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Campus UAB, Facultat de Ciències, Torre C5-Parell-2a planta, E-08193 Bellaterra (Barcelona) Spain

2Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
(Received 13 November 2011; published 2 February 2012)

A nonlocal gravity model, which does not assume the existence of a new dimensional parameter in the

action and includes a function fðh�1RÞ, with h the d’Alembertian operator, is considered. The model is

proven to have de Sitter solutions only if the function f satisfies a certain second-order linear differential

equation. The de Sitter solutions corresponding to the simplest case, an exponential function f, are

explored, without any restrictions on the parameters. If the value of the Hubble parameter is positive, the

de Sitter solution is stable at late times, both for negative and for positive values of the cosmological

constant. Also, the stability of the solutions with zero cosmological constant is discussed and sufficient

conditions for it are established in this case. New de Sitter solutions are obtained, which correspond to the

model with dark matter, and stability is proven in this situation for nonzero values of the cosmological

constant.
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I. INTRODUCTION

Modern cosmological observations, such as those com-
ing from Supernovae Ia [1], from the cosmic microwave
background radiation [2,3], large scale structure [4],
baryon acoustic oscillations [5], and weak lensing [6],
allow to obtain joint constraints on cosmological parame-
ters (see, for example, [7]) and indicate that the current
expansion of the Universe is accelerating. There are a few
types of models able to reproduce this late-time cosmic
acceleration. The simplest one is general relativity with a
cosmological constant (for a review, see, e.g., [8]). Some
others involve modifications of gravity, as for instance
FðRÞ gravity, with FðRÞ an (in principle) arbitrary function
of the scalar curvature R (for recent reviews, see, e.g.,
[9,10]).

Modified gravity cosmological models have been pro-
posed in the hope of finding solutions to the important open
problems of the standard cosmological model. There are
lots of ways to deviate from Einstein’s gravity. Different
modifications of this theory have been considered in detail
in the reviews [9,11]. As a promising modification of
gravity, the nonlocal gravity theory obtained by taking
into account quantum effects has been proposed in [12].
Also, as is well known string/M theory is usually consid-
ered as a possible theory for all fundamental interactions,
including gravity; again, the appearance of nonlocality
within string field theory is a good motivation for studying
nonlocal cosmological models. Moreover, there was a
proposal on the solution of the cosmological constant
problem by a nonlocal modification of gravity [13]. The

majority of nonlocal cosmological models explicitly in-
clude a function of the d’Alembert operator, h, and either
define a nonlocal modified gravity [14–22] or add a non-
local scalar field, minimally coupled to gravity [23].
In this paper, we consider a modification that includes a

function of the h�1 operator. Such modification does not
assume the existence of a new dimensional parameter in
the action. This nonlocal model has a local scalar-tensor
formulation. A modification of nonlocal gravity with a
term fðh�1RÞ has been studied in order to realize a unified
scenario, comprising both early-time inflation and the late-
time cosmic acceleration. It has been shown in [15] that a
theory of this kind, being consistent with Solar System
tests, may actually lead to the known Universe history
sequence: inflation, radiation/matter dominance, and a
dark epoch. An explicit mechanism to screen the cosmo-
logical constant in nonlocal gravity was discussed in
[18,20,21]. Different cosmological aspects of such non-
local gravity models have been studied in [16–22], too.
In this paper, we explore in detail de Sitter solutions in

the nonlocal gravity model. We prove that the model can
have de Sitter solutions only if the function fðh�1RÞ
satisfies a certain second-order linear differential equation,
which is a nice result. The simplest and most studied model
[15–21] admitting de Sitter solutions is characterized by a

function fðh�1RÞ ¼ f0e
ðh�1RÞ=�, where f0 and � are real

parameters. A few de Sitter solutions for this model have
been found in [15] and also analyzed in [20]. In both
papers, the authors put strict restrictions on arbitrary pa-
rameters (integration constants).
Here, we will consider all possibilities for de Sitter

solutions without any restriction. We will also obtain de
Sitter solutions in the case when the matter included in the
model is dark matter. Finally, we will analyze the stability
of these de Sitter solutions and get the corresponding
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restrictions on the parameters of the model. In the case
� ¼ 0, the system of equation, describing this model, has
been written in terms of Hubble-normalized variables and
the stability of the fixed point of this system has been
analyzed in [15]. This has been continued in [16]
(see also [19]). We will consider this specific case in
Sec. IVB.

The paper is organized as follows. In Sec. II, we shortly
review nonlocal gravity models that have a local scalar-
tensor formulation. In Sec. III, we obtain the necessary
conditions on the function fðh�1RÞ, which allow us to get
de Sitter solutions, and then look for general de Sitter
solutions in the case of the exponential function
fðh�1RÞ. In Sec. IV, we discuss the stability of the de
Sitter solutions for Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) and Bianchi I metrics. Section V is
devoted to conclusions.

II. NONLOCAL GRAVITATIONAL MODEL

Consider the following action for nonlocal gravity:

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

2�2
½Rð1þfðh�1RÞÞ�2��þLmatter

�
;

(1)

where �2 � 8�=M2
Pl, the Planck mass being MPl ¼

G�1=2 ¼ 1:2� 1019 GeV. We use the signature
ð�;þ;þ;þÞ, g is the determinant of the metric tensor
g��, f a differentiable function, � the cosmological con-

stant, and Lmatter is the matter Lagrangian. Recall the
covariant d’Alembertian for a scalar field, which reads

h � 1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@�Þ: (2)

Introducing two scalar fields, � and �, we can rewrite
action (1) in the following local form:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
½Rð1þ fð�Þ � �Þ þ �h�� 2��

þLmatter

�
: (3)

By varying the action (3) over �, we get h� ¼ R.
Substituting � ¼ h�1R into action (3), one reobtains
action (1). Varying action (3) with respect to the metric
tensor g��, one gets

1
2g��½Rð1þ fð�Þ � �Þ � @��@

��� 2��
� R��ð1þ fð�Þ � �Þ þ 1

2ð@��@��þ @��@��Þ
� ðg��h�r�@�Þðfð�Þ � �Þ þ �2Tmatter�� ¼ 0; (4)

where r� is the covariant derivative and Tmatter�� the

energy-momentum tensor of matter, defined as

Tmatter�� � � 2ffiffiffiffiffiffiffi�g
p 	

ffiffiffiffiffiffiffi�g
p

Lmatter

	g�� : (5)

On the other hand, variation of action (3) with respect
to � yields

h�þ f0ð�ÞR ¼ 0; (6)

where the prime denotes derivative with respect to �.
We take the spatially flat FLRW metric,

ds2 ¼ �dt2 þ a2ðtÞðdx21 þ dx22 þ dx23Þ; (7)

and consider the case where the scalar fields � and �
depend on time only. In the FLRW metric, the system of
Eqs. (4) is equivalent to the following:

�3H2ð1þfð�Þ��Þþ1

2
_� _��3H

d

dt
ðfð�Þ��Þþ�þ�2�m

¼0; (8)

ð2 _H þ 3H2Þð1þ fð�Þ � �Þ þ 1

2
_� _�

þ
�
d2

dt2
þ 2H

d

dt

�
ðfð�Þ � �Þ ��þ �2Pm ¼ 0; (9)

where H ¼ _a=a is the Hubble parameter, the dot denoting
time derivative. For a perfect matter fluid, we have
Tmatter00 ¼ �m and Tmatterij ¼ Pmgij. The equation of

state (EoS) is

_�m ¼ �3HðPm þ �mÞ: (10)

Adding up Eqs. (8) and (9), we get

2 _Hð1þfð�Þ��Þþ _� _�þ
�
d2

dt2
�H

d

dt

�
ðfð�Þ��Þ

þ�2ðPmþ�mÞ¼0: (11)

Furthermore, from h� ¼ R and (6) the equations of
motion for the scalar fields � and � follow

€�þ 3H _� ¼ �6ð _H þ 2H2Þ; (12)

€�þ 3H _� ¼ 6ð _H þ 2H2Þf0ð�Þ; (13)

where we have used R ¼ 6 _H þ 12H2.
Let us consider the system of equations (10)–(13).

Together with (8), they are equivalent to the full system
of Einstein’s equations. Differentiating (8) with respect
to t and substituting into (9), (10), (12), and (13), we get
that (8) is an integral of motion for the system of
equations (10)–(13). Therefore, to find a solution of the
Einstein equation one can solve the system (10)–(13),
which does not include the cosmological constant �.
After that, substituting into (8) the initial values of the
solution obtained, one gets the corresponding value of �.
The system of equations considered does not include the

function �, but only fð�Þ, f0ð�Þ and time derivatives of �.
This property can be used to analyze the stability of the de
Sitter solutions.
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III. DE SITTER SOLUTIONS

A. Nonlocal models with de Sitter solutions

We now assume that the Hubble parameter is a nonzero
constant: H ¼ H0. In this case, Eq. (12) has the following
general solution:

�ðtÞ ¼ �4H0ðt� t0Þ � �0e
�3H0ðt�t0Þ; (14)

with integration constants t0 and �0. All equations are
homogeneous, so if a de Sitter solution exists at t0 ¼ 0,
then it exists at an arbitrary t0. So, without loss of general-
ity we can set t0 ¼ 0.

Subtracting Eq. (8) from Eq. (9), we get a linear differ-
ential equation

€�þ5H0
_�þ6H2

0ð1þ�Þ�2�þ�2ðwm�1Þ�m¼0; (15)

where �ðtÞ ¼ fð�ðtÞÞ � �ðtÞ.
Solving (15) and substituting �ðtÞ ¼ fð�ðtÞÞ ��ðtÞ

into Eq. (13), we get a linear differential equation for fð�Þ,
_�2f00ð�Þþð €�þ3H0 _��12H2

0Þf0ð�Þ¼ €�þ3H0
_�: (16)

Therefore, the model, which is described by action (3), can
have de Sitter solutions only if fð�Þ satisfies Eq. (16). In
other words, Eq. (16) is a necessary condition that the
model has de Sitter solutions. To prove the existence of
de Sitter solutions for the given fð�Þ, one should also
check Eqs. (8) and (9). Note that Eq. (16) has been ob-
tained without any restrictions on solutions and the perfect
matter fluid.

To demonstrate how one can get fð�Þ, which admits the
existence of de Sitter solutions, in the explicit form, we
restrict ourselves to the case �0 ¼ 0. In this case, Eq. (16)
has the following form:

16H2
0f

00ð�Þ � 24H2
0f

0ð�Þ ¼ �ð�Þ; (17)

where �ð�Þ ¼ �ð�4H0tÞ � €�þ 3H0
_�. We get the fol-

lowing solution:

fð�Þ¼ 1

16H2
0

Z �
�Z 


�ð~
Þe�3~
=2d~
þ16C3H
2
0

�
e3
=2d
þC4;

(18)

where C3 and C4 are arbitrary constants. We can fix C4

without loss of generality. Indeed, it is easy to see that we
can add a constant to fð�Þ and the same constant to �,
without changing of Eqs. (4) and (6).

Following [20], we consider the matter with the EoS
parameter wm � Pm=�m to be a constant, not equal to�1.
Thus, Eq. (10) has the following general solution:

�m ¼ �0e
�3ð1þwmÞH0t; (19)

where �0 is an arbitrary constant.
Equation (15) has the following general solution:

(i) At �0 ¼ 0,

�1ðtÞ ¼ C1e
�3H0t þ C2e

�2H0t � 1þ �

3H2
0

; (20)

(ii) At �0 � 0 and wm ¼ 0,

�2ðtÞ¼C1e
�3H0tþC2e

�2H0t�1

þ �

3H2
0

��2�0

H0

e�3H0tt; (21)

(iii) At �0 � 0 and wm ¼ �1=3,

�3ðtÞ ¼ C1e
�3H0t þ C2e

�2H0t � 1þ �

3H2
0

þ 4�2�0

3H0

e�2H0tt; (22)

(iv) At �0 � 0, wm � 0, and wm � �1=3,

�4ðtÞ ¼ C1e
�3H0t þ C2e

�2H0t � 1þ �

3H2
0

� �2�0ðwm � 1Þ
3H2

0wmð1þ 3wmÞ
e�3H0ðwmþ1Þt; (23)

where C1 and C2 are arbitrary constants.
Substituting the explicit form of �ðtÞ, we get
(i) For themodel without matter (�0 ¼ 0,�ðtÞ¼�1ðtÞ),

f1ð�Þ ¼ C2

4
e�=2 þ C3e

3�=2 þ C4; (24)

whereC3 andC4 are arbitrary constants. Note thatC2

is an arbitrary constant as well.
(ii) For the model with the dark matter (wm ¼ 0,

�ðtÞ ¼ �2ðtÞ),

f2ð�Þ ¼ f1ð�Þ � �2�0

3H2
0

e3�=4: (25)

(iii) For the model, including the matter with wm ¼
�1=3 (�ðtÞ ¼ �3ðtÞ),

f3ð�Þ ¼ f1ð�Þ þ �2�0

4H2
0

�
1� 1

3
�

�
e�=2: (26)

(iv) For the model, including the matter with another
value of wm (�ðtÞ ¼ �4ðtÞ),

f4ð�Þ¼f1ð�Þ� �2�0

3ð1þ3wmÞH2
0

e3ðwmþ1Þ�=4: (27)

One can see that the key ingredient of all functions fið�Þ
is an exponent function.
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B. De Sitter solutions for exponential fð�Þ
In the following, we consider de Sitter solutions for the

model with

fð�Þ ¼ f0e
�=�; (28)

where f0 and � are constant. We choose this form of fð�Þ
because it is the simplest function, which belongs to the
general set of functions (24), (25), and (27), described
above. Note that models involving this exponential form
of fð�Þ are being actively studied in the literature [15–21].

In the case� ¼ 0, the corresponding system of equation
can been written in terms of Hubble-normalized variables.
The stability of the fixed point for this system has been
discussed in [15] and the stability analysis for the same case
has been further investigated in [16] (see also [19]). Wewill
consider this specific case in Sec. IVB. In absence of
matter, expanding universe solutions a / tn have been

found in [15,21]. In [17], the ensuing cosmology at the
four basic epochs, radiation dominated, matter dominated,
accelerating, and a general scaling, has been studied
for an interesting nonlocal model involving, in particular,
an exponential form of fð�Þ. Screening of the cosmological
constant in the nonlocal model described by the
action (1) with an exponential fð�Þ has been considered
in [18,20,21].
In [20], the model has been considered in further detail:

the corresponding de Sitter solutions have been obtained, a
condition to avoid a ghost has been considered, and a
screening scenario for a cosmological constant has been
discussed. Note that in [15,20] the authors put restrictions
on arbitrary parameters, to get de Sitter solution. It will be
interesting to get de Sitter solutions without any restriction.
Substituting the solution (14) of Eq. (12) into Eq. (13)

and assuming that the integration constant �0 � 0, we
obtain that Eq. (13) has the general solution

�ðtÞ¼12
H2

0f0
�

Z t

0

��
C1þ

Z t1

0
eð��0 exp½�3H0ðt2�t0Þ��4H0ðt2�t0ÞÞ=�þ3H0t2dt2

�
e�3H0t1dt1

�
��0; (29)

with C1 and �0 arbitrary constants. If � ¼ 2=3, then �ðtÞ
can be found explicitly:

�ðtÞ¼ 8f0
9�2

0

e�ð3=2Þ�0 expð�3H0ðt�t0ÞÞ �C1e
�3H0ðt�t0Þ��0: (30)

The solutions obtained include four arbitrary parameters,
namely, �0, �0, C1, and t0. As we have mentioned above,
one can set t0 ¼ 0, without loss of generality.

At HðtÞ ¼ H0, Eq. (11) has the form

_� _�þ 1

�
fð�Þ

�
1

�
_�2þ €�

�
� 1

�
H0fð�Þ _�� €�þH0

_�

þ�2ð1þwmÞ�m¼0; (31)

and, using (13),

ð _�þ 4H0Þ _�þ fð�Þ
�

�
1

�
_�2 þ €��H0 _�� 12H2

0

�

þ �2ð1þ wmÞ�m ¼ 0: (32)

Substituting the explicit expression for �, we get

3H0�0e
�3H0t _�þH2

0

�2
fð�Þð9�2

0e
�6H0t � 12�0ð�þ 2Þe�3H0t

� 8ð�� 2ÞÞ þ �2ð1þ wmÞ�m ¼ 0;

where

fð�Þ¼f0e
�4H0t=�e��0 expð�3H0tÞ=�; �m¼�0e

�3ð1þwmÞH0t:

From (29), it follows that

_�¼12
H2

0f0
�

�e�3H0t

�
C1þ

Z t

0
e½��0 expð�3H0t2Þ�4H0t2�=�þ3H0t2dt2

�
:

(33)

A straightforward calculation shows that Eq. (32) has no
solution for any value of the parameters such that f0 � 0,
�0 � 0, and H0 � 0.
Therefore, without loss of generality we can put �0 ¼ 0.

In this case, for � � 4=3, from (12) and (13) the following
solution is obtained [20]:

� ¼ � 3f0�

3�� 4
e�4H0ðt�t0Þ=� þ c0

3H0

e�3H0ðt�t0Þ � �0;

� ¼ �4H0ðt� t0Þ;
(34)

where c0 is an arbitrary constant,

�¼3H2
0ð1þ�0Þ; �0¼6ð��2ÞH2

0f0
�2�

; wm¼�1þ 4

3�
:

(35)

The case � ¼ 2 corresponds to �0 ¼ 0. Note that � ¼ 2
corresponds to wm ¼ �1=3. It means that the model with
exponential fð�Þ has no de Sitter solutions if we add this
kind of matter. The type of function fð�Þ that can have
such solutions is given by (26).
For � ¼ 4=3, we get

�ðtÞ ¼ �f0ðc0 þ 3H0ðt� t0ÞÞe�3H0ðt�t0Þ � �0; (36)
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�¼3H2
0ð1þ�0Þ; Pm¼0; �m¼� 3

�2
H2

0f0e
�3H0ðt�t0Þ:

(37)

This solution clearly corresponds to dark matter, because
wm ¼ 0.

IV. STABILITY OF THE DE
SITTER BACKGROUND

A. The case of nonzero �

1. The FLRW metric

Let us now introduce new variables

� ¼ fð�Þ ¼ f0e
�=�; c ¼ _�: (38)

The functions �ðtÞ and c ðtÞ are connected by the equation
_� ¼ 1

�
�c : (39)

The system (11)–(13) can be expressed as a system of first-
order differential equations, in terms of new variables. We
rewrite Eqs. (12) and (13) as

_c ¼ �3Hc � 6ð _Hþ 2H2Þ; (40)

_� ¼ #; _# ¼ �3H# þ 6

�
ð _H þ 2H2Þ�: (41)

Using

€� ¼ �

�

�
c 2

�
� 3Hc � 6 _H � 12H2

�
;

we get that Eq. (11) is equivalent to

2 _H

�
1þ �� 6

�
�� �

�

¼ 4H

�
�c

�
� #

�
� 1

�2
�c 2 þ 24

�
H2�

� #c � �2ð1þ wmÞ�m: (42)

Consider the de Sitter solution

�m¼�0e
�3ðwmþ1ÞH0ðt�t0Þ; Pm¼wm�m; �¼3H2

0ð1þ�0Þ;
(43)

�¼ 4

3ð1þwmÞ ; c ¼�4H0; �¼f0e
�4H0t=�: (44)

For � � 4=3, we have

� ¼ � 3f0�

3�� 4
e�4H0ðt�t0Þ=� þ c0

3H0

e�3H0ðt�t0Þ � �0;

and, for � ¼ 4=3,

� ¼ �f0ðc0 þ 3H0ðt� t0ÞÞe�3H0ðt�t0Þ � �0:

As t tends to þ1,

�m!0; �!0; c ¼�4H0; �!��0; (45)

for all H0 > 0 and �> 0. This system has a fixed point:
� ¼ 0, � ¼ ��0, c ¼ �4H0, �m ¼ 0. Note that we can-
not fixH0, using the relation� ¼ 3H2

0ð1þ �0Þ, since �0 is

an arbitrary parameter. So, we have no isolated fixed point.
Two different cases appear: � ¼ 0 and � � 0. In this

subsection, we consider the case � � 0. For � ¼ 0, the
stability can be analyzed using a change of variables. This
analysis will be presented in the next subsection.
For � � 0, one gets �0 � �1, in the neighborhood of

the fixed point�
1þ �� 6

�
�� �

�
� 1þ �0 � 0 (46)

and we can divide Eq. (42) in this expression to get the
equation in the standard form:

_H ¼ 1

2ð1þ ��6
� �� �Þ

�
4H

�
�c

�
� #

�
��c 2

�2

þ 24

�
H2�� #c � 4�2

3�
�m

�
: (47)

We consider the time domain ðt1;þ1Þ such that

1þ ��6
� �� � � 0. This expression is positive for

�> 0 and negative for �< 0. In the neighborhood of
the fixed point, which corresponds to de Sitter solution,
we have

HðtÞ ¼ H0 þ "h1ðtÞ þOð"2Þ; (48)

�ðtÞ ¼ "�1ðtÞ þOð"2Þ; (49)

c ðtÞ ¼ �4H0 þ "c 1ðtÞ þOð"2Þ; (50)

�ðtÞ ¼ ��0 þ "�1ðtÞ þOð"2Þ; (51)

#ðtÞ ¼ "#1ðtÞ þOð"2Þ; (52)

�mðtÞ ¼ "�m1ðtÞ þOð"2Þ; (53)

where " is a small parameter.
From Eqs. (10), (39)–(41), and (47), we obtain, to first

order in ", the following system:

_�m1 ¼ � 4

�
H0�m1; (54)

_� 1 ¼ � 4

�
H0�1; (55)

_# 1 ¼ �3H0#1 þ 12

�
H2

0�1; (56)

_h 1 ¼ 2

ð1þ �0Þ
�
2

�

�
1� 2

�

�
H2

0�1 � �2

3�
�m1

�
; (57)
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_c 1 ¼ �3H0c 1 � 12H0h1

� 12

ð1þ �0Þ
�
2

�

�
1� 2

�

�
H2

0�1 � �2

3�
�m1

�
: (58)

Note that the function �1 is not included in this system. It
can be defined using Eq. (8). It is plain that �1 cannot tend
to infinity, if all other first-order corrections are bounded.

Let us now consider the system (54)–(58). The functions

�m1ðtÞ ¼ d0e
�4H0t=�; �1ðtÞ ¼ d1e

�4H0t=�; (59)

where d0 and d1 are arbitrary constants, are general solu-
tions of Eqs. (54) and (55), respectively. AtH=�> 0, these
functions tend to zero, for t ! 1. Substituting these func-
tions into the other equations, we get

#1ðtÞ ¼ 12
H0d1
3�� 4

e�4H0t=� þ d3e
�3H0t; (60)

h1ðtÞ ¼ d2 � 6H2
0d1ð�� 2Þ � �2d0�

6�H0ð1þ �0Þ e�4H0t=�; (61)

c 1ðtÞ ¼ 2ð�� 2Þð6H2
0�d1 � 12H2

0d1 � �2�d0Þ
H0�ð3�� 4Þð1þ �0Þ e�4H0t=�

þ d4e
�3H0t � 4d2; (62)

where d2, d3, and d4 are arbitrary constants. The two last
expressions are valid for � � 4=3. For � ¼ 4=3,

#1 ¼ ð9H2
0d1tþ d3Þe�3H0t;

c 1 ¼
�ð3H2

0d1 þ �2d0Þt
1þ �0

þ d4

�
e�3H0t � 4d2:

We see that none of the perturbations tends to infinity at
t ! 1, so that the de Sitter solutions are stable. We should
note that the fixed point, which corresponds to a de Sitter
solution with fixedH0, is not isolated, because there is only
one condition: � ¼ 3H2

0ð1þ �0Þ on the two arbitrary

parameters H0 and �0. Changing �0, we get a new
value of H0 for the same �. This is the reason why the
function h1ðtÞ has an arbitrary parameter d2. To analyze the
stability of such a fixed point, one cannot use Lyapunov’s
theorem [24].

2. The Bianchi I metric

The Bianchi universe models are spatially homogeneous
anisotropic cosmological models. There are strong limits
on anisotropic models from observations [25]. Anisotropic
spatially homogeneous fluctuations have to be strongly
suppressed, and models developing large anisotropies
should be discarded as early- or late-times cosmological
models.

Interpreting the solutions of the Friedmann equations as
isotropic solutions in the Bianchi I metric, we include
anisotropic perturbations in our consideration. A similar
stability analysis has been made for cosmological models

with scalar fields and phantom scalar fields in [26]. The
stability analysis is essentially simplified by a suitable
choice of variables. Let us consider the Bianchi I metric

ds2 ¼ �dt2 þ a21ðtÞdx21 þ a22ðtÞdx22 þ a23ðtÞdx23: (63)

It is convenient to express ai in terms of new variables a
and �i (we use the notation of [27]):

aiðtÞ ¼ aðtÞe�iðtÞ: (64)

Imposing the constraint

�1ðtÞ þ �2ðtÞ þ �3ðtÞ ¼ 0; (65)

at any t, one has the following relations:

aðtÞ ¼ ða1ðtÞa2ðtÞa3ðtÞÞ1=3; (66)

Hi� _ai
ai
¼Hþ _�i; and H� _a

a
¼1

3
ðH1þH2þH3Þ: (67)

Note that �i are not components of a vector and, therefore,
are not subject to the Einstein summation rule. In the case
of the FLRWmetric: a1 ¼ a2 ¼ a3 ¼ a, all�i are equal to
zero, and H is the Hubble parameter; thus, we can use the
same notations as for the FLRWmetric. Following [27], we
introduce the shear

�2 � _�2
1 þ _�2

2 þ _�2
3: (68)

It is easy to calculate that

R ¼ 12H2 þ 6 _H þ �2; (69)

R00 ¼ �3ðH2 þ _HÞ � �2; (70)

Rjj ¼ gjjð _Hj þ 3HHjÞ ¼ gjjð _H þ 3H2 þ €�j þ 3H _�jÞ:
(71)

In the Bianchi I metric, we get h� ¼ R as

_c ¼ �3Hc � 12H2 � 6 _H � �2: (72)

Equations (6) and (10) are now

_# ¼ �3H# þ�

�
ð12H2 þ 6 _H þ �2Þ; (73)

_� m ¼ � 4

�
H�m: (74)

To get Eq. (74), we have used condition (35) on wm. The
Einstein equations have the form

�
�2

2
�3H2

�
ð1þ���Þþ1

2
_�c �3Hð _�� _�Þþ�þ�2�m

¼0; (75)
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�
2 _Hþ3H2þ�2

2
� €�j�3H _�j

�
ð1þ���Þþ1

2
_�c þ €�

� €�þð2H� _�jÞð _�� _�Þ¼���2Pm: (76)

Adding Eq. (76) for j ¼ 1, 2, 3 and using (65), we get

�
2 _H þ 3H2 þ �2

2

�
ð1þ�� �Þ þ 1

2
_�c þ €�� €�

þ 2Hð _�� _�Þ ¼ �� �2Pm (77)

and adding now (75) and (77),

½2 _H þ �2�ð1þ�� �Þ þ _�c þ €�� €��Hð _�� _�Þ
¼ ��2ð1þ wmÞ�m: (78)

Assuming that (46) is satisfied, we write Eq. (78) as

_H ¼ 1

2½1þ ��6
� �� ��

�
4H

�
�c

�
� #

�
��c 2

�2
þ 24

�
H2�

� #c � 4�2

3�
�m �

�
1þ �� 2

�
�� �

�
�2

�
: (79)

Subtracting (76), with j ¼ i, from (76), with j ¼ k, we
obtain the following system of equations:

½ €�iþ3H _�i� €�k�3H�k�ð1þ���Þþð _�i� _�kÞð _�� _�Þ
¼0 (80)

and using (65), it is easy to get from this system

½ €�i þ 3H _�i�ð1þ�� �Þ þ _�i

�
1

�
�c � #

�
¼ 0 (81)

and�
d

dt
ð�2Þ þ 6H�2

�
ð1þ�� �Þ þ 2�2

�
1

�
�c � #

�
¼ 0:

(82)

The functions HðtÞ, �2ðtÞ, �ðtÞ, c ðtÞ, �ðtÞ, #ðtÞ, and �mðtÞ
can be obtained from Eqs. (39), (72)–(74), (79), and (82). If
HðtÞ and the scalar fields are known, then�i can be directly
obtained from (81).

The functions HðtÞ, _�iðtÞ, and �2ðtÞ are very suitable to
analyze the stability of isotropic solutions in the Bianchi I
metric. Indeed, the use of these variables makes the analy-
sis of stability in the FLRW and Bianchi I metrics similar,
because the equations of motion in the Bianchi I metric
with �2 ¼ 0 are identical to the equations of motion in the
FLRW metric. Thus, we can use some results from the
previous subsection. In the neighborhood of the fixed
point, which corresponds to de Sitter solution, we have
the expansions (48)–(53), and

�2ðtÞ ¼ "�2
1ðtÞ þOð"2Þ: (83)

To first order in ", we get the following system of
equations. Equations (54)–(56) are valid for the Bianchi I

metric as well, and instead of Eqs. (57) and (58) we get the
system

_h 1¼ 2

ð1þ�0Þ
�
2

�

�
1� 2

�

�
H2

0�1� �2

3�
�m1

�
�1

2
�2

1; (84)

_c 1¼�3H0c 1�12H0h1þ2�2
1�

12

ð1þ�0Þ
�
2

�

�
1� 2

�

�
H2

0�1

� �2

3�
�m1

�
; (85)

d

dt
ð�2

1Þ¼�6H0�
2
1: (86)

From the last equation, we get

�2
1 ¼ d5e

�6H0t; (87)

where d5 is an arbitrary constant.
The expressions for the functions �1ðtÞ, �1ðtÞ, and #1ðtÞ

in the Bianchi I metric coincide with the corresponding
expressions in the FLRW metric, which are given by (59)
and (60). Substituting these functions into Eqs. (84) and
(85), we obtain

h1¼d2�6H2
0d1ð��2Þ��2d0�

6�H0ð1þ�0Þ e�4H0t=�þ d5
12H0

e�6H0t;

(88)

c 1 ¼ 2ð�� 2Þð6H2
0�d1 � 12H2

0d1 � �2�d0Þ
H0�ð3�� 4Þð1þ �0Þ e�4H0t=�

þ d4e
�3H0t � 4d2 � d5

3H0

e�6H0t; (89)

and, at � ¼ 4=3, we get

c 1¼
�ð3H2

0d1þ�2d0Þt
1þ�0

þd4

�
e�3H0t�4d2� d5

3H0

e�6H0t:

The function �1ðtÞ, which can be defined using Eq. (75),
is a bounded function if all other first-order corrections are
bounded. Thus, we come to the conclusion that de Sitter
solutions are stable if H0 > 0 and �> 0. So, the stability
conditions in the cases of the FLRW and Bianchi I metrics
coincide.

B. The case �¼0. Normalized variables

To analyze the stability of the de Sitter solutions at
� ¼ 0, following [15] we transform the system of equa-
tions using new dependent variables

X¼� _�

4H
; W¼

_�

6Hf
; Y¼1��

3f
; Z¼�2�m

3H2f
; (90)

and the independent variable N:

d

dN
� a

d

da
¼ 1

H

d

dt
: (91)
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The use of the Hubble-normalized variables [28] and N as
time variable makes the equation of motion dimensionless.
Note that a change of dependent and independent variables
of this kind is actively used in cosmological models with
scalar fields, in order to analyze the stability in the FLRW
metric [29,30], as well as in models of inflation (see [31]
and references therein). Clearly,

dX

dN
¼ 1

H

dX

dt
¼� 1

4H

�
€�

H
� _H

H2
_�

�
¼� €�

4H2
�X

H

dH

dN
; (92)

dW

dN
¼ 1

H

� €�

6Hf
�

_� _H

6H2f
�

_� _f

6Hf2

�

¼
€�

6fH2
þ 4

�
XW �W

H

dH

dN
: (93)

Equations (12) and (13) are equivalent to the following
ones, in terms of the new variables,

dX

dN
¼ 3ð1� XÞ þ 1

H

�
3

2
� X

�
dH

dN
; (94)

dW

dN
¼ 2

�
ð1þ 2WXÞ � 3W þ 1

H

�
1

�
�W

�
dH

dN
(95)

and Eq. (10) can be written as

dZ

dN
¼ 4

�
ðX � 1ÞZ� 2

Z

H

dH

dN
: (96)

To get the full system of equations, we need one for dH
dN . In

terms of the new variables, Eq. (8) has the form

6W � 3Y � 4XW þ 4

�
Xþ Z ¼ 1: (97)

Differentiating it

6
dW

dN
�3

dY

dN
�4W

dX

dN
�4X

dW

dN
þ 4

�

dX

dN
þ dZ

dN
¼0; (98)

using

dY

dN
¼ 2

�
2XY

�
�W

�
;

and substituting (94), (95), and (97), we get�
4WX�6W� 4

�
Xþ 6

�
�Z

�
1

H

dH

dN
þ12WðX�1Þ

þ 2

�
ð6�4X�ZÞ� 8

�2
X2¼0: (99)

For c0 ¼ 0 (and � � 4=3), the de Sitter solution in terms
of new variables corresponds to the following fixed point:

H ¼ H0; W0 ¼ 2

3�� 4
; X0 ¼ 1;

Y0 ¼ �

3�� 4
; Z0 ¼ 2ð�� 2Þ

�
:

(100)

For � ¼ 2, when �0 ¼ 0, the stability of the de Sitter
solution has been proven in [15]. In this paper, we discuss
stability in the case �> 0.
Let us consider perturbations in the neighborhood of the

de Sitter solution (100):

X ¼ X0ð1þ "x1ðNÞÞ; Z ¼ Z0ð1þ "z1ðNÞÞ;
W ¼ W0ð1þ "w1ðNÞÞ; H ¼ H0ð1þ "h1ðNÞÞ:

To first order in ", we obtain the system of linear equations:

dx1
dN

¼ �3x1 þ 1

2

dh1
dN

; (101)

dz1
dN

¼ 4

�
x1 � 2

dh1
dN

; (102)

dw1

dN
¼ 4

�
x1 � 4� �

2�

dh1
dN

þ
�
4

�
� 3

�
w1; (103)

dh1
dN

¼� 8ð��4Þ
�ð3�2�11�þ12Þx1�

2ð3��4Þð��2Þ
�ð3�2�11�þ12Þz1:

(104)

Substituting (104) into (101) and (102), we get

dx1
dN

¼ � ð�� 1Þð3�� 4Þ2
�ð3�2 � 11�þ 12Þ x1 �

ð3�� 4Þð�� 2Þ
�ð3�2 � 11�þ 12Þ z1;

dz1
dN

¼ 4ð3�2 � 7�� 4Þ
�ð3�2 � 11�þ 12Þ x1 þ

4ð3�� 4Þð�� 2Þ
�ð3�2 � 11�þ 12Þ z1;

(105)

which has the following solution:

x1¼c1e

1Nþc2e


2N; z1¼c3e

1Nþc4e


2N; (106)

where c1 and c2 are arbitrary constants

c3 ¼ � 9�3 � 21�2 þ 16�D

2ð3�� 4Þð�� 2Þ c1;

c4 ¼ � 9�3 � 21�2 þ 16þD

2ð3�� 4Þð�� 2Þ c2;


1 ¼ � 9�3 � 45�2 þ 80�� 48þD

2�ð3�2 � 11�þ 12Þ ;


2 ¼ � 9�3 � 45�2 þ 80�� 48�D

2�ð3�2 � 11�þ 12Þ ;
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D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81�6 � 378�5 þ 297�4 þ 1104�3 � 1984�2 þ 256�þ 768

q
:

We see that 
1 ¼ 0 at

�1 ¼ 4
3; �2 ¼ 2; �3;4 ¼ 11

6
�

ffiffiffiffiffiffi
23

p
6

i: (107)

The real part of 
1 is negative in the interval � 2 ð4=3; 2Þ.
It is easy to show that also the real part of 
2 is negative in
this interval.

Therefore, the perturbations x1 and z1 decrease in 4=3<
�< 2. Substituting x1ðNÞ and z1ðNÞ into Eqs. (103) and
(104), we get that h1ðNÞ and w1ðNÞ decrease as well. Note
that h1ðNÞ has a part H1, which does not depend on N, and
therefore can be considered as part of H0. This result
corresponds to the fact that, for � ¼ 0, the value of H0

can be selected arbitrarily; thus, one can choose ~H0 ¼
H0 þH1 instead of H0. Adding here the results of [15],
we can summarize that the de Sitter solutions are stable
with respect to perturbations in the FLRW metric with
4=3<� � 2. At f0 > 0, the stable de Sitter solution cor-
responds to �0 � 0.

Consider now the case of an arbitrary c0. For the de
Sitter solution, we get

H ¼ H0; X0 ¼ 1; Z0 ¼ 2ð�� 2Þ
�

;

Y ¼ �

3�� 4
� c0

9H0f0
e�ð3�4=�ÞðN�N0Þ;

W ¼ 2

3�� 4
� c0

6H0f0
e�ð3�4=�ÞðN�N0Þ;

where N0 ¼ H0t0. For �> 4=3,

lim
N!1Y ¼ �

3�� 4
; lim

N!1W ¼ 2

3�� 4
:

Thus, the de Sitter solution tends to a fixed point, which
means that, for any " > 0, there exists a number N1 such
that the de Sitter solution is in the "=2 neighborhood of the
fixed point for all N >N1. Therefore, the stability of the
fixed point guarantees the stability of de Sitter solutions for
any value of c0. We reach the conclusion that, at� ¼ 0, all
de Sitter solutions are stable for 4=3<� � 2.

For � ¼ 4=3, we have no fixed point, because the Y and
W corresponding to de Sitter solutions are proportional to
N. Thus, this choice of dimensionless variable is not
suitable to consider stability of the de Sitter solutions for
� ¼ 4=3. For �< 4=3 and �> 2, we find that the solu-
tions are in fact unstable.

V. CONCLUSIONS

In this paper, we have investigated de Sitter solutions in
a nonlocal gravity model, which is described by the action
given in (1) (see also [15]). To carry out this task, we have

used the local formulation of the model (3), which includes
two scalar fields. De Sitter solutions play a very important
role in cosmological models, because both inflation and the
late-time Universe acceleration can be described as a de
Sitter solution with perturbations.
We have found the interesting result that the model has

de Sitter solutions only if fð�Þ satisfies the second-order
linear differential equation (16). If we consider models
without matter or with a perfect matter fluid with a constant
EoS parameter wm � �1=3, then fð�Þ can be an exponen-
tial function or a sum of exponential functions. For the
model with fð�Þ equal to a sum of exponential functions,
particular de Sitter solutions have been found in [15,20].
In this paper, we have considered de Sitter solutions for

an exponential fð�Þ and found all solutions in the FLRW
metric that correspond to a constant, nonzero value of the
Hubble parameter, H0. In particular, we have obtained the
de Sitter solutions in the case when the matter included in
the model is dark matter. This case has never been consid-
ered before in the literature.
When t ! 1, the de Sitter solutions tend to fixed points.

In the model considered, the value of the cosmological
constant does not fix H0, therefore, the fixed points that
correspond to de Sitter solutions are not isolated. We have
analyzed the stability of these solutions in the cases of
FLRW and Bianchi I metrics and obtained that the first-
order corrections have no increasing modes, this being valid
for any nonzero value of �, and for H0 > 0 and �> 0.
They display constant and decreasing modes. For this rea-
son, we can say that, for H0 > 0 and �> 0, our solutions
are stable for all nonzero values of�. For� ¼ 0, the stable
solutions correspond to H0 > 0 and 4=3<� � 2.
Looking further, it will be interesting to consider the

stability of the de Sitter solutions and the corresponding
ghost-free conditions in the Einstein frame, for models
with more general functions fð�Þ satisfying the differential
equation (16).
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