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We study the complete cosmological evolution of dark matter (DM) density fluctuations for DM
particles that decoupled being ultrarelativistic during the radiation dominated era which is the case of keV
scale warm DM (WDM). The new framework presented here can be applied to other types of DM and, in
particular, we extend it to cold DM. The collisionless and linearized Boltzmann-Vlasov equations (B-V)
for WDM and neutrinos in the presence of photons and coupled to the linearized Einstein equations are
studied in detail in the presence of anisotropic stress with the Newtonian potential generically different
from the spatial curvature perturbations. We recast this full system of B-V equations for DM and neutrinos
into a system of coupled Volterra integral equations. These Volterra-type equations are valid both in the
radiation dominated and matter dominated eras during which the WDM particles are ultrarelativistic and
then nonrelativistic. This generalizes the so-called Gilbert integral equation only valid for nonrelativistic
particles in the matter dominated era. We succeed to reduce the system of four Volterra integral equations
for the density and anisotropic stress fluctuations of DM and neutrinos into a system of only two coupled
Volterra equations. The kernels and inhomogeneities in these equations are explicitly given functions.
Combining the Boltzmann-Vlasov equations and the linearized Einstein equations constrain the initial
conditions on the distribution functions and gravitational potentials. In the absence of neutrinos the
anisotropic stress vanishes and the Volterra-type equations reduce to a single integral equation. These
Volterra integral equations provide a useful and precise framework to compute the primordial WDM

fluctuations over a wide range of scales including small scales up to k ~ 1/5 kpc.
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L. INTRODUCTION AND SUMMARY OF RESULTS

The evolution of the dark matter (DM) density fluctua-
tions since the DM decoupling till today is a basic problem
in cosmology. This problem has been extensively treated in
the literature for particles decoupling being nonrelativistic
(cold dark matter, CDM) [1-5].

Particles decoupling ultrarelativistically in the radiation
dominated era (warm dark matter, WDM) were proposed
as DM candidates years ago [6-9]. Such WDM particles
with mass in the keV scale become the subject of a re-
newed interest in recent years [10-16].

In this paper, we study the evolution of DM density
fluctuations for particles that decoupled being ultrarelativ-
istic during the radiation dominated era. (Ref. [17] has
recently considered this issue).

The expansion of the Universe dilutes matter in the early
universe and particle decoupling happens when the particle
collisions become sufficiently rare and can be neglected.
Therefore, and it is well known, the particle distribution
generically freezes out at decoupling. This happens irre-
spective of whether the particles are in or out of thermal
equilibrium (see Ref. [5], Sec. 2 of Ref. [12] and Ref. [18])
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The treatment of the cosmology density fluctuations
presented here and in the companion paper Ref. [19] is
valid for generic freezed out distribution functions,
whether at thermal equilibrium or out of thermal equilib-
rium and holds irrespective of the particular DM particle
model.

The linearized Boltzmann-Vlasov equation provides an
appropriate framework to follow the evolution of the pri-
mordial fluctuations since the DM decoupling till today.
The linearized B-V equation turns to be particularly diffi-
cult to solve since it is in general a partial differential
equation on a distribution function which depends on seven
variables. Two strategies have been used to solve the
linearized B-V equation. One method consists in expanding
the distribution function on Legendre polynomials trans-
forming the B-V equation into an infinite hierarchy of
coupled ordinary differential equations [1-4]. Another ap-
proach to the linearized B-V equation integrates the distri-
bution function over the particle momenta and recast the
linearized B-V equation into a linear integral equation of
the Volterra type [20] [6,18,21-23]. In the case of non-
relativistic particles in a matter dominated universe this
leads to the so-called Gilbert equation [20]. This approach
leads to linear integral equations of the Volterra type while
the Legendre polynomials expansion produces an infinite
hierarchy of coupled ordinary differential equations. The
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Volterra type integral equation exhibits a long-range mem-
ory of the gravitational interaction [23]. However, the
memory of the radiation dominated (RD) era turns out to
fade out substantially in the matter dominated (MD) era.

In this paper we derive a system of integral equations of
the Volterra type valid for relativistic as well as for non-
relativistic particles propagating in the radiation and matter
dominated eras. For warm dark matter and neutrinos we
obtain a pair of coupled Volterra integral equations for the
density fluctuations and the anisotropic stress.

We start by writing down the collisionless Boltzmann-
Vlasov equation in a spatially flat Friedmann-Robertson-
Walker (FRW) space-time with adiabatic fluctuations in
the conformal gauge. The distribution function f 4, (7, §, %)
of the DM particles after their decoupling and to linear
order in the fluctuations can be written as

Fam(n, 4 %) = Ndmgdmfgm(Q) + f?m(”l» g, %)
= Nam/o™(@)gaml! + Pam(n, G, ] (1.1)

where fi™(g) is the homogeneous and isotropic zeroth-
order distribution at decoupling, g4, 1S the number of
internal degrees of freedom of the DM particle and N,
is a normalization factor. 7 is the conformal time, g and X
stand for the particle momentum and position, respectively.
We use the superscript tilde in configuration space as W(%)
to indicate the Fourier transform of the momentum space
function \I’(lz). The superscript hat stands for dimensionful
functions as fi™(¢) whose dimensionless counterpart
f3m(Q) does not bear a hat.

Neutrinos are analogously described by a distribution
function f,(7, 4, X)

Fo(n a9 =N,(mg.fia) + fi(n g%

=N,i@egll +¥,(n.d3] 1.2

where f%(g) stands for the zeroth-order Fermi-Dirac dis-
tribution function for neutrinos after decoupling, g, is the
number of neutrino internal degrees of freedom and N,(n)
is a normalization factor.

We obtain as the collisionless B-V equation for DM
including linear terms in the fluctuations

- | )
Wam =49 Wam +
an E dIng

—q;0;{
m ¢

alnfgm[%_ E ~:|:0‘
(1.3)

The neutrino distribution function obeys the massless ver-
sion of Eq. (1.3)

—aqu + n,ﬂ,»‘i’,, + dlnfo [% —
an ding Ldn

nia,-lz] =0, (14)
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where ¢ is the Newtonian potential and ¢ corresponds to
the spatial curvature perturbation.

The B-V equations (1.3) and (1.4) are coupled to the
linearized Einstein equations for the gravitational poten-
tials ¢ and ¢. After Fourier transforming, the linearized
Einstein equations read

3h(n)% + 12¢p(n, k) + 3h2(n) i (n, k)
Am(m, B) + A, (7, k)
a*(n)

= —47TG[

+4a*(n)p,(7)B(n, /3)], (1.5)
a(n, k) = ¢(n.k) — ¢(n, k)
47G > >
= W(m[zdm(n’ k) + Ev(n’ k)]
= Oam(n. K) + 7, (n, k), (1.6)

where p,(n) is the photon energy density, ®¢(n, k) the
photon temperature fluctuations integrated over the ¢ di-
rections, o(n, k) is the anisotropic stress perturbation and

. a3 .
Agm(n, k) = fﬁE(n, Q) fi™(n, g, k),

- &3 2 . -
S0 R) = =2 [ G5 g P A0, B
1d
h(n) = Eﬁ’ E(n,q)=ym*a*(n)+q¢>  (1.7)

P,(x) the Legendre polynomial of order two. Equations
analogous to Eq. (1.7) hold for neutrinos with the index dm
replaced by v and E(7, g) replaced by g.

-

The customary DM density contrast (7, k) is connected
with Agp (7, &) by [2]

Adm(nr E)

— L 1.8
pdm[aeq + a(’/])] ( )

- 1
5(7” k) aeq - 3200,
where py, is the average DM density today.

We start this paper by deriving the collisionless
Boltzmann-Vlasov equation for DM particles which de-
coupled being ultrarelativistic (UR) and become nonrela-
tivistic in the radiation dominated era. This treatment is
general and applies to any DM particle candidate decou-
pling being UR during the RD era. In particular, it is
appropriated for keV scale WDM particles which become
nonrelativistic by redshift z ~ 5 X 10°. Furthermore, we
generalize the whole treatment to particles that decouple
being nonrelativistic as CDM.

Combining the linear and collisionless Boltzmann-
Vlasov equations (1.3) and (1.4) with the linearized
Einstein equations (1.5), (1.6), and (1.7) at initial times
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strongly constrain the initial conditions on the distribution
functions and the gravitational potentials. The initial
conditions are efficiently investigated expanding the

distribution functions in powers of 7 and iq - Ign. Our
analysis includes the initial conditions for DM, neutrinos
and photons. This analysis is valid both for DM that
decouples being ultrarelativistic and nonrelativistic (as

CDM). We show in this framework that the k dependence
factorizes out in the initial distribution functions

V. (0,3, k) and ¥ (O G, k) as well as in the initial den-
sities Adm(O k), A (0, k) and anisotropic stresses adm(O k),

0,(0, k). The dependence on the directions of k stays
factorlzed for all times considerably simplifying the dy-
namical evolution.

The primordial inflationary fluctuations [1,24] deter-
mine the initial gravitational potential (0, E). (0, E) is
given by the product of a k dependent amplitude propor-
tional to k"/272 times a Gaussian random field with unit

variance that depends on the k-direction, n, being the
scalar primordial index.

We derive from the linearized Boltzmann-Vlasov equa-
tion (1.3) a system of four linear integral equations of the
Volterra type for the density fluctuations Ay (7, k),
A,(n, k) and the anisotropic stress fluctuations oy, (7, k),
o, (7, k) valid both for ultrarelativistic and nonrelativistic
particles in the RD and MD eras. This is a generalization of
Gilbert’s equation. Gilbert’s equation is only valid for
nonrelativistic particles in a matter dominated universe
[20]. The remarkable fact in these new Volterra integral
equations is that the density and anisotropic stress fluctua-
tions obey a closed system of integral equations. Although

the B-V equation is an equation on functions of 7, k and q

with coefficients depending on 7, k and g, integrating the
distribution functions on ¢ with appropriated weights, the
density and anisotropic stress fluctuations obey a closed
system of integral equations. Namely, no extra information
on the ¢ dependence of the distribution functions is needed,
which is a truly remarkable fact.

In summary, the pair of partial differential Boltzmann-
Vlasov equations in seven variables Egs. (1.3) and (1.4)
becomes a system of four Volterra linear integral equations
on Ay (1, k), Sam(m, k), A,(n, k) and 3,(n, k). In addi-
tion, because we deal with linear fluctuations evolving on
an homogeneous and isotropic cosmology, the Volterra
kernel turns to be isotropic, independent of the k directions.
As stated above, the k dependence factorizes out and we
arrive to a final system of rwo Volterra integral equations in
two variables: the modulus k and the time that we choose to
be the scale factor.

We have thus considerably simplified the original prob-
lem: we reduce a pair of partial differential B-V equations
on seven variables 7, ¢, X into a pair of Volterra integral
equations on two variables: 7, k.
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It is convenient to define dimensionless variables as

ki, 21, | mm
C T Hy m O
Igm o m Vaeq dm

a =

where [ stands for the free-streaming length [13,23,25],
T, is the comoving DM decoupling temperature and 1™ is
the dimensionless square velocity dispersion given by

1im — ﬁ " 0" fim(Q)dQ,

while fd™(Q)is normalized by /™ = 1.

(1.9)

Q is the dimensionless momentum Q = ¢/T; whose typi-
cal values are of order one. We choose as time variable

y = a(n)/aeq = 3200a(n).

A relevant dimensionless rate emerges: the ratio between
the DM particle mass m and the decoupling temperature at
equilibration,

_ Mdeg m (gq\/3
Eam T, P00V <100> ’
g4 being the effective number of UR degrees of freedom at
the DM decoupling. Therefore, &y, is a large number
provided the DM is nonrelativistic at equilibration. For m
in the keV scale we have &4, ~ 5000.

DM particles and the lightest neutrino become nonrela-
tivistic by a redshift

m m (g4\\/3
ns + 1 = — = 1.57 X 107—(—)
Curans T, kev \100

for DM particles, (1.10)

m . .
Zhans = 34 z for the lightest neutrino.

0.05 eV

Zirans denoting the transition redshift from ultrarelativistic
regime to the nonrelativistic regime of the DM particles.

Since WDM decouples being ultrarelativistic it contrib-
utes to radiation for large redshifts z > z;,,,. However,
WDM turns to produce a small relative correction of the
order 1/&4,, to the photons + neutrino density. We find a
little slow down of the order 1/ &4, in the expansion of the
universe when the WDM becomes nonrelativistic around
fdmy = 1.

We obtain a pair of coupled Volterra equations for the
functions A(y a) and &(y, a) defined as follows:

Apra) = — - [ o Bl (y)A 0]
i} - T b(n, k)
, ) = ya) — 1, L) = -,
gy, a) = ¢, a) d(y, @) b5
A, @) = 1 (1.11)
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where we choose to factor out the initial gravitational

potential (0, k), R,(y) is the neutrino fraction of the
average energy density,

Idm
I, = + R,(0),
¢ é‘:dm
m -
Ay, @) = ———— Ayn(n, k),
PamTa (0, k)
_ 17 N
A, a)= A A, (m, k),

p, (0, KR, (y)

Agm(m, k) being given by Eq. (1.7). Notice that the DM
contribution to A(y, @) is suppressed by a factor 1/&y, =
1/5000. The growth of the DM fluctuations in the MD era
largely overcomes this suppression.

Expanding the Boltzmann-Vlasov equations (1.3) and

(1.4) in powers of 7 and iq - 1277 as remarked above, we
obtain the initial gravitational potentials related by

$(0, k) = [1 + 2P (0, k) =[1 + 2R, (0)]4(0, k).

Notice above the small O(1/£4y,) correction in /.
The final pair of dimensionless Volterra integral equa-
tions take the form

A(y, @) = C(y, @) + B;(»)$(y, @)

+ f " dY[Ga () B, @)
0

+ Gy, Yoy, )] (1.12)
y
(v, a) = C7(y, a) + [O dyTIS(y, Y)5 (', @)
+ 1,0, V), @) (1.13)
with initial conditions A(0, @) = 1, (0, @) = 21,. This

pair of Volterra equations is coupled with the linearized
Einstein equations (1.5) and (1.6).

The kernels and the inhomogeneous terms in Egs. (1.12)
and (1.13) are given explicitly by Egs. (4.7), (4.8), (4.9),
(4.10), (4.15), (4.16), (4.17), (4.29), (4.30), (4.31), (4.32),
and (4.33). The arguments of these functions contain the
dimensionless free-streaming distance I(y, Q),

dy'
J[l Y2 + (0]

The coupled Volterra integral equations (1.12) and (1.13)
are easily amenable to a numerical treatment.

When the anisotropic stress &(y, a) is negligible,
Egs. (1.12) and (1.13) reduce to a single Volterra integral
equation for the DM density fluctuations Ay, (y, a). We
find the solution of this single Volterra equation for a broad
range of wave numbers 0.1/Mpc < k < 1/5 kpc and ana-
lyze the transfer function and density contrast in the ac-
companying paper Ref. [19].

I(y,0) = (1.14)

PHYSICAL REVIEW D 85, 043516 (2012)

The framework derived here reducing the full evolution
of the primordial cosmological fluctuations to a pair
Volterra integral equations is general for any type of DM
and provides, in particular, in the nonrelativistic limit in the
MD era the so-called Gilbert equations.

In summary, the Volterra integral equations obtained
here provide a useful and precise method to compute the
primordial DM fluctuations (both WDM and CDM) over a
wide range of scales including very small scales up to
5 kpc.

It is easy to introduce the cosmological constant in the
framework and equations presented here. Moreover, bary-
ons and photons can be treated in this framework at the
price of introducing further coupled Volterra integral
equations.

In Sec. II we derive the linearized and collisionless
Boltzmann-Vlasov equations for DM and for neutrinos.
We present the linearized Einstein equations for the gravi-
tational potentials which are coupled to the B-V equations.

In Sec. III we then provide the adiabatic initial condi-
tions for the fluctuations which turns to be constrained by
the B-V and linearized Einstein equations.

In Sec. IV we recast the linearized DM and neutrino B-V
equations as a system of linear integral equations of the
Volterra type.

We derive in Appendix A the Poisson equation from the
explicit solution of the linearized Einstein equations and
the systematic corrections to it in the short wavelength
regime (&gnay >> 1). Some useful angular integrals are
computed in Appendix B.

II. THE BOLTZMANN-VLASOV EQUATION
IN THE FRW UNIVERSE

We derive in this section the collisionless B-V equation
for DM particles which decoupled being ultrarelativistic
and become nonrelativistic in the radiation dominated era.
This treatment is appropriate for keV scale DM particles
which become nonrelativistic by z ~ 2 X 107 and applies
also to any DM particle candidate decoupling being UR
during the RD era.

A. Particle propagation in the FRW universe
including fluctuations

We consider spatially flat FRW spacetimes with adia-
batic perturbations of the metric in the conformal gauge. In
conformal time 7 the metric takes the form

ds? = —a>()[1 + 2¢(n, x')]dn?

+ @ (1 = 2¢(n, x))dx)?, @1
where i is the Newtonian potential and ¢ corresponds to
the perturbation of the spatial curvature.

The particle propagation equations follow from the
Lagrangian
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1 dx® dxP
L =-g 22 & 22
28BN A (2.2)

where x¢ are the contravariant particle coordinates and A is
the affine parameter on the trajectory.

The covariant canonical momentum follows from
Eq. (2.2) as

oL dxP
=——= — = B 2.3
Pa a({ixf) 8ap A 8aBlP ( )
and the equations of motion take the form
dpa 1 agﬁ'y
= —= —_ 2.4
7 2 PBPy @ 2.4

The equations of motion have to be supplemented by
the on-shell condition

2

m? = —g,3p“pP, (2.5

where m is the mass of the DM particle.

The derivative with respect to A is related to the deriva-
tive with respect to the conformal time using Eq. (2.3) for
a=0:

d 1 d
—_— = 2.
p 0 da (2.6)
The equations of motion (2.4) are then
dp; 1
ap; 2.7

_ 24 7 24 7

= ————(p?3;¢ + p39; ).
d'f] az(n)po (pz ]ql) pO j'?zl)
To first order in the fluctuations, it is convenient to define
the momentum ¢; and the energy variable E(, g) as in
Refs. [2,6],

E(n, q) = \/mzaz(n) +¢% where ¢; = ¢, (2.8)
7 = q;4;-

The on-shell condition Eq. (2.5) becomes to first order in
the fluctuations,

2a*(n) = p} — p? — 2(p3Y + p}d) or
E? = p3(1 —2¢).

We therefore have to first order in ¢,

1 1 y
= — 1 X X
~ . 2
E(n,q)=—po(1—¢), p>*=p;p’ Z%n)’
P+ pi=EX(n,q) + > +2dm*a*(n). (2.9)

In terms of ¢; the equations of motion (2.7) to first order in
the fluctuations ¢ take the form
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83 4)

(2.10)

and therefore

2
- (EnlallZI ‘I’qffliai(;), (211)

dn  q dn
where
. . . dn'’
n, = & n;n' = B’Jn,-nj =1, ni—n = 0.
q dn

(2.12)

The total derivative d¢/dn can be expressed in terms of
partial derivatives as

i _0d
dm 877

where from Egs. (2.3), (2.6), and (2.8) to zeroth-order in the
fluctuations,

8 b, (2.13)

dxi pi
0

qi
— = =—. 2.14
dn P E (2.14)
Combining Eqgs. (2.11) and (2.13) yields
dg; I - g .
an = Qi% —Eo;y — E(Sij —nny)d;p  (2.15)
d ad .
49 _ 3 pod (2.16)
dn an

B. The zeroth-order WDM distribution and the
space-time in the RD and MD eras

We work in the universe where radiation and dark matter
are both present. The radiation and DM densities are given
in general at zeroth order by

p.la) =
(2.17)

pun@ = "2 g0 [ Bm 07870,
where p, = (,p,. stands for the radiation energy density
today, f3™(¢) is the homogeneous and isotropic zeroth-
order distribution that freezed out at decoupling, normal-
ized as
© 5 2dm —

fo q°dqfy"(q) = 1. (2.18)
Zam 18 the number of internal degrees of freedom of the
DM particle, typically 1 =< g4, = 4 and the normalization
factor Ny, reproduces the DM average density today
Pdm = Qdmpc as

043516-5



H.J. DE VEGA AND N.G. SANCHEZ

\J d3q 2dm
N gmM&am Wfo (9) = Qgmp., hence,

52 (2.19)
Ndm _ T pdm’
gdmM

where Qg4, = 0.233 is the DM fraction and p,. is the
critical density of the Universe

pe = 3M3 H3 = (2.518 meV)*, 1 meV =103 eV,

Hy = 1.502810"% GeV, (2.20)
We consider generic freezed out distribution functions
f4m (). We call T, the scale of the average momentum g at
the zeroth-order freezed-out homogeneous and isotropic
distribution at decoupling. When the DM particles de-
couple at thermal equilibrium, 7, is just the (covariant)
decoupling temperature. 7, is related by entropy conser-
vation to the CMB temperature today and to the effective
number of UR degrees of freedom at decoupling g, as

2\1/3

T,= (—) Tenp,  Where Topp = 0.2348 meV.
8d

(2.21)

In case the decoupling happens out of thermal equilibrium,
T, gives the (covariant) momentum scale of the DM par-
ticles at decoupling. We thus introduce the dimensionless
momentum both for in and out of equilibrium decoupling,

_a
Q_Td)

(2.22)
which typical values are of order one.

We now consider the dimensionless zeroth-order
freezed-out density 8m(Q) and the dimensionless normal-
ization constant Ny,

fimQ) = T3 /8" (q),

Ny
Ndm - —:;n = 37
T; 8ammT

fo " 02d0fim(Q) = 1,

277'Zpdm

(2.23)

where we used Egs. (2.18) and (2.19). For example, we
have for DM fermions decoupling ultrarelativistically at
thermal equilibrium

2 1

me(Q) = m m,

(2.24)

where (3) = 1.2020569.... Out of equilibrium freezed-
out distribution functions for sterile neutrinos [8,9,17,26,27]
are considered in the accompanying paper [19].

Equation (2.23) and the value of the average DM density
Pam EqQ. (2.20) imposes on the parameters of the DM
particle:

PHYSICAL REVIEW D 85, 043516 (2012)

£
100°

This relation suggests that DM decoupling ultrarelativisti-
cally can have its mass in the keV scale. Moreover, an
increasing body of evidence from the combination of
theory and astronomical observations points towards DM
particles with mass in the keV scale [12—14]: we thus take
1 keV as the reference scale for the mass of DM particles.
We consider g; = 100 as reference value for the number
gq of ultrarelativistic degrees of freedom at decoupling in
thermal equilibrium. This corresponds to a physical decou-
pling temperature 7T,y = (24 + 1)T; ~ 100 GeV, T,
being the covariant decoupling temperature.

The normalized momenta /9™ for fermions in thermal
equilibrium and for out of equilibrium sterile neutrinos are
defined as

ZamNamm = 0.6988 keV

fim = fo T pimQ)do, 1L = [0 " 0" f1(0)dQ.

(2.25)

Explicit expressions for them are given in the accompany-
ing paper [19].

From now on we use for the dimensionless one-particle
energy [see (2.8)],

E(n,
o7 0) = E 20— figur £ 0 where

Magy
a=ayy and &gy = 7 (2.26)
d
We find from Egs. (2.21), (2.23), and (2.26),
mae, m 84 1/3
=_—Z= 4900—(—)
Eam T, keV \100
m \4/3
= 5520(— Ngm)'3. 2.27
(keV) (8amNam) (2.27)

That is, &g, Will normally be a large number &4, ~ 5000.
The parameter &g, is the ratio between the DM particle
mass m and the physical decoupling temperature at equili-
bration redshift z.q, + 1 = 1/a.q = 3200. Therefore, &4y, is
a large number provided the DM is nonrelativistic at
equilibration.

It is convenient to use the dimensionless wave num-
bers [23]

. 2 2 T,
k=kn® and a=—Kk=— —7+—k
gdm HO mala.. Q
dm
Ve (2.28)
where n* = eq 1 _ 143 Mpc
T T, H pe
The free-streaming length is given by [13,23]
2 T, | I§m 2n*
l(g =— — = \[Idm, (2.29)
! HO m aqudm fdm 4

043516-6



COSMOLOGICAL EVOLUTION OF ... . I. EFFICIENT ...

where the momenta /9™ are defined by Eq. (2.25) and
therefore,

ki
=2 and
,/Igm
keV /100\!/3
I, = 57.2 kpce—<—)
m \ 8q
keV\4/3
=50.8 kpc(e—> (gumNam) 13, (2.30)
m

The DM energy density is given in general by Eq. (2.17)
that we can write as

p (y): Pdm :RO(Y)
o ay) y

y is defined in Eq. (2.26), aeq = Q,/€), = 1/3200 is the
scale factor at equilibration,

(2.31)

_pdm(y) © 5 ) Q2 ‘
= _ d 2 o),
o) P () ﬁ) Q704"+ fﬁmfo Q)
Pr
- 232
p(y) 20) 2.32)
SI‘ST:[] + O(érgmyz)]r §dmy = 1
and R,(y) = i
Yt @(ﬁ) Eamy = 5.
(2.33)

When &4,y = 1 and the WDM particles are nonrelativ-
istic the WDM density from Eqgs. (2.31) and (2.33) dilutes
as 1/a> as expected. For &4,y =< 1 the WDM particles are
ultrarelativistic and from Egs. (2.31) and (2.33) the WDM
density dilutes as radiation as 1/a*. Equation (2.33)
shows that pg,(y) and p,,q(y) become equal at equilibra-
tion y =1 (up to 1/ §§m corrections), as it must be. In
Fig. 1 we plot log;oRo(y) vs log,oy for fermions decou-
pling in thermal equilibrium and for sterile neutrinos
decoupling out of thermal equilibrium in the y model
where sterile neutrinos are produced by the decay of a
real scalar [26,28]. (These particle models are analogous
to those in Ref. [29] which consider a complex scalar
field.)

We find from Eqgs. (2.31), (2.32), and (2.33) that WDM
gives a small contribution of the order 1/&,, to the radia-
tion density for &4,y = 1:

Eay=1 I§™
Pam() = p, (MR = —p, ().
gdm

That is, the quantity &4, gives the order of magnitude of
the ratio of densities p,(y)/pam(y) for €4y < 1 while the
WDM is still relativistic.

Taking into account Eq. (2.31) the Friedmann equation
takes the form
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FIG. 1 (color online). log;yRo(y) defined in Eq. (2.32) vs
log;oy. The solid (red) line corresponds to fermions in thermal
equilibrium; the dotted (green) line corresponds to sterile neu-
trinos out of thermal equilibrium in the y model. Both freeze-out
distributions give the same R(y) values for &4,y = 5 [as in
Eq. (2.33)] while R (y) does depend on the details of the freeze-
out distribution for &4,y = 5. For &4,y =< 1, Ro(y) takes the
constant value given analytically in Eq. (2.33).

dv\2
G(R) =mol+ Rl @3
with the explicit solution
y dy’
n= ﬂ*f —_ (2.35)
0 YT+ Ro()

When the WDM particles are UR, we find that they
give small corrections of the order 1/&g4, to the scale
factor a(mn)

Eamy=1 4, Idl’l’l Emy=1y<kl n
a(n) "= _ej 1+22 m, a(mn) "= Aeq -
7V € n

2.

(2.36)

Hence, Eq. (2.36) indicates a little slow down of the
order 1/&4, in the expansion of the universe when the
WDM becomes nonrelativistic around &4,y = 1. When
the WDM particles are NR (£4,,y = 1) the WDM cor-
rections are even smaller, of the order 1/&7 .

In summary, up to small 1/&,,, or 1/ fgm corrections for
Eamy = 1 or &4,y = 1, respectively, the scale factor thus
results from Eq. (2.35),

n 7
y(n) = —*<1 + m)
7 4n
n=2n"W1+y—1.
The scale factor Egs. (2.37) has the radiation dominated

behavior for n << 7" and the matter dominated behavior
for 7 > n*. Notice that y.q = 1 and y,gay = 3200.

a(n) = acy(n),

(2.37)
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We have for the ratio R (y)

b (9<§j>

1+y+ @(?), Eqmy = 5.
dm

fdmy = 1’

Therefore, we can always approximate 1 + Ry(y) by
1 + y because in the case &4,y = 1, Ry(y) < 1. We will
therefore replace 1 + R(y) by 1 + y in most cases.

We obtain for i(n) defined as

lda +J1+Ryy JT+y 1
hin) =~ 24 = - 1+ 0(—) |
(m) adn Ny Ny [ (fdm)]
(2.39)

where we used Eqgs. (2.35) and (2.38).

Modes reenter the horizon when their physical wave
number keener/a is equal to the inverse of the Hubble
radius H = h/a, that is,

L _NTEY _JTFy 1
reenter 7'y y 1.4310° kpC'

(2.40)

C. The linear and collisionless Boltzmann-Vlasov
equation for DM and neutrinos

The distribution function fy,(7, §, X) of the DM parti-
cles after their decoupling is described by the collisionless
B-V equation. The distribution function is thus a constant
over the particle trajectories (Liouville):

Ozdfdm_afdm+in aJ?dm_'_dixi(:)]?dm

dn  dn  dm dq; dm ox’

(2.41)

M, ¢; = ¢;, X' = x' being the independent variables in the
distribution function.

To linear order in the fluctuations the distribution func-
tion of the decoupled particles can be written as

J?dm(nr é’ -’_6) = Ndmgdmfgm(Q) + f?m(ﬁ, EI)’ 56)

= Namf 0™ (@) gaml !l + Yam(n, G, D] (2.42)

Terms of order higher than one in f dm are neglected in the
linear B-V equation. We have from Eq. (2.42)

Fim(0, G, %) = Nawgan 6" (0) Vam(m, G, %).

Since dg;/dm, df4y/0x" and 9 f4,/dn; are of order one
[see Eqgs. (2.15) and (2.42)], we can write Eq. (2.41) to the
first order as

an dn dq

(2.43)

ﬂ afdm
E 9x!

=0, (2.44)

where we used Eq. (2.14). Inserting the linearized distri-
bution function Eq. (2.42) into Eq. (2.44) yields,
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dInfim [ﬁ _E

; “n0,4 | =0,
an E dlng Lon qnl lw]

(2.45)

where we used Eq. (2.16). Fourier transforming,

J >3 LIS Gk
\Pdm(”’l’ q, 'x) = 3 e q’dm(n) q, k);
(2m)
P (2.46)
7d > 2\ — ik-% pdm > 7
fi"(n, ¢, %) = [(27)36" fi™(n, g, k),
- &Pk s -
s X = e ) k )
303 = [z bin D
~ &Pk -
X) = ik-x k 2.47
¥ (n, X) f(27r)3e (. k), (2.47)
£, G0 = Nanganf0™(@) Wan (7, G, 0,
Equation (2.45) becomes [2]
oW iq . dinfdmra E
Cotm M kW + o [ﬁ B L”iklw] =0,
an E dlng Lom ¢
(2.48)

or, equivalently

G‘I’dm lélg
an  E(ngq

dinfi"roe Gk
fo [—¢—LE(n,q)q—2¢]=0. (2.49)
dlng Lan q

_I_

Neutrinos are described by a distribution function
f»(7m, g, X) obeying after decoupling a Boltzmann-Vlasov
equation similar to Eq. (2.41). Neutrinos decouple in
thermal equilibrium [1,25] at redshift z}; =~ 6 X 10°. T
is the comoving decoupling temperature of the neutrinos
Th =~ (1 MeV/z4) ~0.17 X 1073 eV.

We can linearize the B-V equation around the equilib-
rium zeroth-order neutrino distribution as

Fo(n,.3.%) =N, (e, f5@ + Fi(n ¢ %

=N, (ft(@e. 1 + ¥, (n, g D] (2.50)

where

_ 2 1
3¢@NTY) et/ Ti + 10

74 2.51)
The normalization of the neutrino distribution Eq. (2.50) is
fixed by the neutrino energy density being a fraction R, (1)

of the radiation energy density p, = (), p. in the radiation
dominated era
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A &3 A

NI/( ) v o v
— e ey f Pdafile). @52
2T 0
which gives using Eq. (2.51)
T
g2 4N,(n )— R(n) (2.53)

where I} = 7{(4)/[2{(3)] for the Fermi-Dirac distribu-
tion. The neutrino fraction R, (n) changes at the tempera-
ture of electron-positron annihilation (see Ref. [5] and the
accompanying paper [19]) and becomes negligible in the
matter dominated era.

Neutrinos can be considered massless and otherwise can
be neglected. Therefore W, (7, g, X) obeys the massless
version of Eq. (2.48)

v , fr
A7 in k', + dInfo [%
an ding Ldn

- inikiz,b] —0. (2.54)

D. The linearized Einstein equations for the
gravitational potentials

The Einstein equations for the FRW metric plus fluctua-
tions Eq. (2.1) give for the gravitational potential at linear
order [1,2]

3h(n)% + K2 p(m, k) + 302 () (n, k)
= 47Ga*(n)8TY(n, k), (2.55)
RLp(n, K) = (0, B)] = 47G 2(2’(7 ';) (2.56)

where h(n) is defined in Eq. (2.39), 8T contains the
contributions to the energy density from the photons, neu-

trinos and DM fluctuations and (7, 12) is the anisotropic
stress perturbation.

During the RD era radiation dominates over matter and
therefore the DM fluctuations are much smaller than the
radiation fluctuations. Thus, the gravitational potential is
dominated by the radiation fluctuations (photons and neu-
trinos). The photons can be described in the hydrodynam-
ical approximation (their anisotropic stress is negligible).

The tight coupling of the photons to the electron/protons
in the plasma suppresses before recombination all photon
multipoles except ®, and 0,. (The O, stem from the
Legendre polynomial expansion of the photon temperature
fluctuations O(n, g, k) [1]).

0, and O, obey the hydrodynamical equations [1]

d@o do

+kO,(n k="

2.57
rr in (2.57)

PHYSICAL REVIEW D 85, 043516 (2012)
do,

n (2.58)

k -k >

This is a good approximation for the purposes of following
the DM evolution [1].

The energy-momentum fluctuations are the sum of the
DM, photons and neutrino contributions

_ Adm(n’ ]z) + Av(n’ ]2)
a*(n)

— 4R, (n)p,(1)Oy(n, k),

STY(m, k) =

while only DM and neutrinos contribute to the anisotropic
stress 2(n, k)

21, K) = (. &) + 2, (n, k).

R,(n) stands for the photon fraction of the radiation
and p,(n) for the radiation density (neutrinos plus pho-
tons). R, () vanishes in the MD era.

The DM contribution to the energy-momentum tensor
and to the anisotropic stress take the form

(2.59)

o d*q dms - 7
Agn(, B) = [ E(n, q)fi™(n, G, F)

(2m)?

. PE . .
= Ransan [ 550 780 Va0, 3.,

(2.60)
. &
S0 = [ 5 ‘§3 761 )[1—3<k §P1fim(n, G, K) =
(2.61)
R Bg *P,(k- &) A .
_2Ndmgdm 1.4 2( Q)fgm(('I)\Pdm(n’ ZI)’ k)’

2m)?  E(n, q)

(2.62)

where P,(x) = (3x> — 1)/2 is the Legendre polynomial of

order two and A4, (7, k) stands for the DM density fluctu-
ations in general (whatever ultrarelativistic, nonrelativistic
or intermediate regimes).

Similarly, the neutrino contributions take the form

3
A,(n, k) = (n)a’yf(2 e af8(@,(n, 3. k), (2.63)

- N d3q Ay v oL L -
S, (1.0 = —28,(n)g, [ Sl Pa DY, 7,
(2.64)

The gravitational potentials ¢(7), (n) thus obey
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I

3h(n)5 + K2 (n, k) + 3h2(n) ¢ (n, k)

_ Adm(n’ Iz) + Ay(”fI: Iz)
= 47TG[ az(n)

+ 4a*(n)p, (1) Bq(n, 13)], (2.65)
a(n, k) = ¢(n, k) — (. k)
TG S B+ S, B (266)
)
where p, (1) = R,(n)p,(n),

as follows from Egs. (2.55), (2.56), (2.57), (2.58), (2.59),
(2.60), (2.61), (2.62), (2.63), and (2.64).

In the radiation/matter domination eras the gravitational
potential Eq. (2.65) takes in the dimensionless variables y
and K the form,

o1+ RoO)) 5+ 50000601 0) 11+ Ro)I G &)

47Gn*? R R .
= == A ) + 8,0 ]~ 2R, ()00, B,
eq
(2.67)
where « is defined in Eq. (2.28) and we used
2

16wGa*(n)p,(n) = 2R (n) *2 , Roly) = pd“z( ))

(2.68)

Agm(m, k) is connected to the customary DM density con-
trast 8(n, k) by [2]

ST k) Agn(y, §)
m + Pr

a3 a* a pdmaeq(y + 1)

8(n, k) = — (2.69)

In the short wavelength limit k> > h?, Eq. (2.65) be-
comes the Poisson equation, as expected

a(n) + Ueq
a*(n)

=, non- relanvmlc

12 b (1, k) 477G Py 8(n, k).

(2.70)

In Appendix A we provide the explicit integral representa-
tion (Al) to the solution of the first order differential
equation (2.67). Then, we derive the asymptotic expansion
of Egs. (2.67) and (A1) in the xky > 1 (short wavelength)
regime. We obtain in this way the Poisson equation
Eq. (2.70) plus the next to leading terms in this regime
in Eq. (A2).

Notice that the anisotropic stress o(y, k) vanishes for
Ky > 1.
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III. INITIAL CONDITIONS FOR THE LINEARIZED
BOLTZMANN-VLASOV AND
EINSTEIN EQUATIONS

We investigate in this section the initial conditions

for the DM linearized distribution function W(7, g, /2)
solution of Eq. (2.49) and the gravitational potentials
&(y, k) and ¥(y, k) which obey the linearized Einstein
equations (2.65).

Strictly speaking we should take the initial conditions
when both neutrinos and dark matter are decoupled,
namely, at y = 0.5107° (see Ref. [2] instead of y = 0.
However, setting the initial conditions at y = 0 as we do
here introduces at most an error of the order 107, that we
can safely ignore, because both the distribution function
and its adiabatic fluctuations (including the gravitational
potentials) are regular at y = 0.

Equation (2.65) yields in the » = 0 limit

477'G17*2

$(0,k) = — " [Agn(0, k) + A, (0, k)]

eq

— 2R, (0)0(0, k). 3.1)

In order ¢(nm, k) and (n, k) be regular at =0,
Eq. (2.66) implies that

S0, k) = 0 3,(0,k) =0 and
azdm 0,k =0, a—2”(0, k)= 0. (3.2)
an

These two conditions are fulfilled provided the integrals
over the directions g of Wy.,(0, g, 12), OV (0, g, /2)/ an,
W,(0, §, k) and 9V, (0, G, k)/9m times the Legendre poly-
nomial P,(k-§) vanish in Eqgs. (2.62) and (2.64),
respectively.

In the » — 0O limit all fluctuation modes become super-
horizon and therefore adiabatic modes must become g
independent except for the proportionality to the zeroth-

order distributions [5]. In any case, ¥y,(0,, k) and
W, (0, g, k) must be independent of the direction of g:
\Pdm (05 qr Iz) and
(0, ¢, k).

\I’dm(o) é’ Iz) =

W0, G, k) = (3.3)

The linearized Boltzmann-Vlasov equation Eq. (2.49)
yields to the order 1°:

- dl v R
i - k[\lfdm(o 00— “f w0, k)] aa;‘“ 0.3, §)
L dInfgm 0g
ding o7 —(0, k) =0, 3.4)
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and a similar expression for the neutrino distribution
function. The superhorizon arguments above and
Egs. (3.3) and (3.4) suggest an expansion in powers of 7

and iq - 1277 for the distribution function:

0 \Pdm

(0, G, k) = Ean(q, K)ig - k + Fan(g, k),

G‘If (3.5)

G, k) = E,(q, k)ig - k + F,(q, k).

Equation (3.4) determines the coefficients Ey, (¢, k) and
Fam(q. k) as

> dln m -
Edm(q’ k) fd l/’(o k) \Pdm(oy q, k)’
3.6)
> dInfd™ 9 >
de(q: k) = - dlﬁ; % 0, k)

Similar equations hold for E, (g, k) and F (g, k).
Equations (3.3) and (3.5) together with the integrals

Egs. (2.62) and (2.64) guarantee that Egs. (3.2) are fulfilled.
To the first order in 17 we obtain from Eq. (2.49)

PHYSICAL REVIEW D 85, 043516 (2012)

and an analogous formula for the neutrino distribution
function W,,.

The knowledge of the second derivative of the distribu-
tion functions with respect to n at n = 0 is necessary in
order to compute the initial anisotropic stress and the
difference between ¢ (0, k) and (0, k) from Eq. (2.66).

We compute the initial DM and neutrino density fluctu-
ations from Egs. (2.60) and (2.63), respectively

Agn(0, ) = dmgdm f d4q® 4™ (@) Wan 0. g, §),

s N v v
A0, k) = 2(7)2g

j( " dag' Tia v, 0.0.0. G

Inserting this result in the linearized Einstein equations
(3.1) at n = 0 gives

47Gn*?
3a 2
N (0 gV

w(0,k) = — [Ndmgdm f dqq* Fa™(q) P am (0, ¢, k)

[ daa i@, 0.0.0)]

- 2Ry(0)®0(0, k). (3.9

We compute the initial value of the anisotropic stress
taking the 7 — 0 limit in Eq. (2.62) with the help of

i . dl
T 0.6.0) = 1 RP Wan0.0.0) - “f " 0.0
. =dinfimray a¢
+ig-k ding [ (0k)+ (Ok)]
dinfim o2
——(0,k 3.7
dIng 377( o) G-D Eq. 3.7)
|
- Sgm(n k) Nmm . -
tim S0 Ranton [ i i) 420,60

Ndmgdm[(z )3 qP2( )(61 k) I:\Pdm(o’ q, ]g) -

These integrals can be evaluated using Eq. (3.8) and

dQ(q) 2
g - k)2P,(k =—,

Ll @ Pk 9) =
with the final result

. Zgm(m, 13) 2 2
,1711,% dkznz [Adm(o k) + = Ndmgdm¢(0 k)
*© 3 2dm
Xﬂ) dqq’ fo (q)],
lim g"’zk) = 3[A (0, k) + 4R, (0)Q,p, (0, k)],
=0 k°m

(3.11)

dInfdm
dlng

40, §) ]f%m(q>. (3.10)

Inserting this result in Eq. (2.66) gives the difference
between the two gravitational potentials at the initial time
¢ (0, k) —

a(0, k) = ¥ (0, k)

4

[0
Naw&am [ ;3 24m "

+2;2:rﬁ dqq’fy (Q)]t//(O,k), (3.12)

where we used Egs. (2.37), (2.52), and (2.53) and

47Gn*? 1
3ag,  2p,

043516-11



H.J. DE VEGA AND N.G. SANCHEZ

We see from Egs. (3.1), (3.9), and (3.12) that all depen-
dence on k in the initial values of Adm(O k), A0, k),
0,(0, k), ¥,,.(0, g, ) W,(0, g, k) and (0, k) can be taken

proportional to (0, k). We can therefore factor out (0, k)
from these initial values as

\I,dm (O q, )
V0, ¢, k) =

¥ (0, 09, (),
$(0, )&(q).

More generally, because the linear fluctuations evolve on
an homogeneous and isotropic cosmology, the linear evo-
lution equations only depend on the modulus k (as we shall

(3.13)

see explicitly in the next section), the dependence on the k
directions keeps factorized for all times 7. This is true for
the distribution functions W4, (7, 4, k) and v, (4, k) and
for both gravitational potentials ¢ and ¢.

Notice that from Eq. (2.23)

g Nan T,=p Ta_ q. Pam
dm 277_2 d dm m eq é:dm ’
and its neutrino counterpart Eq. (2.53).
The initial gravitational potential (0, k) is a Gaussian

random field with variance given by the primordial infla-
tionary fluctuations [1,5,24]

PHYSICAL REVIEW D 85, 043516 (2012)

277 87T |A |2 ng—1
e %

Pl//(k) i3

(3.15)

Ay b = %Am, N6 = 182"

The subscripts ¢ and R refer to the gravitational field and
the scalar curvature, respectively. |A,| stands for the pri-
mordial power amplitude, n, is the spectral index, and k is

the pivot wave number [24,30]:
|Ag| = 4.941073, n, = 0.964, ko =2 Gpc™ .

(3.16)

The initial value of the gravitational potential ¢ (0, 1?) can
therefore be written as

[Al (k)(l/z)ml) @
3\/?](3/2 kO 8\K),

where g(lz) is a Gaussian random field with unit variance

(g(k)g" (k) = 8(k — k).

(0, k) = (3.17)

Physical magnitudes in dimensionless variables

From the analysis in the previous subsection we see that
itis convenient to define dimensionless density fluctuations

(0, k) (0, K)) = Pyl 3) Sk + K, (3.14)  and dimensionless anisotropic stress fluctuations factoring
(2m) out the initial gravitational potential (0, k) in order to
where we can use, obtain quantities independent of the k direction:
> x mN mT 7 > n VN ( )T
Ban( ) = Ranl @) 7RG 0,0, A, 08 = 4,00 @) 40, K)

b, &) = g0,y @), PR =0, 0P( @) and F0 a) =1,
- - > 3.18
Can( R = 40 DT, @) R = $O.DF (@), o, &) = $0. D, @), 19
&(y’ CY) = (i(y’ CV) - &(yy CY), 0_'(0, a) = (Z)(O, CY) - 1’ ®0(y’ E) = lr//(o’ k))@()(y’ CY)
[
For ultrarelativistic neutrinos in dimensionless variables We find from Egs. (3.3), (3.13), and (3.20),
we have [see Eq. (2.26)]: B -~
Ban(0.0) = [ Qa0 (0, (0)
E(n,q)=q=T}0, e(y, Q) = 0. (3.19) (3.21)

The dimensionless density fluctuations are expressed in
terms of the distribution functions as

\Pdm(y’ ér E)
P(0, k)

W,(y, 0, &)
POk

~ 3
Bl 0 = [ G260, Qi)

- &
A,0.0 = [ 2ors0 (3.20)

where we used Egs. (2.60), (2.63), and (3.18).

R0, k) = [0 * 03d0f1(Q)E0).

The customary DM and neutrino number density fluctua-
tions are related to Ay, (v, k) and A, (y, k) by

_ 1 -
de(y) K) = WAdm(y’ K):

(3.22)

N,(y, k) =

A il
413 ().

The linearized Einstein equations (2.67) become for the
dimensionless quantities Eq. (3.18),
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[u+&ww +Q+(wﬂw»m

=[1+RW]o(, a) - 25 Ry, @)
- RZI( 'z J0, @) = 2R, (y)Oq(y, @). (3.23)
’;

From Egs. (3.12) and (3.18) the dimensionless density
fluctuations and anisotropic stress fluctuations take as ini-
tial values,

50, @) = 1[5 Ay (0, @) + Rz( )50, a)]
dm 3
4 [dm
+ 4 [fdm +R (0)] (3.24)

Equations (3.23) and (3.24) suggest to introduce the
quantities

o 1 1 -
8000 = [ Bnt ) + A0
. dm
I_§ = Adl‘n(OJ Cl) ( )A (O )
gdm 3

The relation between the initial values Eq. (3.24) be-
comes,

2 X 4 1.

(3.26)

The linearized Einstein equations (3.23) can be thus writ-
ten in a more compact form

p1+Raw( +4)+ uwﬂ¢<a>

=[1+Roe(y, ) — —IgA(Y» a) = 2R,(y)Oy(y, a).
(3.27)
Equation (3.27) at y = 0 gives the relation
Jdm _
1+ g— = — — 2R, (0)04(0, a). (3.28)
dm

where we used from Eq. (2.33) that Ry(0) = I§™/ &y
The initial number density fluctuations of photons
0,(0, @), neutrinos N,(0, «) and DM Dy, (0, ) are cus-
tomary set equal to each other [1,2,5,18,31] which gives
from Eqgs. (3.22), (3.25), and (3.28)
dm dm

I5
1+—=>—=-2R,(0 0, —2
+§dm R()N( a) gm

—2R,(0)0,(0, a),

de (0: a)

(3.29)
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and therefore
N, a)=
Adm(ox a’) =

C:)O(O; CY)
—21§m,

= D_dm(()» CY) = 73

_ (3.30)
A0, a) = —21%.

It follows in addition from Egs. (3.25) and (3.30) that

I.=-2I;~-2R,0), &0 a)=2,=2R,0).

(3.31)

The approximation symbol = here indicates that DM con-
tributions to the initial data of the order 1/&,,, < 1 have
been neglected. As is known, DM is negligible in the RD
era and its contributions to the initial data relative to the
radiation contribution are of the order 1/&gy,.

Using Eq. (3.31) we can rewrite Eq. (3.26) as the relation
between the two initial gravitational potentials

$0, k) = [1 + 21y (0, k).

When corrections 1/&4, are neglected this becomes a
known relation [2,5]

$(0, k) =[1 + 2R, (0)](0, k).

In summary this yields for the initial gravitational potential

$(0) =0, a) =1+2;=1+2R,(0). (3.32)
Equations (3.21), (3.30), and (3.31) impose constraints on
the functions ¢9,(Q) and &)(Q) defining the initial distri-
bution functions. We have to specify the initial functions
¢4 (Q) and ¢%(Q) to completely define the initial data.
There are two well motivated physical initial conditions.
First, the thermal initial conditions (TIC) (or thermal per-
turbation) [2,6,23],

Td e Td[l + 5T(k):|,
Ty

in which case ¢ (Q) and &)(Q) are proportional to

dInfd™/dInQ and dInf}/dInQ, respectively. Second,

the Gilbert initial conditions (GIC) [20,23] where &} (Q)

and ¢9(Q) are chosen to be constants. In order to fulfill

Eq. (3.30) we must choose for both DM and for neutrinos

1 dInfdm TIC
&0 (Q) = {2 ame (TIC),
=2 (GIC). (3.33)
1A g (TIC)
o) = { 2 awe
-2 for (GIC).

This completes the analysis of the initial conditions.
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IV. THE LINEAR BOLTZMANN-VLASOV
EQUATION AS A SYSTEM OF VOLTERRA
INTEGRAL EQUATIONS

We recast in this section the linearized DM and neutrino
B-V equations (2.49) and (2.54) for W(y, ¢, k) and

v,(y, g, /2), coupled with the linearized Einstein’s equa-
tion, as a system of linear integral equations of the Volterra

type.

A. From the Boltzmann-Vlasov equations
to the Volterra integral equations

In the dimensionless variables Egs. (2.22) and (2.23) the
B-V equation (2.49) takes the form

o
I+ R 5+ ’(Q QK) Wy, G, #)
dInf b,
+ W[\/l + RO(y)a_y(y’ K)
’8%’2Q) R ] = @.1)
It is convenient to set
Uy, 0, 8) = K00 ey (y, 0, k)
= OO (y, 0, R),  (42)

where @ is related with i according to Egs. (2.28), (2.29),
and (2.30) and
d /
6.0 = éun [
e(y, Q1 + Ry(y)

dy'
0 V[T + RoONIYZ + (Q/Eam)]

dln fgm[

\Ifdm(y’ é’ R)) = dan

PHYSICAL REVIEW D 85, 043516 (2012)

the one-particle energy e(y, Q) is defined by Eq. (2.26).
Notice that the free-streaming distance [(y, Q) depends on
Q through the ratio Q/&,,,. From Eq. (2.33) and the dis-
cussion after it, we can set from now on R(y) = y ignor-
ing inessential 1/&y, or 1/£2  corrections. (Except in
Sec. IV B of Ref. [19]).

Since ¢g/E(n, q) = Q/e(y, Q) is the velocity of the
DM particle at time 7, its corresponding coordinate free-
streaming length [25] is given by

AFS qj;) E('r’/, q) é«_—dm Ql(y’ Q)

0I(y, Q).
2,/1ém

(4.4)

where we used Egs. (2.37) and (4.3). [, is given by
Eq. (229) and sets the scale of the coordinate free-
streaming length Agg.

Inserting Eq. (4.2) into Eq. (2.48) yields for W, (y, 0, k)
the equation

oV, _ _dnfg™ o +id01(3,0)/2

ay dInQ
06 is(y,0) Q) .

Integrating on y we obtain:

dm , N
q’](y, é, I_é) _ ‘1’1(0, é, I_é) _ ddh;fé ’[} dy/e+i51-Ql(y"Q)/2
0 i\ L s
<[5 e ove 0]

Integrating the term d¢/dy’ by parts in y’ and using
Egs. (4.2), we find for V4, (y, O, K):

e~id 00230, @) — By, a)]

KO dInfg™ v A agyo-0.012 0’ -
i 02 dInQ me ’ g ([s(y 0) + 0 Q)]¢(y a) — &(y, Q)a(y', a))}

Here we used Egs. (3.3) and (3.13) for the initial value
Wy(0, 0, ). Multiplying both sides of Eq. (4.5) by
e(y, 0)fi™(Q), integrating over O and using Eq. (3.20)
for the DM density fluctuations yields,

A g, @) = a(y, @) + yéamban () (., a)

\/_[N ¥, ), a)

+ N0 y)a(y, )], (4.6)

(4.5)

where we factored out the initial gravitational potential
(0, k) from the density fluctuations according to
Egs. (3.13) and (3.18) in order to obtain a quantity inde-
pendent of the directions of a:

a(y, a) = f * 02d0¢(y, Q)[me(Q)ESm(Q)

04t Q]' 500 0]

4.7
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0 zd
V€ambam(y) 5[0 SQ(y QQ)

I. EFFICIENT ...

FM(QN40* + 3(Eamy)* ]

(4.8)
0 d dm
No0) = [ 0208, 0 I8 ilaloly. )]
<[00+ 25 +9)

NS,y

[ 02a0®

We used Egs. (B1) and (B4), j,(x) for 0 =n =3 are
spherical Bessel functions [32],

(4.10)

lo:¥) = 5 0110, ©) = ), O]
dx
Y T+ 002 + (07 €am)]

and we used the relation

476G gmNamTy _ 1
3dgq 2772 2§dm‘

.11

Notice from Eq. (3.32) that
$(0) =1 + 2R, 0).

The kernels N, (v, y") and N2(y, y') only depend on the
modulus of & and not on its direction since we consider
linear fluctuations evolving on an homogeneous and iso-
tropic cosmology.

We derive now for 4, (y, @) an equation analogous to
Eq. (4.6). We first obtain from Egs. (2.62), (2.66), (3.13),
(3.14), (3.15), (3.16), (3.17), and (3.18)

477
l//(O, &)O_-dm(y’ Cl) k2 2( )Edm(n’ k)
_ 3 jd3Q 0?
Eqmr?y* ) Am &(y, Q)
X Py - Q)3 (Q)Wyn(y, O, R).
(4.12)
We multiply Eq. (4.5) by
& k- 0)f™(Q), (4.13)
e(y, Q)

integrate over Q and using Eqs. (3.20) and (4.12) we find,

Jl[alg(y, y)le(y, Q)e(y, Q).

PHYSICAL REVIEW D 85, 043516 (2012)

EamOam(y, @) =a”(y,a) + & | J_[U 0, B, @)
USG50 @) (4.14)
where,
p _ 3 Q*dO T Lam/ 0
ae) = [TEE] o,
dm
IOQ]jz[ggl(y, Q)], @.15)
L3 [~ 0Q%dQdfi 0
Ualy) 5K2y2/o ) dQ[ sV O Q)]
x 2jilalgny)] = 3jslalo )l (4.16)
, 3 [® 0%dQ dfim
UZ0y) = 5o [ o0 0

X2jilalo(y, y)] = 3jslaly(y, YO (4.17)

We used here Eq. (B1) and (B4).
Equations (4.6) and (4.14) form a system of Volterra
equations

A, @) = a(y, @) + y€imban(») (., @)

[Ne(, Y)Y, @)

vy dy'
K
0 4/1+y

+ NZ(y, YNy, @)], €qmGam(y, @)

y o dy -
=a’(y.@) + Ualy ¥)(,
a’(ya) + & | 1er,[ 3y, @)
+ U0, Y, @)l (4.18)

Notice that a(y, @), a”(y, @), d(y, @), Fam(y, @), An(y, @)
and &(y, a) only depend on the modulus of & and not on
the directions of @&. The dependence on the @ directions
comes from the initial power spectrum (0, k) through the
random field g(lg) in Eq. (3.17) and turns to factor out,
which simplifies the resolution of the Volterra integral
equations (4.18). The factorization of the dependence on
the @& directions is possible because we consider linear
fluctuations evolving on an homogeneous and isotropic
cosmology where all the evolution kernels N,(y,y'),
N%(y,y"), Uy(y,y') and UZ(y, y') are independent of the
a directions.

The B-V distribution function as well as the coefficients
in the B-Vequation depend on y, & and 0. We integrate the
distribution function over Q multiplied by appropriated
weights. The distribution function times &(y, Q) produces
the density Eq. (3.20) and the distribution function times
the expression (4.13) produces the anisotropic stress fluc-
tuations Eq. (4.12). The density and the anisotropic stress
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fluctuations defined with such specific weights obey a
closed system of Volterra integral equations. Namely, no

extra information on the Q dependence of the distribution
functions is needed, which is a truly remarkable fact.

We derive below the Volterra integral equations for
neutrinos Eqs. (4.26) similar to Egs. (4.18) for DM.

B. The pair of Volterra integral equations
for DM and neutrinos

The Volterra integral equations for neutrinos are ob-
tained from Eq. (2.54) following the same steps
Egs. (4.2), (43), (44), (45), (4.6), (47), (48), (49),
(4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16), and
(4.17) which lead to the DM Volterra integral equations
(4.18). These Volterra integral equations for ultrarelativis-
tic neutrinos are simpler than the corresponding DM equa-
tions and follow from Egs. (4.7), (4.8), (4.9), (4.10), (4.11),
(4.12), (4.13), (4.14), (4.15), (4.16), and (4.17) making the
following substitutions:

ey, 0)= 0,
all(y, 0) = %‘ (7, 0),

f5"Q) = f3(0),

I3
=
£an R,(y)’

Tam(y, @) = o”(y, @) = ¢7(y, @) — $"(y, @),

alp(y,y) = kr(y, y),
gdmNdm = gVNV(y),

Adm(y’ a) = Av(y’ a))

(4.19)

where

r(y,y) = 2(«1 +y =4I+ y’),
r(y, 0) = 2(,/1 Fy— 1)

and we used Eq. (4.3). [See also Eq. (3.19)].

Upon these changes the kernels N, (y,y'), N2(y,y'),
U,(y,y), U%(y,y") in Egs. (4.9), (4.10), (4.11), (4.12),
(4.13), (4.14), (4.15), (4.16), and (4.17) and the inhomoge-
neous terms a(y, @) and a?(y, a) in Eq. (4.7) simplify
considerably. For ultrarelativistic neutrinos (ur) (0 <y <
34m,,/0.05 eV) using Egs. (3.29), (3.30), (3.31), (3.32),
(3.33), (4.1), (4.2), (43), (44), (45), (4.6), (47), (4.8),
4.9), (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16),
(4.17), (4.18), (4.19), and (4.20) these kernels become:

(4.20)

un neutrinos

N,(»y) = Ny y) = —=81lxr(y,y)]
un neutrinos 241% .
U y) = UY(y,y) = TZ;Q{ZA[M(% )]

= 3j3[kr(y, Y1},
4.21)
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un neutrinos

N3(y,y) = —3N&(Y)

=308 (),

(4.22)

un neutrinos

usyy) =

ur neutrinos

aly, @) =" a"(y, a) = —2I[1 + 2¢(0)jo[xr(y, 0)]

(4.23)

ur neutrinos

a’(y,a) = a""(y a)

= —onglt + 26012252 0,

(4.24)
where we used Eqgs. (2.25), (3.21), (3.30), (4.7), (4.8), (4.9),
(4.10), (4.15), (4.16), and (4.17).

In addition, when relevant the neutrinos are massless and
using Table I, the coefficient of ¢(y, @) in Eqs. (4.18) for
neutrinos becomes:

ygdmbdm(y) = 41;

Therefore, making the changes Eqgs. (4.19), (4.20), (4.21),
(4.22), (4.23), (4.24), and (4.25) in Egs. (4.18) yields the
following Volterra integral equations for ultrarelativistic
neutrinos

A¥(y, @) =a" (y, @) + 413 (v, @)

(4.25)

Y dy/ ur N A _l— /
+Kfomzva(y,y)[¢<y,a> Jo0a)]
(4.26)
Iéj 5V — SUroc Y dyl ur /
R0 m @ [ y)
. 1
X [¢(y’, @) =50, a)]. 4.27)

Notice that the DM and neutrino Volterra integral equa-
tions Eqs. (4.18) and (4.26) are coupled to each other and to
the linearized Einstein equations Eq. (3.23) as well as to the
hydrodynamic photon equations (2.57) and (2.58).

It is possible to simplify the set of four Volterra integral
equations (4.18) and (4.26) into two Volterra equations.
Taking linear combinations of Eqs. (4.18) and (4.26) we
find for A(y, @) [defined in Eq. (3.25)] and a(y, «),

A(y, @) = C(y, @) + B;(»)$(y, @)
Y / N _—
+ﬁdy[Ga(y,y)¢(y, )
+ Gy, yNa(y, @)],
o0.0) =€) + [ ayliz.)50, @)

+1,(3,y) 90, a)],
with the initial conditions Egs. (3.25) and (3.31)

(4.28)
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A, @) = 1,

I. EFFICIENT ...

50, @) = 2, = 2R, (0).

We have in Eq. (4.28)
1 R
L[ RO ]
20 L Egm I

a’(y, @) , R,() Juro
)= am Iy O, @)

Cly, @) =

(4.29)
C(y, a

Bi()= —%[ybdm@) +4R, ()]
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V) = —— [LU”( y) — R, ()

‘\/ ‘fdm 2IV

170, v |

(4.33)

In Egs. (4.28) we can use I; = R, (0).

Notice that the G and I kernels in Egs. (4.30), (4.31),
(4.32), and (4.33) result expressed as the sum of the DM
contribution from the N and U kernels plus the (ultrarela-
tivistic) neutrino contribution N%'(y,y’) and U%(y, y'),
respectively. The inhomogeneous terms C(y, @) and
C?(y, ) and the coefficient B.(y) in Egs. (4.29) and
(4.30) turn also to be expressed as the sum of the DM
plus the neutrino contributions.

In the MD era the neutrinos are negligible and its
fraction R, (y) becomes < 1 and can be neglected. Once
neutrinos are negligible in the MD era, the DM contribu-
tion to a(y, @) from Egs. (4.28), (4.29), (4.30), (4.31),
(4.32), and (4.33) is of the order 1/&4, < 1 and the
anisotropic stress becomes negligible. This reduces the
coupled Volterra integral equations (4.28) in the MD era
to a single Volterra integral equation for A(y, a) as we
explicitly show in the accompanying paper [19].

All functions in the inhomogeneous terms, coefficient
and kernels in the Volterra equations (4.28) are explicitly
known from Egs. (4.29), (4.30), (4.31), (4.32), and (4.33)
Therefore, Egs. (4.28) plus the linearized Einstein equa-
tions (3.27) and the hydrodynamic photon equations (2.57)
and (2.58) provide a close system of equations determining

Some useful formulas.

R,(y)
G.(y,y)= [—N 0, y) + =Ny (v, y’)],
21§,/1+y Eam 13
(4.30)
K 1 R,(y)
Go(y.y) = —7[—N;’(y,y’)— - Né‘,’(y,y’)],
2T+ Léam 213
“4.31)
K R,(y)
Ia(y) yl) = [_Ua(y’y v ’ /):I)
1+ yl gdm 13
(4.32)
TABLE 1.
Some useful formulas
H(% = Mpw Mlz)l = ;G Pdm Qdmp(’ Pr = ‘Q'rpu L QM

deg
Nt = ,/gi; ~ 143 Mpc, k = kn*

é:dm _ maLq = 4900 1 (34 1/3 — 5520(kev)4/%(gdmNdm)1/3 47rG1/

keV 00
o= 1 2T, 477617 2 gamNam T _ 1 4mGn? 2,N, ()T _ Ry(y)
'\/aeq‘ndm mH, 3a§q 272 2&4m ° 3a§q 272 215
8()” Q) = V(fdm)zyz + QZ’ Sv(y’ Q) =

l(y: 0) = IOW lQ(y Y) ZQ[Z()’ 0) — l()’ 0)]

=[50 fi™Q)do, I = [§ 0"f5(Q) 1" =15 =1

Adm(n, 0) = Ay, @) 8mels g0, &), A, (n, ) =
1§— —+R,(0)=R (0)—0727 A0 a) =1
b(n, k) = (0, 0P, @), Y(n, k) = (0, DTy, ),
o(n, k) = (0, K)a(y, @), ogn(n, E) =
r(v,y) = 2TFy =T+, 5(y) = —ArgSinh()

2 Pd = 3
dima gdmNdm 27 ,,,Tn%’y_a_cq_ z+1

A (y, ) S 0, 8) B(y, @) = = [ Ay, @) + B0

= 3200

a ~ 3200

1

P

Q for z > 9555, By, Y) = (llrf e/

DALy, @),

dm

#(0,a) = 1, $(0) = 1 +2R,(0) = 1.291 G(y, a) = Gyn(y, @) + 7,(, @),
1/1(0’ g)&dm(y’ a)’ 0-1/(77’ ]g) =

1/1(0’ ]g)a_-ll(y’ a)

_y—0 45" d 3 —y>1 1
bam) =" g5 " Eamy F @(y ) bam(y) =713 + 2[§dm»]2 - @(W)
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Ay, @), (v, @) and &(y, @). Once A(y, a), ¢(y, a) and
7 (y, @) are known we can insert them in the right-hand
side of Egs. (4.18) and (4.26) to obtain Adm(y, a),
Fam(y, @), A”(y, @) and &”(y, @), respectively.

We now set y = 0 in the system of the Volterra equations
(4.28) to check their consistency. Taking into account
Egs. (4.7), (4.8), (4.9), (4.10), (4.15), (4.16), (4.17), (4.29),
(4.30), (4.31), (4.32), and (4.33) we obtain

C0,a)=1+2¢(0),  B0)= -2

C70,@) = ~ 211 + 26 0]

. y . (4.34)
hm[ dy'G,(y, Yy, a) =0,
y—0Jo
lim [ g dy'G%(y, y)a(y, a) = 0,
y—0Jo
. Yo NI (v _8,
lim | dy'La(y.y) ¢, @) = 51 b (0)
(4.35)

1 b o I & / — 8

yggfo ay'13(y, ya(y', ) 5% 1¢R,(0).
Equations (4.28) are identically satisfied at y = 0 due to
Eqgs. (3.26), (4.34), and (4.35).

The system of Volterra equations (4.28) is collisionless
and it is therefore valid after both DM and neutrinos
decoupled for y >y’ = 0.5 X 107° (see Table II). Since
we are interested in adiabatic fluctuations which are regu-
lar solutions of Eqgs. (4.28) at y =0 we can start the
evolution at y = 0 instead of y = y” ~ 0.5 X 107° with a
negligible error.

For the DM particles, the range 0.5 X 107¢ <y < 0.01
corresponds to the transition from ultrarelativistic to non-
relativistic kinematics (see Table II).

The density contrast 6(y, &) can be expressed in terms of
the normalized DM fluctuations Ay, (y, @) from Egs. (2.69)
and (3.18) as

PHYSICAL REVIEW D 85, 043516 (2012)

where we used Eq. (3.30) and (0, &) is given by the
primordial fluctuations Eq. (3.17) and &4, is given explic-
itly by Eq. (2.27).

The integral equation (4.28) supplemented by the fluid
equations (2.57) and (2.58) for the photons and the line-
arized Einstein equations (3.23) provide a closed system of
equations to determine the DM, photon and neutrino den-
sity fluctuations. This system of Volterra-type integral
equations is valid for relativistic as well as nonrelativistic
particles propagating in the radiation and matter dominated
eras. This is the generalization of Gilbert’s equation which
is only valid for nonrelativistic particles in a matter domi-
nated universe [20].

We solve in an accompanying paper [19] the cosmologi-
cal evolution of warm dark matter density fluctuations
presented here in the absence of neutrinos. In that case
the anisotropic stress vanishes and the Volterra equations
(4.28) reduce to a single integral equation.
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APPENDIX A: THE DM GRAVITATIONAL
POTENTIAL FOR LARGE WAVE NUMBERS

In Secs. II and IV we found integrals of the type

[y dx (1+y _\ _
I)l(y)_,/:)1+x(l+xe )> fx), A=k?/3. (Al

The function ¢ ,(y) = I,(y)/y solves the first order differ-
ential equation

[y(l + y)di +1+y+ Ay2]¢A(y) = f(y),
y

which has the form of the linearized Einstein equations

st gy = | Ay, @) . , (3.23) and (2.27).
(3 a) = o y+ 1 $(0, @) with We derive here the asymptotic expansion of /,(y) in the
m . .
o pdm limit where A > 1.
50, &) = — 265" ¥ (0, @), (4.36) It is convenient to change the integration variable x in
Edm Eq. (A1) to s defined as
TABLE II. Main events in the DM, neutrinos and universe evolution.
Universe event Redshift z y=L= Zeq+ 4’11 ~ ?TO?
DM decoupling 24~ 1.6 X 1019 ot (£2)1/3 Ya=2X 10712
Neutrino decoupling 7 =6 X 10° ¥, =0.5X107°
DM particles transition from UR to NR Zirans = 1.6 X 107 XY (%)1/ 3 Virans = éim ~(.0002 X 1076 <y < 0.01
Transition from the RD to the MD era Zeq = 3200 Yeq = 1
The lightest neutrino becomes NR Zhans = 95 o857 Vons = 34%
Today z0=0 vo = 3200
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+
s(x) = 10g +y—x s(y) =0,
+y
s(0) =y — log(1 + y).

The integral in Eq. (A1) becomes

1) = ﬁ) P s (] 45 ot

In the A >> 1 regime this integral is dominated by the
endpoint of integration s = 0. Expanding f[x(s)]/x(s)
around s = 0 and integrating term by term yields

a1 f() 1+y[df_f(y)]+@< 1

1) Ay (y?lay  y (Ay)?

). (A2)

APPENDIX B: ANGULAR INTEGRALS

We proceeded in sec. IV to compute integrals over
the directions of § with the help of the partial wave
expansion [33]

ePRa =3 21+ V)il j(B)Pk - §).

=0

PHYSICAL REVIEW D 85, 043516 (2012)

Integrating this expansion over the angles yields [32]
dO(G) . -
[0 gaap k- ) = ij(p).
4

In Sec. IV we use Eq. (B1) for 0 = [ = 3, the relations [33]

(B

sinx

l
Jo)=— Jjir1(x)=—j(x)— =0 (B2
x X

and the formulas for Legendre polynomials [32]
Po(.x)=1 P(x)=x,

2[-1—1
l+1

It follows from these relations, in particular, that

xP(x) = 3P3(x) + 3P (x).

Pii(x) =x——P)(x) ———P;_(x), [=1.

[+1
(B3)
We get combining Eqgs. (B1) and (B3),

A00) .iaduy.0-1m002y . OP, (% - O)
A7

T é{Zjl[alQ(y, = 3jslaloy, ) (B4
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