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Motion of test particles in the gravitational field associated with an electromagnetic plane wave is

investigated. The interaction with the radiation field is modeled by a force term à la Poynting-Robertson

entering the equations of motion given by the 4-momentum density of radiation observed in the particle’s

rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit

analytical solutions are obtained. Scattering of fields by the electromagnetic wave, i.e., scalar (spin 0),

massless spin 1
2 and electromagnetic (spin 1) fields, is studied too.
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I. INTRODUCTION

The problem of scattering by a radiation field on a test
particle motion was first investigated long ago by Poynting
[1] in the context of Newtonian gravity, and then general-
ized to the case of a weak gravitational field by Robertson
[2]. The particles interact with the radiation field of an
emitting source by adsorbing and re-emitting radiation,
causing a drag force responsible for deviation from geo-
desic motion, known as the Poynting-Robertson effect.
Recently the generalization to the framework of general
relativity has been developed in Refs. [3,4], where this
effect on test particles orbiting in the equatorial plane of
a Schwarzschild or Kerr spacetime has been considered.
The radiation field is taken there as a test field superposed
to the gravitational background. In Ref. [5] a self-
consistent radiation flux was instead used to investigate
such a kind of interaction in the exact, Vaidya spherically
symmetric spacetime whose source is a null dust [6,7].
Particles undergo in this case the action of a Thomson-type
interaction with the radiation in terms of which the energy-
momentum tensor is interpreted. The way adopted to
model this interaction simply consists in taking the
4-momentum density of radiation observed in the particle’s
rest frame and fix, by an effective proportionality constant,
what part of it is being transferred to the particle.

In the present paper we follow the same approach to
study the interaction of test particles with an electromag-
netic radiation field. Suppose that before the passage of the
wave the spacetime is flat. An electromagnetic wave prop-
agating over a spacetime region makes it not empty and not
flat. Therefore, the spacetime curvature associated with an
electromagnetic pulse, namely, the associated gravitational
field, induces observable effects on test particle motion.
While it seems that the relativistic community is quite
familiar with the effects related to the passage of a gravi-
tational wave it is somehow surprising that its electromag-
netic counterpart is rather poorly studied. It is expected that

a test particle as well as a test field can be scattered by the
wave and hence it will modify its own energy and momen-
tum as a consequence of this interaction.
An exact solution of Einstein’s field equations represent-

ing the gravitational field associated with an electromag-
netic radiation field was discovered long ago by Griffiths
[8]. He then studied the strong field interaction between
exact gravitational and electromagnetic waves [9,10]. This
work has been further generalized in Refs. [11,12], where
colliding wave packets consisting of hybrid mixtures of
electromagnetic, gravitational and scalar waves in a strong
field regime were considered. We will study first the geo-
desics of such a solution, which can be determined fully
analytically, so that the first approximation approach to the
scattering problem can be given a complete answer.
We will then investigate the interaction with the radiation
field filling the spacetime region by considering acceler-
ated orbits with acceleration proportional to the energy-
momentum distribution of the wave. In a sense, in the
scattering process the particle absorbs and re-emits radia-
tion, resulting in a force term acting on the particle itself.
The equations of motion can be analytically solved also in
this case. We may consider this as a second approximation
approach to the scattering problem. Finally, we will study
also fields besides particles as scattered by the electromag-
netic wave, namely, scalar (spin 0), massless spin 1

2 and

electromagnetic (spin 1) fields, and discuss the features of
the scattering as well as the coupling between quantum
numbers and background parameters.

II. BACKGROUND SPACETIME

An exact solution representing the gravitational field
associated with an electromagnetic plane wave propagat-
ing along the z axis is given by [8]

ds2 ¼ �2dudvþ cos2ðbuÞðdx2 þ dy2Þ; (1)
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with an energy-momentum tensor

T ¼ 2b2k � k; k ¼ @v; (2)

so that G�� ¼ T��. In the ðu; v; x; yÞ coordinates, the

metric (1) has a horizon at bu ¼ �=2; therefore the
allowed range for the coordinate u is ½0; u0� with u0 <
�=ð2bÞ. The metric (1) is also conformally flat; in fact one
can introduce the new variable u0 ¼ ðtanbuÞ=b such that
the new form of the metric is

ds2 ¼ 1

1þ ðbu0Þ2 ð�2du0dvþ dx2 þ dy2Þ; (3)

and no coordinate horizon exists anymore. Using instead
the transformation

u ¼ 1ffiffiffi
2

p ðt� zÞ; v ¼ 1ffiffiffi
2

p ðtþ zÞ; (4)

with x and y unchanged allows to obtain the quasi-
Cartesian form of the metric (1)

ds2 ¼ �dt2 þ cos2sðdx2 þ dy2Þ þ dz2; (5)

where we have denoted ! ¼ b=
ffiffiffi
2

p
and s ¼ !ðt� zÞ.

Hereafter we will work with the metric in the form (5),
which reduces to the flat Cartesian spacetime metric in the
limit ! ! 0 (or s ! 0).

A family of fiducial observers at rest with respect to the
coordinates ðx; y; zÞ is characterized by the 4-velocity
vector

m ¼ @t; m[ ¼ �dt: (6)

An orthonormal spatial triad adapted to the observers m is
given by

ex̂ ¼ 1

coss
@x; eŷ ¼ 1

coss
@y; eẑ ¼ @z; (7)

with dual

!x̂ ¼ cossdx; !ŷ ¼ cossdy; !ẑ ¼ dz: (8)

The associated congruence of the observers world lines is
geodesic and vorticity-free but has a nonzero expansion

�ðmÞ ¼ �! tans½!x̂ �!x̂ þ!ŷ �!ŷ�;
�ðmÞ ¼ Tr½�ðmÞ� ¼ �2! tans: (9)

The electric (EðmÞ), magnetic (H ðmÞ) and mixed (F ðmÞ)
parts of the Riemann tensor (see, e.g., Ref. [13] for their
standard definitions) have constant frame components
given by

EðmÞ ¼ !2½!x̂ �!x̂ þ!ŷ �!ŷ�;
H ðmÞ ¼ �!2!x̂ ^!ŷ; (10)

with EðmÞ ¼ F ðmÞ as for a conformally flat spacetime.
As seen by the observersm, a test particle in motion with

4-velocity U� ¼ dx�=d� is such that

U ¼ U�@� ¼ �ðU;mÞ½mþ �ðU;mÞâeâ�
¼ �ðU;mÞ½mþ k�ðU;mÞk�̂ðU;mÞ�; (11)

leading to the following relation between coordinate and
frame components:

Ut ¼ �ðU;mÞ; Ux

Ut ¼
�ðU;mÞx̂
coss

;

Uy

Ut ¼
�ðU;mÞŷ
coss

;
Uz

Ut ¼ �ðU;mÞẑ: (12)

For a test particle moving along a generic timelike geode-
sic UðgÞ we find

UðgÞ ¼ 1ffiffiffi
2

p
�
puþ 1

2pu

�
1þp2

xþp2
y

cos2s

��
@tþ px

cos2s
@xþ

py

cos2s
@y

þ 1ffiffiffi
2

p
�
�puþ 1

2pu

�
1þp2

xþp2
y

cos2s

��
@z; (13)

so that there exist three (Killing) constants of motion, i.e.,
px, py, pu (not to be confused with the covariant compo-

nents of UðgÞ). Equivalently, using the notation px ¼
p? cos�, py ¼ p? sin�, so that p2

? ¼ p2
x þ p2

y, the frame

components of the geodesic 4-velocity are given by

�ðUðgÞ; mÞ ¼ 1ffiffiffi
2

p
�
pu þ 1

2pu

�
1þ p2

?
cos2s

��
;

�ðUðgÞ; mÞ�ðUðgÞ; mÞx̂ ¼ p? cos�

coss
;

�ðUðgÞ; mÞ�ðUðgÞ; mÞŷ ¼ p? sin�

coss
;

�ðUðgÞ; mÞ�ðUðgÞ; mÞẑ ¼ 1ffiffiffi
2

p
�
�pu þ 1

2pu

�
1þ p2

?
cos2s

��
;

(14)

with

k�ðUðgÞ; mÞk2 ¼

�
pu � 1

2pu

�
2 þ p2

?
cos2s

�
1þ 1

2p2
u
þ p2

?
4p2

ucos
2s

�
�
pu þ 1

2pu

�
2 þ p2

?
cos2s

�
1þ 1

2p2
u
þ p2

?
4p2

ucos
2s

� :
(15)

In the special case px ¼ 0 ¼ py of motion along the z

direction, these relations reduce to

UðgÞ ¼ 1ffiffiffi
2

p
�
pu þ 1

2pu

�
@t þ 1ffiffiffi

2
p

�
�pu þ 1

2pu

�
@z

¼ �0ð@t þ �0@zÞ; (16)

where

�0 ¼ 1þ 2p2
u

2
ffiffiffi
2

p
pu

; �0 ¼ 1� 2p2
u

1þ 2p2
u

; (17)

with �0 > 0 if pu < 1=
ffiffiffi
2

p
and �0 � 0 if pu � 1=

ffiffiffi
2

p
. It is

also useful to consider the special case pu ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
=

ffiffiffi
2

p
,

px ¼ p and py ¼ 0, which in flat spacetime (i.e., before the
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passage of the background electromagnetic wave: s ¼ 0 or
! ¼ 0) corresponds to a motion confined along the x axis

UðxÞ
ðgÞ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2

q
þ p2tan2s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2

p
�
@tþ p

cos2s
@xþ p2tan2s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2

p @z;

lim
s!0

UðxÞ
ðgÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2

q
@tþp@x: (18)

Finally a null geodesic KðgÞ has 4-momentum

KðgÞ ¼ 1ffiffiffi
2

p
�
ku þ 1

2ku

k2x þ k2y

cos2s

�
@t þ kx

cos2s
@x þ

ky

cos2s
@y

þ 1ffiffiffi
2

p
�
�ku þ 1

2ku

k2x þ k2y

cos2s

�
@z; (19)

with ku, kx and ky Killing constants (not to be confused

with the covariant components of KðgÞ); (ku > 0 in order

that KðgÞ be future pointing). The particular choice ku ¼
�=

ffiffiffi
2

p
, kx ¼ � and ky ¼ 0 gives

KðxÞ
ðgÞ ¼

�

2

�
1þ 1

cos2s

�
@tþ �

cos2s
@xþ�

2

�
�1þ 1

cos2s

�
@z;

lim
s!0

KðxÞ
ðgÞ ¼�ð@tþ@xÞ; (20)

which corresponds in the flat spacetime limit to a motion
along the x axis. We see that a component along the z axis
arises due to the transfer of momentum by the wave in that
direction, as expected.

III. SCATTERING OF TEST PARTICLES:
POYNTING-ROBERTSON-LIKE EFFECT

Let us consider now orbits accelerated by the background
radiation field.We follow here the same approach adopted in
Refs. [3,4], where the effect of the interaction with a test
radiation field superposed to a Schwarzschild or Kerr space-
time on test particle motion was investigated. Scattering
(absorbing and consequent re-emitting) of such radiation
by moving particles causes in this case a drag force which
acts on the particles determining deviations from geodesic
motion, termed as Poynting-Robertson effect. For instance,
for a body initially in a circular orbit, there are two kinds of
solutions: those in which the body spirals inward or spirals
outward, depending on the strength of the radiation pressure.
The former results of Robertson [2] are obtained from the
Schwarzschild case in the weak field and slow motion
approximation for a small drag coefficient. The first example
in which the Poynting-Robertson effect has been investi-
gated in a self-consistent way, i.e., without the requirement
that the radiation field itself be a test field, is that considered
in Ref. [5], where the Vaidya spacetime has been taken as the
background spacetime and a Thomson-like interaction of its
null dust with test particle motion was assumed.

Let the force acting on a massive particle with 4-velocity
U be proportional to the momentum density of the radia-
tion field as seen in the test particle rest space, i.e.,

fðradÞ� ¼ ��PðUÞ�	T	
�U

�; (21)

where PðUÞ ¼ gþU �U projects orthogonally toU, � is
the effective interaction cross section modeling the absorp-
tion and consequent re-emission of radiation by the particle
and T is the energy-momentum tensor (2) source of the
spacetime. Note that � has the dimension of a length
squared and is assumed to be a constant. The equations
of motion thus can be written as

MaðUÞ ¼ fðradÞ; (22)

where aðUÞ ¼ DU=d� denotes the 4-acceleration of U, U
is given by Eq. (11) and M is the particle’s rest mass. An
explicit calculation shows

fðradÞ ¼2�!2�ð1��ẑÞf½�2ð1��ẑÞ�1�m
þ�2ð1��ẑÞð�x̂ex̂þ�ŷeŷÞ�½�2�ẑð�ẑ�1Þþ1�eẑg;

(23)

so that the equations of motion become

d�x̂

d�
¼2~�!2ð1��ẑÞ�x̂�!��x̂ tansð�x̂2þ�ŷ2þ�ẑ�1Þ;

d�ŷ

d�
¼2~�!2ð1��ẑÞ�ŷ�!��ŷ tansð�x̂2þ�ŷ2þ�ẑ�1Þ;

d�ẑ

d�
¼�2 ~�!2ð1��ẑÞ2þ!�tansð�ŷ2þ�x̂2Þð1��ẑÞ; (24)

which must be completed with the evolution equations for
t, x, y and z (see Eq. (12)), i.e.,

dt

d�
¼�;

dx

d�
¼ ��x̂

coss
;

dy

d�
¼ ��ŷ

coss
;

dz

d�
¼��ẑ; (25)

where ~� ¼ �=M and the simplified notation �ðU;mÞ � �
and �ðU;mÞâ � �â has been used.
Let us consider first the set of Eqs. (24) for the frame

components of the spatial velocity. It is convenient to
express the proper time derivative in terms of the derivative
with respect to the variable s introduced above according to

ds ¼ !dðt� zÞ ¼ !�ð1� �ẑÞd�; (26)

so that the system becomes

d�x̂

ds
¼ 2

�
~�!�x̂ � �x̂

1� �ẑ
ð�x̂2 þ �ŷ2 þ �ẑ � 1Þ tans;

d�ŷ

ds
¼ 2

�
~�!�ŷ � �ŷ

1� �ẑ
ð�x̂2 þ �ŷ2 þ �ẑ � 1Þ tans;

d�ẑ

ds
¼ � 2

�
~�!ð1� �ẑÞ þ ð�ŷ2 þ �x̂2Þ tans: (27)

The first two equations imply

�ŷ d�
x̂

ds
� �x̂ d�

ŷ

ds
¼ 0; (28)

whence
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�ŷ

�x̂
¼ const: ¼ C; (29)

so that the set of equations simplifies to

d�x̂

ds
¼ 2

�
~�!�x̂ � �x̂

1� �ẑ
½�x̂2ð1þ C2Þ þ �ẑ � 1� tans;

d�ẑ

ds
¼ � 2

�
~�!ð1� �ẑÞ þ ð1þ C2Þ�x̂2 tans: (30)

Equations (30) admit the following first integral:

�x̂ coss

1� �ẑ
¼ const: ¼ B: (31)

The only surviving equation is thus the following:

d�ẑ

ds
¼�2~�!

ð1��ẑÞ3=2
coss

½�ẑðR2þcos2sÞ�R2þcos2s�1=2

þR2ð1��ẑÞ2 sins
cos3s

; (32)

where R ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
. Next setting

�ẑ ¼ 1� 2cos2s

R2 þ 2WðsÞcos2s ; (33)

and substituting then in Eq. (32) leads to the following
equation for WðsÞ:

dW

ds
¼ �2 ~�!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W � 1

p
; (34)

whose general solution is

WðsÞ ¼ 1

2
þ 1

2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wð0Þ � 1

p � 2~�!sÞ2; (35)

which exhibits a parabolic behavior with its minimum
Wð0Þ at s ¼ 0.

Summarizing, the solutions for the frame components of
the spatial velocity are

�x̂ ¼ 2B coss

R2 þ 2WðsÞcos2s ; �ŷ ¼ 2BC coss

R2 þ 2WðsÞcos2s ;

�ẑ ¼ 1� 2cos2s

R2 þ 2WðsÞcos2s ; (36)

where the arbitrary constants B, C and R can be in turn
expressed in terms of the initial values as

B¼ �x̂ð0Þ
1��ẑð0Þ ; C¼�ŷð0Þ

�x̂ð0Þ ; R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x̂ð0Þ2þ�ŷð0Þ2p
1��ẑð0Þ ; (37)

with

Wð0Þ ¼ 1

1� �ẑð0Þ �
R2

2
: (38)

When ~� ¼ 0 (geodesic case) the solution is still given by
Eq. (36) with WðsÞ ¼ Wð0Þ and coincides with Eq. (14).

Figure 1 shows the behavior of the frame components of
the spatial velocity as functions of s. Note the relations

lim
s!�=2

�x̂ ¼ 0; lim
s!�=2

�ŷ ¼ 0; lim
s!�=2

�ẑ ¼ 1; (39)

and

j�x̂j � 2B

R2
; j�ŷj � 2BC

R2
; j1� �ẑj � 2

R2
; (40)

which are also evident from the plots.
In the special case of motion along the z axis, i.e.,

�x̂ð0Þ ¼ 0 ¼ �ŷð0Þ, the solution reduces to

�x̂ ¼ 0; �ŷ ¼ 0; �ẑ ¼ 1� 1

WðsÞ ; (41)

which also explains the meaning of the function W intro-
duced above. If instead the initial conditions are �ŷð0Þ ¼
0 ¼ �ẑð0Þ, �x̂ð0Þ> 0 (motion starting along the positive
x axis), we have

B¼�x̂ð0Þ¼R; C¼0; Wð0Þ¼1��x̂ð0Þ2
2

; (42)

whence

�x̂ ¼ 2�x̂ð0Þ coss
�x̂ð0Þ2 þ 2WðsÞcos2s ; �ŷ ¼ 0;

�ẑ ¼ 1� 2cos2s

�x̂ð0Þ2 þ 2WðsÞcos2s : (43)

FIG. 1 (color online). The behavior of the frame components
of the spatial velocity is shown as functions of s ¼ !ðt� zÞ 2
½0; �=2� with initial conditions �x̂ð0Þ ¼ 0:1, �ŷð0Þ ¼ 0:2 and
�ẑð0Þ ¼ 0:1. Fig. (a) corresponds to the geodesic case ð ~� ¼ 0Þ,
Fig. (b) to the case !~� ¼ 0:5. Note that in the nongeodesic case
the behavior of the z component of the spatial velocity is
different with respect to the geodesic case. From Fig. (b), in
fact, we see that �ẑðsÞ decreases and become negative, even for a
large interval of the variable s if ~� is large enough, before
turning again positive as approaching its maximum value 1 for
s ¼ �=2. Further increase of ~� causes practically �x̂ðsÞ and
�ŷðsÞ to vanish and �ẑðsÞ to approach 1, after a small interval
of values of s, in which a transient oscillating behavior is still
present.
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Equations (36) can be further integrated to obtain the
solution for the accelerated orbit, whose Eqs. (25) in terms
of the variable s can be written as

dt

ds
¼ 1

!

1

1� �ẑ
¼ 1

!

�
R2

2cos2s
þWðsÞ

�
;

dx

ds
¼ 1

! coss

�x̂

1� �ẑ
¼ 1

!

B

cos2s
;

dy

ds
¼ 1

! coss

�ŷ

1� �ẑ
¼ 1

!

BC

cos2s
;

dz

ds
¼ 1

!

�ẑ

1� �ẑ
¼ 1

!

�
R2

2cos2s
þWðsÞ � 1

�
: (44)

The integration is straightforward

tðsÞ ¼ Wð0Þ
!

s� ~�s2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Wð0Þ � 1
p

� 2

3
!~�s

�

þ R2

2!
tansþ t0;

xðsÞ ¼ B

!
tansþ x0; yðsÞ ¼ BC

!
tansþ y0;

zðsÞ ¼ Wð0Þ � 1

!
s� ~�s2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wð0Þ � 1

p � 2

3
!~�s

�

þ R2

2!
tansþ z0; (45)

with x�0 ¼ x�ð0Þ.
Figure 2 shows the deviation from geodesic motion due

to such ‘‘Poynting-Robertson-like’’ effect in a simple
two-dimensional case.

IV. SCATTERING OF MASSLESS TEST FIELDS

In this section we will use Newman-Penrose formalism
to study the scattering of massless test fields by the back-
ground radiation field. We thus switch to the metric
signature þ��� to follow standard conventions (we
refer to Ref. [14] for notations and conventions). A
Newman-Penrose complex null frame can be built up
with the orthonormal frame (7), namely,

l¼ 1ffiffiffi
2

p ðmþeẑÞ; n¼ 1ffiffiffi
2

p ðm�eẑÞ; m¼ 1ffiffiffi
2

p ðex̂þ ieŷÞ:

(46)

It is a principal frame (all the Weyl scalars vanish since the
metric is conformally flat) and the only nonvanishing spin

coefficient is � ¼ � ffiffiffi
2

p
! tans. The background spacetime

corresponds to the Faraday tensor

F ¼ �ðBÞ
�
2½l ^m� �ðBÞ 
2½l ^m�� ¼ 2!l ^!x̂;

!x̂ ¼ 1

coss
dx; (47)

and associated potential

A ¼ ffiffiffi
2

p
ln

�
1þ sins

coss

�
dx: (48)

The invariants of this field all vanish

I ¼ 16½ðBÞ
0
ðBÞ
2 � ðBÞ
2

1� ¼ 0; (49)

implying that it corresponds to a singular (or radiation)
field according to the standard classification, as already
known.
The equations for perturbing fields of any spin weight w

can be summarized by the following set à la Teukolsky [15]

0 ¼ ½Dð�þ�Þ � ����c ; ðw ¼ 1=2; 1Þ;
0 ¼ f½�þ�� � 2w��D� ����gc
¼ f½�þ ð1� 2wÞ��D� ���gc ; ðw ¼ �1=2;�1Þ;

0 ¼ ½D�þ �D� ��� � ���þ ð�þ��ÞD�c
¼ 2½D�� ��� þ�D�c ; ðw ¼ 0Þ; (50)

where we have used the results � ¼ ��, ½D;�� ¼ 0 ¼
½�; ���, D� ¼ 0 ¼ �� and �� ¼ �2!2=cos2s.

A. Scattering of a massless scalar field

Consider a massless scalar field c ðt; x; y; zÞ on
this background, obeying the Klein-Gordon equation
hc ¼ 0, i.e.,

2! tan½!ðt� zÞ�ðc t þ c zÞ � c tt

þ 1

cos2½!ðt� zÞ� ðc xx þ c yyÞ þ c zz ¼ 0: (51)

The general solution of this equation obtained by separa-
tion of variables is

FIG. 2 (color online). The projection of the accelerated orbit
on the x� z plane is shown for the same choice of initial
conditions for the velocity components as in Fig. 1 and xð0Þ ¼
0 ¼ zð0Þ. The dashed curve corresponds to the geodesic case
ð ~� ¼ 0Þ, whereas the solid one to the case !~� ¼ 0:5.
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c ¼ A

coss
ei�; (52)

where

� ¼ �!ðku; kx; ky; x�Þ

� � kuffiffiffi
2

p
!
r� k2x þ k2y

2
ffiffiffi
2

p
!ku

tansþ kxxþ kyy; (53)

and

s ¼ !ðt� zÞ; r ¼ !ðtþ zÞ: (54)

The phase factor � has the relevant property that @�� ¼
KðgÞ� is the null geodesic defined in Eq. (19). The scaling

factor ðcossÞ is exactly ½� detg�1=4. Therefore the solution
(52) can be written as

c ¼ A

½� detg�1=4 e
i
R

K�dx
�

: (55)

Clearly, the constant-� surfaces are not hyperplanes. In
fact, deviations from a planar behavior corresponding to
the limiting case ! ¼ 0, i.e.,

�0 ¼ � kuffiffiffi
2

p
!
r� k2x þ k2y

2
ffiffiffi
2

p
!ku

sþ kxxþ kyy; (56)

are measured by the quantity

�! ��0 ¼
k2x þ k2y

2
ffiffiffi
2

p
!ku

ðs� tansÞ

’ � k2x þ k2y

2
ffiffiffi
2

p
!ku

s3

3

�
1þ 2s2

5
þOð6Þ

�
; (57)

which is nonzero as soon as s increases, whereas the planar
regime maintains up to second order in s in the series
expansion around s ¼ 0. As we explicitly did for null
geodesics in Sec. II, it is also worth to analyze the special

case ku ¼ �=
ffiffiffi
2

p
, ky ¼ 0 and kx ¼ �. We find for the

phase factor before and in presence of the wave

�0ð�=
ffiffiffi
2

p
;�; 0; x�Þ ¼ ��ðt� xÞ;

�!ð�=
ffiffiffi
2

p
;�; 0; x�Þ ¼ � �

2!
r� �

2!
tansþ�x; (58)

showing the dependence on the variable z as a new feature.

B. Scattering of a massless spin 1=2 field

Let us consider the case of a massless Dirac particle,
whose spinor components of the corresponding wave func-
tion satisfy the following set of first order equations [14]

DF1 þ ��F2 ¼ 0; ð�þ�ÞF2 þ �F1 ¼ 0;

DG2 � �G1 ¼ 0; ð�þ��ÞG1 � ��G2 ¼ 0: (59)

We have then G1 ¼ �F�
2 and G2 ¼ F�

1 so that the only
equations to be solved are

DF1 þ ��F2 ¼ 0; ð�þ�ÞF2 þ �F1 ¼ 0: (60)

Looking for solutions of the form

F1 ¼ A1ðsÞei�; F2 ¼ A2ðsÞei�; (61)

we find

A1ðsÞ¼ A1

cos2s
; A2ðsÞ¼ A2

coss
; A1¼ k�ffiffiffi

2
p

ku
A2: (62)

C. Scattering of a source-free test electromagnetic field

Let us consider now a superposed electromagnetic field
to the background. Maxwell’s equations for the electro-
magnetic complex quantities 
0, 
1 and 
2 (to be distin-
guished from the background ones) are listed in Ref. [14]
and in this case reduce to

D
1 � ��
0 ¼ 0; D
2 � ��
1 ¼ 0;

�
1 ��
0 ¼ �
0; �
2 � �
1 ¼ 2�
1: (63)

The solution of these equations is straightforward, namely,


0¼ A0

coss
ei�; 
1¼ A1

cos2s
ei�; 
2¼ A2

cos3s
ei�; (64)

where � is defined in Eq. (53) and with

A0¼�
ffiffiffi
2

p
ku

k�
A1; A2¼� k�ffiffiffi

2
p

ku
A1; k�¼kx� iky; (65)

and A1 and arbitrary (complex) constant. The invariants of
this field vanish

I ¼ 16ð
0
2 �
2
1Þ ¼ 0; (66)

so it corresponds again to a singular (or radiation) field.
Taking into account that 
0 has spin weight w ¼ 1, 
1

has spin weight w ¼ 0 and 
2 has spin weight w ¼ �1
one may summarize the solution in a single formula


w ¼ Aw

cos2�ws
ei�: (67)

1. The dielectric medium analogy

It is well known [16–18] that the equations of electro-
magnetic waves in a gravitational field can be interpreted
as the Maxwell’s equations in flat spacetime but in a
material medium characterized by electric (equal to mag-
netic) permittivity defined in terms of the metric coeffi-
cients. A lot of applications of this formalism have been
discussed in different backgrounds by Mashhoon (see, e.g.,
Refs. [19,20]). This approach (perfectly equivalent either
to the Newman-Penrose approach developed above or to
any other observer and frame dependent analysis) allows to
deal with ‘‘flat spacetime quantities,’’ a fact that facilitates
their interpretation. In this framework a Cartesian coordi-
nate system is introduced so that the electric and magnetic
fields are defined using the decomposition F�� ! ðE;BÞ
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and
ffiffiffiffiffiffiffi�g

p
F�� ! ð�D;HÞ. Maxwell’s equations turn out to

be formally equivalent to the electromagnetic field equa-
tions in a dielectric medium in flat spacetime together with
the constitutive relations

Di¼�ijEj�ðG	HÞi; Bi¼�ijHjþðG	EÞi; (68)

where

�ij ¼ �ij ¼ � ffiffiffiffiffiffiffi�g
p gij

gtt
; Gi ¼ �g0i

gtt
: (69)

In the present case g0i ¼ 0, gtt ¼ 1,
ffiffiffiffiffiffiffi�g

p ¼ cos2s, so that
the above relations become

Di ¼ �ijEj; Bi ¼ �ijHj; (70)

with

�ij¼�ij¼ cos2sgij¼diag½1;1;cos2s�; Gi¼0; (71)

representing a medium which in a sense is optically active
only along the z direction. One then introduces the two
complex vectors

F� ¼ E� iH; S� ¼ D� iB; (72)

the constitutive relations in this case are summarized by
S�i ¼ �ijF

�
j .

It is possible and convenient to write the electromagnetic
equations in a form which is particularly suitable for the
discussion of wave phenomena, namely,

1

i
r	 F� ¼ �@tS

�; r 
 S� ¼ 0: (73)

Looking for solutions of the form

F� ¼ C���ðsÞei�� ; (74)

with C� arbitrary constants, gives

�� ¼ � k�uffiffiffi
2

p
!
r� ðk�x Þ2 þ ðk�y Þ2

2
ffiffiffi
2

p
!k�u

tansþ k�x xþ k�y y

¼ �!ðk�u ; k�x ; k�y ; x�Þ; (75)

where the variables r and s are defined by Eq. (54) [see also
Eq. (53)], whereas

�þ�

þ

1


þ
2


þ
3

0
BB@

1
CCA¼ 1

cos2s

1

i

� 2
ffiffi
2

p
kþu

kþx �ikþy

0
BB@

1
CCA� 2kþ2

u

ðkþx � ikþy Þ2
1

�i

0

0
BB@

1
CCA
(76)

and �� ¼ ð�þÞ� with ðkþu ; kþx ; kþy Þ ! ðk�u ; k�x ; k�y Þ. For

instance, the components of F in the þ polarized case are

Fþ
x ¼ Ex þ iHx ¼ Cþ
þ

1 ðsÞei�þ ¼ Cþ
�

1

cos2s
� 2ðkþu Þ2ðkþ2

x � kþ2
y þ 2ikþx kþy Þ

ðkþ2
x þ kþ2

y Þ2
�
ðcos�þ þ i sin�þÞ;

Fþ
y ¼ Ey þ iHy ¼ Cþ
þ

2 ðsÞei�þ ¼ iCþ
�

1

cos2s
þ 2ðkþu Þ2ðkþ2

x � kþ2
y þ 2ikþx kþy Þ

ðkþ2
x þ kþ2

y Þ2
�
ðcos�þ þ i sin�þÞ;

Fþ
z ¼ Ez þ iHz ¼ Cþ
þ

3 ðsÞei�þ ¼ � Cþ
cos2s

2
ffiffiffi
2

p
kþu

ðkþ2
x þ kþ2

y Þ ðk
þ
x þ ikþy Þ½cos�þ þ i sin�þ�: (77)

The above relations can be simplified if one consider the
constants kþu , kþx and kþy (and similarly in case �) related
by

kþu ¼ �ffiffiffi
2

p ; kþx ¼ �cos�; kþy ¼ �sin�; (78)

corresponding in the flat spacetime limit to a circular
polarization for a wave propagating along the direction
x cos�þ y sin� on the x� y plane. With the above choice
of constants we have

�þ ¼ ��

�
1

2
ðtþ zÞ þ tan!ðt� zÞ

2!
� cos�x� sin�y

�
;

�þ ¼ 1

cos2s

1

i

�2ei�

0
BB@

1
CCA� e2i�

1

�i

0

0
BB@

1
CCA; (79)

so that

�þei�þ ¼ 1

cos2s

ei�þ

eið�þþ�=2Þ

�2eið�þ�þÞ

0
BB@

1
CCA�

eið2�þ�þÞ

�eið2�þ�þþ�=2Þ

0

0
BB@

1
CCA:
(80)

Let us consider as an example the special case � ¼ 0,
corresponding in the flat spacetime limit to a circularly
polarized wave propagating along the x direction. The
complex vector Fþ thus simplifies to

Fþ ¼ Cþ

�
1

cos2s
� 1

�
ei�þ

�
1

cos2s
þ 1

�
eið�þþ�=2Þ

� 2
cos2s

ei�þ

0
BBBBBBB@

1
CCCCCCCA
;

�þ ¼ �

�
� 1

2
ðtþ zÞ � 1

2!
tan½!ðt� zÞ� þ x

�
; (81)
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with associated electric and magnetic field components
given by

Exðx�Þ ¼ Cþ
�

1

cos2s
� 1

�
cos�þ;

Eyðx�Þ ¼ �Cþ
�

1

cos2s
þ 1

�
sin�þ;

Ezðx�Þ ¼ �Cþ
2

cos2s
cos�þ;

Hxðx�Þ ¼ Cþ
�

1

cos2s
� 1

�
sin�þ;

Hyðx�Þ ¼ Cþ
�

1

cos2s
þ 1

�
cos�þ;

Hzðx�Þ ¼ �Cþ
2

cos2s
sin�þ: (82)

Since we are interested in determining the modification of
the incoming electromagnetic field when the interaction
with the background electromagnetic wave is turned on it
is convenient to expand the field components in powers of
!. A series expansion of Eq. (82) in ! (truncated to the
second order), taking into account that

�þ ¼ ��ðt� xÞ � 1
6!

2�ðt� zÞ3 þOð!3Þ; (83)

thus gives

E ¼ E0 þ!2ðt� zÞ2DðEÞE0 þOð!3Þ;
H ¼ H0 þ!2ðt� zÞ2DðHÞE0 þOð!3Þ; (84)

where

E0 ¼ ð0; E0
y; E

0
zÞ; E0

y ¼ 2Cþ sin½�ðt� xÞ�;
E0
z ¼ �2Cþ cos½�ðt� xÞ�; H0 ¼ ~CE0;

~C ¼
0 0 0

0 0 �1

0 1 0

0
BB@

1
CCA; (85)

and the ‘‘scattering’’ matrices DðEÞ and DðHÞ are given by

DðEÞ ¼�DðHÞ ~C¼
0 0 �1

2

0 1
2 �1

6�ðt�zÞ
0 1

6�ðt�zÞ 1

0
BB@

1
CCA: (86)

As a result, the interaction with the background electro-
magnetic wave has changed the incoming monochromatic
electromagnetic wave with a given frequency and direction
of propagation to a more complex field.

In order to analyze the properties of the scattering
matrices, let us rewrite the matrix DðEÞ in terms of its

symmetric and antisymmetric parts as follows:

DðEÞ ¼
0 0 � 1

4

0 1
2 0

� 1
4 0 1

0
BB@

1
CCAþ

0 0 � 1
4

0 0 � 1
6�ðt� zÞ

1
4

1
6�ðt� zÞ 0

0
BB@

1
CCA

� SþA: (87)

The effects of the interaction can thus be summarized by a
rotation (due to the antisymmetric matrix A) plus a defor-
mation (due to the symmetric matrix S) of the initial
electric field. Only the rotation matrix depends on the
frequency � of the incoming field and can be associated
with a rotation vector in a standard way, i.e., Ai ¼ 1

2 �
ijkAjk

(�ijk being the Levi-Civita indicator of the three dimen-
sional Euclidean space). Therefore, the electric field (84)
can be rewritten in the form

E ’ E0 þ!2ðt� zÞ2ðSE0 þA	 E0Þ; (88)

where

A ¼ 1

6
�ðt� zÞex � 1

4
ey; SE0 ¼

� 1
4E

0
z

1
2E

0
y

E0
z

0
BB@

1
CCA; (89)

which shows the coupling between the two frequencies
� and ! only in the rotational part of the total effect of the
interaction and can be in principle measurable. Finally,
introducing magnitude and direction for A, i.e.,
A ¼ jAjâ, with

jAj ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

9
ðt� zÞ2 þ 1

s
; (90)

we have

E ’ ½Iþ ð�	Þâ 	 �E0 þ!2ðt� zÞ2SE0;

�	 ¼ !2ðt� zÞ2jAj; (91)

implying that E is obtained from E0 by a rotation of an
angle �	 around the axis â, plus a deformation effect.

V. CONCLUDING REMARKS

We have studied the interaction of test particles and
fields of different spin with the radiation field of an elec-
tromagnetic plane wave. First of all we have integrated the
geodesic equations to investigate the motion of test parti-
cles. Then we have considered a more sophisticated inter-
action with the radiation field leading to accelerated orbits.
The force term entering the equations of motion is taken to
be proportional to the 4-momentum density of radiation
observed in the particle’s rest frame by the effective inter-
action cross section (assumed to be a constant) modeling
the absorption and consequent re-emission of radiation by
the particle. Such an approach has been widely used in the
recent literature to study the problem of scattering of
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test particles undergoing the action of a Thomson-type
interaction with a radiation field in different backgrounds
of astrophysical interest leading to the well known
Poynting-Robertson effect. We have then analyzed the
deviations from geodesic motion due to such ‘‘Poynting-
Robertson-like’’ effect, taking advantage from the explicit
analytic solutions we have been able to produce. Finally we
have studied the scattering of fields by the electromagnetic
wave, i.e., scalar (spin 0), massless spin 1

2 and electromag-

netic (spin 1), elucidating the different kind of interactions.
The scattering of electromagnetic radiation has been also
analyzed in terms of the ‘‘dielectric medium analogy’’ of a
gravitational field. According to this framework, the elec-
tromagnetic field equations can be cast into the form of
Maxwell’s equations in flat spacetime but in a ‘‘medium’’
with prescribed dielectric and permeability tensors. This
method allows to treat electromagnetic phenomena in

curved spacetime by using techniques which are familiar
from the flat spacetime theory. As an example we have
considered the case of a superposed monochromatic elec-
tromagnetic wave to the background field corresponding in
the flat spacetime limit to a circularly polarized wave
propagating along the x direction. As a result of the inter-
action the incoming wave is changed to a more complex
field propagating along a different direction, the electric
field undergoing a rotation plus a deformation effect. We
have found that the coupling between the two frequencies
� and ! of the superposed and background electromag-
netic wave is responsible for the rotational effect of the
interaction and can be in principle measurable.
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