
Superconducting hair on charged black string background

Lukasz Nakonieczny and Marek Rogatko*

Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, pl. Marii Curie-Sklodowskiej 1, Poland
(Received 2 November 2011; published 7 February 2012)

Behavior of Dirac fermions in the background of a charged black string penetrated by an Abelian Higgs

vortex is elaborated. One finds evidence that the system under consideration can support fermion fields

acting like a superconducting cosmic string in the sense that a nontrivial Dirac fermion field can be carried

by the system in question. Nonextremal and extremal black string vortex systems were considered. The

influence of electric and Higgs charge, the winding number, and the fermion mass on the fermion

localization near the black string event horizon were studied. It turned out that the extreme charged black

string expelled fermion fields more violently comparing to the nonextremal one.
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I. INTRODUCTION

In recent years, there has been a great deal of attention
paid to black object solutions in four and higher dimen-
sions. Among them black holes and black strings play the
dominant role. For the first time uncharged and rotating
black string solutions were considered in [1]. On the other
hand, the generalization comprising the charged case was
provided in Ref. [2]. Rotating charged black strings in
dilaton gravity being the low-energy limit of the string
theory with nontrivial potential were elaborated in [3],
while the thermodynamics of the aforementioned objects
was studied in [4].

At the beginning of our Universe, it could undergo
several phase transitions which might produce stable topo-
logical defects like cosmic strings, monopoles, and domain
walls [5]. Among them, cosmic strings and cosmic string
black hole systems have acquired much interest. At the
distributional mass source limit metric of this system was
derived in [6] (the so-called thin string limit). In Refs. [7,8]
more realistic cases of an Abelian Higgs vortex on
Schwarzschild and charged Reissner-Nordström (RN)
black holes were elaborated. It was revealed that an analog
of the Meissner effect (i.e., the expulsion of the vortex
fields from the black hole) could take place. It happened
that this phenomenon occurred for some range of black
hole parameters [9]. In the case of the other topological
defects, like domain walls, a very similar phenomenon has
been revealed [10].

As the uniqueness theorem for black hole in the low-
energy string theory was quite well-established [11], the
next step in the aforementioned research was to consider
the Abelian Higgs vortex in the background of dilaton and
Euclidean dilaton black holes [12–14]. On the contrary to
the extremal black hole in Einstein-Maxwell theory, it
happens that extremal dilaton black holes always expel
vortex Higgs fields from their interior [14].

On the other hand, studies of much more realistic fields
than scalar attracted more attention. Solutions of field
equations describing fermions in a curved geometry is a
challenge to the investigations of the underlying structure
of the spacetime. The better understanding of properties of
black holes also requires examination of the behavior of
matter fields in their vicinity [15]. Dirac fermions’ behav-
ior was studied in the context of Einstein-Yang-Mills back-
ground [16]. Fermion fields were analyzed in the near-
horizon limit of an extreme Kerr black hole [17] as well
as in the extreme RN case [18]. It was also revealed [19,20]
that the only black hole solution of four-spinor Einstein-
dilaton-Yang-Mills equations were those for which the
spinors vanished identically outside the black hole. Dirac
fields were considered in Bertotti-Robinson spacetime
[21,22] and in the context of a cosmological solution
with a homogeneous Yang-Mills fields acting as an energy
source [23].
A different issue, related to the problem of black hole

uniqueness theorem, is the late-time decay of fermion
fields in the background of various kinds of black holes.
The late-time behavior of massless and massive Dirac
fermion fields were widely studied in spacetimes of static
as well as stationary black holes [24–30].
Fermion fields were also considered in the context of

brane models of our Universe, represented as (3þ 1)-
dimensional submanifold living in higher-dimensional
spacetime. Decay of a massive Dirac hair on a brane black
hole was considered in [31].
A direct consequence of the implementation of fermions

in the cosmic string theory is that they become super-
conducting. On their own, superconducting cosmic strings
might be responsible for various exotic astrophysical phe-
nomena such as the high-redshift gamma ray bursts [32],
the ultrahigh-energy cosmic rays [33].
In Ref. [34] it was revealed that the Dirac operator in the

spacetime of the system composed of Euclidean magnetic
RN black hole and a vortex in the theories containing
superconducting cosmic strings [35] possessed zero
modes. In turn, the aforementioned zero modes caused
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the fermion condensate around a magnetic RN black hole.
The generalization of the aforementioned researches to the
case of Euclidean dilaton black hole superconducting
string system was provided in Ref. [36], where the nonzero
Dirac fermion modes and an arbitrary coupling constant
between dilaton and Maxwell field were taken into ac-
count. It was found that Euclidean dilaton black hole
spacetime could support the superconducting cosmic string
as a hair.

As far as the black string vortex system was concerned,
the problem of an Abelian Higgs vortex solution in the
background of charged black string was studied in
Ref. [37]. It was found that it could support the vortex as
a hair. The effect of the presence of the vortex was to
induce a deficit angle in the spacetime of the static charged
black string.

Recently the gravity-gauge theory duality has attracted a
lot of attention. Because of the AdS/CFT correspondence,
gravity theory in d-dimensional anti-de Sitter (AdS) space-
time is equivalent to a conformal field theory on (d� 1)-
dimensional spacetime, which constitutes the boundary of
the AdS manifold. In the context of the AdS/CFT corre-
spondence, the black strings played their important roles.
Namely, in Ref. [38] the uncharged rotating black strings
were performed to describe a holographic fluid/superfluid
phase transition. On the other hand, the formation of scalar
hair which corresponds to a holographic fluid/superfluid
phase transition and the formation of scalar hair on the tip
of the solitonic, cigar-shaped solution describing a holo-
graphic insulator/ superfluid phase transition was consid-
ered in Ref. [39].

Motivated by the above arguments, in our paper we shall
investigate the problem of fermionic superconductivity in
the spacetime of a charged black string pierced by an
Abelian Higgs vortex. To our knowledge, the problem of
Dirac superconductivity in the background of charged
black string Abelian vortex system has not been elaborated
before. In what follows we shall consider the near-horizon
behavior of fermionic fields, which are responsible for the
superconductivity in the case of nonextremal and extremal
black string vortex system. We pay special attention to the
extremal black string case, due to the suspicions of the so-
called Meissner effect, i.e., expulsion of the vortex fields
from the black string interior. Such a phenomenon took
place in the extremal black hole vortex background and
was studied previously.

The layout of our paper will be as follows. In Sec. II, for
the reader’s convenience, we quote some basic facts con-
cerning the charged black string Abelian Higgs vortex
configuration. Sec. III will be devoted to the fermionic
superconductivity in the background of charged black
string vortex system. We derive Equations of motion for
the fermionic fields and describe the spinors which are
eigenstates of �0�3 matrices. In Sec. IV, we shall tackle
the problem of the asymptotic behavior of the fermion

fields in question. In Sec. V, we elaborate nonextremal
charged black string and the behavior of electrically
charged and uncharged fermion fields and their influence
on superconductivity. Section VI will be connected with
the extremal charged black string and possibilities of fer-
mion condensation near its event horizon. In Sec. VII, we
conclude our researches.

II. CHARGED BLACK STRING/ABELIAN
HIGGS VORTEX CONFIGURATION

In this section we shall discuss a charged black string/
vortex configuration. In our studies we assume the com-
plete separation of the degrees of freedom of the object
under consideration. The charged black string line element
will be treated as the background solution on which one
builds an Abelian Higgs vortex. The action governing the
black string/ Abelian vortex is provided by the following
expression:

S ¼ S1 þ Sbos; (1)

where S1 is the Einstein-Hilbert action for gravity with
negative cosmological constant � and Uð1Þ-gauge field.
The corresponding gauge field can be thought as the every-
day Maxwell field. S1 action yields

S1 ¼
Z ffiffiffiffiffiffiffi�g

p
d4x½R� 2�� F��F

���; (2)

where F�� ¼ 2r½�A��. The other gauge field is hidden in

the action Sbos and it is subject to the spontaneous symme-
try breaking. Its action implies

Sbos ¼
Z ffiffiffiffiffiffiffi�g

p
d4x

�
�ðd��Þyd��� 1

4
B��B

��

� �

4
ð�y�� �2Þ2

�
; (3)

where B�� ¼ 2r½�B�� is the field strength associated with

B�-gauge field,� is the energy scale of symmetry breaking

and � is the Higgs coupling. The covariant derivative has
the form d� ¼ r� þ ieRB�, where eR is the gauge cou-

pling constant.
Consideration of a nonlinear system coupled to gravity

constitutes a very difficult problem. However, it was shown
that the self-gravitating Nielsen-Olesen vortex can act as a
long hair. The same situation takes place in the case of a
charged black string [37].
In what follows we choose the vortex fields X and P in

the forms provided by the following expressions:

�ðxiÞ ¼ �XðrÞeiN�; (4)

and

B�ðxiÞ ¼ 1

eR
½P�ðrÞ � Nr���; (5)
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where � is the usual angular coordinate in the cylindrical
spacetime. Consequently, the bosonic action in terms of X
and P yield

Sbos ¼
Z ffiffiffiffiffiffiffi�g

p
d4x

�
��2r�Xr�X � �2P�P

�X2

� 1

4e2R
~B��

~B�� � ��2

2
ðX2 � 1Þ2

�
; (6)

where ~B�� ¼ r�P� �r�P�. Equations of motion for

bosonic part of the action read

r�r�X � P�P
�X� ��2

2
XðX2 � 1Þ ¼ 0; (7)

r�
~B�� � 2�2e2RP

�X2 ¼ 0: (8)

A static cylindrically symmetric line element of a
charged black string being subject to the action (2) takes
the form [2]

ds2 ¼ �A2dt2 þ dr2

A2
þ r2d�2 þ r2

l2
dz2; (9)

where by A2 we have denoted the following:

A2 ¼ r2

l2
� bl

r
þ

~�2l2

r2
: (10)

The parameters b, ~�, l are related to the black string mass,
charge per unit length, and cosmological constant by the
relations as follows:

M ¼ b

4
; QBS ¼

~�

2
; � ¼ � 3

l2
: (11)

The gauge field component is chosen to be equal to A� ¼
� l~�

r 	
t
�. In the case when �1< z <1 the above line

element describes a black string with cylindrical event
horizon, the inner r� and the outer rþ. For the specific
value of b parameter equals to

bcrit ¼ 4

� ~�ffiffiffi
3

p
�
3=2

; (12)

one has the case when the outer and inner horizons of black
string coincide, i.e., r� ¼ rþ. Then, we obtain an extremal
charged black string.

As was mentioned, treating a nonlinear system coupled
to gravity is a very difficult and nontrivial problem. In
order to circumvent the difficulties one can take a back-
ground solution and in this spacetime solve equations of
motion for Higgs fields. Because of the symmetry of the
problem in question, let us consider quite general form of
the cylindrically spacetime given by the line element

ds2 ¼ �AðrÞ2dt2 þ BðrÞ2dr2 þ CðrÞ2d�2 þDðrÞ2dz2:
(13)

Taking into account the vortex field � (4) and the
�-component of the gauge field B� (5), as well as the

line element (13), one obtains equations of motion for
Abelian Higgs vortex in the background in question. To
simplify the relations we redefine our variables by virtue of
the following: ffiffiffiffi

�
p

�ðr; lÞ ! ðr; lÞ: (14)

Then, equations of motion for the Abelian Higgs vortex on
the background in question imply

A2 d2

dr2
X þ 1ffiffiffiffiffiffiffi�g

p d

dr
ð ffiffiffiffiffiffiffi�g
p

A2Þ d
dr

X � C�2N2P2X

� 1

2
XðX2 � 1Þ ¼ 0; (15)

C�2A2 d2

dr2
Pþ 1ffiffiffiffiffiffiffi�g

p d

dr
ð ffiffiffiffiffiffiffi�g
p

A2C�2Þ d
dr

P

� 1

�
C�2PX2 ¼ 0; (16)

where we have denoted � ¼ �
2e2R

.

The exact solution of the above equations was elabo-
rated in [37], where the background metric (13) the
charged black string line element was taken. The metric
describing a static charged black string with an Abelian
Higgs vortex was found. It was revealed that the presence
of the Higgs fields induced a deficit angle in the charged
black string line element.

III. FERMIONS IN THE BLACK STRING
SPACETIME

In this section we shall pay attention to the fermion
superconductivity of a cosmic string that pierces the
charged black string. It was shown [35] that, in various
field theories, cosmic strings behave like superconducting
carrying electric currents. In principle, one can distin-
guished two kinds of this phenomenon. Namely, we have
to do with bosonic or fermionic superconductivity. If a
charged Higgs field acquires an expectation value in the
core of the cosmic string we can regard it as bosonic
superconductivity. On the other hand, when Jackiw-Rossi
[40] charged zero modes appear which can be regarded as
Nambu-Goldstone bosons in 1þ 1-dimensions, we obtain
fermionic superconductivity. Charged zero modes give rise
to a longitudinal components of the photon field on the
considered cosmic string and may be trapped as massless
zero modes.
In order to obtain fermionic superconductivity, we ex-

tend our Uð1Þ �Uð1Þ Lagrangian by adding the following
one, for the fermionic sector:
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SFE ¼
Z ffiffiffiffiffiffiffi�g

p
d4x½i �c��D�c þ i �
��D�


þ i~�ð�c TC
��� �cC �
TÞ�; (17)

where ~� is a coupling constant. The Dirac operator in the
above relation yields

D� ¼ r� þ ir̂eRB� þ iq̂eqA�; (18)

where we take as a component of the gauge field A� ¼
� l~�

r 	
t
�. r� stands for the covariant derivative for spinor

fields. We choose Dirac gamma matrices which form the
chiral basis for the problem in question. They are of the
form as

�0 ¼ 0 I
I 0

� �
; �a ¼ 0 �a

��a 0

� �
; (19)

where the Pauli matrices are given by

�0 ¼ 1 0
0 1

� �
; �1 ¼ 0 1

1 0

� �
; (20)

�2 ¼ 0 �i
i 0

� �
; �3 ¼ 1 0

0 �1

� �
: (21)

The charge conjugation matrix implies

C ¼ �i�2 0
0 i�2

� �
; (22)

Cy ¼ CT ¼ �C: (23)

The gamma matrices in the curved cylindrically symmetric
spacetime under consideration will be provided by the
relations

�t ¼ A�1 0 I
I 0

� �
; �r ¼ B�1 0 �1

��1 0

� �
; (24)

�� ¼ C�1 0 �2

��2 0

� �
; �z ¼ D�1 0 �3

��3 0

� �
:

(25)

Spinors c and 
 and their Hermitian conjugates should be
regarded as the independent fields and the variation of the
action that governs them will lead us to the equations of
motion provided by

6Dc � ~���C �
T ¼ 0; 6Dy �
y � ~���Cyc � ¼ 0:

(26)

The analogous relations will be obtained for their conju-
gations, while the Dirac operator may be cast in the form as

6D ¼ ��D� ¼ 0 Dþ
D� 0

� �
; (27)

where we have denoted by Dþ and D� the following parts
of the Dirac operator defined above

Dþ ¼ �tDt þ �kDk; D� ¼ �tDt � �jDj: (28)

Inserting to these equations the following form of spinors

c ¼ c L

c R

� �
; 
 ¼ 
L


R

� �
; (30)

enables us to conclude that chiralities decouple.
Thus, from this stage on we shall consider equations of

motion provided by the following relations:

D�c L � i~����2
�
L ¼ 0;

D�
L � i~����2c �
L ¼ 0:

(31)

Taking into account that spinors c L and 
L may be written
in the form

c L ¼ fþ
f�

� �
; 
L ¼ gþ

g�

� �
; (32)

the underlying equations reduce to the following system:

A�1½@t þ iq̂At�fþ �
�
B�1@r þ 1

2
A�1B�1@rA

þ 1

2
B�1C�1@rCþ 1

2
B�1D�1@rD

�
f�

þ iC�1½@� þ ir̂P��f� �D�1@zfþ � ~���g�� ¼ 0;

(33)

A�1½@t þ iq̂At�f� �
�
B�1@r þ 1

2
A�1B�1@rA

þ 1

2
B�1C�1@rCþ 1

2
B�1D�1@rD

�
fþ

� iC�1½@� þ ir̂P��fþ þD�1@zf� þ ~���g�þ ¼ 0;

(34)

A�1½@t þ iq̂At�gþ �
�
B�1@r þ 1

2
A�1B�1@rA

þ 1

2
B�1C�1@rCþ 1

2
B�1D�1@rD

�
g�

þ iC�1½@� þ ir̂P��g� �D�1@zgþ � ~���f�� ¼ 0;

(35)

A�1½@t þ iq̂At�g� �
�
B�1@r þ 1

2
A�1B�1@rA

þ 1

2
B�1C�1@rCþ 1

2
B�1D�1@rD

�
gþ

� iC�1½@� þ ir̂P��gþ þD�1@zg� þ ~���f�þ ¼ 0;

(36)

where P� is the �-component of P� given by the

relation (4).
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Let us suppose that the explicit forms of the functions f
and g imply

f� ¼ e�ið!t�kzÞeim1=2�f�ðrÞ; (37)

g� ¼ e�ið!t�kzÞeim3=4�g�ðrÞ; (38)

where � is equal to �1.
As was pointed out in Ref. [35], the role of fermions

became interesting if we considered the fermions which
gained their masses from coupling to � field. Just the
action of the operators r̂ and q̂ in the definition of the
Dirac operator (18) yield

q̂eqf ¼ qef; q̂eqg ¼ �qeg; (39)

r̂f ¼ qrf; r̂g ¼ �ðqr þ 1Þg; (40)

where qe and qr are spinor charges. Because of the above
relations, we obtained that fermion fields c and 
 gained
masses from their coupling to �-field. Consequently, hav-
ing in mind the above relations and the angular dependence
of � field, we conclude that the following ought to be
satisfied:

m1 ¼ m2 ¼ �N �m4; (41)

m2 ¼ m1 ¼ �N �m3; (42)

m3 ¼ m4 ¼ �N �m2; (43)

m4 ¼ m3 ¼ �N �m1: (44)

We can readily choose the following angular dependence
for fermion fields

m1 ¼ m2 � m; (45)

m4 ¼ m3 ¼ �N �m: (46)

By virtue of the above relations, one arrives at

f� ¼ e�ið!t�kzÞeim�f�ðrÞ; (47)

g� ¼ e�ið!t�kzÞe�iðNþmÞ�g�ðrÞ: (48)

On the other hand, we want fermions to propagate along
the cosmic string, so we choose the spinors in question as
the eigenstates of �0�3 matrices. Namely, we have the
following:

�0�3c ¼ c ; (49)

�0�3
 ¼ 
: (50)

Having in mind that the chiralities decouple, the spinor
functions under consideration imply

c L ¼ 0
f�

� �
; 
L ¼ 0

g�

� �
: (51)

It can be seen that, starting with the exact form of the
spinors given by (51), we arrive at the following forms of
Eqs. (33)–(36):

�
�
B�1@rþ1

2
A�1B�1@rAþ1

2
B�1C�1@rCþ1

2
B�1D�1@rD

�
f�

þ iC�1½@�þ ir̂P��f��~���g��¼0; (52)

A�1½@t þ iq̂At�f� þD�1@zf� ¼ 0; (53)

�
�
B�1@r þ 1

2
A�1B�1@rAþ 1

2
B�1C�1@rC

þ 1

2
B�1D�1@rD

�
g� þ iC�1½@� þ ir̂P��g� � ~���f��

¼ 0; (54)

A�1½@t þ iq̂At�g� þD�1@zg� ¼ 0: (55)

To proceed further, let us choose the following form of f�
and g� spinors:

f�¼e�ið!t�kzÞeim�e�
R
½12B�1C�1@rCþ1

2B
�1D�1@rD�Bdr ~f�; (56)

g� ¼ e�ið!t�kzÞe�iðNþmÞ�e�
R
½12B�1C�1@rCþ1

2B
�1D�1@rD�Bdr~g�:

(57)

The explicit forms of the metric coefficients B, C, D
envisage the fact that the above integrals are convergent
in the limit of r-coordinate tending to infinity. By virtue of
the numerical integration, one can check that this conclu-
sion is also true for the finite r.
From Eqs. (52) and (54) we obtain�
B�1@rþ1

2
A�1B�1@rAþC�1ðmþqrP�Þ

�
~f�þmferX~g�

¼0; (58)

�
B�1@r þ 1

2
A�1B�1@rA� C�1ðN þmþ ðqr þ 1ÞP�Þ

�
~g�

þmferX ~f� ¼ 0; (59)

where we have denoted mfer ¼ ~��. On the other hand, the
second and the fourth relations of the system in question
give us

� i

�
A�1

�
!þ qe

l~�

r

�
� k

D

�
e�ið!t�kzÞeim�

� e�
R
½12B�1C�1@rCþ1

2B
�1D�1@rD�Bdr ~f�ðrÞ ¼ 0; (60)

i

�
A�1

�
!þ qe

l~�

r

�
� k

D

�
eið!t�kzÞe�iðNþmÞ�

� e�
R
½12B�1C�1@rCþ1

2B
�1D�1@rD�Bdr~g�ðrÞ ¼ 0:

(61)

Just, from the inspection of the above equations we have

either ~f� ¼ ~g� ¼ 0 or
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�
A�1

�
!þ qe

l~�

r

�
� k

D

�
¼ 0: (62)

Because of the fact that we have used the Ansätze (56) and
(57), one has that !, k, qe are constant and equal to zero.
Therefore, the relation ! ¼ k ¼ qe ¼ 0 emerges as the
consistency condition for the system of Eqs. (58) and
(59). It can be remarked that the procedure as described
above leads to normalizable fermionic zero modes.

From now on, for the brevity of the subsequent notation,
we define the rescaled version of the parameters character-
izing fermion fields. Namely, we set the following:

1ffiffiffiffi
�

p
�
ð!; qe; k; mfÞ � ð!; qe; k;mfÞ: (63)

IV. ASYMPTOTIC BEHAVIOUR OF SPINOR
FIELDS IN THE BACKGROUND OFA

CHARGED COSMIC STRING

In this section, we treat first the behavior of fermions in
the distant region from the considered charged black string
pierced by an Abelian Higgs vortex. In order to simplify
our notation we redefine once more the spinor functions in
question, by the relations

~f � ¼ 1ffiffiffiffi
A

p ~f�; ~g� ¼ 1ffiffiffiffi
A

p ~g�: (64)

On this account, one can rewrite the underlying equations
of motion as follows:

½B�1@rþC�1½mþqrðP�NÞ��f�þmferXg�¼0; (65)

½B�1@r�C�1½Nþmþðqrþ1ÞðP�NÞ��g�þmferXf�
¼0: (66)

Asymptotically, when r ! 1 the value of P field tends to
zero, while X ¼ 1. Hence, our equations reduce to the
system of differential equations given by

½B�1@r þ C�1½m� qrN��~f� þmfer ~g� ¼ 0; (67)

½B�1@r � C�1½m� qrN��~g� þmfer
~f� ¼ 0; (68)

which can be brought to the second-order differential
equation provided by

~g� ¼ � 1

mfer

�
@r� ~f� þ C�1½m� qrN�~f�

�
;

@2r�
~f� �

�
m2

fer þ
ðm� qrNÞ2

C2
�m� qrN

C2

dC

dr

dr

dr�

�
~f�

¼ 0; (69)

where B�1@r � @r� .
In order to estimate the asymptotical value of the

fermion functions given by the above equations we use
the theorem [41], which states that for the second-order

differential equation of the type d2

dr2
u� ½c2 þ qðrÞ�u ¼ 0,

there exists an asymptotic solution in the form u� �
c�e�cr if

R1 jqðrÞjdr <1. It may be noted that in our
case jqðrÞj implies the following:

jqj ¼ qðr�Þ ¼ ðm� qrNÞ2
C2

�m� qrN

C2

dC

dr

dr

dr�
: (70)

Further on, carrying out the integration of the above rela-
tion we arrive at

Z 1
qðr�Þdr� ¼

Z 1 ðm� qrNÞ2
C2

dr�

�
Z 1m� qrN

C2

dC

dr

dr

dr�
dr�: (71)

The second integral on the right-hand side is straightfor-

ward to perform and it yields m�qrN
C . As far as the first one

is concerned, it yields

Z 1ðm�qrNÞ2
C2

dr� ¼ðm�qrNÞ2l
Z 1 drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r6�bl3r3þ ~�2l4r2
p :

(72)

The above integral can be easily calculated numerically. It
happens that it has a finite value when r tends to infinity.
Thus, having in mind the quoted theorem, the asymptotical

solutions for ~f and ~g functions are of the form c�e�mferr
�
.

In order to situate fermions inside the cosmic string we set
cþ ¼ 0. By virtue of this requirement we get

~f �ðr� ! 1Þ ¼ c�ffiffiffiffi
A

p e�mferr
�
; (73)

~g�ðr� ! 1Þ ¼ c�ffiffiffiffi
A

p e�mferr
�
�
1�m� qrN

mferC

�
: (74)

V. NONEXTREMAL CHARGED BLACK STRING
AND FERMION FIELDS

A. Electrically uncharged fermions

In order to study the behavior of fermion fields in the
vicinity of a black string event horizon, we expand the
metric coefficients in the nearby of black string horizon in
the forms as follows:

A2ðrhÞ � @rA
2
r¼rhðr� rhÞ ¼ 2
ðr� rhÞ; (75)

C2ðrhÞ ¼ r2h; (76)

where the surface gravity 
 is given by standard formula

 ¼ 1

2@rA
2
jrh . By virtue of the above relations, the line

element describing the near-horizon black string geometry
implies

ds2 ¼ �2
�2dt2 þ 2



d�2 þ r2hd�

2 þ r2h
l2
dz2: (77)
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Introducing new variables and having in mind the behavior
of P and X field near horizon we get

�2¼ r�rh; Xð��0Þ¼�N; Pð��0Þ¼NþOð�2Þ:
(78)

In this picture, the equations of motion will be given by

�
@� þ 1

2�
þ

ffiffiffi
2

p
m

rh
ffiffiffiffi



p
�
~f� þ

ffiffiffi
2

p
mferffiffiffiffi



p �N~g� ¼ 0; (79)

�
@� þ 1

2�
� ffiffiffi

2
p N þm

rh
ffiffiffiffi



p
�
~g� þ

ffiffiffi
2

p
mferffiffiffiffi



p �N ~f� ¼ 0: (80)

Consider now the case when N � 1. The mass term is
proportional to �N ! 0 in this case. Then, the solutions of
(79) and (80) are provided by

~f � ¼ c1�
�ð1=2Þe�ð ffiffi

2
p

m=rh
ffiffiffi



p Þ�; (81)

~g� ¼ c2�
�ð1=2Þe

ffiffi
2

p ðNþm=rh
ffiffiffi



p Þ�: (82)

Consequently, one can readily verify that, although these
solutions are divergent at the black string event horizon,
they are square integrable. Namely, they satisfy

Z �max

0

ffiffiffiffiffiffiffi�g
p j~f�j2d�

¼
Z �max

0
2
r2h
l
�jc1j2��1e�2ð ffiffi

2
p

m=rh
ffiffiffi



p Þ�d� <1; (83)

Z �max

0

ffiffiffiffiffiffiffi�g
p j~g�j2d�

¼
Z �max

0
2
r2h
l
�jc2j2��1e2

ffiffi
2

p ðNþm=rh
ffiffiffi



p Þ�d� <1: (84)

Next, we proceed to the case N � 1. It turns out that the
above Equations for the case in question can be simplified
when we substitute

~f � ¼ ~f�ð �mfer ¼ 0Þ �f; ~g� ¼ ~g�ð �mfer ¼ 0Þ �g; (85)

where �mfer �
ffiffi
2

p
mferffiffiffi



p . We denote by ~f�ð �mfer ¼ 0Þ and

~g�ð �mfer ¼ 0Þ the solutions of the equations of motion for
the case N � 1. On this account, the underlying relations
imply

@� �fþ �mfer�
Ne

ffiffi
2

p ðNþ2m=rh
ffiffiffi



p Þ� �g ¼ 0; (86)

@� �gþ �mfer�
Ne�

ffiffi
2

p ðNþ2m=rh
ffiffiffi



p Þ� �f ¼ 0: (87)

Extracting �g from the first equation and substituting to the
second one, the considered system of the first-order differ-
ential equations can be brought to the second-order differ-
ential equation for �f. It yields

�g ¼ � 1

�mfer

��Ne�
ffiffi
2

p ðNþ2m=rh
ffiffiffi



p Þ�@� �f; (88)

@2� �f� ½N��1 þ �b�@� �f� �m2
fer�

2N �f ¼ 0; (89)

where we put �b ¼ ffiffiffi
2

p
Nþ2m
rh

ffiffiffi



p . Unfortunately, these equa-

tions have no solutions in terms of the known special
functions, which implies that they should be treated
numerically.

B. Electrically charged fermions

The next object of an interest is the influence of electri-
cally charged fermions on the superconductivity of the
cosmic string which pierced the charged black string. In
order to find the simplest electrically charged solution of
Eqs. (33)–(36), we use the linear combination of spinors,
being the eigenstates of �0�3. Under this assumption we
take into account spinor fields c L and 
L provided by the
relations

c L ¼ if�
f�

� �
; 
L ¼ �ig�

g�

� �
: (90)

Next we use the fact that fermion functions depend only on
ðt; z; �Þ-coordinates. Namely, we have

f� ¼ e�ið!t�kzÞeim� �f�; (91)

g� ¼ eið!t�kzÞe�iðNþmÞ� �g�: (92)

Now, the system of Eqs. (33)–(36) reduces to the relations
given by

A�1

�
!þ qe

~�l

r

�
�f� �

�
B�1@r þ 1

2
A�1B�1@rA

þ 1

2
B�1C�1@rCþ 1

2
B�1D�1@rD

�
�f�

� C�1½mþ qrðP� NÞ� �f� þ kD�1 �f�
þmferX �g� ¼ 0; (93)

A�1

�
!þ qe

~�l

r

�
�g� �

�
B�1@r þ 1

2
A�1B�1@rA

þ 1

2
B�1C�1@rCþ 1

2
B�1D�1@rD

�
�g�

þ C�1½N þmþ ðqr þ 1ÞðP� NÞ� �g�
þ kD�1 �g� �mferX �f� ¼ 0: (94)

As in the uncharged fermion case, we can decompose
functions f� and g� in the following way:

f�¼e�ið!t�kzÞeim�

�e�
R
½12B�1C�1@rCþ1

2B
�1D�1@rD�k

D�A�1ð!�qeAtÞ�Bdr ~f�;

(95)
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g� ¼ eið!t�kzÞe�iðNþmÞ�

� e�
R
½12B�1C�1@rCþ1

2B
�1D�1@rD�k

D�A�1ð!�qeAtÞ�Bdr~g�;

(96)

where A, B, C, D are the functions from the line element
describing a charged black string. Having in mind their
explicit forms, one can see that the above integrals are
convergent in the limit of r ! 1. On the other hand, the
explicit use of numerical integrations confirms this fact for
the finite value of r-coordinate. On this account, it is
customary to write the system of Eqs. (33)–(36) in the
form as

B�1@r ~f� þ
�
1

2
B�1A�1@rAþmþ qrðP� NÞ

C

�
~f�

þmferX~g� ¼ 0; (97)

B�1@r~g�þ
�
1

2
B�1A�1@rA�mþNþðqr þ 1ÞðP�NÞ

C

�
~g�

þmferX ~f� ¼ 0: (98)

Thus the asymptotic form of the functions in question may
be written as

~f �ðr� ! 1Þ ¼ c�ffiffiffiffi
A

p e�mferr
�
; (99)

~g�ðr� ! 1Þ ¼ c�ffiffiffiffi
A

p e�mferr
�
�
1�m� qrN

mferC

�
: (100)

On the other hand, in the near-horizon limit we get the
following system of equations:

@� ~f� þ
�
��1

�
1

2
� qe ~�l


rh

��
~f� þ

ffiffiffi
2

p
mffiffiffiffi



p

rh
~f� þ �m�N~g� ¼ 0;

@�~g� þ
�
��1

�
1

2
� qe ~�l


rh

��
~g� � ffiffiffi

2
p N þmffiffiffiffi



p

rh
~g� þ �m�N ~f�

¼ 0; (101)

where we put for brevity �m ¼
ffiffi
2

p
mferffiffiffi



p . By virtue of the

above, we conclude that, for N � 1, fermions nearby the
black string event horizon are essentially massless.
Explicitly, they read

~f � ¼ c1�
ðqe ~�l=
rhÞ�ð1=2Þe�

ffiffi
2

p ðm=
ffiffiffi



p
rhÞ�; (102)

~g� ¼ c2�
ðqe ~�l=
rhÞ�ð1=2Þe

ffiffi
2

p ðNþm=
ffiffiffi



p
rhÞ�: (103)

One can easily find by the direct calculation that they
are square integrable. On the other hand, for the case
when the winding number N � 1, we make the following
substitution:

~f � ¼ ~f�ð �mfer ¼ 0Þ �f; ~g� ¼ ~g�ð �mfer ¼ 0Þ �g; (104)

where ~f�ð �mfer ¼ 0Þ and ~g�ð �mfer ¼ 0Þ are the solutions for
N � 1 case. Making use of the above substitutions, one
can readily see that we arrive at the following:

@� �fþ �mfer�
Ne

ffiffi
2

p ðNþ2m=rh
ffiffiffi



p Þ� �g ¼ 0; (105)

@� �gþ �mfer�
Ne�

ffiffi
2

p ðNþ2m=rh
ffiffiffi



p Þ� �f ¼ 0: (106)

Of course, we can extract �g function from the first equation
and obtain the second-order differential equation for �f, but
it has no solutions in terms of the known special functions.

VI. EXTREMAL BLACK STRING
AND FERMION FIELDS

A. Electrically uncharged fermions

In what follows we shall elaborate some main features of
the behavior of fermion fields in the vicinity of an extremal
charged black string. We expand coefficient of the metric
in the form as follows:

A2ðrÞ � 1

2
@2rA

2
jr¼rh

ðr� rhÞ2: (107)

It enables us to rewrite the line element in the near-horizon
limit in the form

ds2 ¼ �aðrhÞ�2dt2 þ d�2

aðrhÞ�2
þ r2hd�

2 þ r2h
l2
dz2; (108)

where aðrhÞ ¼ 1
2@

2
rA

2
jr¼rh

and � � r� rh. The near-

horizon behavior of the Abelian Higgs vortex fields P
and X is given by

Xð� ! 0Þ � �jNj=2; Pð� ! 0Þ � N þOð�Þ: (109)

Returning to the equations of motion for the uncharged
fermions, one can readily verify that they reduce to the
forms

ffiffiffiffiffiffiffiffiffiffiffi
aðrhÞ

q
�@� ~f� þ

�
1

2

ffiffiffiffiffiffiffiffiffiffiffi
aðrhÞ

q
þ m

rh

�
~f� þmfer�

jNj=2~g� ¼ 0;

(110)

ffiffiffiffiffiffiffiffiffiffiffi
aðrhÞ

q
�@�~g� þ

�
1

2

ffiffiffiffiffiffiffiffiffiffiffi
aðrhÞ

q
� N þm

rh

�
~g� þmfer�

jNj=2 ~f�

¼ 0: (111)

First, we shall consider the influence of the winding num-
ber N on the behavior of fermion fields in question. For
sufficiently large N and small �, one can neglect the mass
term and the solutions are provided by the following
relations:

~f � ¼ c1�
�ðð1=2Þþðm=

ffiffiffiffiffiffiffiffiffiffiffi
aðrhÞrh

p
Þ; (112)

~g� ¼ c2�
�ðð1=2Þ�ðmþN=

ffiffiffiffiffiffiffiffi
aðrhÞ

p
rhÞ: (113)
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One can observe that they are divergent as in the nonex-
tremal case. On the other hand, for small N we seek
solutions in the following form:

~f � ¼ ~f�ðmfer ¼ 0Þ �f; (114)

~g� ¼ ~g�ðmfer ¼ 0Þ �g: (115)

On this account, we get the system of the first-order
differential equations provided by

@� �fþ m̂fer�
ðjNj=2Þ�1þðNþm=

ffiffiffiffiffiffiffiffi
aðrhÞ

p
rhÞ �g ¼ 0; (116)

@� �gþ m̂fer�
ðjNj=2Þ�1�ðNþm=

ffiffiffiffiffiffiffiffi
aðrhÞ

p
rhÞ �f ¼ 0; (117)

where we have denoted by m̂fer ¼ mferffiffiffiffiffiffiffiffi
aðrhÞ

p .

The aforementioned system of differential equations can
be rearranged in the form of the single second-order dif-
ferential equation by the following transformation:

�g ¼ � 1

m̂fer

�
�b@� �f; (118)

@2� �fþ
�b

�
@� �f� m̂2

fer�
jNj�2 �f ¼ 0; (119)

where �b ¼ 1� jNj
2 � Nþ2mffiffiffiffiffiffiffiffi

aðrhÞ
p

rh
. We shall look for the solu-

tion of the above equation making the so-called Lommel’s
transformation for Bessel functions. Namely, we shall
consider the solution in the form

�f ¼ �pG�ð��qÞ; (120)

where G� stands for the adequate Bessel function, while p,
�, q denote the constants. It happened that the solution in
question can be provided by the function

�f¼c1�
ð1� �b=2ÞI�

�
2
im

N
�N=2

�
þc2�

ð1� �b=2ÞK�

�
2
im

N
�N=2

�
;

(121)

where � ¼ 1� �b
N . When we choose c2 ¼ 0, then from the

asymptotic value of I� function the solution tends to the
finite value.

B. Electrically charged fermions

For electrically charged fermions our equations have the
following forms:

@� ~f� þ
��

1

2
þ mffiffiffiffiffiffiffiffiffiffiffi

aðrhÞ
p

rh

�
��1 � qe

~�lffiffiffiffiffiffiffiffiffiffiffi
aðrhÞ

p
rh

��2

�
~f�

þ m̂fer�
ðjNj=2Þ�1~g� ¼ 0; (122)

@�~g� þ
��

1

2
� mþ Nffiffiffiffiffiffiffiffiffiffiffi

aðrhÞ
p

rh

�
��1 � qe

~�lffiffiffiffiffiffiffiffiffiffiffi
aðrhÞ

p
rh

��2

�
~g�

þ m̂fer�
ðjNj=2Þ�1 ~f� ¼ 0: (123)

A close inspection reveals that, for the case N � 1, one
arrives at the relations given by

~f � ¼ c1�
�ðð1=2Þþðm=

ffiffiffiffiffiffiffiffiffiffiffi
aðrhÞrh

p
ÞÞe�qeð~�l=

ffiffiffiffiffiffiffiffi
aðrhÞ

p
rhÞ��1

; (124)

~g� ¼ c2�
�ðð1=2Þ�ðmþN=

ffiffiffiffiffiffiffiffiffiffiffi
aðrhÞrh

p
Þe�qeð~�l=

ffiffiffiffiffiffiffiffi
aðrhÞ

p
rhÞ��1

: (125)

We observe that, for sufficiently large electric charge qe,
the exponential term becomes dominant as � tends to zero.
Moreover, the underlying solution becomes finite at the
event horizon of the extremal charged black string.
For small values of the winding number N, we use the

substitution in the form as

~f � ¼ ~f�ðm̂fer ¼ 0Þ �f; (126)

~g� ¼ ~g�ðm̂fer ¼ 0Þ �g; (127)

which enables us to rewrite Equations of motion in the
same form of the second-order differential equation as in
the uncharged case, given by the relation (118).

VII. NUMERICAL SOLUTION

In order to solve numerically the system of the differ-
ential equations describing behavior of the Dirac fermions
in the spacetime of a charged black string, first one ought to
find the solutions of equations of motion for the Higgs
fields X and P. The boundary conditions for X and P are
chosen in such a way that, for large distances from a
charged black string horizon, one achieves the vortex
solution in AdS spacetime [42], which means that X ! 1
and P ! 0 as the r-coordinate tends to infinity. On
the other hand, on the black string horizon we assume
that X ¼ 0 and P ¼ 1, as was done in Ref. [37]. Then,
the relaxation method was used to obtain solutions for the
Higgs fields in the interval hr; rmaxi, where as rmax we set
rmax ¼ 20rh.
Next, we transform the infinite domain <rh;1Þ of

r-coordinate to the finite one using the transformation of
the form z ¼ 1

r . We also perform this transformation in the

case of the fermion equations of motion and convert the
r-dependence of X and P functions to z-dependence. We
stretch X and P functions to the whole z-domain by adding
points in the interval in question and assigning with them
the asymptotic values of the considered Higgs fields X
and P. To proceed further, one should have the values of
X and P in subintervals of equal length in z-direction. It
was accomplished by the cubic spline interpolation method
[43].
The last step was to solve numerically equations of

motion for Dirac fermions. To begin with, we use the
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analytic form of the fermion functions f� and g� at
infinity given by the relation (75) and the formulas (57) and
(58) in the uncharged fermion case as well as the relations
(95) and (96) in the charged fermion case. We start our
numerical computations from z ¼ 10�5.

Using the implicit trapezoidal method [43], we propa-
gate these functions up to the charged black string event
horizon and solve the neutral zero-energy fermion set of
Eqs. (58) and the set of relations describing charged fer-
mions (97).

In our considerations, studying the nonextremal black
string superconducting cosmic string system we set b ¼
2bcrit, ~� ¼ 0:5 and l ¼ 1:0. The charged black string event
horizon was located at rh ¼ 0:9966 (nonextremal black
string) and rh ¼ 0:5373 (extremal black string).
Moreover, the fermion fields in question will satisfy the
normalization condition provided by

Z 1

rh

ffiffiffiffiffiffiffi�g
p

�y
i �

idr ¼ 1; (128)

where by �i we have denoted c L or 
L, respectively.
In Fig. 1 we plot jc Lj2 and j
Lj2 as a function of

r-coordinate for various values of the electric charge qe.
We set qe ¼ 0:0, 10.0, 50.0 and mfer ¼ 2:7, the winding
number equals 1, the Higgs charge qr ¼ 5, and m ¼ 1=2,
! ¼ 0, k ¼ 0. We shall first consider the case of a non-
extremal charged black string. The solution with qe ¼ 0 is
responsible for uncharged fermion field being the eigen-
states of �0�3 matrices. The fermion functions jc Lj2 and
j
Lj2 for the uncharged case are divergent near the black
string event horizon. On the contrary, the fermion functions
describing the charged fermions are regular near the afore-
mentioned event horizon. The smaller qe we considerv the
closer to the black string event horizon they begin to
condensate.

Finally, we note that, at the beginning, when qe is small,
fermions start to condensate just outside the black string
event horizon but inside the cosmic string core. These
fermions are trapped as massless modes inside the
Abelian Higgs vortex and they can lead to superconduc-
tivity. On the contrary, for larger qe, the electrostatic
interactions among fermions and charged black string
may eventually cause the expulsion of the fermions from
the considered cosmic string and destroy superconductiv-
ity. One should mention that the electric charge has also a
great influence on the width of the region where fermion
function j�ij2 values are different from zero (let us say
j�ij2 > 10�10). Namely, the greater qe is, the larger is the
width in question.
For each electric charge, one can find a specific value re

of the r-coordinate (for qe ¼ 10, re ¼ 1:3, qe ¼ 50, re ¼
2:8), where one has that, for r > re, the function jc Lj2 has
greater values than j
Lj2. On the other hand, when r < re,
the behavior of the functions in question reverses.
In Fig. 2, we have elaborated the dependence of the

fermion functions jc Lj2 and j
Lj2 on the electric charge
for the extremal charged black string. We took into account
the same values of the electric charge and other parameters
as in Fig. 1. It turns out that the uncharged fermion func-
tions for which qe ¼ 0 are divergent near the extremal
black string event horizon. On the other hand, the charged
fermion functions are regular in the vicinity of it. We also
have the same dependence of the electric charge, i.e., the
greater value of electric charge we have the farther from
the event horizon of the extremal black string fermion
fields begin to condensate. Comparing this effect in the
spacetime of both types of black strings one remarks that
the extreme black string far more expels fermion fields than
the nonextremal one. There is also the specific value
reðqe ¼ 10; re ¼ 1:15; qe ¼ 50; re ¼ 2:7Þ, for which r <
re we acquire that jc Lj2 < jc Lj2 and r > re function
jc Lj2 has greater values than j
Lj2.

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1  10  100  1000  10000  100000

|ξ
i|

2

r

ψL(qe = 0.0)
χL(qe = 0.0)

ψL(qe = 10.0)
χL(qe = 10.0)
ψL(qe = 50.0)
χL(qe = 50.0)

 0.001

 0.01

 0.1

 1

 10

 1  1.5  2  2.5  3

FIG. 1. Plot of fermion functions j�ij2, where �i ¼ fc L; 
Lg,
for the different values of the electrical charge in the background
of nonextremal charged black string. The other parameters are
equal to mf ¼ 2:7, N ¼ 1, m ¼ 1=2, qr ¼ 5, ! ¼ k ¼ 0.
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FIG. 2. Plot of fermion functions j�ij2, where �i¼fc L;
Lg, for
the different values of the electrical charge in the background of
extremal charged black string. The other parameters as in Fig. 1.
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In Fig. 3 and 4, we depicted the dependence of the
fermion functions on the various values of the Higgs
charge. Namely, we take into account qr ¼ 0:0, 5.0, 10.0.
The electric charge was put to the constant and set to 10.0.
The other parameters are the same as in Fig. 1. Figure 3 is
valid for the nonextremal charged black string, while Fig. 4
is connected with the extremal case. The close inspection
of the above figures reveals that qr has no influence on the
regularity of the fermion solutions near the black string
event horizon. For instance, for qe ¼ 10 and qr ¼ 0, the
obtained solution is regular in the vicinity of the event
horizon. However, the greater value of the Higgs charge
one considers, the closer to the black string event horizon
fermions condensate. For given value of the electric charge
one has that the greater value of the Higgs charge we take
into account, the smaller width of the region where j�ij2 is
considerably different from zero and the larger maximal
value of j�ij2 we obtain.

Now, we proceed to analyze the influence of the nonzero
energy (! � 0) on the charged fermion functions. In Fig. 5
we study the nonextremal black string. The parameters we
choose as mfer ¼ 2:7, the winding number N ¼ 1, m ¼
1=2, the Higgs charge qr ¼ 5 and qe ¼ 0, k ¼ 0. We set
! ¼ 0:0, 10.0. As we can see, even in the uncharged case,
for the large enough!we get solution regular in the nearby
of the event horizon. For r > re ¼ 2:9 one has that
jc Lj2 > j
Lj2, but for r < re the dependence reverses. In
Fig. 6 the parameters are the same as in Fig. 5 but we
consider the larger value of the winding number N ¼ 10.
Now, the larger value of the winding number caused that
the localization of the fermion began closer to the black
string event horizon. For r > re ¼ 1:07 one has that
jc Lj2 > j
Lj2, but when r exceeds re one arrives at the
conclusion that j
Lj2 > jc Lj2.
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charged black string and electrically charged spinors case.
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In Fig. 7 and 8, we take into account the same case of the
nonzero modes for the extremal black string. Namely, in
Fig. 7 the parameters are the same as in Fig. 5 and we arrive
at the regular solution with re ¼ 1:2. For the case when
N ¼ 10, one obtains that the curves depicting the behavior
of fermion functions intersect more than one time and the
closer value of re to the black string event horizon is equal
to 1.55. When we consider the larger value of winding
number we achieve, the closer to the event horizon is
the localization of fermion functions in question. The
other interesting feature is that, for large N, even for
qe ¼ ! ¼ 0, we get regular solution in the vicinity of the
event horizon.

In Fig. 9 and 10, we presented the behavior of fermion
functions for the different values of k and m. The

remaining parameters are the same as in the previous plots.
One can conclude that, near the horizon of the extremal
charged black string, the fermion condensation takes place
farther, compared to the nonextremal black string.
Figures 11 and 12 are connected with the influence of the
fermion massmfer on the fermion functions in question. We
set mfer ¼ 0:7, 2.7, 4.7 and the other parameters as in the
previous cases. For each fermion mass, one attains that
there is such a value re for which one has that when r > re,
then jc Lj2 > j
Lj2 and for r < re we get jc Lj2 < j
Lj2.
Moreover, the larger the value ofmfer, the smaller the value
of the fermion function one receives. Near the charged
black string event horizon, the situation in question
changes. It turns out that the bigger mass we have, the
larger value is achieved by fermion function. The tendency
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different values of k and m in the background of extremal
charged black string. The rest of the parameters are set as in
Fig. 9.
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that the extremal charged black string expels fermions
more violently is maintained.

VIII. CONCLUSIONS

In our paper we have considered the problem of an
Abelian Higgs vortex in the spacetime of a charged black
string in the presence of Dirac fermion fields. Dirac fermi-
ons were coupled to the Abelian gauge fields A� and to the

Abelian Higgs field B� as in the Witten’s model of the

superconducting cosmic string [35]. Moreover, we assume
the complete separation of the degrees of freedom in the
system in question. One has studied the extremal and
nonextremal case of the black string pierced by an
Abelian Higgs vortex. As far as the fermion function is

concerned, we take into account the case of the uncharged
fermions being the eigenstates of �0�3 gamma matrices, as
well as the charged fermions. It was revealed that, in the
case of the uncharged fermions, we obtained the divergent
solutions near the charged black string event horizon both
in extremal and nonextremal cases. On the contrary, the
charged fermion functions are regular in the vicinity
of the black string. The dependence of the fermion func-
tions on the electric charge qe was elaborated. Namely, the
smaller qe was, the closer to the event horizon fermions
began to condensate. The same tendency was found
in the case of the extremal charged black string.
However, one remarks that the charged extremal black
string expels fermion fields far more violently than the
nonextremal one.
It is worth mentioning that the Higgs charge also plays

the dominant role on the behavior of fermion functions
near the black string event horizon. Namely, when we put
qe equal to a constant value, it turned out that the greater
value of the Higgs charge we considered, the closer to the
event horizon fermion fields began to condensate. This was
the case for both types of the black strings. Nevertheless,
for the nonextremal charged black string, the condensation
took place far more closer to the event horizon than in the
case of the extremal black string.
It is a remarkable fact that electric charge and Higgs

charge are two parameters which have a great influence on
the fermions in question. Especially, the fermion conden-
sation depends on them. The increase of the electric charge
provides the expulsion of fermions from the charged black
string event horizon and eventually even from the cosmic
string core. In turn, it can destroy superconductivity of the
cosmic string in question, because of the lack of charge
carriers inside the core. Consequently, for a large enough
electric charge, instead of a superconducting cosmic string,
one has an onionlike structure. This structure consists of
black string surrounded by cosmic string, which in turn is
encompassed by a shell of the fermionic condensate.
Moreover, one has that, the larger value of the charge taken
into account, the larger the width of the aforementioned
shell one achieves. By the width of the shell in question we
understand the region where j�ij2 are different from zero,
e.g., j�ij2 > 10�10.
Returning to the consideration of the Higgs charge, one

can remark that the situation is totally different. ’The
increase of the Higgs charge value implies that fermion
field condensation takes place closer to the black string
event horizon. It also causes the decrease of the width of
fermion condensation shell.
The winding number also influences the behavior of the

considered fermion functions jc Lj2 and j
Lj2. For the
established values of electric, Higgs charges, fermion
mass, and for nonzero energy modes, one obtains that the
greaterN is, the closer to the event horizon fermions begins
to concentrate. Fermion functions depend also on fermion
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mass mfer. There is a point re for which one has that,
if r > re then the smaller value of mfer one studies, the
larger value of fermion function we attain. However, with
the passage of r-coordinate in the direction to the event
horizon, i.e., r < re, the situation alters.

By virtue of the revealed features of the fermion func-

tions in the background of a charged black string pierced

by an Abelian Higgs vortex, one can draw a conclusion

that, in principle, there is a value of the electric charge

which can destroy fermionic superconductivity. The wind-

ing number and Higgs charge also exert a great influence

on the superconductivity carried by an Abelian Higgs

vortex penetrating the black string in question. This is

the case for both extremal and nonextremal charged black

string vortex systems.
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