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High-precision measurements of the temperature and polarization anisotropies of the cosmic micro-

wave background radiation have been employed to set robust constraints on dark matter annihilation

during recombination. In this work we improve and generalize these constraints to apply to energy

deposition during the recombination era with arbitrary redshift dependence. Our approach also provides

more rigorous and model-independent bounds on dark matter annihilation and decay scenarios. We

employ principal component analysis to identify a basis of weighting functions for the energy deposition.

The coefficients of these weighting functions parameterize any energy deposition model and can be

constrained directly by experiment. For generic energy deposition histories that are currently allowed by

WMAP 7 data, up to 3 principal component coefficients are measurable by Planck and up to 5 coefficients

are measurable by an ideal cosmic variance limited experiment. For WIMP dark matter, our analysis

demonstrates that the effect on the CMB is described well by a single (normalization) parameter and a

universal redshift dependence for the energy deposition history. We give WMAP 7 constraints on both

generic energy deposition histories and the universal WIMP case.
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I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) in the past decade by experiments including
WMAP, ACBAR, and BOOMERANG [1–3], and more
recently SPT, QUaD, and ACT [4–6], have provided an
unprecedented window onto the universe around redshift
1000. With the advent of the Planck Surveyor [7], the
successor experiment to WMAP, percent-level modifica-
tions to recombination will be observable. Planck has
already completed three sky surveys and begun a fourth,
and cosmological data are expected to be released publicly
in 2012–13.

Accurate measurements of the CMB have the potential to
probe the physics of dark matter (DM) beyond its gravita-
tional interactions. In the large class of models where
the DM is a thermal relic, its cosmological abundance is
determined by its annihilation rate in the early universe: the
correct relic density (�22% of the energy density of the
universe) is obtained for an s-wave annihilation cross sec-
tion of h�vi � 3� 10�26 cm3=s during freezeout.

DM annihilation at this rate modifies the ionization
history of the universe and has a potentially measurable
effect on the CMB. During the epoch of recombination,
DM annihilation produces high-energy photons and

electrons, which heat and ionize the hydrogen and helium
gas as they cool. The result is an increased residual ion-
ization fraction after recombination, giving rise to a low-
redshift tail in the last scattering surface. The broader last
scattering surface damps correlations between temperature
fluctuations, while enhancing low-‘ correlations between
polarization fluctuations.
The resulting constraints on the dark matter annihilation

rate have been studied by several authors [8–14]. These
bounds have a notable advantage over other indirect con-
straints on dark matter annihilation, in that they are inde-
pendent of the DM distribution in the present day, and do
not suffer from uncertainties associated with Galactic as-
trophysics. They depend only on the cosmological DM
density, which is well measured; the DM mass; the anni-
hilation rates to the final states; and the standard physics of
recombination. Recombination modeling, while not sim-
ple, involves only well-understood conventional physics,
and the latest models are thought to be accurate at the sub-
percent level required for Planck data [15,16].
Current limits from WMAP already significantly con-

strain models of light dark matter with masses of around a
few GeV and below, if the annihilation rate at recombina-
tion is the thermal relic cross section. Heavier DM is also
constrained if the annihilation rate is enhanced at low
velocities or for other reasons is much larger than the
thermal relic cross section at recombination. Models lying
in these general categories are also of significant interest
for their possible connection with experimental anomalies.
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The DAMA/LIBRA [17] and CoGeNT [18,19] direct
detection experiments have reported excess events and
annual modulation that may have a consistent explanation
as originating from scattering of Oð5–10Þ GeV WIMPs
(e.g. [20]). Results from the XENON10, XENON100 and
CDMS experiments are in tension with this interpretation
[21,22], but there is ongoing debate on the sensitivity of
these experiments to the very low-energy nuclear recoils in
question (see e.g. [23,24]).

The PAMELA [25], Fermi [26], PPB-BETS [27], ATIC
[28] and H.E.S.S [29] have measured electron and positron
cosmic rays in the neighborhood of the Earth, and found
results consistent with a new primary source of e� in the
10–1000 GeV energy range. If the signal is attributed to
dark matter annihilation then the annihilation rate in the
Galactic halo today must be 1–3 orders of magnitude above
the canonical thermal relic value [30,31]. This has moti-
vated models of dark matter with enhanced annihilation at
low velocities [32,33]. While this enhancement would not
be significant during freezeout, it would be effective at
recombination when the typical velocity of dark matter is
v� 10�8 c [9].

With the release of data from Planck expected in the
next two years, models falling into these categories should
either be robustly ruled out, or give rise to a measurable
signal [9,10,13]. If no signal is observed, the sensitivity of
Planck will allow us to probe regions of parameter space
relevant for supersymmetric models, where the DM is a
thermal relic with mass of several tens of GeV. It is timely
to explore improvements to these constraints.

The approach of previous studies has been to specify the
energy deposition history (redshift dependence) and then
calculate the effect on the ionization history and anisotropy
spectrum using public codes such as RECFAST and CAMB. A
single parameter describing the normalization of the signal
is then added to the standard likelihood analysis using
COSMOMC, and bounded by WMAP observations. The red-

shift dependence has been studied in two cases: in the
on-the-spot case, assuming that the amount of energy
deposited to the gas precisely tracks the rate of dark matter
annihilation (e.g. [8,9,14]), or employing detailed energy
deposition histories for specific models (e.g. [10,13,14]). In
the first case, model-independent constraints are obtained,
but without a precise way to connect the bounds to any
particular model. The second case only precisely con-
strains specific models.

While these analyses have been adequate for simple
estimates of whether a model is strongly ruled out, easily
allowed, or on the borderline, the upcoming high-precision
data from Planck demand a more careful model-
independent analysis. Such an analysis can also be applied
to more general classes of energy deposition histories
during and after recombination: for example, the energy
deposited by a late-decaying particle species, decay from an
excited state of the dark matter, or dark matter annihilation

in models where the redshift dependence of the annihilation
rate has an unusual form (as in some models of asymmetric
dark matter).
In this work we exploit the fact that the effects of energy

deposition at different redshifts are not uncorrelated. Any
arbitrary energy deposition history can be decomposed into
a linear combination of orthogonal basis vectors, with
orthogonal effects on the observed CMB power spectra
(C‘’s). For a broad range of smooth energy deposition
histories, the vast majority of the effect on the C‘’s can
be described by a small number of independent parameters,
corresponding to the coefficients of the first few vectors in
a well-chosen basis. These parameters in turn can be ex-
pressed as (orthogonal) weighted averages of the energy
deposition history over redshift.
We employ principal component analysis (PCA) to make

this statement quantitative and derive the relevant weight
functions, and the corresponding perturbations to the C‘

spectra. Our approach in principle generalizes to all pos-
sible energy deposition histories. To investigate the number
of observable parameters, we consider generic perturba-
tions about two physically interesting fiducial cases. We
focus primarily on the example of dark matter annihilation,
or any other scenariowhere the power deposited per volume
scales approximately as ð1þ zÞ6 (i.e. as density squared),
as an energy deposition mechanism, but also show results
for the case of dark matter decay, or similar scenarios where
the power deposited scales as ð1þ zÞ3.
Our computation of the effects of energy deposition on

the CMB anisotropies, and the approximations we use for
estimating the significance of these effects in experimental
data, are described in Sec. II. In Sec. III, we present our
principal component analysis for both ‘‘annihilationlike’’
and ‘‘decaylike’’ general energy deposition histories.1

There are significant degeneracies between energy depo-
sition and perturbations to the cosmological parameters,
and so we marginalize over the standard cosmological
parameters when deriving the principal components.2

We then address the constraints on and detectability of
the principal components in current and future experiments.
Given a C‘ spectrum observed by an experiment (e.g.
Planck), we can measure the residual with respect to the
best-fit standard �CDM model, and then project this
residual onto the C‘-space directions corresponding to the
principal components. Given any model for the energy
deposition history, we can then ask if the reconstructed
coefficients for the various principal components are

1Files containing the results of these analyses are available
online at http://nebel.rc.fas.harvard.edu/epsilon/; see also
Appendix C.

2We test the effect of including additional cosmological pa-
rameters (running of the scalar spectral index, the number of
massless neutrino species, and the primordial He fraction) and
find no large degeneracy with energy injection, justifying our
neglect of these additional parameters in our main analysis.
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consistent with the model. Of course, for the later principal
components the effect on C‘’s is so small that very little
information on their coefficients can be recovered. In
Sec. IV, we make this statement quantitative, and estimate
the number of principal components whose coefficients
could be detectable in Planck and an ideal cosmic variance
limited (CVL) experiment, subject to constraints from
WMAP 7. The CVL case presents a hard upper limit on
the number of independent parameters describing the en-
ergy deposition history that can profitably be retained in the
analysis. We also discuss the bias to the standard cosmo-
logical parameters, in the case where there is nonzero
energy deposition that is neglected in the analysis; in our
framework it is straightforward to characterize the biases to
the cosmological parameters for an arbitrary energy depo-
sition history.

In Sec. V, we present a separate principal component
analysis for the more limited case of conventional
GeV-TeV WIMPs annihilating to Standard Model final
states. We demonstrate that in this case, all the effect of
dark matter annihilation can be captured by one parameter
only, i.e. the amplitude of the first principal component.

Finally, in Sec. VI, we estimate the constraints on the
principal components obtainable with current (WMAP 7)
and future (Planck, CVL) experimentswith a full likelihood
analysis using the COSMOMC code. We employ here the
principal components obtained with the Fisher matrix
analysis—which assumes that the effect on the CMB scales
linearly with the energy deposition. We illustrate the range
of validity of this assumption for the different experiments
considered. We check that the constraints previously
obtained with our Fisher matrix analysis—which assumes
Gaussian likelihood functions—are compatible with the
ones obtained with the COSMOMC analysis. We check
that the constraints on a given energy deposition history
can be reconstructed from the constraints on the principal
components.

AppendixA considers the effects on the analysis of chang-
ing various assumptions and conventions, including the
effect of additional cosmological parameters and using
different codes to calculate the ionization histories. We find
that the only such choice that non-negligibly modifies the
early (detectable) principal components is the treatment
of Lyman-� photons, although the inclusion of additional
cosmological parameters can change the constraints at
the �10% level. Appendix B discusses marginalization
over the cosmological parameters. Appendix C describes
the results from this analysis that we have made available
online.

II. THE EFFECT OF ENERGY INJECTION

We begin by considering DM annihilationlike or decay-
like energy deposition histories. The energy injection from
these sources scales, respectively, as density squared and
density, so these cases cover the generic scenarios where

energy is injected by two-body or one-body processes. It is
convenient to express the energy injection as a slowly
varying function of z that depends on the source of the
energy injection (e.g. the WIMP model) and a factor
containing cosmological parameters. We parameterize
the energy deposition histories, respectively, as,

�
dE

dtdV

�
ann

¼ pannðzÞc2�2
DM�

2
cð1þ zÞ6;

�
dE

dtdV

�
dec

¼ pdecðzÞc2�DM�cð1þ zÞ3;
(1)

where pannðzÞ (or pdecðzÞ) contains all of the information
about the source of energy injection and the efficiency with
which that energy ionizes the gas. We generically refer to
pann and pdec as the ‘‘energy deposition yield.’’ For con-
sistency with [14], we express pannðzÞ in units of
cm3=s=GeV, while the units of pdecðzÞ are s�1. If the
energy injection is due to DM annihilation, pann ¼ fðzÞ�
h�vi=mDM [14], where fðzÞ is an Oð1Þ dimensionless
efficiency factor [10]; if the energy injection is due to
DM decay, pdecðzÞ ¼ fðzÞ=�, where � is the decay lifetime.
Other authors have written pann in units of m

3=s=kg [9], or
parameterized the energy deposition in eV=s=baryon
[8,10,11]. For calibration, the energy deposition from a
100 GeV thermal relic WIMP with fðzÞ ¼ 1 corresponds
to pann � 3� 10�28 cm3=s=GeV � 1:7� 10�7 m3=s=kg,
or an energy deposition of 2:1� 10�24 eV=s=H, assuming
the WMAP 7 best-fit cosmology. Throughout this work,
we employ the cosmological parameters from [34] as a
baseline: explicitly, !b ¼ 2:258� 10�2, !c ¼ 0:1109,
Asðk ¼ 0:002 Mpc�1Þ ¼ 2:43� 10�9, ns ¼ 0:963, � ¼
0:088, H0 ¼ 71:0 km=s=Mpc.
Energy deposition during recombination primarily af-

fects the CMB through additional ionizations, as studied in
[8,35]; the modified ionization history then leads to an
increased width for the surface of last scattering, which
in turn modifies the temperature and polarization anisotro-
pies of the CMB. Electrons and photons injected at high
energies – where the cross section for direct ionization is
small—scatter on the CMB and on the gas, partitioning
their energy into (1) many low-energy electrons and pho-
tons that efficiently ionize, excite and heat the H and He,
and (2) X-ray and gamma-ray photons that free-stream to
the present day (a detailed study of the relevant processes is
given in [10]). It is the first component (ionizationþ
excitationþ heating) that we refer to as ‘‘deposited en-
ergy’’; as shown in [10], the bulk of the energy injected in
photons and electrons/positrons is deposited. Restricting
our attention to this ‘‘deposited’’ component, the scattered
electrons from excitations and ionizations in turn rescatter,
rapidly partitioning their energy between excitation, ion-
ization and heating in a ratio that depends on the ambient
ionization fraction, but has little dependence on the initial
spectrum of electrons and photons [36]. Thus, the effect
on the CMB is completely determined by the redshift
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dependence of the energy deposition, which we refer to as
the ‘‘energy deposition history’’; further details of the
energy injection are largely irrelevant. The excitations
created by energy deposition can modify recombination
via additional Lyman-alpha photons, but the ionizations
have the greatest direct effect on the ionization history, the
surface of last scattering and the CMB anisotropies.

Energy deposition also results in �-type spectral dis-
tortions of the CMB, if energy is deposited at redshifts z *
5� 104, as well as y-type distortions from energy injected
at lower redshifts [37–39]; an order of magnitude estimate
of the effect is ���=�� � ðdE=dtÞ=H=��. However, the

bounds on j�j and jyj from COBE/FIRAS [40] give a
weaker constraint on DM annihilation by a factor of
�105, compared to the limits from WMAP measurements
of CMB anisotropies.

An alternate approach to studying generic energy depo-
sition histories might be to study generic ionization histor-
ies [41], since the former can be directly mapped to the
latter. We frame the problem in terms of energy deposition
histories because they can be more directly mapped to
physical energy injection models.

Suppose we are interested primarily in a class of energy
deposition histories for which the energy deposition yield
pðzÞ (that is, pannðzÞ or pdecðzÞ, as appropriate) is not very
rapidly varying. Then we can discretize pðzÞ as a sum over
a basis of N �-function-like energy deposition histories,
pðzÞ ¼ P

N
i¼1 �iGiðzÞ. The basis functions GiðzÞ are

(by default) Gaussians with � ¼ �z=4, centered on zi
(i ¼ 1 . . .N), where �z is the spacing between the zi.
They are normalized such that

R
dzGiðzÞ ¼ �z. For ex-

ample, in the limit of large N an energy deposition history
with constant pðzÞ ¼ p0 corresponds to �i ¼ p0 for all i.

If the energy deposition is small enough, the effect on
the CMB anisotropy power spectrum is linear in the
energy depositions at different redshifts [�ClðpðzÞÞ ¼
�Clð

P
N
i¼1 �iGiðzÞÞ ¼

P
N
i¼1 �Clð�iGiðzÞÞ], and in the

amount of energy deposition at any redshift
[�ClðPN

i¼1 �iGiðzÞÞ ¼ PN
i¼1 �i�ClðGiðzÞÞ]. Then the ef-

fect of an arbitrary energy deposition history can be de-
termined simply from studying the basis functions GiðzÞ.
We will assume linearity throughout this work, and justify
that assumption in Sec. II D.

Of course, given any annihilationlike energy deposition
history, it can be rewritten in decaylike form with a
strongly redshift-dependent pðzÞ, and vice versa. The basis
of GiðzÞ functions can describe any energy deposition
history, at least in the large-N limit. However, the very
different ‘‘underlying’’ redshift dependence in the two
cases, and the uncertainties associated with the annihila-
tion rate at low redshift (due to the onset of structure
formation), motivate us to study different redshift ranges
in the two cases.

For eachGi, we can compute the effect on the ionization
history and the anisotropy spectrum in the limit of small

energy deposition. We determine @CTT
‘ =@�i, @C

EE
‘ =@�i,

@CTE
‘ =@�i 8 i, ‘. In our default analysis we employ the

COSMOREC and CAMB codes, with the prescription for

including the extra energy deposition laid out in [8,35]. If
there are N basis functions and we take n‘ spherical
harmonics into account, this yields an n‘ � N transfer
matrix T whose ð‘; iÞth element is,

@C‘

@�i

¼
�
@CTT

‘

@�i

;
@CEE

‘

@�i

;
@CTE

‘

@�i

�
: (2)

In this work we focus primarily on annihilationlike
energy deposition histories, for which we restrict ourselves
to the 80< z < 1300 range; as a default, we will take 50
redshift bins covering this range. At higher redshifts the
universe is ionized and so the effect of energy deposition
on the ionization history is negligible, while at lower red-
shifts the DM number density becomes so small that the
energy injected from annihilation is insignificant, as shown
in Fig. 1. This in turn justifies our neglect of DM structure
formation: while for z & 100, DM clumps start to form and
the annihilation rate no longer tracks the square of the
average relic density, the energy injection is already suffi-
ciently suppressed that the signal remains negligible.
For DM decay, the signal is not nearly so suppressed at

low redshifts, and so we consider the redshift range 10<
z< 1300. With this expanded redshift range, we switch
from linear to log binning, with 90 bins covering this
redshift range3; we take the basis functions Giðlnð1þ zÞÞ
to be Gaussians in lnð1þ zÞ, normalized so that their
integral with respect to d lnð1þ zÞ is given by the spacing

0 200 400 600 800 1000
z

0.0

0.5

1.0

1.5

2.0

(d
n i

on
/d

t)
/(

n i
on0 

  *H
(z

))

pann = 3*10-28 cm3/GeV/s
pdec = 10-26 s-1

FIG. 1 (color online). Rate of Hydrogen ionization from en-
ergy deposition, relative to the number density of ionized
Hydrogen (n0ion) when there is no energy deposition. The lines

shown are the cases of constant pann and pdec, corresponding to
on-the-spot energy deposition from dark matter annihilation and
dark matter decay, respectively.

3Log binning can of course also be employed for the annihi-
lationlike case; there is no clear best choice there, so we will use
linear binning as the default but show results for both options.
See Appendix A for a discussion.
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between the log bins� lnð1þ zÞ. With these choices, again
an energy deposition history with constant pðzÞ ¼ p0 cor-
responds (in the large-N limit) to p0

P
i¼1Gi.

We again ignore structure formation in the decaylike
case, where the total power injected depends only on the
average density. The universe is rather transparent to the
products of DM decay and annihilation at these redshifts,
so even a very spatially nonuniform distribution of energy
injection would not be expected to cause ionization or
temperature hot-spots (at least for particles injected at
weak-scale energies; deexcitation of nearly-degenerate
states or annihilation of very light DM might change this
conclusion to some degree). Modeling of reionization may
pose a more significant challenge for analyses relying on
low redshifts (z� 10); note, however, that the transparency
of the universe at these redshifts means that in realistic
scenarios (even decaylike scenarios) the bulk of the effect
on the CMB comes from earlier times.

A. Brief review of the Fisher matrix

The degree to which energy deposition is observable in
the CMB can be captured by the Fisher matrix for energy
deposition, denoted Fe, which is obtained by contracting
the transfer matrix T (Eq. (2)) with the appropriate covari-
ance matrix for the C‘’s (e.g. [42–44]),

�‘¼ 2

2‘þ1

ðCTT
‘ Þ2 ðCTE

‘ Þ2 CTT
‘ CTE

‘

ðCTE
‘ Þ2 ðCEE

‘ Þ2 CEE
‘ CTE

‘

CTT
‘ CTE

‘ CEE
‘ CTE

‘ ½ðCTE
‘ Þ2þCTT

‘ CEE
‘ �

0
BB@

1
CCA;

ðFeÞij¼
X
‘

�
@C‘

@�i

�
T ���1

‘ �@C‘

@�j

: (3)

For experiments other than the perfect cosmic variance
limited (CVL) case, noise is included by replacing

CTT;EE
‘ ! CTT;EE

‘ þ NTT;EE
‘ , where N‘ is the effective noise

power spectrum and is given by:

N‘ ¼ ð!pÞ�1e‘ð‘þ1Þ�2 : (4)

Here � describes the beam width (FWHM ¼ �
ffiffiffiffiffiffiffiffiffiffi
8 ln2

p
), and

the raw sensitivity is ð!pÞ�1 ¼ ð�T � FWHMÞ2, with all

angles in radians. The standard deviation of the parameter
�i, marginalized over uncertainties in the other parameters,

is given by ��i
� ðF�1

e Þ1=2ii . The parameter �i is then

detectable at 1� if its signal-to-noise �i=��i
is larger

than 1.

So far, we have not taken into account covariance
between the standard cosmological parameters and the
energy deposition parameters, but in fact there are signifi-
cant degeneracies between them. In particular, shifting the
primordial scalar spectral index ns can absorb much of the
effect of energy deposition [8,9]. Therefore, we must
marginalize over the cosmological parameters, since the
naively most measurable energy deposition history may be
strongly degenerate with them and thus difficult to con-
strain. We parameterize the usual six-dimensional cosmo-
logical parameter space by the following set of parameters:
the physical baryon density, !b 	 �bh

2, the physical
CDM density, !c 	 �ch

2, the primordial scalar spectral
index, ns, the normalization, Asðk ¼ 0:002=MpcÞ, the op-
tical depth to reionization, �, and the Hubble parameterH0.
Using exactly the same machinery as described above

for the energy deposition histories, we determine the de-
rivatives of the C‘’s with respect to changes in the cosmo-
logical parameters, again assuming that these changes are
in the linear regime. Then these C‘ derivatives are vectors
spanning an nc-dimensional subspace of the space of all C‘

derivatives (where for the standard parameter set nc ¼ 6);
only directions orthogonal to this subspace can be con-
strained. We can regard marginalization over the cosmo-
logical parameters as simply projecting out the
components of the energy deposition derivatives parallel
to this subspace.4

In analogy with Eq. (3), we now use the derivatives with
respect to both energy deposition and the cosmological
parameters to construct the full Fisher matrix,

F0 ¼ Fe Fv

FT
v Fc

� �
; (5)

where Fe is the Fisher matrix for solely the energy
deposition parameters, Fc is the Fisher matrix of the cos-
mological parameters, and Fv contains the cross terms.
The usual prescription for marginalization is to invert the
Fisher matrix, remove the rows and columns corresponding
to the cosmological parameters, and invert the resulting
submatrix to obtain the marginalized Fisher matrix F (e.g.
[44]). When the number of energy deposition parameters is
much greater than the number of cosmological parameters,
it is convenient to take advantage of the block-matrix
inversion,

F�1
0 ¼ ðFe � FvF

�1
c FT

vÞ�1 �ðFe � FvF
�1
c FT

vÞ�1FvF
�1
c

�F�1
c FT

vðFe � FvF
�1
c FT

vÞ�1 F�1
c ð1þ FT

vðFe � FvF
�1
c FT

vÞ�1FvF
�1
c Þ

 !
: (6)

We can now read off the marginalized Fisher matrix as F ¼ Fe � FvF
�1
c FT

v (note that F has the same units as Fe).

4See Appendix B for a detailed explanation of this projection and how it relates to the standard marginalization prescription.
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The Fisher matrix approach to estimate detectability is
optimistic in the sense that it assumes the likelihood func-
tion is Gaussian about its maximum; for non-Gaussian
likelihoods, the significance of a given energy deposition
history will generally be smaller, and any constraints on the
amount of energy deposition will be weakened [44]. We
verify that the Fisher matrix method gives results consis-
tent with previous studies ofWMAP limits on constant pann

in Sec. II C.

B. Experimental parameters

For comparison to the existing literature and constraint
forecasting, we consider the WMAP 5, WMAP 7, and
Planck experiments, as well as a theoretical experiment
that is CVL up to ‘ ¼ 2500. The beam width and sensi-
tivity parameters for WMAP and Planck are given in
Table I. We use only the W band for WMAP and the
143 GHz band for Planck, under the conservative assump-
tion that the other bands will be used to remove system-
atics. The effect of partial sky coverage is included by
dividing �‘ by fsky ¼ 0:65.

C. Comparison to previous results

Constraints on energy deposition from WMAP 7 have
been studied previously in the case where pannðzÞ ¼ pann is
constant [9,14]. We have obtained analogous constraints
using the estimates for experimental sensitivity described
in Sec. II A and II B taking the six standard cosmological
parameters and pann as our parameter set, and marginaliz-
ing over the cosmological parameters.

Note that in this simplified scenario there is no need for
the Gaussian basis functions described at the start of the
section, and rather than describe the effect of an arbitrary
energy deposition history by the ‘‘transfer matrix’’ T
(Eq. (2)), we simply compute the effect on the C‘’s of
each of a range of nonzero pann values using COSMOREC

and CAMB. Since no evidence for energy deposition has
been found to date, we use the predictions of the best-fit
standard cosmological model (as determined by WMAP 7
[34]) as a proxy for the WMAP data. Using the covariance
matrix and prescription for marginalization laid out in
Sec. II A, we compute the �	2 with the null hypothesis
for each pann, and by interpolation determine how large a
pann would be disfavored at 2�. Our results are shown in
Fig. 2, for both WMAP 5 and WMAP 7 noise parameters,
with use of one or three frequency bands (the former is our
standard conservative approach, the latter is more optimis-
tic), as a function of the maximum ‘ included in the
analysis (‘min is always 2).
In earlier work, [9] found aWMAP 5 limit of pann < 2�

10�6 m3=s=kg ¼ 3:6� 10�27 cm3=s=GeV, using WMAP
5 data and the COSMOMC code to perform a full likelihood
analysis, in reasonable agreement with our estimate for the
WMAP 5 1-band case. Using WMAP 7 data, [14] provided
an updated constraint pann < 2:4� 10�27 cm3=s=GeV,
also in very good agreement with our estimate. Note that
[9,14] included Lyman-� photons in their analysis, which
we have not done here and which would strengthen the
constraints slightly: the small differences between our
constraints and those in the literature can probably be
ascribed to the combination of this factor, our use of
COSMOREC rather than RECFAST, the fact that we use the

best-fit standard cosmological model as a proxy for the real
WMAP data, and the optimism inherent in a Fisher matrix
analysis. It is reassuring that none of these factors seem to
give rise to large discrepancies in the results.
We see that the WMAP limits are essentially unaffected

by ‘max for ‘max * 1000, and the projected Planck bound

TABLE I. Detector sensitivities and beams for different CMB
temperature and polarization experiments. Results for WMAP
temperature sensitivity are taken from [45], with the noise

reduced by
ffiffiffiffiffiffiffiffi
5=4

p
(
ffiffiffiffiffiffiffiffi
7=4

p
for WMAP 7) to account for the longer

integration time. The polarization noise forWMAP is taken to beffiffiffi
2

p � the temperature noise. WMAP beam widths are taken from
[46]. The sensitivity and beam width for Planck are taken from
the Planck Blue Book, available at http://www.rssd.esa.int/SA/
PLANCK/docs, and assume 14 months of Planck data.

Experiment

Beam FWHM

(arcmin)

106�T=T
(I)

106�T=T
(Q, U)

WMAP (5 yr, Q band) 29 6.7 9.5

WMAP (5 yr, V band) 20 7.9 11.1

WMAP (5 yr, W band) 13 7.6 10.7

Planck (100 GHz) 10 2.5 4.0

Planck (143 GHz) 7.1 2.2 4.2

Planck (217 GHz) 5.0 4.8 9.8

1000
lmax

10-28

10-27

10-26

p a
nn

 (
cm

3 /s
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 2
 σ

WMAP5
WMAP7

Planck
CVL

3 frequency bands

FIG. 2 (color online). The effect of the number of included ‘’s,
and the number of included frequency bands, on the constraint
on a constant-pann energy deposition history; here we show the
value of pann corresponding to a 2� signal.
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appears stable for ‘max * 1500. For the CVL case, of
course, higher ‘’s will always yield more information,
but the rate of improvement with ‘max is quite slow for
the ‘’s we are considering.

D. Numerical stability of derivatives and linearity

When dealing with general energy deposition histories,
we hope to work in a regime where the effect of deposition
on the CMB is linear, so that the effect of a general energy
deposition history can be described in terms of a linear
combination of basis energy deposition histories. This is
the idea behind characterizing the effect of new parameters
entirely in terms of the transfer matrix of derivatives, T,
and the Fisher matrix F derived from it. Equivalently,
linearity means it is sensible to speak of a single transfer
matrix T largely independent of the ‘‘fiducial’’ energy
deposition history about which the derivatives @C‘=@�i

are taken (our default assumption is that this fiducial
energy deposition is zero). If the energy deposition history
being studied is too great a perturbation away from the
fiducial, the first derivatives will no longer accurately
describe its effect on the C‘’s, and the Fisher matrix
estimate of its significance will break down. In this sub-
section, we discuss the numerical stability of the deriva-
tives, and the degree to which they describe the effect of
arbitrary energy deposition histories on the C‘’s.

To obtain derivatives of the C‘ spectra, we calculate a
grid of C‘ values for each of the parameters considered in
the Fisher matrix. For each ‘ and each parameter, the
derivative is extracted from a polynomial fit to C‘ as a
function of the parameter values.

We estimate that we have calculated derivatives to a
precision of�1% for cosmological parameters. For energy
deposition, the error is less than�2% for the most relevant
redshifts of z < 800 and rises to�5% for z < 1100. While
the error in the derivatives becomes larger for higher red-
shifts, the effect on the PCA is small; the difference in
signal-to-noise is at the percent level for WMAP 7 and at
the few percent level for Planck and the CVL case. The
dominant numerical error here comes from the numerical
accuracy limitations of COSMOREC and CAMB. We estimate
the error by comparing the derivatives obtained from two
different accuracy settings.5

The derivatives used in the Fisher matrix are evaluated at
the fiducial cosmology (with no energy deposition). The
assumption of linearity is that these derivatives are still
correct away from the fiducial. For the standard set of six
cosmological parameters, the biases to the cosmological
parameters induced by the maximum permitted energy

deposition from WMAP 5 generally lie well within the
linear regime.
For large energy deposition, the effect on the C‘’s is

nonlinear, i.e. not directly proportional to the deposited
power as parameterized by the �i; equivalently, the deriva-
tives about a fiducial large energy deposition are not the
same as for zero energy deposition. Our polynomial fits for
the derivatives, described above, also allow us to check the
extent to which nonlinearity may become important: that
is, the extent to which Oð�2

i Þ corrections to the effect on
the C‘’s are non-negligible.
The amount of energy deposition such that nonlineari-

ties become important depends on redshift z. This can be
estimated by the fractional rate of ionization per Hubble
time, ðdnion=dtÞ=ðn0ionHðzÞÞ, arising from the energy depo-

sition (where dnion=dt is related to dE=dtdV according to
the prescription of [36]). For two fiducial cases this quan-
tity is shown in Fig. 1. Conversely, the energy deposition at
redshift z such that ðdnion=dtÞ=ðn0ionHðzÞÞ ¼ 1 gives a mea-

sure of what energy deposition is required before nonline-
arities may become significant. For each redshift bin, we
use the polynomial fits of �C‘ð�iÞ to numerically calculate
the derivatives at this level of energy deposition. We then
find 1% corrections (averaged over ‘) to the fiducial de-
rivative ð@C‘=@�iÞj�i¼0.

One simple test of the effect of nonlinearity is the degree
to which the ‘‘true’’ bound on constant pann from a given
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FIG. 3 (color online). The degree of nonlinearity in the com-
puted significance of a sample energy deposition history, for pann

constant, using WMAP 7 noise parameters. We show the ratio of
(1) the S=N estimated by a linear extrapolation from small
energy deposition to (2) the true S=N (estimated as in
Sec. II C), as a function of pann. The solid, dashed and dotted
lines indicate the WMAP 7 2� upper limit on pann, the value of
pann for which the nonlinearity is 10%, and the value for which
the nonlinearity is 1%, respectively. The red dot-dashed line
indicates the 2� upper limit on pann that would be obtained by
linearly extrapolating the significance from small energy depo-
sition, which overestimates the significance and hence leads to a
too-strong constraint.

5The two settings we use are (1) RUNMODE=0 and
COSMORECACC=0 and (2) RUNMODE=1 and COSMORECACC=2. In
general, we use CAMB accuracy settings ACCURACY_BOOST=4,

L_ACCURACY_BOOST=4, L_SAMPLE_BOOST=4 for computing de-
rivatives. For the MCMC runs, we set all three parameters to 1
for speed.
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experiment, evaluated without assuming linearity as de-
scribed in Sec. II C, differs from the bound we would
obtain by taking derivatives @C‘=@pann at pann ¼ 0, and
assuming linearity, i.e. taking the effect on the C‘’s to be
given by pannð@C‘=@pannÞjpann¼0. Equivalently, we can

compare the signal-to-noise estimate for the two methods,
as a function of pann.

In Fig. 3 we show an example of this test usingWMAP 7
noise parameters. For each value of pann, we compute both
the S=N of the resulting signal directly (as in Sec. II C), and
the significance that would be obtained by a linear extrapo-
lation from small pann. The ratio of the extrapolated S=N to
the true S=N is 1þ 
, and 
 provides a measure of non-
linearity. We see that 
 approaches 0.3 close to the 2�
upper bound from WMAP 7, so the estimated 95% bound
from WMAP 7 is roughly 30% weaker than would be
expected from a linear extrapolation from small energy
deposition, but the degree of nonlinearity falls rapidly at
lower energy deposition. We will see later that for the
energy deposition probed by Planck, 
 is only a few
percent. Note that even for WMAP 7, the difference in
the bound is almost entirely due to an overall
‘-independent normalization factor; the shape of the
�C‘’s is almost unchanged.

III. PRINCIPAL COMPONENTANALYSIS

The effects of energy deposition at different redshifts
on the C‘’s are highly correlated, and so the effects of a
large class of energy deposition histories can be charac-
terized by a small number of parameters. Principal com-
ponent analysis provides a convenient basis into which
energy deposition histories can be decomposed, with the
later terms in the decomposition contributing almost
nothing to the effect on the C‘’s. It thus allows general-
ization of constraints on energy deposition to a wide
range of models (subject to the linearity assumption
discussed above).

A. The principal components

Having obtained the marginalized Fisher matrix F,
diagonalizing F:

F ¼ WT�W; � ¼ diagð�1; �2; . . . ; �NÞ (7)

yields a convenient basis of eigenvectors or ‘‘principal
components.’’ W is an orthogonal matrix in which the
i-th row contains the eigenvector corresponding to the
eigenvalue �i. If we compute derivatives for N redshift
bins, then the N � N Fisher matrix has N principal com-
ponents. The eigenvectors are orthonormal in the space of
vectors f�ig, i ¼ 1 . . .N. Let us label these vectors ei, with
corresponding eigenvalues �i, i ¼ 1 . . .N. Our convention
is to rank the principal components by decreasing eigen-
value, such that e1 has the largest eigenvalue.
Note that the principal components may be significantly

different from the unmarginalized principal components,
or the eigenvectors of Fe. Figure 4 shows the first three
principal components for WMAP 7, Planck and a CVL
experiment, both before and after marginalization, for the
annihilationlike case (dE=dt / pannðzÞð1þ zÞ6) with 50
linearly-spaced redshift bins. We see that while the shapes
of the PCs are qualitatively similar, marginalization pro-
duces noticeable changes to the PCs, as does changing
from one set of experiment parameters to another. The
differences become more pronounced for higher PCs.
Note that the shapes of the principal components can be

affected by a number of other different factors: choice of
binning, choice of ionization history calculator, energy
deposition model, fiducial cosmological model considered,
etc. We discuss these effects in Appendix A.
In Fig. 5 we show the first six marginalized PCs for

Planck, for annihilationlike (dE=dt / pannðzÞð1þ zÞ6) and
decaylike (dE=dt / pdecðzÞð1þ zÞ3) energy deposition
histories. We show the annihilationlike case with both
log and linear binning. We note that the first principal
component is always largely or completely non-negative,
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FIG. 4 (color online). The first three principal components for WMAP 7, Planck and a CVL experiment, both before and after
marginalization over the cosmological parameters.
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and (in the annihilating case) peaked around redshift 600.
The first PC can be thought of as a weighting function,
describing the effect of energy deposition on the CMB
(orthogonal to the effect of shifting the cosmological pa-
rameters), as a function of redshift.6

In Fig. 6 we show the effect on the ionization history for
the first three Planck PCs in the annihilation case, with
each PC multiplied by an energy deposition coefficient of
" ¼ 2� 10�27 cm3=s=GeV to obtain pannðzÞ. Note that
this energy deposition is too large to be strictly in the linear
regime; this figure illustrates the shape and size of the
effect in the linear regime, the true effect for this value
of " will be somewhat smaller.

For energy injections that do not greatly change the
optical depth, the fractional change to the visibility func-
tion can be read off directly from the fractional change to
the ionization history shown in Fig. 6. Defining the visi-
bility function as gðzÞ ¼ �0e��, where �0ðzÞ 	 d�=dz ¼
ne�Tc=ðð1þ zÞHÞ is the probability of scattering per unit
redshift, � is the optical depth, �T is the Thomson scatter-
ing cross section and ne is the free electron density, the

perturbation to the visibility function is given by �gðzÞ
gðzÞ ¼

ðe��� � 1Þ þ ��0
�0 e

��� � ��0
�0 ¼ �xe

xe
, provided �� 
 1 and

so e��� � 1. We have explicitly checked that the effect of
the PCs on the visibility function is almost identical to their
effect on the ionization history.
As previously, we have considered ‘‘annihilationlike’’

and ‘‘decaylike’’ energy deposition histories separately. If
both analyses were performed over the same redshift
range, then while the principal components might appear
different, they would span the same space of energy dep-
osition histories. If all principal components were retained,
the difference between the two would simply be equivalent
to a change of basis, and provided sufficient principal
components are retained, this will still be approximately
true. However, a particular energy deposition history may
be described by the early principal components much
better in one case than in the other; in particular, energy
deposition histories for which the effect on the CMB is
dominated by low redshifts will not be well described by
the (first few of the) default annihilationlike PCs. Thus, we
present results for both cases.

B. Mapping into �C‘ space

Let us consider the mapping into �C‘ space of these
marginalized principal components. Applying the transfer
matrix T (Eq. (2)) to the eigenvectors yields a set of N
vectors in the space of C‘ perturbations, �C‘ ¼ Tei ¼ hi.
The hi’s should be understood as �C‘’s per energy depo-
sition, and have units of C‘=pðzÞ.
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FIG. 6. Fractional change to the ionization fraction xe in the
presence of energy deposition, for the first three (marginalized)
principal components in Planck. The curve shown is extrapo-
lated from the linear (small energy deposition) regime, with
normalization factor "1;2;3 ¼ 2� 10�27 cm3=s=GeV.
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FIG. 5 (color online). The first six principal components for Planck after marginalization, in the case of (left) annihilationlike
redshift dependence with linear binning, (center) annihilationlike redshift dependence with log binning, and (right) decaylike redshift
dependence with log binning. Note that for decaylike energy deposition histories, the redshift range is extended down to z ¼ 10 in
order to fully capture the effect on the CMB-see Sec. II. This larger redshift range makes linear binning impractical.

6Note that the shift in the peak position between log and linear
binning is to be expected, as one ‘‘weighting function’’ would be
integrated over dz and the other over d lnð1þ zÞ; see
Appendix A for further discussion.
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We can define a dot product on the space of �C‘’s by

hi � hj ¼
X
‘

hTi‘�
�1
‘ hj‘ ¼ eTi Feej: (8)

We then see that while the PCs are orthogonal, the hi are in
general not orthogonal to each other, nor to the �C‘’s from
the cosmological parameters. They correspond to actual
energy deposition histories, and in general, there is no such
history that is precisely orthogonal to all the cosmological
parameters.

However, we may decompose the hi into components
parallel and perpendicular to the space spanned by varying
the cosmological parameters, and denote the perpendicular
components h?i . The projection operator that implements
this decomposition is given in Appendix B. The h?i vectors
are now orthogonal amongst themselves, as well as to the
cosmological parameters, and their norms are given by the
square root of the marginalized eigenvalues �i. It is these
h?i ’s which determine the detectability of the marginalized
principal components, and which form an orthogonal basis
for residuals which cannot be absorbed by varying the
cosmological parameters. The addition of the parallel com-
ponents, to recover the hi’s from the h?i ’s, ensures that the

hi’s correspond to energy deposition histories, and so
provide an orthogonal basis in redshift space.
In Fig. 7, we show the mapping of the first three (margi-

nalized) PCs for Planck into the space of �C‘’s; in Fig. 8,
we show the components of these �C‘’s which are or-
thogonal to the space spanned by varying the cosmological
parameters. Figure 9 demonstrates this projection for a
sample DM annihilation model, summing over principal
components, and decomposing the effect on the C‘’s into
components perpendicular and parallel to the cosmological
parameters.
The eigenvectors of the Fisher matrix feig thus provide

an orthogonal basis in both relevant spaces, and
their eigenvalues precisely describe the measurability
of a ‘‘unit norm’’ energy deposition history with
z-dependence given by the eigenvector. For an arbitrary
energy deposition history which we now write as

pðzÞ ¼ XN
i¼1

"ieiðzÞ; (9)

the expected �	2 relative to the null hypothesis of no
energy deposition is

P
i"

2
i �i. If the "i coefficients are

comparable, the relative sizes of the eigenvalues describe
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FIG. 7 (color online). The mapping of the first three principal components for Planck, after marginalization, into �C‘ space. The PCs
are multiplied by "iðzÞ ¼ 2� 10�27 cm3=s=GeV for all i, to fix the normalization of the �C‘’s.
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the fractional variance attributable to each principal com-
ponent (eigenvector).

A brief comment on unit conventions: we take the feig
and fGig to be dimensionless, with the units of pðzÞ
ðcm3=s=GeVÞ carried by the coefficients �i, "i. The de-
rivatives (and transfer matrix) then have units of C‘=pðzÞ,
and the Fisher matrix and its eigenvalues have units of
1=pðzÞ2 (since the covariance matrix � has units of C2

‘).

Note also that due to the units of the covariance matrix, the
dot product defined above takes two vectors in C‘-space to
a dimensionless number (if the vectors have units of C‘).

IV. DETECTABILITY

For a general energy deposition history, the PCs provide
a basis in which, by construction, the basis vectors are
ranked by the significance of their effect on the C‘’s. The
measurability of a generic (smooth, non-negative) energy
deposition history can thus be accurately described by the
first few PCs.7 Equivalently, the coefficients of later prin-
cipal components have extremely large error bars, and will
be challenging to measure or constrain.

We now outline the method for reconstructing and con-
straining the PC coefficients, or any specific energy depo-
sition history, using the PCA formalism. We investigate the
number of PCs that can generically be measured at � 1�
by Planck and a CVL experiment, for arbitrary energy

deposition, and show results for broad classes of example
models. We also consider the biases to the cosmological
parameters that are induced if energy deposition is present
but ignored; we present results for each principal compo-
nent, so the biases due to an arbitrary energy deposition
history can be immediately calculated. Our estimates of
detectability and the biases will be verified using COSMOMC

in Sec. VI.

A. Estimating limits from the Fisher matrix

As mentioned previously, the perpendicular components
of the �C‘’s, h

?
i , are orthogonal with norms

ffiffiffiffiffi
�i

p
. They are

also orthogonal to the space spanned by varying the cos-
mological parameters. Given these results and a measure-
ment of the temperature and polarization anisotropies, it is
straightforward to estimate general constraints on the en-
ergy deposition history from the Fisher matrix formalism.
Note that in a careful study, one would instead use
COSMOMC to perform a full likelihood analysis, using the

Fisher matrix results only to determine the optimal princi-
pal components, as we demonstrate in Sec. VI. We outline
this simple method only to help build intuition and to
clarify later comparisons between the Fisher matrix
method and the COSMOMC results.
The first step is to extract any residual between the data

and the best-fit model using the standard cosmological

parameters; let us denote this residual by RTT;EE;TE
‘ . Then

we take the dot product (as defined in Eq. (8)) of this residual
with the h?i vectors, normalizing by the corresponding
eigenvalues (this normalization is required because the
h?i ’s are orthogonal, but not orthonormal; see Appendix B):

�" i ¼ R � h?i
�i

: (10)
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FIG. 9 (color online). Decomposition of �C‘ from energy deposition with constant pannðzÞ into parallel (jj) components which can
be absorbed by changes in the cosmological parameters, and perpendicular ( ? ) components that cannot be absorbed by such changes.
The overall effect of the energy deposition is suppression of high-‘ modes, due to the increased optical depth, and enhancement of
low-‘ polarization modes, as discussed in [8]. The suppression at high ‘ is clearly seen in the TT and EE spectra; the effect is also
present in the TE spectra, with the peaks of �CTE

‘ occurring at the troughs of CTE
‘ , and vice versa. The normalization here is pann ¼

2� 10�27 cm3=s=GeV, comparable to the latest limits from WMAP7þ ACT [14]. This decomposition depends on the sensitivity of
the experiment; the case shown is WMAP 7 single band.

7It is in principle possible for the coefficients "i to be zero for
i < n for some n, but if n is large this implies a very unphysical
energy deposition history that oscillates rapidly between positive
and negative values. While ‘‘negative energy deposition’’ might
perhaps have a physical interpretation in terms of increased
absorption of free electrons, such an interpretation is not at all
obvious, and so we focus on smooth, non-negative energy
deposition histories.
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The resulting �"i are the model-independent reconstructed
coefficients for the marginalized principal components. In
the absence of energy deposition, we expect them to be zero
(within uncertainties).

The individual 1� uncertainties on each of these coef-
ficients are 1=

ffiffiffiffiffi
�i

p
, in the sense that if a single coefficient is

perturbed away from its best-fit value by 1=
ffiffiffiffiffi
�i

p
, the cor-

responding energy deposition history will be disfavored at
1�. Thus it is possible to set a very general model-
independent constraint on each of the coefficients, "i ¼
�"i � 1ffiffiffiffi

�i

p (at 1�).

Given an arbitrary energy deposition history, we can
decompose it into the principal components, each with its
own coefficient, and compare these coefficients "i to the
bounds. For any particular model, a stronger constraint can
be set by noting that,

�	2 ¼ X
i

�ið"i � �"iÞ2: (11)

This �	2 is relative to the best-fit model including both
energy deposition and the standard cosmological parame-
ters; the �	2 relative to the best-fit standard cosmological
model8 is simply

P
i�i"ið"i � 2 �"iÞ.

This method has the usual deficiencies of the Fisher
matrix approach: it assumes a Gaussian likelihood and
also linearity of the derivatives, and so can only be used
for an estimate. In Sec. VI, we will go beyond the Fisher
matrix approach and present constraints derived from a
likelihood analysis using COSMOMC: in the same way as
this estimate, those limits can be expressed as bounds on
(a simple combination of) the PC coefficients, and will
therefore be immediately applicable to a wide range of
models for energy deposition.

B. Sensitivity of future experiments

For an energy deposition history where the sizes of the
coefficients, j"ij, are all similar, the respective detectability
of the PCs are given simply by their eigenvalues. Literally
taking all the coefficients to be the same does not give a
physical energy deposition history (since the later eigen-
vectors are highly oscillatory), but it is in some sense a
‘‘generic’’ scenario: none of the PCs have coefficients that
are fine-tuned to be small, so slight changes to pðzÞ or the
basis of PCs are unlikely to drastically change the detect-
ability of the different components.

We define detectability of the PCs with respect to this
generic case; of course, detectability of any particular
model depends on the relative sizes of coefficients. We
consider a number of physical examples below to illustrate
that, in some sense, the generic case is a reasonable average
over a wide class of models of interest.

As discussed previously, [10] derived a set of energy
deposition profiles corresponding to a range of DM anni-
hilation models. These models provide a convenient set of
example energy deposition histories, although they all have
very similar effects on the CMB (see Sec. V). We adapt the
code developed in [10] and discussed in detail there to
obtain similar physical fðzÞ curves for the case of decaying
dark matter with a long lifetime.
While the DM itself must have a lifetime considerably

longer than the age of the universe, there could be other
metastable species which decay during the redshift range
we study (z� 10–1300), or excited states of the dark
matter which decay to the ground state þ Standard
Model particles (e.g. [47–51] and references therein). In
this case the decay rate would cut off exponentially for
z < zð�Þ, although heating and ionization of the gas could
continue for some time after that: we can again obtain
detailed pðzÞ curves for different decay lifetimes using
the methods of [10]. Models of this type provide a simple
class of examples suitable for use with the PCs derived for
the case of decaying DM, since the underlying dE=dt /
ð1þ zÞ3 redshift dependence is the same (although for
models with lifetimes short enough that the energy depo-
sition has ceased shortly after recombination, the PCs
derived for the annihilationlike case may work better).
For the annihilating case, asymmetric dark matter sce-

narios can furnish a similar set of examples [52–57]. In
such scenarios the DM sector possesses an asymmetry
analogous to that in the baryon sector, and it is this asym-
metry which sets the DM relic density rather than the
annihilation cross section. In the minimal case there is
thus no requirement for an annihilation signal in the
present day or during the epoch of recombination, but it
is nonetheless possible to have a large late-time annihila-
tion signal, by repopulation of the depleted component at
late times, or by oscillations from the more-abundant to the
less-abundant component [53,57,58]. As a simple example,
we consider models where another species decays to re-
populate the less-abundant DM state [57], thus causing the

annihilation to ‘‘switch on’’ as 1� e�t=� at a characteristic
timescale � (with z� being the corresponding redshift). We
compute the pðzÞ curves for a range of �. Finally, for both
annihilation and decay we consider the constant pðzÞ case,
studied in [35] (for decay) and [8,9] (for annihilation), to
facilitate comparison with the literature.
Figure 10 shows the detectability of the principal com-

ponents in Planck and the ideal CVL experiment for these
annihilating and decaying models, with the energy depo-
sition normalized to lie at the 95% limit from WMAP 7. In
the generic case, we set the sizes of the coefficients of the

Planck (or CVL) PCs to be j"ij ¼ " ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i�
WMAP
i

q
. The

actual WMAP 7 signal-to-noise for the model is

S

N
¼
�X

i

�WMAP
i

�X
j

"je
Planck
j � eWMAP

i

�
2
�
1=2

8Of course, if the best-fit energy deposition history is every-
where zero, i.e �"i � 0 for all i, these two quantities are identical.
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FIG. 10 (color online). (a) The sensitivity for Planck (single-band), after marginalization, for various models subject to constraints
from WMAP 7 single-band at 2�. The left figure assumes annihilationlike energy deposition and the right figure assumes decaylike
energy deposition. The top panels show: (1) assuming pðzÞ / eiðzÞ for each PC, (2) the generic case where all PC coefficients have

equal magnitudes j"ij ¼ " ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i�
WMAP
i

q
, (3) constant pðzÞ, and (4) taking pðzÞ / fðzÞ, with fðzÞ from the models in [10]. For the

left figure, the hatched region indicates the range of results from changing the ionization history calculator and including or neglecting
the effects of helium and Lyman-� photons, described in Sec. A 3 and A 4. The bottom panels show some sample z� models for
asymmetric annihilating dark matter (left) and decaying species (right), as discussed in Sec. IVB (the labels describe the initial particle
mass, and the SM final state for annihilation or decay), and an extreme case where pðzÞ ¼ 0 for 200< z < 900 and constant outside
that range. (b) Same as (a), but for a CVL experiment. (c) The models in (a) and (b) for annihilationlike (left) and decaylike
(right).

SEARCHING FOR DARK MATTER IN THE CMB: A. . . PHYSICAL REVIEW D 85, 043522 (2012)

043522-13



and thus depends on the signs of "i, but the generic case is
meant to indicate the typical detectability for a class of
models, so we instead use theWMAP 7 constraints to set an
overall scale for j"ij.

We also show the detectability for each PC if pðzÞ /
eiðzÞ, or assuming the energy deposition history has zero
overlap with all other PCs.9 As mentioned previously, this
is not a physical assumption (requiring an ‘‘energy depo-
sition’’ oscillating rapidly between positive and negative
values): in such a case the effect on the C‘’s is so small that
the normalization of the ‘‘energy deposition’’ could be very
large and still consistent with WMAP. Consequently, arbi-
trarily high PCs can be measured if they are the sole
contributors to the energy deposition history.

We see that models with decaylike redshift dependence
and those with annihilationlike redshift dependence tend to
have roughly the same number of measurable parameters. In
both cases, generally 2–3 components are potentially mea-
surable in Planck and up to 5–7 for a CVL experiment.

As a side note, the improvement of these constraints
between WMAP 7 and future experiments is in large part
due to (anticipated) better measurements of the polariza-
tion. In the absence of polarization data (i.e. using the TT
spectrum only), we would expect the constraints to weaken

by a factor of�3 forWMAP 7,�7 for Planck, and�14 for
a CVL experiment. Here we have taken the square root of
the eigenvalue of the first principal component as a proxy
for sensitivity, which will be approximately true for models
with a non-negligible overlap with the first PC.

C. Biases to the cosmological parameters

If energy deposition is present but neglected, it can bias
the measurement of the cosmological parameters by a
significant amount. For WMAP, the partial degeneracy
between varying ns and the effects of energy deposition
means that the dominant bias is a 1� negative shift to ns.
The improved polarization sensitivity of Planck largely
lifts the degeneracy with ns, but due to the smaller error
bars of Planck other parameters develop non-negligible
biases: at the maximum energy deposition allowed by
WMAP 7 at 2�, Planck parameter estimates are generically
biased at >1� for !c, H0, and As.
Calculation of the biases is exactly complementary to

calculating the marginalized Fisher matrix. While the mar-
ginalization can be understood as projecting out the degen-
eracies with the cosmological parameters, the biases are
given precisely by the effect of energy deposition in those
degenerate directions. To be precise, suppose that some
eigenvector ej has true coefficient "j � 0 and we falsely

assume "j to be zero: then each of the cosmological

parameters �i will be shifted by an amount ��i. The matrix
of derivatives @�i=@"j, i ¼ 1 . . . nc, j ¼ 1 . . .N, is given

simply by
P

kðF�1
c FT

vÞikðejÞk.
Thus, we can partition the biases into the bias per PC,

which is shown in Fig. 11 for WMAP 7 and Planck. For a
generic energy deposition history, the total bias is domi-
nated by the bias from the first few PCs, consistent with the
fact that later PCs are undetectable and can essentially be
neglected in any fit to the data. As expected from [12], the
largest bias for WMAP 7 is to ns.
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FIG. 11 (color online). For the ith PC, the contribution to the bias to cosmological parameters in WMAP 7 (left panel) and Planck
(right panel), relative to the error bars forecast from the Fisher matrix. The normalization is that of the generic case (see discussion in
Sec. IVB or Fig. 10), where each PC coefficient has the same absolute value and the overall normalization is the maximum allowed by
WMAP 7 at 2�. The total bias for the parameter � is

P
i��i.

9If the PCs were the same for the different experiments, this
would give an upper bound on the detectability of the ith PC,
given WMAP 7 2� constraints. However, the PCs for different
experiments are not orthogonal, ePlancki � eWMAP

j � �ij. A strict

upper bound for the S=N of the ith Planck PC is given by

ðS=NÞPlancki � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Planck
i

q P
jjePlancki � eWMAP

j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�WMAP
j

q
j, with

the analogous result for a CVL experiment. However, this
quantity is not very useful as an upper bound; for example, if
pðzÞ is proportional to a high WMAP PC, the normalization of
pðzÞ is essentially unconstrained, but the detectability for Planck
may be very significant if there is even a small overlap with the
first Planck PC.
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V. A UNIVERSAL pannðzÞ FOR
WIMP ANNIHILATION

Solutions for the redshift dependence of the efficiency
function fðzÞ (and hence the energy deposition history
pannðzÞ), for 41 different combinations of dark matter
mass and annihilation channel, were presented in [10].
We can use these 41 energy deposition histories, rather
than �-functions in z, as the input states for a principal
component analysis, specialized for the particular case of
conventional WIMP annihilation. Even after marginaliza-
tion over the other cosmological parameters, we find that in
this case the first eigenvalue completely dominates the later
ones, accounting for 99.97% of the total variance inWMAP
7, Planck and the CVL forecast: thus, to a very good
approximation, for any of the DM models studied in [10]
(or any linear combination of the final states studied there),
the effect on the C‘’s is determined entirely by the dot
product of pannðzÞ with the first PC, with the ‘-dependence
given by mapping the first PC to C‘-space.

This conclusion agrees with the statements in [10,13]
that the effect of DM annihilation can be captured by a
single parameter. To put it another way, given equal co-
efficients for the first two principal components (which is
already rather conservative, since the fðzÞ curves studied
are generally very similar to the first PC), the signal

corresponding to the first PC would be roughly 60� larger
than the signal corresponding to the second PC: the exis-
tence of energy deposition would have to be detected at
60� for even a 1� measurement of the second component
to be possible. Measurements of the later components
would be far more difficult still: the sum of the first two
eigenvalues accounts for 1–4:8� 10�7, 1–6:0� 10�7, and
1–8:3� 10�7 the total variance in the WMAP 7, Planck
and CVL cases, respectively. The effective f-value of
various WIMP annihilation models is then just given by
the dot product of their fðzÞ curves with this first principal
component. We provide effective f-values for all models
considered in [10] on our website.
Let us denote this first principal component by eWIMPðzÞ.

We note that the differences between the eWIMPðzÞ curves
corresponding to different experiments (WMAP, Planck
and a CVL experiment) are extremely small, at the sub-
percent level for all redshifts, and so it is reasonable to
speak of a single such curve. We can choose to normalize
eWIMPðzÞ so that when it is multiplied by a given (dimen-
sionful) factor " to obtain an energy deposition history
pannðzÞ ¼ "eWIMPðzÞ, the significance of the resulting sig-
nal in a particular experiment is the same as that of a
constant-pann energy deposition with pann ¼ ". This nor-
malization simplifies comparisons with the earlier litera-
ture, in that the constraint on " is precisely the same as the
familiar limit on constant pann. The choice of experiment
affects the normalization at the percent level; as a default,
we will use the normalization appropriate for Planck. We
plot the resulting eWIMPðzÞ curve in Fig. 12; this curve and
the corresponding C‘ shifts are also available online in
tabulated form (see Appendix C).
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FIG. 12 (color online). The universal eWIMP curve (solid black
line), normalized as discussed in the text. Note that the principal
component analysis is only performed in the redshift range
between the vertical red solid lines; outside these lines, we still
plot the linear combination of the input energy deposition
histories that has been identified as the first principal component,
to serve as a canonical energy deposition history for WIMP
annihilation, but the C‘’s are not sensitive to the details of this
energy deposition. In the PCA region we also plot the second
(dashed) and third (dotted) principal components, with arbitrary
normalization.
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FIG. 13 (color online). Fractional change to the ionization
fraction xe in the presence of energy deposition, for the universal
eWIMP curve (red, solid). We also write the eWIMPðzÞ curve as a
linear combination of the Planck principal components, and
show (in black) the effect on the ionization history of the first
three principal components individually (weighted by their con-
tribution to eWIMP), and their (weighted) sum. The curves shown
are extrapolated from the linear (small energy deposition) re-
gime, with normalization factor " ¼ 2� 10�27 cm3=s=GeV for
the eWIMP curve.
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We could of course also write eWIMPðzÞ in terms of the
previously calculated principal components, just like any
other energy deposition history. For example, for the Planck
PCs derived above, an energy deposition "� eWIMPðzÞ ¼P

i"iei corresponds to f"1; "2; "3; . . .g ¼ "� f4:64;
�0:396; 3:11; . . .g. In particular, this implies that the shapes
of the �C‘’s induced by WIMP annihilation are quite close
to those shown for the first PC in Figs. 7 and 8.

In Fig. 13 we show, for reference, the modification to the
ionization history associated with the eWIMP curve, and the
contributions from the first three principal components. We
see that the first three PCs provide a good description of the
ionization history modifications at 300 & z & 1000, and in
both cases the ionization fraction is essentially unaffected
for z * 1000; we can infer that the effect on the CMB of
the discrepancy at lower redshifts is small.

VI. COSMOMC RESULTS

Everything we have done so far assumes both linearity
and that the Fisher matrix is an adequate description of the
likelihood function. We now present results of a full like-
lihood analysis using the COSMOMC Markov chain
Monte Carlo code, in particular, examining the biases to
the cosmological parameters and the detectability of the
PCs. Throughout this section we use RECFAST 1.5 as our
ionization history calculator, since we have established that
the PCs are unaffected by this choice (see Sec. A 3) and the
interface to COSMOMC is better established.

We sample the six cosmological parameters !b, !c, ns,
ln1010Asðk ¼ 0:002=MpcÞ, � and H0, all with flat priors.
We consider purely adiabatic initial conditions. We pa-
rameterize the energy deposition due to dark matter anni-
hilation using the marginalized principal components in
redshift space ei presented in Sec. III. We thus include 0, 1,
3, 5 or 7 additional parameters corresponding to the
coefficients of the principal components with highest sig-
nificance, as determined from the Fisher Matrix analysis.10

We impose flat priors on these parameters. Our treatment
of the energy deposition is the same as described in the
previous sections; we do not include Lyman-� as a default
(see Sec. A 4).

The MCMC convergence diagnostic tests are performed
on 4 chains using the Gelman and Rubin (variance of chain
mean)/(mean of chain variances) R� 1 statistic for each
parameter. Our constraints and the 1�D and 2�D like-
lihood contour plots are obtained after marginalization
over the remaining nuisance parameters, again using the
programs included in the COSMOMC package. We use a
cosmic age top-hat prior of 10 Gyr � t0 � 20 Gyr.

We first determine the constraints on parameters using
the seven-year WMAP data [1] (temperature and polariza-
tion) with the routine for computing the likelihood sup-
plied by the WMAP team. For this case only, we also
marginalize over a possible contamination from a
Sunyaev-Zeldovich component (see e.g. [34]).
We then generate simulated data for Planck and a CVL

experiment using a fiducial cosmological model given by
the best-fit WMAP7 model. We simulate the data assuming
in one case no energy deposition, and in another case an
energy deposition history with constant pann ¼
1:78� 10�27 cm3=s=GeV. We model experimental noise
as described in Eq. (4). For the Planck experiment, we use
the specifications reported in Table I for the 147 GHz
channel only. For the CVL experiment, we limit the maxi-
mum resolution of the experiment to ‘max ¼ 2500. In each
case, we use the PCs developed for that particular experi-
ment, as described in § III.

A. Constraints and forecasts

In Table II we give the WMAP 7 upper limit at 95% c.l.
obtained on the amplitude of the first principal component
(for generic energy deposition histories) and on the ampli-
tude of the principal component eWIMPðzÞ (the universal
WIMP energy deposition history described in Sec. V). For
these constraints we imposed a positive flat prior on the
amplitude of the principal component. This physical
assumption is convenient in order to avoid a region of
parameter space where the likelihood function is abruptly
cut at some negative value of the principal component
amplitude, where the recombination history calculation
breaks down.
Figure 14 shows the 1�D and 2�D contour plots

from WMAP 7 for the first three PCs, and the forecast
improvements for Planck and a CVL experiment. The
results shown are obtained varying the standard cosmo-
logical parameters together with the amplitudes of the first
3 principal components for each experiment.
From these plots, it is evident that the likelihoods for the

PC amplitudes obtained from WMAP 7 are highly non-
Gaussian. One reason is that theWMAP 7 data allow sets of
coefficients for the principal components such that the

TABLE II. Upper limits on the first principal component am-
plitude using WMAP 7 data. In the last line we also show the
constraints on the eWIMPðzÞ principal component presented in
§ V. The uncertainties reported are upper limits at the 95% c.l.
We show the constraints obtained when only the first principal
component is varied, together with the cosmological parameters.
We assume in this case a flat positive prior on the amplitude of
the principal component.

Number of PCs used PC WMAP7 95% c.l.

1 PC <1:2� 10�26 cm3=s=GeV
1 eWIMPðzÞ <2:43� 10�27 cm3=s=GeV

10We use odd numbers of principal components to illustrate the
effects of including more PCs because for near-constant pann, the
even-numbered principal components tend to have very small
coefficients, and so including them does not substantially change
the results.
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corresponding energy deposition is negative and unphys-
ical for some redshift. In particular, if the energy deposi-
tion is negative and sufficiently large in magnitude, this can
cause the ionization history calculation to break down. If
the coefficients of the PCs are all large, the condition
that some linear combination of the PCs be non-negative

(or where negative, sufficiently small) imposes quite a
nontrivial constraint on the coefficients, which is reflected
in peculiar-looking boundaries for the favored regions.
This effect is clearly visible in the WMAP results in
Fig. 14; for Planck the energy deposition history is much
more constrained, and so this problem does not arise to
nearly the same degree.
Another issue is that adding more principal components

to the fit does not always lead to a better reconstruction of
the cosmological parameters and energy deposition his-
tory. By construction, higher PCs are less constrained by
the data, and so the favored regions for their coefficients
extend to much higher values, corresponding to very large
energy deposition at particular redshifts. This means both
that the previous problem of unphysical energy deposition
histories reasserts itself, and that the effects of the energy
deposition become nonlinear.
As a consequence, the property of orthogonality be-

tween principal components does not hold anymore, and
unexpected degeneracies between the PC parameters can
arise: Fig. 14 includes a 2�D contour plot showing the
degeneracy between PC 2 and PC 3 for WMAP 7. This
problem affects the Planck and CVL cases only when too
many PCs that are completely unconstrained by the data
are included in the MCMC runs. Thus there is an optimal
number of PCs to include in the reconstruction for each
experiment: beyond this point, adding further PCs to the
reconstruction only obfuscates the results.
In Fig. 15, we show how the bias to the cosmological

parameters is reduced with the inclusion of more PCs,
for both Planck and a CVL experiment. We find that the
best results are obtained when the number of included PCs
equals the maximum number of ‘‘measurable’’ PCs (in the
sense of Seċ. IVB), i.e. three PCs for Planck and five for a
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FIG. 14 (color online). Constraints from the seven-year
WMAP data (red), and from simulated data for Planck (blue)
and a cosmic variance limited experiment (green). The plot
shows marginalized one-dimensional distributions and two-
dimensional 68% and 95% limits. The mock data for Planck
and the CVL experiment assumed no dark matter annihilation.
Three Principal Components were used in each run to model the
energy deposition from dark matter annihilation. The units of the
PC coefficients here are in m3=s=kg, with 1� 10�6 m3=s=kg ¼
1:8� 10�27 cm3=s=GeV.

FIG. 15 (color online). Bias on the cosmological parameters using models with �CDMþ n principal components for

Planck (left panel) and CVL (right panel) simulated data. Here, the bias is defined as ð�i � �fidi Þ=�ð�iÞ, where �i is the value of

the mean value of the parameter from COSMOMC, �fidi is the WMAP 7 marginalized value used as fiducial for the mock data,

and �ð�iÞ is 1-� error bound from the runs. Both sets of mock data assumed a constant-pannðzÞ energy deposition history
with pann ¼ 1� 10�6 m3=s=kg ¼ 1:8� 10�27 cm3=s=GeV. Note that this plot should not be directly compared to Fig. 11 (which
shows the bias per unit-normalized PC, rather than the total remaining bias after a certain number of PCs have been reconstructed
from the fit).
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TABLE III. Constraints on the principal component amplitudes using simulated data for Planck and for a Cosmic Variance Limited
experiment, assuming a fiducial energy deposition history of pann ¼ 1:78� 10�27 cm3=s=GeV or no energy deposition (pann ¼ 0.). In
the last line we also show the constraints on the eWIMPðzÞ principal component presented in § V. The uncertainties reported are at the
68% c.l. We show the constraints obtained when different numbers of principal components are varied at the same time, together with
the 6 �CDM cosmological parameters. The results are reported in cm3=s=GeV.

Number of

PCs used

PC Planck

pann ¼ 0 pann ¼ 1:78� 10�27 cm3=s=GeV
CVL

pann ¼ 0 pann ¼ 1:78� 10�27 cm3=s=GeV

1 PC 1 ð0:2� 1:1Þ � 10�27 ð8:9� 1:6Þ � 10�27 ð0:1� 4:9Þ � 10�28 ð9:04� 0:81Þ � 10�27

3 PC 1 ð0:4� 1:1Þ � 10�27 ð8:8� 1:5Þ � 10�27 ð0:6� 5:0Þ � 10�28 ð8:71� 0:81Þ � 10�27

3 PC 2 ð0:4� 2:4Þ � 10�27 ð0:7� 3:2Þ � 10�27 ð0:1� 1:1Þ � 10�27 ð0:5� 1:5Þ � 10�27

3 PC 3 ð1:7� 4:1Þ � 10�27 ð7:1� 5:8Þ � 10�27 ð�0:3� 1:7Þ � 10�27 ð5:5� 2:5Þ � 10�27

5 PC 1 - - ð0:9� 5:0Þ � 10�28 ð8:87� 0:83Þ � 10�27

5 PC 2 - - ð0:1� 1:1Þ � 10�27 ð0:4� 1:5Þ � 10�27

5 PC 3 - - ð�0:1� 1:8Þ � 10�27 ð5:4� 2:7Þ � 10�27

5 PC 4 - - ð0:3� 2:5Þ � 10�27 ð1:9� 2:8Þ � 10�27

5 PC 5 - - ð0:2� 3:4Þ � 10�27 ð3:1� 4:1Þ � 10�27
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FIG. 16 (color online). Constraints from simulated data for Planck on �CDM parameters þ 0 principal components (green),
�CDMþ 1 PCs (magenta), �CDMþ 3 PCs (blue), �CDMþ 5 PCs (red). The plot shows marginalized one-dimensional
distributions and two-dimensional 68% and 95% limits. The mock data for Planck assumed for the solid lines includes energy
deposition with constant pann ¼ 1� 10�6 m3=s=kg ¼ 1:8� 10�27 cm3=s=GeV. The grey area shows the case of a mock data with no
energy injection and a model �CDMþ 0 principal components. Only the cosmological parameters are shown.
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CVL experiment.11 Later PCs cannot be reconstructed
from the data and their inclusion does not improve the
residual bias.

Table III shows the forecast constraints (with uncer-
tainties at 68% c.l.) on the principal components ampli-
tudes using simulated data for Planck and for the CVL
case, assuming a fiducial model with no energy deposition
(pann ¼ 0) or with energy deposition described by con-
stant pann ¼ 1:78� 10�27 cm3=s=GeV. In these cases we
let the amplitudes of the principal components assume
both positive and negative values. In the table we report
the results obtained when including different numbers
of principal components. The uncertainties on the

amplitudes of the PCs (e.g. on PC 1) do not substantially
change with the number of principal components included
in the run. Table III also presents the constraints obtained
using the principal component eWIMPðzÞ described in
Sec. V.
Figures 16 and 17 show the constraints on the various

parameters from simulated Planck data with a toy-model
energy deposition history corresponding to constant
pannðzÞ ¼ 1:78� 10�27 cm3=s=GeV. As mentioned previ-
ously, while the coefficients of the early PCs are recon-
structed well, we see that including additional PCs beyond
the three expected to be measurable degrades the measure-
ment of ns and to a lesser extend As.
Figures 18 and 19 show the constraints on the various

parameters from a simulated CVL experiment with the
same energy deposition history as in the Planck case. We
now see that including at least five PCs is necessary to
remove the bias to the cosmological parameters, especially
ns and As but going from five to seven PCs neither greatly
improves nor degrades the reconstruction, and is only
significant at all in the case of ns.
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11Note that the number of measurable PCs may not reflect the
actual number of PCs with S=N > 1 for any specific energy
deposition history, which depends on the values of the "i
coefficients for that history; it is simply an estimate of the
number of PCs that could feasibly be reconstructed from the
data, from scanning over a range of models, and seems to also
well describe the number of PCs with small enough error bars
that nonlinearities do not cause problems.
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B. Application of constraints

Once the constraints on the individual principal compo-
nents are obtained, they can be used to set general bounds.
Given an arbitrary energy deposition history, it can be de-
composed into the principal component basis we have sup-
plied online (see Appendix C), and the coefficients in that
basis compared to the limits presented here forWMAP 7.

As a simple example, suppose wewish to set limits on an
energy deposition history with positive constant pann, by
projecting onto the constraints obtained for the first
principal component using WMAP 7 data. Recall that
we impose a positive prior on the amplitude of the
principal component. The upper limit on the first
principal component using WMAP 7 data is then12

"1 < 1:2� 10�26 cm3=s=GeV at 95% confidence. From
Eq. (9) and the discussion in Sec. II, we see that for a
constant-pann energy deposition history we have "i ¼
pann

P
N
j¼1 eiðzjÞ: the resulting derived upper limit on an

energy deposition history with constant positive pann is
pann < 2:8� 10�27 cm3=s=GeV at 95% confidence. This
constraint can be compared with the one obtained directly
by sampling the cosmological parameters with a positive
constant pann, which gives an upper limit of pann < 2:7�
10�27 cm3=s=GeV at 95% confidence. In a more general
case when more than one principal component is consid-
ered in the analysis, the limit on pann can be determined
with a 	2 analysis as in Eq. (11), writing the theoretically
predicted amplitude �"i as a function of pann.
For WIMP models, the WMAP 7 limit for eWIMPðzÞ in

Table II can be applied directly given the effective f-value;
these were described in Sec. V and are available online for
a range of models (see Appendix C). As another consis-
tency check, we can apply the WMAP 7 limit on the first
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12This value depends on the normalization of the principal
components used. Here we employ the PCs supplied online
(see Appendix C), which are orthonormal when expressed as a
vector sampled at 50 redshifts.
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principal component to the WIMP case, pannðzÞ ¼
"eWIMPðzÞ. For WMAP 7, the coefficient "1 is given by
4:41", giving a bound of " < 2:7� 10�27 cm3=s=GeV.
The true bound on " is roughly 10% stronger.

Once Planck data are available, the same analysis can be
redone with real data, and a very broad range of models can
then be confronted with the resulting PC-based limits (the
only exceptions being models which have negligible over-
laps with the first few PCs and thus evade the constraints in
this form; studying limits on such models will still require
a separate analysis).

Using mock Planck data, we have confirmed that the
constraints on the first three principal components can be
used to recover the correct limit on a particular energy
deposition history—that is, the limit that we would
obtain by directly varying the energy deposition amplitude
for that specific model. Again taking the constant-pann

case as a simple example, but now using Planck mock
data with an energy deposition history with constant

pann ¼ 1:78� 10�27 cm3=s=GeV, the amplitudes for the
first 3 principal components are:

"1 ¼ ð8:8� 1:5Þ � 10�27 cm3=s=GeV (12)

"2 ¼ ð6:8� 31:5Þ � 10�28 cm3=s=GeV; (13)

"3 ¼ ð7:1� 5:8Þ � 10�27 cm3=s=GeV; (14)

where the errors are at 68% confidence. From a 	2 analysis
of these results, the recovered energy deposition is given by
pann ¼ ð1:90� 0:50Þ � 10�27 cm3=s=GeV at 68% c.l..
This constraint can be compared with the one obtained
directly by sampling the cosmological parameters with a
constant pann, which gives an upper limit of pann ¼
ð1:90� 0:32Þ � 10�27 cm3=s=GeV at 68% c.l.. These
checks confirm the validity and usefulness of the principal
component decomposition.
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C. Bias on cosmological parameters and agreement
with the Fisher matrix

In Figs. 20 and 21, we compare the error bars on the
cosmological parameters and principal components, and
the bias to the cosmological parameters due to assuming no
energy deposition, for the Fisher matrix method and
COSMOMC. We find in general that the results of the

Fisher matrix method are in good agreement with the full
likelihood analysis, accurately predicting the error bars on
the reconstructed values of the PCs and the cosmological
parameters. For example, for the case of the Planck fit with

three PCs, the Fisher matrix predictions for the errors on
the reconstructed PCs are within 5% of the true values for
the first two PCs, and �15% different for the third PC, if
the true energy deposition is small enough to lie in the
linear regime. The biases to the cosmological parameters,
when no PCs are included in the fit but the true energy
deposition history is one of constant positive pann, are not
quite as well matched; the Fisher matrix method ade-
quately captures the directions and approximate sizes of
the various biases, but significantly overpredicts the bias to
As in particular, in the example presented here. To obtain
precise measurements of the biases, a COSMOMC analysis
like the one we have performed is essential.

VII. CONCLUSION

Principal component analysis provides a simple and
effective parameterization for the effect of arbitrary energy
deposition histories on anisotropies in the cosmic micro-
wave background. We find that for DM annihilationlike
energy deposition histories the first principal component,
describing the bulk of the effect, is peaked around
z� 500–600, at somewhat lower redshift than previously
expected; the later principal components provide correc-
tions to this basic weighting function.
The principal components, derived from a Fisher matrix

approach, are stable against a wide variety of perturbations
to the analysis, including choice of code calculating the
ionization history, additions to the usual set of cosmologi-
cal parameters, the inclusion or exclusion of ionization on
helium, the range of included multipoles, and the choice of
binning. (For further discussion, see Appendix A.) The one
significant potential change to the PCs arises from how
deposited energy is attributed to additional Lyman-�
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FIG. 20 (color online). Error bars for the cosmological parameters and coefficients of the principal components, in mock Planck
data, simulated assuming a constant-pannðzÞ energy deposition history. The points marked ‘‘large pann’’ have pann ¼ 1�
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photons: we have showed the effect of on one hand ne-
glecting this channel, and on the other of assuming that all
the energy attributed to ‘‘excitations’’ is converted into
Lyman-�, which should bracket the true result. We eagerly
await a more careful analysis of this problem.

Within the Fisher matrix formalism, it is straightforward
to take into account degeneracies with the standard cos-
mological parameters. We have presented predictions for
the (significant!) biases that would arise in Planck as a
result of falsely assuming energy deposition to be zero, for
each of the principal components. We have confirmed the
previously noted degeneracy between energy deposition
and ns, and to a lesser degree with As, !b and !c, in
WMAP data; since our analysis decomposes the biases
according to the principal components that generate
them, it is now trivial to compute the biases to the cosmo-
logical parameters for any arbitrary energy deposition
history, in WMAP or in mock Planck data.

For a wide range of energy deposition histories, span-
ning models of dark matter annihilation and decaying
species where annihilation or decay can begin or end
abruptly on characteristic timescales shorter than the age
of the universe, the coefficients of up to three principal
components are potentially measurable by Planck, for
energy deposition histories satisfying 95% confidence lim-
its from WMAP, opening up the exciting possibility of
distinguishing different models of energy deposition. For
a CVL experiment, up to five coefficients are measurable.

For the ‘‘standard’’ WIMP annihilation case, principal
component analysis on a large set of WIMP models yields
a single principal component eWIMPðzÞ that describes the
effect on the C‘’s of all the models very well; any model is
then parameterized simply by the coefficient of eWIMPðzÞ (or
equivalently, effective f). Our analysis confirms previous
statements in the literature, and we have provided this
‘‘universalfðzÞ’’ curve for futureWIMPannihilation studies.

We performed an accurate MCMC analysis of current
WMAP 7 data to impose constraints on the measurable
principal component amplitudes, and to forecast constraints
for future experiments such asPlanck or a CVL experiment.
We find good agreement with the Fisher matrix analysis,
although the MCMC analysis is required to accurately
predict the biases on the cosmological parameters. We
have illustrated how it is possible to recover the constraints
on an arbitrary energy deposition history from the con-
straints on the amplitudes of the principal components.
The reconstructed constraints are in very good agreement
with the constraints obtained by directly sampling a specific
energy deposition history, confirming the validity and use-
fulness of the principal component decomposition.
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APPENDIX A: VALIDATION OF THE
PCA METHOD

In this appendix, we discuss a number of specific issues
that might affect the results of the principal component
analysis, and motivate our default choices.

1. Choice of binning

As discussed previously, to approximate �-functions in
energy deposition, as a default we employ (for the annihi-
lationlike case) 50 linearly-spaced redshift bins covering
the redshift range from z ¼ 80 to z ¼ 1300. Figure 22
shows the effect of changing the Gaussian width and the
number of bins for some sample PCs; doubling the number
of bins or changing the Gaussian width by a factor of 2 has
no effect on the PCs, although reducing the number of bins
to 15 does affect the PCs slightly, especially at the lowest
and highest redshifts.
In Sec. II we briefly discussed the choice of log vs linear

binning, preferring to use the former for decaylike scenar-
ios and the latter for annihilationlike scenarios. In the
annihilationlike case, the choice of linearly spaced bins
in redshift was not inevitable; log-spaced bins seem
equally natural. The choice of log or linear binning is
somewhat subtle, as it affects whether or not two energy
deposition histories are considered orthogonal, and how
much different redshifts contribute to the norm of a par-
ticular energy deposition profile. Consequently, the two
choices give rise to different sets of principal components
and eigenvalues, and a generic energy deposition history is
somewhat different between the two cases. However, the
eigenvalues of the first several PCs are quite similar, and
using log binning instead of linear binning does not sig-
nificantly affect the results of Sec. IVB: in both cases a
similar (small) number of PCs are sufficient to describe a
very broad class of energy deposition histories, for the
purpose of future experiments. For individual models, of
course, the number of measurable PCs depends on the
choice of basis: a pðzÞ curve which happens to be very
well described as a linear combination of the first two PCs
in the log-binned case may not be nearly so well described
by the first two PCs in the linear-binned case, or vice versa.
In Fig. 5 we showed the Planck PCs for both linear and

log binning in the annihilation case. The first PC is peaked

13Available at http://idlastro.gsfc.nasa.gov.
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at higher redshift in the log-binned case: this is to be

expected, since in the log-binned case the amount of

energy deposited per bin for a constant pðzÞ has an extra

(1þ z) scaling relative to the linear case (simply due to the

wider bins at high redshift). It can be shown that this simple

rescaling largely (but not completely) describes the differ-

ence between log and linear binning for the first PC, but the

later PCs shift by a larger amount and in more complex

ways, as each must be orthogonal to all previous PCs.

2. The effect of noise and maximum ‘

As a default, we include ‘ ¼ 2 . . . 2500 in our analysis,
for both temperature and polarization. ‘’s above 1000 do
not noticeably affect the principal components for
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FIG. 23 (color online). The dependence of a selection of PCs on the range of ‘ included in the analysis, for WMAP 7 (left) and
Planck (right).
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WMAP, but have significant effects for Planck (and the
CVL case), especially in the higher PCs. Figure 23 shows
the effect on a selection of PCs on changing ‘max. The
results also depend on the estimated sensitivity of the
experiment.

3. Choice of ionization history calculator and
recombination corrections

Recent improvements in the detailed treatment of re-
combination have motivated new codes to compute the
ionization history, in particular COSMOREC [15] and
HYREC [16]. The inclusion of these additional recombina-

tion corrections can modify the effect of energy deposition
on the ionization history and the CMB, thus shifting the
derivatives and modifying the principal components.
However, comparing the principal components obtained
using RECFAST 1.5 to those obtained using COSMOREC,
we find that there is essentially no difference. The overall
normalization of the effect, for a given energy deposition
history, is slightly smaller (by a few percent) in COSMOREC

as compared to RECFAST 1.5, but as shown in Fig. 24 the
shapes of the PCs are unaffected. This shift in normaliza-
tion will not change the detectability of the maximum
WMAP-allowed signal in Planck, and will only very
slightly modify the amount of energy deposition required
to produce such a signal.

4. Helium and Lyman-�

Ionization of helium also contributes to the population
of free electrons, and is included automatically in
COSMOREC: however, some previous studies have ne-

glected it, focusing only on theH contribution. We include
helium by default throughout, but show in Fig. 24 the
(negligible) effect on the PCs of leaving it out. Similarly

to the choice of ionization history calculator, including
helium increases the total effect of a given energy deposi-
tion history, but does not significantly modify the redshift
dependence and hence the PCs.
A more difficult question is the effect of additional

Lyman-� photons. The energy from dark matter annihila-
tion that is deposited to the gas is partitioned between
excitation, ionization and heating. In the analysis of
[8], which we have followed, only the latter two processes
are included; excitations are assumed to have no significant
effect. However, it was pointed out in [35] that the
increased population of Lyman-� photons from
excitations—or equivalently, the higher fraction of H in
an excited state—facilitates ionization and thus indirectly
increases the ionization fraction.
We studied the effect of including Lyman-� photons,

following [35,59] and assuming all the energy partitioned
into excitation produces Lyman-� photons. The true pic-
ture is probably more complicated, but its study lies be-
yond the scope of this work, and this choice and our
baseline case with no additional Lyman-� photons should
bracket the true solution. Figure 24 shows the effect on the
PCs of including the Lyman-� contribution. The corre-
sponding effect on the S=N for the various PCs is indicated
by the hatched region in Fig. 10; the bound on constant
pann is strengthened by �7–10% (depending on the
experiment).

5. Additional cosmological parameters

Since the primary effect of dark matter annihilation is an
‘-dependent damping of the temperature anisotropies, one
might ask if it is degenerate with other cosmological
parameters that have a similar effect: for example, includ-
ing running of the scalar spectral index could better mimic
the profile of the damping with respect to ‘, increasing the
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FIG. 24 (color online). The first three principal components for Planck, after marginalization, computed using RECFAST 1.5 and
COSMOREC. In the baseline case (as in COSMOREC), ionization of helium is included but injection of Lyman-� photons is not. We also

show the effects of including a contribution to Lyman-� photons, and neglecting helium. The effect of helium ionization on the PCs is
negligible because it is approximately a redshift-independent effect.
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number of massless neutrino species Neff also suppresses
small-scale anisotropy, and the primordial helium mass
fraction YP has degeneracies with Neff [60]. Accordingly,
we have redone the principal component analysis including
each of these parameters separately, as well as all of them
simultaneously.

In all cases, we find only negligible shifts to the principal
components. The forecast constraint on constant pann from
Planck is weakened by �7% if running of the spectral
index is included, and by�12% if all three parameters are
used. For WMAP 7, the Fisher-matrix-estimated limit
weakens by �11% and �13% in these two cases.

APPENDIX B: REVIEW OF MARGINALIZATION
AND BIASES

1. Marginalization as projection

Marginalization over some parameters in the
Fisher matrix is equivalent to a projection of the vector
space spanned by all the parameter perturbations.
Another way of saying this is that given the transfer matrix
(Eq. (2)) for the parameters of interest, then the marginal-
ized Fisher matrix for those parameters is formed by con-
tracting the projected transfer matrix with the covariance
matrix ��1.

We illustrate these statements for the situation consid-
ered in this paper. The total vector space consists of the
�C‘’s spanned by energy deposition and cosmological
parameter perturbations, and we wish to marginalize over
the cosmological parameters. Recall that the full Fisher
matrix is

Fe Fv

FT
v Fc

� �
¼ TT

e�
�1Te TT

e�
�1Tc

TT
c�

�1Te TT
c�

�1Tc

� �
; (B1)

where Te and Tc are transfer matrices mapping energy
deposition histories and cosmological parameter perturba-
tions, respectively, to the space of �C‘’s. For ease of
notation we suppress indices. Using Eq. (6), the marginal-
ized Fisher matrix can be written as

F ¼ Fe � FvF
�1
c FT

v ¼ ðPTeÞT��1ðPTeÞ (B2)

where P ¼ ð1� TcðFcÞ�1TT
c�

�1Þ satisfies P2 ¼ P and so
is a projection operator. P projects out any component of
�C‘ which can be effectively absorbed by a change in the
cosmological parameters. This can also be seen if we act
with P on a generic perturbation in the cosmological
parameters: PTc��� ¼ 0. Accordingly, any perturbation
to the fiducial CMB model can be written as

�C‘ ¼ ð1� PÞ�C‘ þ P�C‘ ¼ �Cjj
‘ þ �C?

‘ (B3)

where ? and jj mean perpendicular or parallel to the
cosmological parameter perturbations.

Thus, PT
 is a projected transfer matrix, taking energy
deposition histories to the subspace of �C‘’s which are
orthogonal to cosmological parameter perturbations. This
projection depends on the noise parameters in ��1, since
the notion of orthogonality depends on our definition of
norm. Intuitively, if an energy deposition and cosmological
parameter perturbation have very similar effects at low ‘
but are different at high ‘, then the projection operator may
give a very small �C?

‘ in the case of WMAP and a larger

�C?
‘ in the case of Planck.

The eigenvectors ei of F (or principal components) with
the largest eigenvalues are correspondingly those with the
largest measurable �C?

‘ . The ei also map to an orthogonal

vector space of �C?
‘ ’s. The unprojected hi ¼ Teei are in

general not orthogonal because hi �hj¼ðTeeiÞT��1ðTeejÞ¼
eTi Feej. However, defining h

?
i ¼ PTeei, we have

h?i � h?j ¼ ðPTeeiÞT��1ðPTeejÞ ¼ eTi Fej ¼ �ij�i: (B4)

Because the h?i are orthogonal, we can extract the
coefficients of the principal components from a generic
R‘ 2 f�C‘g:

"i ¼ 1

�i

ðPTeeiÞT��1R‘ ¼ R � h?i
�i

: (B5)

2. Biases to cosmological parameters

The parallel components from energy deposition,

�Cjj
‘ ¼ ð1� PÞTeei"i, correspond to the biases to the

cosmological parameters. Suppose there is some energy
deposition ("i � 0), but it is not included in the fit to the
data. Then the best-fit cosmological parameters will absorb

any �Cjj
‘ from the energy deposition, and the measure-

ments of the true cosmological parameters would be biased

by the amount it takes to produce �Cjj
‘ :

�Cjj
‘ ¼ Tc��� ¼ ð1� PÞTeei"i: (B6)

Multiplying both sides by ðFcÞ�1TT
c�

�1, we have

��� ¼ F�1
c FT

vei"i: (B7)

APPENDIX C: WEB FILES DESCRIPTION

To facilitate the analysis described above, we provide
the PC vectors defined above on our web page14 and in the
supplemental materials [61]. The files are provided in two
formats: as a the Flexible Image Transport System15

(FITS) binary table, and as ASCII plain text files. The
file formats are described briefly in this appendix, and in
more detail on the web page.

14http://nebel.rc.fas.harvard.edu/epsilon
15http://fits.gsfc.nasa.gov
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1. FITS files

Each FITS file has the following format:

L Array [2500] - multipole index (2..2501)

REDSHIFT Array [50] - redshift (z)

PC_EIGENVECTORS Array[50,10] - PC as a function of redshift

EPSILON 2.0000000e-27 - energy deposition, see Sec. III B of paper

EIGENVALUES Array [10] - PC eigenvalues

PC_POWSPEC Array [2500, 3,10] - PCs projected into Cl space, TT, EE, TE

PC_POWSPEC_PERP Array [2500, 3,10] - same, but projected onto the space perpendicular

to the cosmological parameters

We also provide the universal eWIMP curve derived in
Sec. V, following the same notation, and a list of efficiency
coefficients for the WIMP models studied in [10].

2. ASCII files

We also provide the mappings of the PCs into �C‘’s in
ASCII files, one per principal component. File names are,
e.g.:

epsilon_ann_Planck_PC01.dat
epsilon_ann_Planck_PC01_perp.dat
etc., with one file for each PC, choice of binning, and

experiment (CVL, Planck and WMAP 7). Each of these
ASCII files contains 4 columns: ‘, PCTT, PCEE, PCTE.

For each experiment and choice of binning, one
additional ASCII file contains the ordered eigenvalues for
the principal components, and another holds the ordered
eigenvectors/PCs as functions of redshift. These files are
named, e.g.:

epsilon_ann_Planck_PC_eigenvalues.dat
epsilon_ann_Planck_PC_eigenvectors.dat

2. Units

The PC vectors PC_POWSPEC and PC_POWSPEC_
PERP are the changes in ‘ð‘þ 1ÞC‘=2� (before and after
projecting out the cosmological parameters, respectively)
corresponding to an energy deposition history given
by"i ¼ " for all i (where the"i are dimensionful coefficients
defined in Eq. (9)). Our convention, described in Sec. III B, is
that the C‘ have units of �K2, the principal components ei
are dimensionless, energy deposition from annihilations
has units cm3=s=GeV, and energy deposited by decays
has units of s�1 (see Eq. (1)). The energy deposition
parameter " (labeled EPSILON in the files) is fixed at
2� 10�27 cm3=s=GeV for the annihilation case, and
1� 10�26 s�1 for the decay case.
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