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The characteristic formalism of numerical relativity is based on a system of coordinates aligned with

outgoing null cones. While these coordinates were designed for studying gravitational waves, they can

also be easily adapted to model cosmological past null cones (PNCs). Similar to observational coordinates

in the observational approach to cosmology, this then provides a model that only makes use of information

causally connected to an observer. However, the diameter distance, which is used as a radial coordinate,

limits the model’s cosmological application to the region prior to the PNC refocusing. This is because

after refocusing, the diameter distance ceases to be a unique measure of distance. This paper addresses the

problem by introducing a metric based on the Bondi-Sachs metric where the radial coordinate is replaced

by an affine parameter. A model is derived from this metric and it is then shown how an existing numerical

scheme can be adapted for simulation of cosmological PNC behavior. Numerical calculations on this

model are found to have the same stability and convergence properties as the standard characteristic

formalism.

DOI: 10.1103/PhysRevD.85.044016 PACS numbers: 04.25.D�, 98.80.Jk

I. INTRODUCTION

The observational approach to cosmology is the en-
deavor to reconstruct the geometry of the Universe using
observations that do not require the prior assumption of a
cosmological model. Using this approach, it was shown in
[1] that given ideal cosmological observations, the only
essential assumption necessary to determine the geometry
of the Universe is a theory of gravity. Assuming General
Relativity, then, the full set of Einstein field equations
(EFEs) can be used to reconstruct the geometry of the
Universe using direct observations on the past null cone
(PNC) as boundary conditions. Observationally and theo-
retically this is a very ambitious task and therefore, current
developments have been restricted to spherically symmet-
ric dust models while only relaxing the usual assumption of
homogeneity in the radial direction. These restricted mod-
els are important for the development of theoretical foun-
dations and also useful as verification models since they
avoid the circularity of verifying what has already been
assumed. For instance, doing investigations such as quan-
tifying homogeneity on different scales, testing the verifi-
ability of cosmology [1], validating the Copernican
principle [2] and determining the metric of the Universe
[3] require more general models than the conventional
Robertson-Walker geometries.

The Observational Cosmology (OC) program of Ellis
and others played an instrumental part in the development
of the observational approach. Of particular interest is their
use of observer coordinates which is based on the optical
coordinates of Temple [4]. These coordinates are based on
the natural propagation of electromagnetic radiation and
follow the causal structure of an observer PNC. This
approach then consists of two problems: first, astronomical

observations are used to set up the metric on the local PNC
and second, these form the final values of a characteristic
final value problem which determines the historical evolu-
tion of the region causally connected to the PNC (i.e. the
interior of the PNC). The PNC and its interior, which is the
causally connected region of a cosmological observer, is of
fundamental importance since it defines the limits on
which cosmological models can be validated from direct
observations. Apart from the initial Ideal Observational
Cosmology report [1], which focused on the fundamental
principles, the focus of the OC program has mostly been on
exact solutions and perturbations using tetrad formalisms
in spherical symmetry. Some recent developments are
presented in [5–7] and a summary in [8]. Numerical algo-
rithms have been proposed in [3] using a metric-based
approach but these have not been implemented. A separate
line of development based on the Lemaı̂tre-Tolman-Bondi
(LTB) model, using comoving coordinates, using the mod-
els introduced in [9,10], was followed in [11,12] to recon-
struct the observer metric numerically. Some important
aspects addressed in the LTB approach are the treatment
of a reconverging PNC through coordinate singularities
and the sensitivity of the numerics when using realistic
data as boundary conditions.
The characteristic formalism of numerical relativity

[13–15] usually associated with studying gravitational
waves, was put forward in [16,17] as a method for model-
ing the observable universe. With the motivation that there
exists a well-established base of null-cone numerical
schemes, it was investigated to what extent these can be
employed to simulate the evolution into the past of a
cosmological PNC, instead of modeling the evolution
into the future of a future null cone. It was found that
with minor cosmological considerations, this method was
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very well suited for modeling the historical evolution of the
observable universe. That is apart from a known limitation
of the characteristic formalism; i.e. in modeling the recon-
vergence of the PNC of an expanding universe, the diame-
ter distance, as radial coordinate, becomes multivalued and
limits the feasible radial extent of this formalism to the
region prior to the observer apparent horizon (AH). Since
the properties of the observable universe at the AH are
directly related to the cosmological constant (�) [3,6,18],
extending the model beyond the AH is a compulsory
requirement for studying contemporary problems in
cosmology.

This paper addresses this problem by introducing a
metric based on the Bondi-Sachs metric where the radial
coordinate is replaced with an affine parameter. We derive
the model with a cosmological constant � incorporated
into the Einstein field equations, and regard� as a parame-
ter of the theory of gravity rather than as a matter source
term. Similar to the conventional characteristic formalism,
this model consists of a system of differential equations for
numerically evolving the EFEs as a characteristic initial
value problem (CIVP). A numerical code implemented for
the method has been found to be second-order convergent.
This code enables simulations of different models given
identical data on the initial null cone and provides a
method to investigate their physical consistency within
the causally connected region of our current PNC. These
developments closely follow existing 3D schemes devel-
oped for gravitational wave simulations, which should
make it natural to extend the affine CIVP beyond spherical
symmetric simulations.

In Sec. II, an affine parameter is introduced in the Bondi-
Sachs metric to derive the affine CIVP model for cosmol-
ogy. Details of the numerical implementation are given in
Sec. III and coordinate transformations, which relate co-
moving coordinates to the affine CIVP coordinates are
discussed in Sec. IV. Results of simulations with the new
coordinates are presented in Sec. V. Section VI concludes
the paper.

II. CHARACTERISTIC FORMALISM
ON NULL GEODESICS

A. Characteristic formalism with affine
radial coordinate

The conventional characteristic formalism in numerical
relativity uses a frame of reference based on outgoing null
cones that evolve from values on an initial null cone. The
idea is conceptualized in Fig. 1. G is a timelike geodesic,
and u is the proper time on G. (In practice, in numerical
relativity simulations the inner boundary of the null cone is
usually a timelike worldtube rather than a geodesic, but the
problem can be formulated with a geodesic). Null geo-
desics emanating from G have constant ðu; �; ’Þ, and near
G the angular coordinates � and ’ have the same meaning
as in spherical polar coordinates. The coordinate r is the
diameter, or area, distance defined by the condition that the
surface area of a shell of constant r is 4�r2.
The geometry of the characteristic formalism is de-

scribed by the Bondi-Sachs metric, which in spherical
symmetry is formulated as1

ds2 ¼ �e2�
�
1þW

r

�
du2 � 2e2�dudr

þ r2fd�2 þ sin2�d’2g: (1)

This can be recognized as a generalization of the well-
known Eddington-Finkelstein form of the exterior
Schwarzschild metric, obtained by setting � ¼ 0, W ¼
�2M, where M is the mass of the source. The coordinate
system is defined such that � andW vanish at the vertex of
each null cone, i.e. at r ¼ 0 Eq. (1) reduces to a
Minkowskian metric.
Starting with the Bondi-Sachs metric (1), an affinely

parameterized geodesic in these coordinates is determined
through

FIG. 1. On the left-hand side, the null coordinates of the characteristic formalism and on the right-hand side, the affine null-cone
coordinates for cosmology.

1The notation used here is based on that of [13] and substitut-
ing W ¼ V � r will give the original notation of Bondi and
Sachs in [19–21].
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d2r

d�2
þ �1

11

�
dr

d�

�
2 ¼ 0 ) d2r

d�2
þ 2�;r

�
dr

d�

�
2 ¼ 0: (2)

Setting � ¼ r at the origin provides the initial conditions
rð0Þ ¼ �ð0Þ ¼ 0 and dr=d�j�¼0 ¼ 1 then solving gives

dr

d�
¼ e�2�: (3)

Using tensor transformation laws and substituting (3) for
all @r=@� terms, a new metric with the radial coordinate �
is introduced as

ds2 ¼ �
�
1þ Ŵ

r̂

�
du2 � 2dud�þ r̂2fd�2 þ sin2�d’2g

with: Ŵ ¼ Ŵðu; �Þ and r̂ ¼ r̂ðu; �Þ: (4)

Substituting (4) into the EFEs, using the form Rab ¼
�ðTab � 1

2TgabÞ þ�gab, with the stress-tensor for a dust-

like fluid (Tab ¼ �vavb and T ¼ ��) gives2

r̂ ;�� ¼ � 1

2
�r̂�ðv1Þ2 (5)

r̂;u� ¼ 1

2

�
Ŵ;�r̂;� þ r̂r̂;�� þ Ŵr̂;�� � 2r̂;ur̂;�

� 1þ ðr̂;�Þ2 þ 1

2
��r̂2 þ�r̂2

��
r̂ (6)

Ŵ;��¼ Ŵ

r̂
r̂;��þ4r̂;u�þ2�

�
v0v1��1

2
�

�
r̂

�2�r̂ with: r̂ð0Þ¼ Ŵð0Þ¼ Ŵ;�ð0Þ¼ r̂;uð0Þ¼0

and r̂;�ð0Þ¼1: (7)

Further, substituting the dust stress-tensor and (4) into
the continuity equation, Tab

;b ¼ 0, the energy-momentum

equations follow

v1;u ¼ 1

v1

�
ðV̂wv1 � v0Þv1;� þ 1

2
ðv1Þ2V̂w;�

�
(8)

�;u ¼ 1

v1

�
�

�
V̂w

�
2v1

r̂
r̂;� þ v1;�

�
�

�
2v0

r̂
r̂;� þ v0;�

�

þ V̂w;�v1 �
�
2r̂;u
r̂

�
v1

�
þ �;�ðV̂wv1 � v0Þ � �v1;u

�

with: V̂w ¼ 1þ Ŵ

r̂
: (9)

Making use of the normalization condition, gabvavb ¼
�1, v0 can be written in terms of v1 as

v0 ¼ 1

2
V̂wv1 þ 1

2
v�1
1 : (10)

Having the values on the initial null cone for � and v1,
Eqs. (5) to (10) form a hierarchical system that can be
solved in the order (5)–(7) and (10), then solving Eqs. (8)
and (9) evolves the system to the next null cone where the
process can be repeated until the domain of calculation has
been covered. These equations are all interdependent and
require an iterative scheme for a numerical solution.

B. Cosmological considerations

The model introduced in Sec. II A is essentially a null-
cone formalism which makes provision for a null cone that
can reconverge at some distance from the cone vertex.
Taking G to be the worldline of an observer located at
the cone vertex and integrating into the past, these coor-
dinates can be naturally aligned with a cosmological PNC.
Further, it being spherically symmetric and radially inho-
mogeneous, classifies it as a LTB model in null coordi-
nates. Using this model, the simulations done in [16,17]
can be extended beyond the apparent horizon (AH).
Figure 1 illustrates the differences between conventional
characteristic coordinates and the affine coordinates.
Besides being not comoving, the affine coordinates closely
resemble the observer coordinates as described in [1].
As an observational cosmology problem, where the

geometry is determined from direct observations, there
are two subproblems to be solved:
(i) Reconstruct the geometry of the local PNC from

directly observable quantities, such as redshift-
distance and galaxy number counts.

(ii) Evolve the model as a reverse CIVP to determine
the interior of the PNC using the values determined
in (i) as initial conditions.

Although the accumulation of cosmological data in
recent years has been astounding, these are not yet suffi-
ciently complete for a practical implementation of the first
problem, which will have to incorporate aspects such as
data reduction and the sensitivity of the model to observa-
tional errors. These aspects will not be considered in this
paper and only a conceptual description of the relations
between observable quantities and the required input for
the model will be described in the next section. The second
subproblem will be treated in detail in the remainder of the
paper through the development of a numerical code for the
affine CIVP model. By itself this provides a mechanism for
testing hypothesised models by evaluating the behavior of
their PNCs under given initial values. The PNC behaviors
of different models given similar initial values are particu-
larly interesting cases to investigate.

C. Reconstructing the metric

As initial data for the model, v1ð�Þ and �ð�Þ have to be
determined from observations on the PNC. These require
measures of the radial distribution of expansion and den-
sity. As a measure of expansion, redshift in terms of
the luminosity distance (dL) can be determined from2Using geometric units G ¼ 1, c ¼ 1 and � ¼ 8�
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redshift-magnitude observations (e.g. type Ia supernovae
observations). The reciprocity theorem can then be used to
convert dL-redshift to diameter distance-redshift relations
(see [22])

zðdLÞ and dL ¼ ð1þ zÞ2r0 ) ẑ ¼ zðr0Þ: (11)

Here the zero subscript refers to a value on the current
PNC. The redshift is directly related to the time component
of the contravariant velocity:

1þ ẑ ¼ du

d�
¼ v0; (12)

where � is the proper time along general galactic world
lines (see [1]). This can be used to determine the covariant
velocity v1:

v1ðr0Þ ¼ �v0 ¼ �ð1þ ẑÞ: (13)

As a measure of density, observed galaxy number counts
(n) in terms of z can be used to determine �ðr0Þ. Galaxy
redshift surveys can provide data for this, although current
surveys are not yet sufficiently complete at high redshifts.
Since ẑðr0Þ is known, nðzÞ can be rewritten as n̂ðr0Þ ¼
nðẑðr0ÞÞ. It was shown in [16] that the proper number count
can be written as

N ¼ n

ð1þ zÞ : (14)

In terms of the diameter distance, the proper number count
then becomes

N̂ðr0Þ ¼ n̂

ð1þ ẑÞ : (15)

The proper density is then related to the proper number
count

�ðr0Þ ¼ fðN̂Þ: (16)

The details of this relation will not be considered at this
stage but in principle it must take into account aspects such
as dark matter and source evolution, preferably with fac-
tors independent of an already assumed cosmological
model.

From (13) and (16) the required values of � and v1 are
obtainable in terms of the diameter distance. Since these
are required in terms of �, interchanging the independent
variable in (5) provides a method to relate � in terms of r.
Starting with (5), rewritten as a system of ordinary differ-

ential equations (ODEs), introducing Ŝ,

r̂ ;� ¼ Ŝ (17)

Ŝ ;�¼ r̂;��¼�1

2
�r̂�ðv1Þ2 with: r̂ð0Þ¼0 and Ŝð0Þ¼1;

(18)

then interchanging the roles of � and r, simplifying,

rearranging and introducing Û provides ODE expressions
for �;r̂ r̂

�;r̂ ¼ Û (19)

Û;r̂¼�;r̂r̂¼
�
1

2
�r̂�ðv1Þ2

�
Û3

with:�ð0Þ¼0 and Ûð0Þ¼1:
(20)

Although these equations will not be solved at this stage,
there are some complications that will require special
consideration around the AH. These arise from the fact
that the diameter distance in an expanding universe is not
necessarily monotonically increasing and therefore, not a
unique independent variable. In these cases, r̂ reaches a
maximum and then decreases. At the maximum diameter
distance, the AH, r̂;� ¼ 0, and �;r̂ is singular. In general,

this can be overcome by separating the solution into re-
gions prior, around and succeeding the AH where the
region around the AH is solved using series expansions.
Such a method was previously implemented in [11] to
handle singularities around the AH for LTB models.
It should be noted that [18], followed by [3,6], derived a

relationship for the cosmological constant� (which we are
regarding as a parameter of the theory of gravity) involving
the maximum value of r̂ and matter data within the PNC. In
order to test the theory of gravity more generally, a mea-
surement involving a rate of change over time is required.
Redshift drift z;uðzÞ [2], which is one of the design objec-

tives of the CODEX spectrograph planned for the
European Extremely Large Telescope (E-ELT) [23], can
be used for this purpose. From (13) we have

v1ðr0Þ ¼ �ð1þ ẑÞ ) v1;uðr0Þ ¼ �ẑ;uðẑÞ; (21)

and then an evaluation of the difference between the left-
and right-hand sides of Eq. (8) provides a test of the theory
being used.
In the LTB models investigated in [11,12], data reduc-

tion methods were introduced which provide valuable in-
sight into the methodology of converting realistic data into
useful initial data. In combination with the methods intro-
duced in this section, all options will have to be considered
when data of sufficient completeness becomes available
for observational models.

III. NUMERICAL IMPLEMENTATION

The numerical scheme described here is in structure
similar to the finite difference scheme described in [17],
which in turn was based on the general 3D code developed
in [13,24]. Since the original scheme is based on first-order
ODEs, the second-order hypersurface equations are rewrit-

ten by introducing R̂ðu; �Þ ¼ r̂;u, Ŝðu; �Þ, and T̂ðu; �Þ,
which then gives:
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r̂ ;� ¼ Ŝ (22)

Ŝ ;� ¼ r̂;�� ¼ � 1

2
�r̂�ðv1Þ2 (23)

R̂;�¼ r̂;u�¼1

2

�
T̂ Ŝþr̂Ŝ;�þŴŜ;��2R̂Ŝ�1þ Ŝ2þ1

2
��r̂2

þ�r̂2
��

r̂ (24)

Ŵ ;� ¼ T̂ (25)

T̂;� ¼ Ŵ;�� ¼ Ŵ

r̂
Ŝ;� þ 4R̂;� þ 2�

�
v0v1�� 1

2
�

�
r̂� 2�r̂

with: r̂ð0Þ ¼ Ŵð0Þ ¼ R̂ð0Þ ¼ T̂ð0Þ ¼ 0 and Ŝð0Þ ¼ 1:

(26)

These equations can be solved using standard ODE meth-
ods for systems of equations where (22) and (23) are solved
as one system and (24)–(26) are solved as a separate
system. In both cases a number of iterations are required
to obtain convergence.

The discretization strategy followed is based on a rect-
angular grid similar to the one used in [17] but using � as
the radial coordinate. Solving the hypersurface equations is
done with a central difference method on half steps be-
tween the r-grid points, using

gij ¼ gij�1 þ
��

2
ðgi;rj þ gi;rj�1Þ (27)

with i being the time step and j the radial step. Here,
gi;rj is calculated by substituting known values into

Eqs. (22)–(26). In order to solve the evolution equations,
(8) and (9), their general form is notated as

v1;u ¼ Fv1 and �;u ¼ F� (28)

and as explicit finite differences on a time half-step they are
written as

vnþ1
1j ¼ vn

1j þ�uFnþ1=2
v1j and �nþ1

j ¼ �n
j þ�uFnþ1=2

�j :

(29)

Here, n is a time iterator that will approach i. In these
equations, the numerical values at the point ði; jÞ are used
to evaluate the matter terms and hypersurface derivatives.
Radial matter derivatives are calculated making use of
standard central difference formulae (see for instance
[25] p. 160–161).

After setting up a suitable grid, the numerical algorithm
can be summarized in the following steps:

(i) Set the � and v1 initial values on to the initial grid
points. These values will, in principle, be obtained
from observations.

(ii) Calculate r, r;u, W and v0 from � and v1 on the

initial null cone using (22)–(26).

(iii) Calculate Fn
j , with n ¼ 1 for the initial step, from

the values of v1, �, r, r;u, W, and v0 using (28).

(iv) Set Fnþ1=2
j ¼ Fn

j , again n ¼ 1 for the initial step,

and calculate v1 and � as an initial approximation
that will approach the actual values with subsequent
iterations using (29).

(v) Use the new values of v1 and � to calculate r, r;u,W,

and v0 and their radial derivatives similar to (ii).

(vi) Calculate Fnþ1=2
j ¼ 1=2ðFn

j þ Fnþ1
j Þ from values

in (v) and again v1 and � for Fnþ1
j and the values

in (iii) for Fn
j .

(vii) Test the calculations in (vi) for accuracy and con-
vergence. If they are sufficiently accurate, move to
the next time step, otherwise repeat steps (v) and
(vi) with the new values of v1 and �.

As with the standard characteristic model, described in
[16,17], calculations in the regions around � ¼ 0 require
special consideration. The mechanisms used in [17] for
these regions was directly adapted for the affine CIVP
model. In the� � 0 region, it is evident from the occurrence
of � denominators that Eqs. (8) and (9) will not be well-
behaved. Consequently, the � � 0 region is calculated by
making use of second-order series expansions. The region
where the series solutionmeets with the CIVP solution, also
requires special treatment to avoid artificial instabilities.
This has been done by smoothing out themerger regionwith
a weighted average between the two solutions.

IV. TRANSFORMATIONS: COMOVING
COORDINATES

A. General transformation

As a measure of the degree of convergence and accuracy,
numerical calculations have to be compared with results
from known solutions, which require coordinate transfor-
mations from conventional comoving cosmological coor-
dinates to affine null coordinates. These transformations
follow directly from calculating the geodesic paths in space
and time. This has the general form

d2xa

d�2
þ �a

bc

dxb

d�

dxc

d�
¼ 0: (30)

The parabolic LTB model, which is spherically symmet-
ric and radially inhomogeneous, will be used as the general
case for transformations. Its geometry in comoving syn-
chronous coordinates is described by the metric3

ds2¼�dt2þ½R;rðt;rÞ�2dr2þ½Rðt;rÞ�2fd�2þsin2�d’2g:
(31)

Here, t is the cosmic (proper) time, r is a comoving radial
coordinate with � and ’ the inclination and azimuth

3Note that r here is the comoving radial distance and not the
diameter distance.
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angles. Rðt; rÞ is the areal radius and 4�R2 defines the
proper surface area of a sphere with coordinate radius r
at a constant time slice [26].

Using (30), the geodesic equations for the LTB model
becomes

d2t

d�2
þ �0

11

�
dr

d�

�
2 ¼ 0 (32)

d2r

d�2
þ 2�1

01

dt

d�

dr

d�
þ �1

11

�
dr

d�

�
2 ¼ 0: (33)

When scaled to some maximum time, t0, as the current age
of a universe, the conditions at � ¼ 0 are t ¼ t0 and r ¼ 0
with the initial directions constrained to be null by
dt=d� ¼ 1 and dr=d� ¼ 1=R;rðt0; 0Þ. As comparative val-

ues on a null-cone grid, the covariant velocity follows
directly from v1 ¼ dt=d�, the diameter distance from
r̂ð�Þ ¼ R½t; rð�Þ�, while � is determined from the coordi-
nate expression for the specific model using ½tð�Þ; rð�Þ� as
the coordinates for t and r on a null cone.

B. Models for code verification

1. Einstein-de Sitter model

As an illustration of comoving to affine transformations,
the Einstein-de Sitter (EdS) model, scaled to t0 ¼ 1 with
G ¼ 1, which has the metric

ds2 ¼ �dt2 þ t4=3dr2 þ t4=3r2fd�2 þ sin2�d’2g: (34)

provides a system of equations from which tð�Þ and rð�Þ
can be obtained

d2t

d�2
þ 2

3
t1=3

�
dr

d�

�
2 ¼ 0 (35)

d2r

d�2
þ 4

3
t�1 dt

d�

dr

d�
¼ 0: (36)

At � ¼ 0: t ¼ 1, r ¼ 0, dt=d� ¼ �1, and dr=d� ¼ t�2=3.
Solving these equations numerically provides a useful

example of the motivation for working with an affinely
parameterized radial coordinate as opposed to the diameter
distance. This is illustrated in Fig. 2 where the diameter
distance and affine parameter is plotted against the redshift.
In terms of observations, with the emphasis on the AH at
z ¼ 1:25, the diameter distance reaches its maximum and
then decreases while � keeps on increasing and provides a
unique coordinate for higher redshifts.

Substituting tð�Þ into the density equation � ¼ 1=ð6�t2Þ
provides the density profile on a specific null cone. It is
interesting to point out here that as t varies with � on each
null cone, � also varies i.e. even though the EdS model is
homogeneous in conventional cosmological coordinates,
null cones are not hypersurfaces of radial homogeneity and
the model becomes inhomogeneous in null coordinates
(see [27]).

2. �CDM

The �CDM or concordance model is of interest for the
current understanding of the Universe and is also useful to
test the affine CIVP model with a nonzero cosmological
constant. In terms of the LTB metric (31), using cosmo-
logical properties at the current epoch (t0), the solution of
the flat �CDM model is (see [28]):

Rðt;rÞ¼AðtÞr¼
�
�m0

��

�
1=3

�
sinh

�
3

2
H0

ffiffiffiffiffiffiffiffi
��

p
t

��
2=3

r (37)

with the age of the Universe:

t0 ¼ 2

3
ðH0

ffiffiffiffiffiffiffiffi
��

p Þ�1sinh�1

��
��

�m0

�
1=2

�
(38)

and the density distribution

�m ¼ 3H2
0

8�G

�m0A
3
0

A3
: (39)

Here, �m0 and �� are the current density parameters for
baryonic matter and the cosmological constant, respec-
tively, and H0 is the current Hubble constant. Values
representative of the actual Universe are: �m0 ¼ 0:3,
�� ¼ 0:7 and H0 ¼ 72 Mpc s�1 km�1. For the purpose
of code verification, however, using geometric units
(G ¼ 1) and rescaling time to have t0 ¼ 1, a dimensionless
value of H0 ¼ 0:964 was used to make comparison with
other models more convenient.

3. Lemaı̂tre-Tolman-Bondi

LTB models, introduced in [29–31], have been popular
in recent years to demonstrate how inhomogeneities can
reproduce the effects of type Ia supernovae redshift dim-
ming without the need of a cosmological constant (see
[32–36] among others). It, therefore, has physical signifi-
cance and also provides a general case for testing the effect
of radial inhomogeneity on the null-cone behavior. The test
cases investigated, here, are for simplicity restricted to the
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parabolic solution. Substituting (31) into the EFEs and
solving gives (see [10,37]):

Rðt;rÞ¼
�
9

2
MðrÞðt� tBðrÞÞ2

�
1=3

and �ðt;rÞ¼ M;r

4�R2R;r

:

(40)

MðrÞ is the active gravitational mass which is the mass
contributing to the gravitational field and tBðrÞ is defined as
the bang time function, which is a surface defined by the
local time at which R ¼ 0. A simplified subset of models
with mathematical convenient properties follow by setting
MðrÞ ¼ M0r

3 as a coordinate condition where M0 is a
constant which for illustrative purposes is set to 2=9.
Equations (40) then reduce to:

Rðt; rÞ ¼ rðt� tBðrÞÞ2=3 (41)

with �:

�ðt; rÞ ¼ 1

2�ðt� tBðrÞÞð3t� 3tBðrÞ � 2rtB;rðrÞÞ : (42)

By selecting tBðrÞ ¼ 0, Eq. (42) becomes the EdS
model, which can be verified against the results in
Sec. IVB 1. If tBðrÞ � 0 and tB;rðrÞ ¼ 0, the time of the

initial singularity is adjusted and the age of the Universe
changes. For nonconstant functions, the initial singularity
becomes a singular surface and the age of the Universe
becomes subject to the position of an observer (i.e. the age
of the Universe depends on r). Thus, a variety of models
can be generated for testing the code on parabolic spatial
sections.

A simple choice of the bang function is implemented as
a verification model:

tBðrÞ ¼ br; (43)

withb being a constant. This simplifiesEqs. (41) and (42) to:

Rðt; rÞ ¼ rðt� brÞ2=3 (44)

�ðt; rÞ ¼ 1

2�ðt� brÞð3t� 5brÞÞ : (45)

By varying the value of b, different aspects of inhomo-
geneity can be studied. The value b ¼ 0 is exactly the EdS
model and b > 0 shifts the age of a universe to a younger
age as r increases while b < 0 provides the opposite effect
where a universe is shifted to an older age as r increases.
The latter case is particularly interesting since it provides a
mechanism to mimic a cosmological constant on low red-
shifts [32]. This is, however, not necessarily the case for
high redshifts and the case where b ¼ �0:5 is used as a
model where the effect of inhomogeneity is clearly visible
on higher redshifts.

V. RESULTS

A. Verification results

The results of numerical calculations of the models
described in Sec. IVB are presented in this section. It is
shown how the diameter distance (r̂), the covariant velocity
(v1) and the density � evolve on PNCs in the past from
observations on the current PNC. Also of interest is the
evolution of r̂ against the redshift z, which provides an
illustration of an observer’s perception of distance from a
particular PNC vertex. In the results the current PNC
values are indicated with u0, the oldest PNC with umax

and an intermediate PNC is also shown between these
values. Since the purpose of the calculations is to test the
behavior of the numerical model and not the physics of the
specific cosmological models, time is scaled to u0 ¼ 1 and
geometric coordinates are used to provide dimensionless
results. In all cases the numerical results (points in the
figures) closely follow the transformed results (lines in the
figures). Table I gives a summary of the test cases.
The radial extent of the results are the maximum values

for which the calculations were found to be stable on a
regular grid. The region most interesting for the current
investigation is that around the AH, which is well within
the domain of calculation and, therefore special techniques
to extend the radial boundaries were not considered. The
maximum value for u was taken to be the oldest PNC
where the calculations were stable beyond the AH of that
particular PNC. In comparison with the results in [17], in
which the diameter distance was used as the radial coor-
dinate, significant improvements in the region covered
were obtained. In terms of the redshift z, in the EdS case
the maximum value obtained in [17] was z ¼ 0:99 on a
reduced u region, and the results in Fig. 5 of [17] were for
z ¼ 0:47 and z ¼ 0:48 for the EdS and LTB models,
respectively.4 These values have now been extended to
z ¼ 4:5 and z ¼ 1:2 for EdS and LTB, respectively, in
both cases well beyond the location of the AH (which is
z at rmax in Table I).
Figure 7(b) is a particularly interesting illustration of an

observer’s perception of distance in an inhomogeneous
universe. Here, the ðr̂; zÞ behavior on earlier PNCs includes

TABLE I. Affine CIVP test cases.

Model z at rmax zmax u0 umax Figures

EdS 1.25 4.5 1 0.35 3 and 4

�CDM (�� ¼ 0:7) a 1.61 6 1 0.4 5 and 6

LTB (b ¼ �0:5) 1.02 1.2 1 0.2 7 and 8

aThis result is in agreement with that of [38]

4In the figures in [17], umax refers to the u value of a PNC
originating from the comoving t value at the AH. E.g. for the
EdS model umax ¼ 8=27, which is the t value at the AH. In this
paper, umax refers directly to the maximum u value considered.
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loops, which will completely obscure the perception of
diameter distance and redshift as measures of distance.
This type of behavior provides insight into the physical
nature of a model by investigating its past behavior.
Although the initial PNC of the specific LTB model is

not significantly out of line compared to more accepted
models, especially on low redshifts, its past behavior is
rather unusual. This does not make it unrealistic, but does
say that an observer at u ¼ umax would have found the
interpretation of cosmological data particularly difficult.

1. Einstein-de Sitter

2. �CDM with �� ¼ 0:7
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3. LTB with b ¼ �0:5
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B. Convergence and accuracy

Figures 9(a)–9(c) show the error propagation between
the numerical calculations and the transformed results for
different grid resolutions. Although the error values are
generally small, it is visible that close to � ¼ 0, where
series expansions are used, the local error values are
higher. No specific techniques were employed to reduce
these errors, since this provides an indication of the mod-
el’s stability to local errors. The convergence of errors are
general and on higher grid resolutions the difference in
error values are less evident.

Figure 9(d), displays the convergence behavior of the
calculations. Comparing the error size of the � calculations
with the grid size, gives the order of convergence between
1.7 and 2.2, i.e. around second-order convergence. Since no
specific techniques were used to balance the error sizes in
the series expansion calculations with the CIVP calcula-
tions, the models also shows good convergence sensitivity
against local errors. This effect will be investigated in
detail in the future to determine how the model will behave
with initial data with realistic observational error margins.

VI. CONCLUSION

The ideal observational approach proposed in [1] can
arguably be considered the most philosophically sound

approach to cosmology since it only studies the part of
the Universe that is causally connected to a cosmological
observer. Practically, a very precise map of the contents
of the universe is required to develop the full potential of
this approach, which, even in the era of precision cos-
mology, is not yet achievable. The more conventional
model-based approach is therefore, and will probably
for some time, still be the most favorable approach for
assessing our understanding of the Universe. However,
the model and observational approaches do not have to
be advocated in opposition since restricted implementa-
tions of the observational approach can provide insight
into the question: Can our conventional understanding
of the Universe, which is based on a priori assumptions
such as the Copernican principle, be derived from
less restrictive models making only the most essential
assumptions?
The affine CIVP model developed in this paper

provides a numerical implementation of the observational
approach restricted to a dust filled isotropic universe.
The model is particularly well suited for investigating
the historic evolution of the observable universe as a
reversed CIVP evolved from observations on a local
PNC. The line element of the affine CIVP, is closely related
to the Bondi-Sachs metric, which makes it a direct process
to adapt existing numerical schemes to the new metric. As
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with the standard characteristic formalism, second-order
convergence and accuracy was achieved when verified
against models with known solutions. Similar to the simu-
lations in [17], this provides a useful mechanism to inves-
tigate the physical consistency of cosmological models
given identical observations on the observer PNC. With
the standard characteristic formalism, this could only be
implemented in the region prior to the AH, with the affine

CIVP the region is extended far enough to investigate the
effect of the cosmological constant on the history of the
observable universe.
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Cargèse lectures (Kluwer, Dordrecht, The Netherlands,
1998); in NATO ASIC Proc. 541: Theoretical and
Observational Cosmology (Kluwer, Dordrecht, The
Netherlands, 1999), pp. 1–116.

[27] M. B. Ribeiro, Astrophys. J. 441, 477 (1995).
[28] O. Lahav and Y. Suto, Living Rev. Relativity 7, 11 (2004).
[29] G. Lemaı̂tre, Annales de la Société Scientifique de
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