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Dynamics and collapse of collisionless self-gravitating systems is described by the coupled collision-

less Boltzmann and Poisson equations derived from fðRÞ gravity in the weak field approximation.

Specifically, we describe a system at equilibrium by a time-independent distribution function f0ðx; vÞ
and two potentials �0ðxÞ and �0ðxÞ solutions of the modified Poisson and collisionless Boltzmann

equations. Considering a small perturbation from the equilibrium and linearizing the field equations, it can

be obtained a dispersion relation. A dispersion equation is achieved for neutral dust-particle systems

where a generalized Jeans wave number is obtained. This analysis gives rise to unstable modes not present

in the standard Jeans analysis (derived assuming Newtonian gravity as weak filed limit of fðRÞ ¼ R). In

this perspective, we discuss several self-gravitating astrophysical systems whose dynamics could be fully

addressed in the framework of fðRÞ gravity.
DOI: 10.1103/PhysRevD.85.044022 PACS numbers: 04.50.Kd, 04.25.Nx, 04.40.Nr

I. INTRODUCTION

One of the fundamental goals of modern cosmology is to
probe Einstein’s general relativity (GR) at any scale be-
yond the classical tests that confirmed such a theory in the
weak field limit and at the Solar System level. GR is
assumed as the standard theory of gravity describing as-
trophysical structures up to the whole observed Universe;
however there are some inconsistencies at ultraviolet scales
(e.g. the initial singularity, the quantum gravity issue) and
infrared scales (e.g. cosmic acceleration, concordance
problem, flatness problem, galaxy rotation curves, large
scale structure, massive stars formation) that strongly sug-
gest that Einstein’s approach should be revised or at least
extended. Furthermore, astrophysical observations of the
last decades suggest that new (dark) ingredients are neces-
sary to achieve a self-consistent cosmological model. In
particular, the observations suggest the Hubble flow is
currently accelerating, and the simplest way to explain
the cosmic acceleration is to insert a cosmological constant
(�) in the Friedmann-Robertson-Walker cosmology [1–3],
representing about 70% of the total amount of energy. On
the other hand, the galaxy rotation curves and the large
scale structure could be dynamically addressed by intro-
ducing huge amounts of dark matter (about the 25% of the
total matter). Only 5% of the cosmic budget is constituted

by standard matter as stars, neutrinos, radiation, heavy
elements and free cosmological hydrogen ad helium.
Alternative approaches to GR could be pursued with the
aim to explain the observed acceleration and missing
matter without introducing new ingredients up to now
not observed at fundamental scales. The so-called fðRÞ
gravity is considered as a possible, straightforward mecha-
nism to explain the cosmic acceleration without inserting
unknown elements as dark energy and dark matter, but
extending the geometric part of the field equations by
relaxing the strict hypothesis that the gravitational action
has to be restricted to fðRÞ ¼ R as in the Hilbert-Einstein
one [4–9].
These theories have been investigated both at cosmo-

logical scales and in the weak field limit [10–14]. It has

been shown that a late accelerating behavior can be easily

recovered [15] and it can be related to an early inflationary

expansion [16]. Furthermore, modifying the gravity action

by assuming nonlinear Lagrangians, one obtain corrections

to the gravitational potential which can be useful for as-

trophysical phenomenology at galactic scales. In particu-

lar, without the introduction of dark matter, the rotation

curves of spiral galaxies and the haloes of galactic clusters

can be dynamically addressed [17–21]. Several of these

extended models reproduce Solar System tests so they are

not in conflict with GR experimental results but simply

extend them [22–24].
It is important to stress that fðRÞ gravity has interesting

applications also in stellar astrophysics and could contrib-
ute to solve several puzzles related to observed peculiar
objects (e.g. magnetars, stars in the instability strips,
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protostars, etc. [25,26]), structure and star formation
[27,28].

Here we analyze the Jeans instability for self-gravitating
systems in fðRÞ gravity coupled with perfect-fluid matter.
The aim is to show that several self-gravitating systems, in
particular, those involved in star formation (e.g. large
molecular clouds or Bok globules), can be exactly ad-
dressed in this framework by considering the corrections
to the Newtonian potential coming out from fðRÞ gravity.
This fact could constitute a remarkable signature to retain
or rule out these theories at astrophysical level.

The paper is organized as follows. In Sec. II the classical
theory of gravitational collapse for dust-dominated sys-
tems is summarized. In Sec. III, we discuss the weak field
limit of fðRÞ gravity obtaining corrections to the standard
Newtonian potential that can be figured out as two
Newtonian potentials contributing to the dynamics. In
Sec. IV we recover the dispersion relation and Jeans
mass limit while, in Sec. V, some self-gravitating dust
system are considered in this approach. The difference
between GR and fðRÞ gravity are put in evidence, in
particular, the Jeans mass profiles with respect to the
temperature. We report a catalogue of observed molecular
clouds in order to compare the classical Jeans mass with
the fðRÞ one. Finally, in Sec. VI, results are discussed.

II. DUST-DOMINATED SELF-GRAVITATING
SYSTEMS

The collapse of self-gravitational collisionless systems
can be dealt with the introduction of coupled collisionless
Boltzmann and Poisson equations (for details, see [29]):

@fð ~r; ~v;tÞ
@t

þð ~v � ~rrÞfð~r; ~v;tÞ�ð ~r� � ~rvÞfð~r; ~v;tÞ¼0 (1)

~r 2�ð ~r; tÞ ¼ 4�G
Z

fð~r; ~v; tÞd ~v; (2)

where ~v and ~r mean three-dimensional vectors in the
spatial manifold.

A self-gravitating system at equilibrium is described by
a time-independent distribution function f0ðx; vÞ and a
potential �0ðxÞ that are solutions of Eq. (1) and (2).
Considering a small perturbation to this equilibrium:

fð ~r; ~v; tÞ ¼ f0ð~r; ~vÞ þ �f1ð ~r; ~v; tÞ; (3)

�ð~r; tÞ ¼ �0ð~rÞ þ ��1ð~r; tÞ; (4)

where � � 1 and by substituting in Eq. (1) and (2) and by
linearizing, one obtains:

@f1ð ~r; ~v; tÞ
@t

þ ~v � @f1ð~r; ~v; tÞ
@~r

� ~r�1ð~r; tÞ � @f0ð ~r; ~vÞ@ ~v

� ~r�0ð ~rÞ � @f1ð ~r; ~v; tÞ@ ~v
¼ 0; (5)

~r 2�1ð~r; tÞ ¼ 4�G
Z

f1ð ~r; ~v; tÞd ~v: (6)

Since the equilibrium state is assumed to be homoge-
neous and time-independent, one can set f0ð ~x; ~v; tÞ ¼
f0ð ~vÞ, and the so-called Jeans ‘‘swindle’’ to set �0 ¼ 0.
In Fourier components, Eqs. (5) and (6) become

� i!f1 þ ~v � ði ~kf1Þ � ði ~k�1Þ � @f0@ ~v
¼ 0; (7)

� k2�1 ¼ 4�G
Z

f1d ~v: (8)

By combining these equations, the dispersion relation

1þ 4�G

k2

Z ~k � @f0@ ~v ~v � ~k�!d ~v ¼ 0 (9)

is obtained. In the case of stellar systems, by assuming a
Maxwellian distribution function for f0, we have

f0 ¼ �0

ð2��2Þð3=2Þ e
�ðv2=2�2Þ; (10)

imposing that ~k ¼ ðk; 0; 0Þ and substituting in Eq. (9), one
gets:

1� 2
ffiffiffiffiffiffiffi
2�

p
G�0

k�3

Z vxe
�ðv2

x=2�
2Þ

kvx �!
dvx ¼ 0: (11)

By setting ! ¼ 0, the limit for instability is obtained:

k2ð! ¼ 0Þ ¼ 4�G�0

�2
¼ k2J; (12)

by which it is possible to define the Jeans mass (MJ) as the
mass originally contained within a sphere of diameter �J:

MJ ¼ 4�

3
�0

�
1

2
�J

�
3
; (13)

where

�2
J ¼

��2

G�0

(14)

is the Jeans length. Substituting Eq. (14) into Eq. (13), we
recover

MJ ¼ �

6

ffiffiffiffiffiffi
1

�0

s
:

�
��2

G

�
3
: (15)

All perturbations with wavelengths � > �J are unstable
in the stellar system. In order to evaluate the integral in the
dispersion relation, we have to study the singularity at
! ¼ kvx. To this end, it is useful to write the dispersion
relation as

1� k2J
k2

Wð�Þ ¼ 0; (16)

defining
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Wð�Þ � 1ffiffiffiffiffiffiffi
2�

p
Z xe�ðx2=2Þ

x� �
dx; (17)

where � ¼ !
k� and x ¼ vx

� . We set also ! ¼ i!I and

Re½Wð!k�Þ� ¼ 0, because we are interested in the unstable

modes. These modes appear when the imaginary part of !
is greater than zero and in this case the integral in the
dispersion relation can be resolved just with previous
prescriptions.

In order to study unstable modes (for details, see
Appendix B in [29]) we replace the following identities

Z 1

0

x2e�x2

x2 þ �2
dx ¼ 1

2

ffiffiffiffi
�

p � 1

2
��e�

2½1� erf��;

erf�ðzÞ ¼ 2ffiffiffiffi
�

p
Z z

0
e�t2dt

into the dispersion relation obtaining:

k2 ¼ k2J

�
1�

ffiffiffiffi
�

p
!Iffiffiffi

2
p

k�
eð!I=

ffiffi
2

p
k�

�
1� erf

�
!Iffiffiffi
2

p
k�

���
: (18)

This is the standard dispersion relation describing the
criterion to collapse for infinite homogeneous fluid and
stellar systems [29].

III. NEWTONIAN LIMIT OF fðRÞ GRAVITY

As discussed in the Introduction, fðRÞ gravity is a
straightforward extension of GR by which it is possible,
in principle, to recover good results of GR without impos-
ing a priori the form of gravitational Lagrangian, chosen to
be fðRÞ ¼ R by Hilbert and Einstein. This means that we
do not impose a priori the gravitational action but it can be,
in principle, reconstructed by generic curvature invariants
and then matched with observations (the simplest choice in
this sense is to take into account an analytic function of the
Ricci scalar R [8]). However, from a genuine mathematical
viewpoint, the initial value problem of such theories has to
be carefully addressed in order to achieve self-consistent
results (see for example [9]).

Let us start with a general class of higher-order theories
given by the action

A ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½fðRÞ þXLm�; (19)

where fðRÞ is an analytic function of curvature invariant R
and � ¼ 8�G

c4
is the usual coupling of gravitational field

equations [8]. The term Lm is the minimally coupled
ordinary matter contribution. In the metric approach, the
field equations are obtained by varying (19) with respect to
g�	. We get:

f0ðRÞR�	� 1
2fðRÞg�	�r�r	f

0ðRÞþg�	hf0ðRÞ¼XT�	;

(20)

with the trace equation

3hf0ðRÞ þ f0ðRÞR� 2fðRÞ ¼ XT: (21)

Here, T�	 ¼ �1ffiffiffiffiffi�g
p 
ð ffiffiffiffiffi�g

p
LmÞ


g�	 is the energy-momentum tensor

of matter, while T ¼ T�
� is the trace, h ¼;�

;� and

f0ðRÞ ¼ dfðRÞ
dR .1 The signature is ð� þþþÞ [30]). For our

purposes, we have to start by setting the right approxima-
tion in the metric tensor g�	 [31]:

g�	 �
�ð1þ 2�ðt;xÞÞ þOð4Þ Oð3Þ

Oð3Þ 
ij þOð2Þ

 !
; (22)

where OðnÞ (with n ¼ integer) denotes the order of the
expansion. It is worth stressing that the expansion parame-
ter is c�1 and, in the Newtonian limit, we are assuming
perturbations up to c�2. This means that in the above
expression (22), we can discard terms of order Oð3Þ and
Oð4Þ that have to be considered in further perturbation
post-Newtonian limit (see [4] and references therein).
The set of coordinates2 adopted is x� ¼ ðt; x1; x2; x3Þ.
The Ricci scalar becomes

R� Rð2Þðt;xÞ þOð4Þ: (23)

The nth derivative of Ricci function can be developed as

fnðRÞ � fnðRð2Þ þOð4ÞÞ � fnð0Þ þ fnþ1ð0ÞRð2Þ þOð4Þ;
(24)

here RðnÞ denotes a quantity of order OðnÞ. It is worth
stressing that the symbol fnðRÞ means the nth derivative
of the analytic function fðRÞ. In the following, we are
going to use the numbers fnð0Þ of the Taylor series.
From lowest order of field equations (20), we have
fð0Þ ¼ 0 which trivially follows from the above assump-
tion (22) that the space-time is asymptotically
Minkowskian. Equations (20) and (21) at Oð2Þ-order
(Newtonian level) become

Rð2Þ
tt � Rð2Þ

2
� f00ð0Þr2Rð2Þ ¼ XTð0Þ

tt ; (25)

� 3f00ð0Þr2Rð2Þ � Rð2Þ ¼ XTð0Þ; (26)

wherer is the Laplacian in the flat space,Rð2Þ
tt ¼ r2�ðt;xÞ

and for the sake of simplicity, we set f0ð0Þ ¼ 1. We recall
that the energy-momentum tensor for a perfect fluid is the

T�	 ¼ ð�þ pÞu�u	 � pg�	; (27)

where p is the pressure and � is the energy density.
If we consider a perfect fluid of dust (p ¼ 0), we have

Rð2Þ
00 ¼ 1

2r2g00 [31]. Then we have

1Here we shall adopt the convention c ¼ 1. The convention for
Ricci’s tensor is R�	 ¼ R�

��	 while for the Riemann tensor is
R�

��	 ¼ ��
�	;� þ . . . :. The affinities are the usual Christoffel

symbols of the metric �
�
�� ¼ 1

2g
��ðg��;� þ g��;� � g��;�Þ.

2The Greek index runs between 0 and 3; the Latin index
between 1 and 3.
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r2�� Rð2Þ

2
� f00ð0Þr2Rð2Þ ¼ X�; (28)

� 3f00ð0Þr2Rð2Þ � Rð2Þ ¼ X�; (29)

where � is the mass density.3 For f00ð0Þ ¼ 0, the standard
Poisson equation r2� ¼ 4�G� is recovered.

The solution for the gravitational potential � has a
Yukawa-like behavior depending on a characteristic
length. Then as it is evident, the Gauss theorem is not valid
since the force law is not / jxj�2. The equivalence be-
tween a spherically symmetric distribution and pointlike
distribution is not valid and how the matter is distributed in
the space is very important.4

Besides the Birkhoff Theorem at Newtonian level is
modified: the solution can be only factorized with a
space-depending function and an arbitrary time-depending
function. Furthermore, the correction to the gravitational
potential is depending on the first two derivatives of fðRÞ in
R ¼ 0. So different analytical models, up to the third
derivative, admit the same Newtonian general solution.

Field equations (28) and (29) give rise to the modified
Poisson equations for fðRÞ gravity. We know that

Rð2Þ ’ 1
2r2gð2Þ00 � 1

2r2gð2Þii : (30)

Inserting in the above result the g�	 approximations (22)

we obtain

Rð2Þ ’ r2ð���Þ; (31)

where� is the further gravitational potential related to the

metric component gð2Þii . Substituting in Eqs. (28) and (29),
we obtain

r2�þr2�� 2f00ð0Þr4�þ 2f00ð0Þr4� ¼ 2X� (32)

r2��r2�þ 3f00ð0Þr4�� 3f00ð0Þr4� ¼ �X�: (33)

By eliminating the higher-order terms, the standard
Poisson equation is recovered. Our task is to check how
the Jeans instability occurs in fðRÞ gravity.

An important consideration is in order at this point. As
we pointed out above, we are supposing that the space-time
is asymptotically Minkowski. However, this is against the
general idea of fðRÞ gravity which should mimic dark
energy behavior. This means that the space-time should
be asymptotically de Sitter. So, in general, it is necessary
that the fðRÞ function is expandable at R ¼ 0, or even if it
is, the interesting asymptotic space is nevertheless not
Minkowskian (R ¼ 0) but R � 0. This fact is connected
with the assumption that the energy density � is

homogenous and asymptotically constant in order to leads
to de Sitter space-time. This is, at the very end, why the
so-called ‘‘Jeans swindle’’ is needed in Newtonian theory.
In the present case, � is explicitly written in Eqs. (28) and
(29) and has to converge asymptotically to zero in order to
restore the asymptotic Minkowskian behavior. In other
words, the possible gravitational actions have to be chosen
so that the condition fð0Þ ¼ 0 holds.

IV. JEANS CRITERION FOR GRAVITATIONAL
INSTABILITY IN fðRÞ GRAVITY

Our task is now to study the Jeans instability in the
framework of fðRÞ gravity. Let us assume the standard
collisionless Boltzmann equation:

@fð ~r; ~v; tÞ
@t

þ ð ~v � ~rrÞfð~r; ~v; tÞ � ð ~r� � ~rvÞfð ~r; ~v; tÞ ¼ 0;

(34)

where, according to the Newtonian theory, only the poten-
tial � is present. Considering the fðRÞ Poisson equations,
given by Eqs. (32) and (33), also the potential � has to be
considered so we obtain the coupled equations

r2ð�þ�Þ�2�r4ð���Þ¼16�G
Z
fð ~r; ~v;tÞd ~v (35)

r2ð���Þþ3�r4ð���Þ¼�8�G
Z
fð~r; ~v;tÞd ~v: (36)

In the previous equations, we have replaced f00ð0Þ with the
greek letter �. It is important to stress that while in the
standard theory, the distribution function fð ~r; ~v; tÞ is
related only to the potential �, it is related to both � and
� in the Newtonian limit coming from fðRÞ gravity. As in
standard case, we consider small perturbation to the equi-
librium and linearize the equations. After we write equa-
tions in Fourier space so they became

� i!f1 þ ~v � ði ~kf1Þ � ði ~k�1Þ � @f0@ ~v
¼ 0; (37)

�k2ð�1þ�1Þ�2�k4ð�1��1Þ¼16�G
Z
f1d ~v; (38)

k2ð�1 ��1Þ � 3�k4ð�1 ��1Þ ¼ 8�G
Z

f1d ~v: (39)

Combining Eqs. (38) and (39), we obtain a relation be-
tween �1 and �1,

�1 ¼ 3� 4�k2

1� 4�k2
�1

inserting this relation in Eq. (38) and combining it with
Eq. (37), we obtain the dispersion relation

1� 4�G
1� 4�k2

3�k4 � k2

Z � ~k � @f0@ ~v

~v � ~k�!

�
d ~v ¼ 0: (40)

3We remember that � ¼ �c2.
4However, we have to see that being the Yukawa correction a

decreasing exponential function, the Gauss theorem is asymp-
totically recovered. In any case, conservation laws are always
preserved since the Bianchi identities hold.
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If we assume, as in standard case, that f0 is given by (10)

and ~k ¼ ðk; 0; 0Þ, one can write

1þ2
ffiffiffiffiffiffiffi
2�

p
G�0

�3

1�4�k2

3�k4�k2

�Z kvxe
�ðv2

x=2�
2Þ

kvx�!
dvx

�
¼0: (41)

By eliminating the higher-order terms (imposing � ¼ 0),
we obtain again the standard dispersion Eq. (9). In order to
compute the integral in the dispersion relation (41), we
consider the same approach used in the classical case, and
finally we obtain:

1þ G 1�4�k2

3�k4�k2
½1� ffiffiffiffi

�
p

xex
2ð1� erf½x�Þ� ¼ 0; (42)

where x ¼ !Iffiffi
2

p
k�

and G ¼ 4G��0

�2 . In order to evaluate

Eq. (42) comparing it with the classical one, given by
Eq. (9), it is very useful to normalize the equation to the
classical Jeans length showed in Eq. (14), by fixing
the parameter of fðRÞ gravity, that is

� ¼ � 1

k2j
¼ � �2

4�G�0

: (43)

This parameterization is correct because the dimension �
(an inverse of squared length) allows us to parametrize as
in standard case. Finally we write

3k4

k4j
þk2

k2j
¼
�
4k2

k2j
þ1

�
½1� ffiffiffiffi

�
p

xex
2ð1�erf½x�Þ�¼0: (44)

The function is plotted in Fig. 1, where Eq. (42) and the
standard dispersion [29] are confronted in order to see the
difference between fðRÞ and Newtonian gravity.
As shown in Fig. 1, the effects of a different theory of

gravity changes the limit of instability. The limit is higher
than the classical case and the curve has a greater slope.
This fact is important because the mass limit value of
interstellar clouds decreases changing the initial conditions
to start the collapse.

V. THE JEANS MASS LIMIT IN fðRÞ GRAVITY

A numerical estimation of the fðRÞ instability length in
terms of the standard Newtonian one can be achieved. By
solving numerically Eq. (44) with the condition! ¼ 0, we
obtain that the collapse occurs for

k2 ¼ 1:2637k2J: (45)

However we can estimate also analytically the limit for the
instability. In order to evaluate the Jeans mass limit in fðRÞ
gravity, we set ! ¼ 0 in Eq. (41) and then

3�2�k4 � ð16�G�0�þ �2Þk2 þ 4�G�0 ¼ 0: (46)

It is worth stressing that the additional condition �< 0
discriminates the class of viable fðRÞ models: in such a
case we obtain stable cosmological solution and positively
defined massive states [9]. In other words, this condition
selects the physically viable models allowing to solve
Eq. (46) for real values of k. In particular, the above
numerical solution can be recast as

k2 ¼ 2

3
ð3þ ffiffiffiffiffiffi

21
p Þ�G�

�2
: (47)

The relation to the Newtonian value of the Jeans instability
is

k2 ¼ 1
6ð3þ

ffiffiffiffiffiffi
21

p Þk2J: (48)

Now, we can define the new Jeans mass as

~MJ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ð3þ ffiffiffiffiffiffi
21

p Þ3
s

MJ; (49)

which is proportional to the standard Newtonian value. We
will confront this specific solutions with some observed
structures.

A. The MJ–T relation

Star formation is one of the best settled problems of
modern astrophysics. However, some shortcomings
emerge as soon as one faces dynamics of diffuse gas
evolving into stars and star formation in galactic environ-
ment. One can deal with the star formation problem in
two ways: (i) we can take into account the formation of

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

k2

kJ
2

2

4
G

0

FIG. 1. The bold line indicates the plot of the dispersion
relation (42) in which we imposed the value for � given by
(43). The thin line indicates the plot of the standard dispersion
equation [29].
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individual stars and (ii) we can discuss the formation of the
whole star system starting from interstellar clouds [32]. To
answer these problems it is very important to study the
interstellar medium (ISM) and its properties. The ISM
physical conditions in the galaxies change in a very wide
range, from hot X-ray emitting plasma to cold molecular
gas, so it is very complicated to classify the ISM by its
properties. However, we can distinguish, in the first ap-
proximation, between [33–36]:

(i) Diffuse hydrogen clouds. The most powerful tool to
measure the properties of these clouds is the 21 cm
line emission of HI. They are cold clouds so the
temperature is in the range 10� 50 K, and their
extension is up to 50� 100 kpc from galactic center.

(ii) Diffuse molecular clouds are generally self-
gravitating, magnetized, turbulent fluids systems,
observed in sub-mm. The most of the molecular gas
isH2, and the rest is CO.Here, the conditions are very
similar to the HI clouds but in this case, the cloud can
be more massive. They have, typically, masses in the
range 3� 100M�, temperature in 15� 50 K and
particle density in ð5� 50Þ 	 108 m�3.

(iii) Giant molecular clouds are very large complexes of
particles (dust and gas), in which the range of the
masses is typically 105 � 106M� but they are very
cold. The temperature is�15 K, and the number of
particles is ð1� 3Þ 	 108 m�3 [32,37–39].
However, there exist also small molecular clouds
with masses M< 104M� [39]. They are the best
sites for star formation, despite the mechanism of
formation does not recover the star formation rate
that would be 250M� yr�1 [37].

(iv) HII regions. They are ISM regions with tempera-
tures in the range 103 � 104 K, emitting primarily
in the radio and IR regions. At low frequencies,
observations are associated to free-free electron
transition (thermal Bremsstrahlung). Their den-
sities range from over a million particles per cm3
in the ultracompact H II regions to only a few
particles per cm3 in the largest and most extended
regions. This implies total masses between 102 and
105 M� [40].

(v) Bok globules are dark clouds of dense cosmic dust
and gas in which star formation sometimes takes
place. Bok globules are found within H II regions,
and typically have a mass of about 2 to 50 M�
contained within a region of about a light year.

Using very general conditions [32–40], we want to
show the difference in the Jeans mass value between
standard and fðRÞ gravity. Let us take into account
Eq. (15) and Eq. (49):

MJ ¼ �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�0

�
��2

G

�
3

s
; (50)

TABLE I. Jeans masses derived from Eq. (15) (Newtonian
gravity) and (49) (fðRÞ gravity).
Subject T (K) n (108 m�3) � MJ (M�) ~MJ (M�)

Diffuse hydrogen clouds 50 5.0 1 795.13 559.68

Diffuse molecular clouds 30 50 2 82.63 58.16

Giant molecular clouds 15 1.0 2 206.58 145.41

Bok globules 10 100 2 11.24 7.91

FIG. 2. The MJ-T relation. Dashed-line indicates the
Newtonian Jeans mass behavior with respect to the temperature.
Continue-line indicates the same for fðRÞ-gravity Jeans mass.

TABLE II. We report the name, the particle number density
and the excitation temperature of observed molecular clouds. For
each system, we have calculated the value of Jeans mass in both
Newtonian (GR) and fðRÞ gravity. The differences between the
two approaches are significant pointing out that the star forma-
tion efficiency strictly depends on the adopted theory. This table
is only a part of the catalog of molecular clouds reported in [41].

Subject T K n

ð108 m�3Þ
MJ (M�) ~MJ (M�)

GRSMC G 053:59þ 00:04 5.97 1.48 18.25 12.85

GRSMC G 049:49� 00:41 6.48 1.54 21.32 15.00

GRSMC G 018:89� 00:51 6.61 1.58 22.65 15.94

GRSMC G 030:49� 00:36 7.05 1.66 22.81 16.06

GRSMC G 035:14� 00:76 7.11 1.89 28.88 20.33

GRSMC G 034:24þ 00:14 7.15 2.04 29.61 20.84

GRSMC G 019:94� 00:81 7.17 2.43 29.80 20.98

GRSMC G 038:94� 00:46 7.35 2.61 31.27 22.01

GRSMC G 053:14þ 00:04 7.78 2.67 32.06 22.56

GRSMC G 022:44þ 00:34 7.83 2.79 32.78 23.08

GRSMC G 049:39� 00:26 7.90 2.81 35.64 25.09

GRSMC G 019:39� 00:01 7.99 2.87 35.84 25.23

GRSMC G 034:74� 00:66 8.27 3.04 36.94 26.00

GRSMC G 023:04� 00:41 8.28 3.06 38.22 26.90

GRSMC G 018:69� 00:06 8.30 3.62 40.34 28.40

GRSMC G 023:24� 00:36 8.57 3.75 41.10 28.93

GRSMC G 019:89� 00:56 8.64 3.87 41.82 29.44

GRSMC G 022:04þ 00:19 8.69 4.41 47.02 33.10

GRSMC G 018:89� 00:66 8.79 4.46 47.73 33.60

GRSMC G 023:34� 00:21 8.87 4.99 48.98 34.48

GRSMC G 034:99þ 00:34 8.90 5.74 50.44 35.50

GRSMC G 029:64� 00:61 8.90 6.14 55.41 39.00

GRSMC G 018:94� 00:26 9.16 6.16 55.64 39.16

GRSMC G 024:94� 00:16 9.17 6.93 56.81 39.99

GRSMC G 025:19� 00:26 9.72 7.11 58.21 40.97

GRSMC G 019:84� 00:41 9.97 11.3 58.52 41.19
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in which �0 is the ISM density and � is the velocity
dispersion of particles due to the temperature. These two
quantities are defined as

�0 ¼ mHnH�; �2 ¼ kBT

mH

where nH is the number of particles measured in m�3, � is
the mean molecular weight, kB is the Boltzmann constant
andmH is the proton mass. By using these relations, we are
able to compute the Jeans mass for interstellar clouds and
to plot its behavior against the temperature. Results are
shown in Table I and Fig. 2. We have plotted the relation for
GR and for fðRÞ gravity. Any astrophysical system re-
ported in Table I is associated to a particular
ðM;TÞ-region. Differences between the two theories for
any self-gravitating system are clear.

By using Eq. (49) and by referring to the catalog of
molecular clouds in Roman-Duval et al. [41], we have
calculated the Jeans mass in the Newtonian and fðRÞ cases.
Table II shows the results. In all cases we note a substantial
difference between the classical and fðRÞ value. In fðRÞ
scenario, molecular clouds become sites where star for-
mation is strongly supported and more efficient because in
each of them the limit for the gravitational collapse is
lower than the one in GR.

VI. DISCUSSION AND CONCLUSIONS

fðRÞ gravity is an approach aimed to address some
shortcomings of modern cosmology just assuming exten-
sions of GR without invoking the presence of dark ingre-
dients. In other words, dark energy and dark matter could
be effects related to curvature further degrees of freedom
instead of new fundamental particles.

Here we have analyzed the Jeans instability mechanism,
adopted for star formation, considering the Newtonian
approximation of fðRÞ gravity. The related Boltzmann-
Vlasov system leads to modified Poisson equations de-
pending on the fðRÞ model. In particular, considering
Eqs. (32) and (33), it is possible to get a new dispersion
relation (42) where instability criterion results modified
(see also [27]). The leading parameter is �, i.e. the second
derivative of the specific fðRÞ model. Standard Newtonian
Jeans instability is immediately recovered for � ¼ 0 cor-
responding to the Hilbert-Einstein Lagrangian of GR. In
Fig. 1, dispersion relations for Newtonian and a specific
fðRÞ model are numerically compared. The modified char-
acteristic length van be given in terms of the classical one.

Both in the classical and in fðRÞ analysis, the system
damps the perturbation. This damping is not associated to
the collisions because we neglect them in our treatment,
but it is linked to the so-called Landau damping [29].
A new condition for the gravitational instability is

derived, showing unstable modes with faster growth
rates. Finally we can observe the instability decrease in
fðRÞ gravity: such decrease is related to a larger Jeans
length and then to a lower Jeans mass. We have also
compared the behavior with the temperature of the Jeans
mass for various types of interstellar molecular clouds
(Fig. 2). In Tables I and II we show the results given by
this new limit of the Jeans mass for a sample of giant
molecular clouds. In our model the limit (in unit of mass)
to start the collapse of an interstellar cloud is lower than the
classical one advantaging the structure formation. Real
solutions for the Jean mass can be achieved only for �<
0 and this result is in agreement with cosmology [9]. In
particular, the condition �< 0 is essentials to have a well-
formulated and well-posed Cauchy problem in fðRÞ grav-
ity [9]. Finally, it is worth noticing that the Newtonian
value is an upper limit for the Jean mass coinciding with
fðRÞ ¼ R.
This work is intended to indicate the possibility to deal

with ISM collapsing clouds under different assumptions
about gravity. It is important to stress that we fully recover
the standard collapse mechanisms but we could also de-
scribe proto-stellar systems that escape the standard col-
lapse model. On the other hand, this is the first step to study
star formation in alternative theories of gravity (see also
[25–28,42]). From an observational point of view, reliable
constraints can be achieved from a careful analysis of the
proto-stellar phase taking into account magnetic fields,
turbulence and collisions. Finally, addressing stellar sys-
tems by this approach could be an extremely important to
test observationally fðRÞ gravity.
Moreover, the approach developed in this work admits

direct generalizations for other modified gravities, like
nonlocal gravity, modified Gauss-Bonnet theory, string-
inspired gravity, etc. [43,44]. In these cases, the con-
strained Poisson equation may be even more complicated
due to the presence of extra scalar(s) in nonlocal or string-
inspired gravity. Developing further this approach gives, in
general, the possibility to confront the observable dynam-
ics of astrophysical objects (like stars) with predictions of
alternative gravities.
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