �, and � and then tune to the associated
critical value kc3 of k3. The critical value k

c
3 is that for which

N3 remains approximately constant while a simulation
runs. In this sense our model is only well defined at the
critical value: for any other value the number of tetrahedra
either increases without bound or plummets to zero.

With these conditions established, a simulation begins
with the generation of an initial triangulation having the
topology S2 � S1 composed of �N3 tetrahedra. Using the
Pachner moves adapted to causal dynamical triangulations,
as described, for instance, in [26], we run a standard
METROPOLIS algorithm to generate an ensemble of space-

times representative of the weighting defined by the parti-
tion function (4.1), sampling only after a period of
thermalization. We sample the representative spacetimes
generated every 100 sweeps, a single sweep comprising �N3

attempted Pachner moves. Once collected, we estimate the
expectation values of observables as averages over the
ensemble.

Testing our code is a nontrivial matter: without a known
nonperturbative quantization of ð2þ 1Þ-dimensional pro-
jectable Hořava-Lifshitz gravity, we possess no standard of
comparison for our results. Of course, this situation also
pertains to causal dynamical triangulations formulated
with the Regge action. Our code is a modified version of
that reported in [38], which has yielded independent cor-
roboration of the results of [2,27,32–36,39]. We have run
the modified code at the general relativistic values of the
coupling constants � and � to check that we correctly
reproduce the results of these references. In Fig. 3 we
present depictions of two representative spacetimes—one

in the physical phase and one in the decoupled phase of
causal dynamical triangulations—generated by our code.
In Fig. 4 we plot the ensemble average spectral dimen-
sions—discussed further below—for the two ensembles to
which the representative spacetimes in Fig. 3 belong. Up to
finite size effects currently under investigation, these mea-
surements agree quantitatively with those of [2,37,38]. In
Fig. 8(a) below we also show the ensemble average dis-
crete two-volume as a function of discrete time for the
second of these two ensembles. These data, as well as the
fit to them, are consistent with the findings of [32,37].
Beyond these checks, we rely on the plausibility of our
new results as a test of our code’s correctness.

B. Phase diagram

Our model’s coupling constant space is four dimen-
sional. Based on the phase structures of both ð2þ 1Þ-
and ð3þ 1Þ-dimensional causal dynamical triangulations,
we expect that for fixed N3 our model is only well defined
on a three-dimensional subspace. This critical surface ap-
proximates the so-called infinite volume surface, which
corresponds to the limit in which N3 increases without
bound while the lattice spacing a vanishes such that the
product N3a

3 remains constant. Supposing that our model
possesses a second order phase transition, at which we
could define its continuum limit, this transition must be
located at a phase boundary on the critical surface.
Now, a three-dimensional subspace of largely unknown

extent represents a formidably expansive space to explore
numerically. Accordingly, we have limited our initial in-
vestigations to the subspace of the coupling constant space
consisting of the �� � plane near the origin for fixed k0.
Specifically, we set k0 ¼ 1:00, select values for � and �,
and then tune to the value of k3 on the critical surface. With
� ¼ 1:00 and � ¼ 0:00 this corresponds to a point in the
physical phase of causal dynamical triangulations for the
Regge action.
Within this region we have generated 47 ensembles of

representative spacetimes, each for a different set
fk0; �; �; kc3ðk0; �; �Þg of the coupling constants. We dis-

play in Fig. 5 the critical surface and the associated phase
structure as ascertained thus far. Our explorations indicate
the existence of three phases: a phase contiguous with the
physical phase of causal dynamical triangulations for the
Regge action that we call phase C; a phase emerging for
sufficiently large values of � that we call phase D; and a
phase emerging for sufficiently large values of � that we
call phase E. We are not entirely certain that phases D and
E are distinct: our measurements might instead indicate
modulation of a single phase across the relevant region in
the �� � plane, a possibility under active investigation.
On the other hand, we are quite certain that phases D and E
are not artifacts: our simulations exhibit the characteristic
lengthening of the autocorrelation time near the phase
boundaries, and the geometric properties of phases D and
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FIG. 3 (color online). Depictions of representative spacetimes showing the number NSL
2 of spacelike triangles as a function of

discrete time 	. (a) Phase A (k0 ¼ 6:00, k3 ¼ 1:85, � ¼ 1:00, � ¼ 0:00). (b) Phase C (k0 ¼ 1:00, k3 ¼ 0:75, � ¼ 1:00, � ¼ 0:00).
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FIG. 4 (color online). The ensemble average spectral dimension hdsi as a function of diffusion time �. (a) Phase A (k0 ¼ 6:00,
k3 ¼ 1:85, � ¼ 1:00, � ¼ 0:00). (b) Phase C (k0 ¼ 1:00, k3 ¼ 0:75, � ¼ 1:00, � ¼ 0:00).
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E persist under an increase in the total number of spacelike
hypersurfaces. The presence of these novel phases of ex-
tended geometry counts as the first explicit indication that
the spatial curvature squared terms in the action (3.18)
exert a significant effect as opposed to being renormalized
to irrelevance. This nicely matches the scaling behavior of
the curvature squared terms expected from the analytic
approach to Hořava-Lifshitz gravity.

In Fig. 6 we depict spacetimes representative of each
of the three phases. Specifically, we plot the number NSL

2

of spacelike triangles—a measure of the discrete two-
volume—as a function of discrete time 	. Representative
spacetimes in phase C are characterized by a single corre-
lated accumulation of tetrahedra spread across a substantial
range of 	. Representative spacetimes in phase D are
characterized by an intermittent series of accumulations

FIG. 5 (color online). (a) The critical surface as explored thus far. (b) The critical surface projected onto the �-� plane showing
phases C, D, and E, respectively, in blue circles, magenta squares, and orange diamonds.
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FIG. 6 (color online). Depictions of representative spacetimes showing the number NSL
2 of spacelike triangles as a function of

discrete time 	. (a) Phase C (k0 ¼ 1:00, k3 ¼ 0:77, � ¼ 0:75, � ¼ 0:50). (b) Phase D (k0 ¼ 1:00, k3 ¼ 0:73, � ¼ 3:50, � ¼ 0:00).
(c) Phase E (k0 ¼ 1:00, k3 ¼ 0:72, � ¼ 1:00, � ¼ 2:60).
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of tetrahedra each spread across a small range of 	.
Representative spacetimes in phase E are characterized
by a moderately uniform distribution of tetrahedra spread
across the entire range of 	.

C. Physicality and semiclassicality

We now present preliminary evidence suggesting that
the ensemble average geometries in all three phases show
signs of being both physical and semiclassical. This evi-
dence stems from analyses of two geometric observables
associated with our ensembles of representative space-
times: the spectral dimension as a function of diffusion
time and the discrete two-volume as a function of discrete
time. Based on these analyses, we draw certain compari-
sons to the relevant solutions of the classical theory now in
imaginary time presented in Appendix A.

1. Spectral dimension

The spectral dimension of a space measures its effective
dimensionality as experienced by a random walker. We
determine the ensemble average spectral dimension by
the method described, for instance, in [2]. Specifically,
we directly measure the return probability Prð�Þ as a
function of diffusion time � for each representative space-
time in a given ensemble. We then compute the ensemble
average spectral dimension as

hdsð�Þi ¼ �2
d lnhPrð�Þi

d ln�
(4.2)

employing an appropriate discretization of the derivative.
In Fig. 7 we display plots of the ensemble average

spectral dimension as a function of diffusion time for
each of the three phases. Before interpreting these plots,
we should comment on the evident bifurcation for small
values of diffusion time. This effect reflects the discrete
nature of our triangulated spacetimes: random walks of
even and of odd lengths yield diverging estimates for
the spectral dimension on scales sufficiently short in com-
parison to the discretization scale. Increasing the number
of tetrahedra comprising each spacetime pushes the

bifurcation scale towards smaller diffusion times, revealing
the physical nature of the spectral dimension on such
scales.
Now compare the plots of Fig. 7 to those of ordinary

causal dynamical triangulations in Fig. 4. All three of the
Hořava-Lifshitz spectral dimensions much more closely
resemble that of Fig. 4(b)—for the physical phase of causal
dynamical triangulations—than that of Fig. 4(a)—for the
decoupled phase of causal dynamical triangulations. The
resemblance between the plots of Figs. 7(a) and 4(b) is
particularly close, as we might expect, since the two ensem-
bles are both in phase C. In particular, the spectral dimen-
sions shown in Fig. 7 all peak at values between 2 and 3 for
small diffusion times and then gradually decay for large
diffusion times. We expect this decay at large diffusion
times: these spacetimes are compact and have curvature.
For ð2þ 1Þ-dimensional causal dynamical triangula-

tions the spectral dimension in the physical phase reaches
3 for ensembles characterized by larger values of N3

[2,38]. Such measurements provide a key piece of evidence
for the semiclassical nature of the phase’s ensemble aver-
age geometry. This suggests that the maxima of the spec-
tral dimension plots in Figs. 4(b) and 7(a) are depressed by
finite size effects. Assuming that such effects are compa-
rable for our ensembles in phases D and E, we are led to
conclude that the maxima of the spectral dimension in
these phases are slightly below the topological value of 3.
In Hořava-Lifshitz gravity the spectral dimension is gen-
erally predicted to flow under renormalization, so poten-
tially the plots of Fig. 7 reflect such behavior [1]. We are
currently running simulations in phases D and E for larger
values of N3 in the hope of resolving these issues.
Nevertheless, we maintain that the similarities in form
between the spectral dimensions depicted in Fig. 7 and in
Fig. 4(b) hint at the physicality and semiclassicality of
phases C, D, and E.

2. Discrete two-volume

The foliated structure of causal triangulations allows for
the measurement of certain quantities as functions of the
discrete time coordinate. The number NSL

2 of spacelike
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FIG. 7 (color online). The ensemble average spectral dimension hdsi as a function of diffusion time �. (a) Phase C (k0 ¼ 1:00,
k3 ¼ 0:77, � ¼ 0:75, � ¼ 0:50). (b) Phase D (k0 ¼ 1:00, k3 ¼ 0:73, � ¼ 3:50, � ¼ 0:00). (c) Phase E (k0 ¼ 1:00, k3 ¼ 0:72, � ¼
1:00, � ¼ 2:60).
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triangles on a given spacelike hypersurface is one such
quantity. Although the value of NSL

2 on a single spacelike

hypersurface is not physically meaningful, the set
fNSL

2 ð�	ÞgT	¼1 does contain physical information.

For an ensemble in phase C, there exist straightforward
techniques for performing a coherent ensemble average of
fNSL

2 ð�	ÞgT	¼1. (See, for instance, [36].) These techniques

rely on the characteristic feature of phase C spacetimes: the
single accumulation of tetrahedra as depicted in Figs. 3(b)
and 6(a). Intuitively, each method functions to align an
appropriately defined center of this accumulation with the
central value of the discrete time coordinate. Once accom-
plished for all of the representative spacetimes in an en-
semble, the coherent ensemble average of fNSL

2 ð�	ÞgT	¼1 is

defined by the discrete timewise average.
We employ a method that we call equal discrete two-

volume splitting. The name refers to the algorithm for
appropriately defining the center of the accumulation of
tetrahedra. Formally, given a representative spacetime,
form all divisions Di of that spacetime into two sets each
of T

2 spacelike hypersurfaces, maintaining the periodic

discrete time order of the spacelike hypersurfaces:

D1 ¼ ff�1; . . . ;�T=2g; f�ðT=2Þþ1; . . . ;�Tgg; (4.3a)

D2 ¼ ff�2; . . . ;�ðT=2Þþ1g; f�ðT=2Þþ2; . . . ;�1gg;
..
.

(4.3b)

DT ¼ ff�T; . . . ;�ðT=2Þ�1g; f�ðT=2Þ; . . . ;�T�1gg: (4.3c)

Then select the two particular divisions �Deq and ~Deq that

most nearly equalize the discrete two-volume summed
over the T

2 spacelike hypersurfaces in each set of the

division: the quantityX
	2fi;...;iþðT=2Þ�1g

NSL
2 ð�	Þ � X

	2fiþðT=2Þ;...;i�1g
NSL

2 ð�	Þ (4.4)

is minimized for both �Deq and ~Deq. Note that �Deq and ~Deq

only differ in the order of their two sets. Next relabel the
discrete time coordinate over the set of values f�T

2 ;�T
2þ

1;...;T2�1;T2g so that the values f� T
2 ; . . . ;� 1

2g label the first
set of spacelike hypersurfaces and the values f12 ; . . . ; T2g
label the second set of spacelike hypersurfaces in both
�Deq and ~Deq. Finally, choose the division for which the

values of NSL
2 ð��1=2Þ and NSL

2 ð�1=2Þ are greatest. With all

of the spacetimes in an ensemble so aligned, perform a
discrete timewise average of NSL

2 over the representative

spacetimes.
In Fig. 8 we show the results of the equal discrete two-

volume splitting average for two ensembles in phase C.
The data points indicate the equal discrete two-volume
splitting average value of fNSL

2 ð�	ÞgT	¼1; the light vertical

bars indicate 1 standard deviation of error. The thin curve is
a one parameter fit of the data points within the central
accumulation of tetrahedra to the functional form

NSL
2 ð	Þ ¼ 2

�

hNð3;1Þ
3 i

~s0hNð1;3Þ
3 i1=3 cos

2

�
	

~s0hNð1;3Þ
3 i1=3

�
; (4.5)

which is a discretization of the two-volume as a function of
global time of Euclidean de Sitter spacetime. (See [36,37]
for a derivation of this discretization in 2þ 1 and 3þ 1
dimensions, respectively.) Substantial evidence already
demonstrates that, for the general relativistic values of �
and �, the ensemble average geometry in phase C closely
approximates Euclidean de Sitter spacetime [2,27,30,32–
37,39]. The plot in Fig. 8(b) provides the first evidence that
the ensemble average geometry also has this property for
the broader range of nonrelativistic values of both � and �.
Hořava-Lifshitz gravity admits Euclidean de Sitter

spacetimes: for � > 1
2 and � ¼ 0, the solutions (A10) and

(A11) coincide in their description of such spacetimes.
Note, however, that for relatively small values of �, the
solutions (A10) and (A11) do not deviate too markedly
from Euclidean de Sitter spacetime. Given the presence of

FIG. 8 (color online). The ensemble average number hNSL
2 i of spacelike triangles as a function of discrete time 	. (a) Phase C

(k0 ¼ 1:00, k3 ¼ 0:75, � ¼ 1:00, � ¼ 0:00) with ~s0 ¼ 0:46. (b) Phase C (k0 ¼ 1:00, k3 ¼ 0:77, � ¼ 0:75, � ¼ 0:50) with ~s0 ¼ 0:48.
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finite size effects and the inherent error in our measure-
ments, one of these solutions for � � 0 may well
fit the ensemble average geometry better in phase C. Our
current data are not sufficiently detailed for us to make a
conclusive statement. Furthermore, there exists some
evidence [2] that the ensemble average geometry in
ð2þ 1Þ-dimensional causal dynamical triangulations is a
deformed version of Euclidean de Sitter spacetime.
Supposing that this is the case, the process of taking the
continuum limit must generate some additional terms
besides those in the Regge action.

The two plots in Fig. 8 quite closely resemble one
another—in both spatial and temporal extents of the central

accumulation of the discrete two-volume—even though
that of Fig. 8(a) is for general relativistic values of � and
� while that of Fig. 8(b) is for nonrelativistic values of �
and �. To dispel the suspicion that the K2 and R2

2 terms are

renormalized to irrelevance in phase C, we present in Fig. 9
four plots of the equal discrete two-volume splitting aver-
age of fNSL

2 ð�	ÞgT	¼1 each for a different value of �.
Clearly, varying � affects the ensemble average geometry
that emerges.
For phases D and E we currently do not know how to

coherently average fNSL
2 ð�	ÞgT	¼1 over an ensemble. In an

effort to determine a method, we computed the ensemble
average power in the discrete Fourier transform of
fNSL

2 ð�	ÞgT	¼1, the results of which we display in Fig. 10.

As these plots show, there is no notable periodicity present
in these ensembles’ average geometry since virtually all of
the power falls in the zero frequency mode. This lack of
periodicity may in fact be indicative of the semiclassical
nature of phase E. With �> 0 the classical equations of
motion (A1) and (A2) are also satisfied for the Ansatz (A4)
when the squared scale factor a2ðtÞ has the constant valueffiffiffiffiffi

�
2�

p
. The depiction in Fig. 6(c) of a representative space-

time in phase E resembles to a certain extent a spacetime
with approximately constant scale factor, and the plot of
Fig. 10(b) reinforces this interpretation. Moreover, this
accords with our expectation that as currently devised the
Markov chain Monte Carlo simulations converge on space-
times globally minimizing the action (3.18).
At first glance, however, the deviations from constant

scale factor as illustrated in Fig. 6(c) do not appear par-
ticularly small. To make a proper judgment, we compare
the deviations in fNSL

2 ð�	ÞgT	¼1 between the ensemble in

phase C associated with Fig. 6(a) and the ensemble in
phase E associated with Fig. 6(c). Specifically, for each
representative spacetime of this ensemble in phase E, we
calculate the discrete time averaged deviation �NSL

2
of the

30 20 10 0 10 20 30
0

100
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500

N
2
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FIG. 9 (color online). The ensemble average number hNSL
2 i of

spacelike triangles as a function of discrete time 	 for four
ensembles in phase C differing in their respective values
of the coupling constant �: blue circles (k0 ¼ 1:00, k3 ¼ 0:85,
� ¼ �1:00, � ¼ 0:00), magenta squares (k0 ¼ 1:00, k3 ¼ 0:79,
� ¼ 0:00, � ¼ 0:00), orange diamonds (k0 ¼ 1:00, k3 ¼ 0:75,
� ¼ 1:00, � ¼ 0:00), and purple triangles (k0 ¼ 1:00,
k3 ¼ 0:74, � ¼ 2:00, � ¼ 0:00).

FIG. 10 (color online). The ensemble average power hjcj2i as a function of discrete frequency  in the discrete Fourier transform of
the number NSL

2 of spacelike triangles as a function of discrete time 	. (a) Phase D (k0 ¼ 1:00, k3 ¼ 0:73, � ¼ 3:50, � ¼ 0:00).
(b) Phase E (k0 ¼ 1:00, k3 ¼ 0:72, � ¼ 1:00, � ¼ 2:60).

CHRISTIAN ANDERSON et al. PHYSICAL REVIEW D 85, 044027 (2012)

044027-14



discrete two-volume from the mean. The ensemble average
h�NSL

2
i provides a reasonable measure of the deviations

from a time-independent geometry. For this ensemble in
phase C, we calculate the deviations h�NSL

2
imin and

h�NSL
2
imax of the discrete two-volume from the mean for

the spacelike hypersurfaces of minimal and of maximal
hNSL

2 i within the central accumulation of tetrahedra. The

values h�NSL
2
imin and h�NSL

2
imax provide a reasonable mea-

sure of the range of deviations from a Euclidean de Sitter
geometry. We find that

h�NSL
2
imax

hNSL
2 imax

��������C
¼0:20<

h�NSL
2
i

hNSL
2 i

��������E

¼0:69<
h�NSL

2
imin

hNSL
2 imin

��������C
¼0:78 (4.6)

and that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�NSL

2
imax

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihN3imax

3
p

��������C
¼ 0:35>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�NSL

2
i

q
ffiffiffiffiffiffiffiffiffiffihN3i3

p ��������E

¼ 0:27>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�NSL

2
imin

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihN3imin

3
p ��������C

¼ 0:22: (4.7)

To achieve a more faithful comparison, we have considered
the above two ratios instead of the deviations themselves.
Although not definitive, the fact that the ratios for phase E
fall between those for phase C lends credence to our
interpretation of the semiclassical nature of phase E.

Supposing that further analysis supports the conjecture
that time-independent geometries dominate phase E, how
could one then interpret the C-E phase transition? A pos-
sible answer involves the global gravitational Hamiltonian
H? of (2.10). Recall that, in our implementation of
Hořava-Lifshitz gravity into the framework of causal dy-
namical triangulations, we chose not to impose the condi-
tion (2.9) as a constraint, instead treating H? as a
conserved global charge, essentially the total energy. In
our statistical ensemble whether H? vanishes or has a
nontrivial spectrum on physical states thus becomes a
question of dynamics. If the dynamics enforce the vanish-
ing ofH? on physical states, then we might interpret this
phenomenon as dynamical confinement of the gravita-
tional charge. A similar phenomenon has recently been
discovered in ð2þ 1Þ-dimensional relativistic chiral grav-
ity [48]. There, not just one gravitational charge but an
infinite hierarchy of conserved chiral charges are confined,
that is, dynamically vanish on all physical states of finite
energy.

Now consider the hypothetical phase in which H? is
dynamically confined. On spacetime geometries of
the Friedmann-Lemaı̂tre-Robertson-Walker type, the
Hamiltonian constraint equation becomes the Friedmann
equation for the scale factor. The Friedmann equation

precludes the ground state geometry from being time in-
dependent, forcing a cosmological, de Sitter-like evolution
of the universe. In the context of causal dynamical trian-
gulations, we observe this behavior in phase C.
In the hypothetical deconfined phase, on the other hand,

the situation is more reminiscent of a typical condensed
matter system: the total Hamiltonian simply measures the
system’s energy levels with the ground state identified as
the lowest energy state, typically static. We apparently
observe this behavior in our phase E. Accordingly, we
speculate that the C-E phase transition may be viewed as
the deconfinement of the gravitational charge H?.

V. OUTLOOK

Motivated by a suite of striking similarities between
Hořava-Lifshitz gravity and causal dynamical triangula-
tions, we constructed a discrete version of the action for
ð2þ 1Þ-dimensional Hořava-Lifshitz gravity adapted to
the formalism of causal dynamical triangulations. Using
this action in Markov chain Monte Carlo simulations of the
corresponding path integral, we found significant evidence
for the existence of extended phases of geometry approx-
imating certain classical solutions of Hořava-Lifshitz
gravity. Quantum Hořava-Lifshitz gravity thus appears
amenable to and compatible with the techniques of causal
dynamical triangulations.
Since we have only just initiated this study, the prospects

for further research are expansive. In the near term we have
three primary goals for ongoing research. First, we plan to
map more extensively our model’s coupling constant space
to determine the extent of the phases so far discovered and
to identify the locations of phases not yet discovered.
Specifically, we hope to ascertain how the curvature
squared terms affect the decoupled phase of causal dy-
namical triangulations. Second, we wish to further our
analysis of the semiclassical natures of phases C, D, and
E along the lines of [2,30,36,37]. Third, we want to estab-
lish the orders of our model’s phase transitions. In this
direction we have attempted to determine order parameters
for the C-D and C-E phase transitions; unfortunately, none
of our trial order parameters have yet distinguished be-
tween these adjacent phases. If our speculation about the
confinement-deconfinement nature of the C-E phase tran-
sition is correct, then the appropriately defined ground state
energy may act as an order parameter.
In the long term the richness of the literature on Hořava-

Lifshitz gravity provides a host of directions for continuing
research. First of all, recall that the simplest versions of
ð2þ 1Þ-dimensional Hořava-Lifshitz gravity, both project-
able and nonprojectable, possess a single propagating
scalar degree of freedom. This is in stark contrast to the
case of not only ð2þ 1Þ-dimensional general relativity, but
also the nonrelativistic generally covariant version of
Hořava-Lifshitz gravity constructed in [18]. This scalar
mode has generated considerable controversy with regard
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to its phenomenological viability [11,12], but its full
dynamics, especially around the stable ground state, re-
mains poorly understood. The ð2þ 1Þ-dimensional theory
should provide a clear window into the scalar mode’s
dynamics since the complications of propagating tensor
modes are absent [53]. By studying the nonperturbative
dynamics of the scalar mode using causal dynamical tri-
angulations, we hope to shed light on this issue. Our first
challenge is the identification of an observable in causal
dynamical triangulations that measures the number of local
propagating degrees of freedom or that at least distin-
guishes between the absence and presence of local prop-
agating degrees of freedom. Given the relative ease of
extracting correlation functions of observables associated
with the spacelike hypersurfaces of causal triangulations,
we are currently working to understand the behavior of our
model’s conformal mode in relation to the scalar mode. We
hope that such an investigation might illuminate the nature
of the scalar dynamics.

Relatedly, perturbations of projectable Hořava-Lifshitz
gravity about ð3þ 1Þ-dimensional Minkowski spacetime
generate instabilities [49]. This finding is of course not
surprising: Minkowski spacetime is not the ground state of
the commonly analyzed models. The situation is much
improved on the background of de Sitter spacetime
[13,50]. As the coupling constant � approaches unity,
however, the higher derivative terms become relevant,
leading to a breakdown of the linearized analysis. The
authors of [13,51] have suggested that a nonperturbative
Vainshtein mechanism might take effect, rendering this
limit continuous to the general relativistic values of the
coupling constants. Potentially, we could uncover this
transition behavior in Markov chain Monte Carlo simula-
tions. Indeed, the critical surface depicted in Fig. 5(a)
provides a small but intriguing piece of evidence for that
possibility: the apparent geometric feature along the � ¼ 1
direction.

To assess the phenomenological viability of at least the
simple version of Hořava-Lifshitz gravity on which we
have focused our study, we need to study the renormal-
ization group flow of the coupling constants for the pur-
pose of comparing the long distance behavior to that of
general relativity. In [52] Henson proposed a coarse grain-
ing procedure for causal dynamical triangulations on
which one could try to base a renormalization group
procedure. If this scheme proves apt—a question that we
are currently exploring—then we plan to employ the
procedure to study the renormalization group flows of
our model. Ultimately, we would like to explore the gen-
eral conjecture formulated by several groups [3,5] sug-
gesting that Hořava-Lifshitz gravity and causal dynamical
triangulations belong to the same universality class. This
circumstance would neatly explain the remarkable resem-
blances between these two approaches to the quantization
of gravity.
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APPENDIX A: CLASSICAL EQUATIONS
OF MOTION

We collect here the classical equations of motion stem-
ming from the action (2.8) for constant lapse and their
solutions relevant to the Markov chain Monte Carlo simu-
lations reported above. In Riemannian signature and for
spacelike hypersurfaces having the topology of S2, the
equations of motion are

0 ¼ ri�
ijðt;xÞ (A1)

and

0 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞp @t

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt;xÞ

q
�ijðt;xÞ

�
þ 1

2
�ijðt;xÞ

� ½Kklðt;xÞKklðt;xÞ � �K2ðt;xÞ � �R2
2ðt;xÞ þ 2��

� 2Kilðt;xÞKj
l ðt;xÞ þ 2�Kðt;xÞKijðt;xÞ

þ 2�rirjR2ðt;xÞ � 2�r2R2ðt;xÞ�ijðt;xÞ
þ 1

2
½rlN

iðt;xÞ�jlðt;xÞ þ rlN
jðt;xÞ�ilðt;xÞ

� �ijðt;xÞrlN
lðt;xÞ�; (A2)

where

�ijðt;xÞ ¼ Kijðt;xÞ � �Kðt;xÞ�ijðt;xÞ: (A3)

The momentum constraint (A1) results from variation of
the shift vector, and the metric equations of motion (A2)
result from variation of the spatial metric tensor. Again we
exclude the nonlocal integral constraint (2.9) arising from
variation of the lapse.
We seek solutions to the equations of motion (A1) and

(A2) in the form of the Friedmann-Lemaı̂tre-Robertson-
Walker Ansatz

�ðt;xÞ ¼ a2ðtÞ�̂ðxÞ; (A4)

for spatially homogeneous and isotropic spatial metric ten-
sor �ðt;xÞ and identically vanishing shift vector Nðt;xÞ.
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Here, �̂ðxÞ is themetric tensor on the round two-sphere, and
aðtÞ is the scale factor. Under these assumptions the mo-
mentum constraint (A1) is trivially satisfied. The metric
equations of motion (A2) are satisfied if and only if

1

aðtÞ
d2aðtÞ
dt2

¼ �

2ð2�� 1Þ
1

a4ðtÞ �
�

2�� 1
; (A5)

which implies that�
d

dt

�
a2ðtÞ�ð2��1ÞC

2�

��
2

¼� 2�

2��1
þC2ð2��1Þ

�
� 4�

2��1

�
a2ðtÞ�Cð2��1Þ

2�

�
2

(A6)

for constant of integration C. Letting

uðtÞ ¼ a2ðtÞ � Cð2�� 1Þ
2�

; (A7)

(A6) becomes�
duðtÞ
dt

�
2þ 4�

2��1
u2ðtÞ¼� 2�

2��1
þC2ð2��1Þ

�
; (A8)

which has the solution

uðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ð2�� 1Þ2

4�2
� �

2�

s
cos

0
@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2�� 1

s
tþ �

1
A (A9)

for a second constant of integration �. In terms of aðtÞ, the
solution (A9) is

a2þðtÞ¼
Cð2��1Þ

2�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ð2��1Þ2

4�2
�j�j
2�

s
cos

0
@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2��1

s
tþ�

1
A

(A10)

for positive values of � and

a2�ðtÞ¼Cð2��1Þ
2�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ð2��1Þ2

4�2
þj�j
2�

s
cos

0
@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2��1

s
tþ�

1
A

(A11)

for negative values of �. We assume that �> 0 as in the
previous studies of causal dynamical triangulations. Note
that the solution (A11) has a finite time extent dictated by
the zeros of a2�ðtÞ, whereas the solution (A10) has no such
restrictions. Also note that for vanishing � the solutions
(A10) and (A11) both reduce to that of Euclidean de Sitter
spacetime.

APPENDIX B: GEOMETRY OF CAUSAL
DYNAMICAL TRIANGULATIONS

For the tetrahedra depicted in Fig. 1, the Lorentzian
dihedral angles between spacelike and timelike faces are


ð3;1ÞL ¼ �

2
þ i log

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�þ 1

pffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�þ 1

p
�
; (B1a)


ð2;2ÞL ¼ i log

�
4�þ 3� 2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ 1

p
4�þ 1

�
; (B1b)


ð1;3ÞL ¼ �

2
þ i log

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�þ 1

pffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�þ 1

p
�
; (B1c)

and the Lorentzian three-volumes are

Vð3;1Þ
L ¼ 1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�þ 1

p
a3; (B2a)

Vð2;2Þ
L ¼ 1

6
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ 1

p
a3; (B2b)

Vð1;3Þ
L ¼ 1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�þ 1

p
a3: (B2c)

As previously mentioned, Wick rotation consists in an-
alytically continuing � in the lower half complex plane
[26]. If the argument of a square root becomes negative as a
result of the Wick rotation, then we replace it by the
negative of the argument multiplied by �i. The
Lorentzian dihedral angles (B1) are thus continued to their
respective Euclidean values


ð3;1ÞE ¼ �

2
� cos�1

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�� 1

pffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�� 1

p
�
; (B3a)


ð2;2ÞE ¼ cos�1

�
4�� 3

4�� 1

�
; (B3b)


ð1;3ÞE ¼ �

2
� cos�1

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�� 1

pffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�� 1

p
�
; (B3c)

and the Lorentzian three-volumes are thus continued to
their respective Euclidean values

Vð3;1Þ
E ¼ � i

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�� 1

p
a3; (B4a)

Vð2;2Þ
E ¼ � i

6
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1

p
a3; (B4b)

Vð1;3Þ
E ¼ � i

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�� 1

p
a3: (B4c)

Note that the magnitude of � must be greater than 1
2 to

prevent the tetrahedra from becoming degenerate.

[1] P. Hořava, Phys. Rev. Lett. 102, 161301 (2009).
[2] D. Benedetti and J. Henson, Phys. Rev. D 80, 124036

(2009).

[3] J. Ambjørn, A. Görlich, S. Jordan, J. Jurkiewicz, and R.

Loll, Phys. Lett. B 690, 413 (2010).
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