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1LPTHE, Université Pierre et Marie Curie (Paris VI) et Denis Diderot (Paris VII), Laboratoire Associé au CNRS UMR 7589,
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We study the complete cosmological evolution of dark matter (DM) density fluctuations for DM

particles that decoupled being ultrarelativistic during the radiation dominated era which is the case of keV

scale warm DM (WDM). The new framework presented here can be applied to other types of DM and, in

particular, we extend it to cold DM. The collisionless and linearized Boltzmann-Vlasov equations (B-V)

for WDM and neutrinos in the presence of photons and coupled to the linearized Einstein equations are

studied in detail in the presence of anisotropic stress with the Newtonian potential generically different

from the spatial curvature perturbations. We recast this full system of B-Vequations for DM and neutrinos

into a system of coupled Volterra integral equations. These Volterra-type equations are valid both in the

radiation dominated and matter dominated eras during which the WDM particles are ultrarelativistic and

then nonrelativistic. This generalizes the so-called Gilbert integral equation only valid for nonrelativistic

particles in the matter dominated era. We succeed to reduce the system of four Volterra integral equations

for the density and anisotropic stress fluctuations of DM and neutrinos into a system of only two coupled

Volterra equations. The kernels and inhomogeneities in these equations are explicitly given functions.

Combining the Boltzmann-Vlasov equations and the linearized Einstein equations constrain the initial

conditions on the distribution functions and gravitational potentials. In the absence of neutrinos the

anisotropic stress vanishes and the Volterra-type equations reduce to a single integral equation. These

Volterra integral equations provide a useful and precise framework to compute the primordial WDM

fluctuations over a wide range of scales including small scales up to k� 1=5 kpc.

DOI: 10.1103/PhysRevD.85.043516 PACS numbers: 98.80.�k, 95.35.+d, 98.80.Cq

I. INTRODUCTION AND SUMMARY OF RESULTS

The evolution of the dark matter (DM) density fluctua-
tions since the DM decoupling till today is a basic problem
in cosmology. This problem has been extensively treated in
the literature for particles decoupling being nonrelativistic
(cold dark matter, CDM) [1–5].

Particles decoupling ultrarelativistically in the radiation
dominated era (warm dark matter, WDM) were proposed
as DM candidates years ago [6–9]. Such WDM particles
with mass in the keV scale become the subject of a re-
newed interest in recent years [10–16].

In this paper, we study the evolution of DM density
fluctuations for particles that decoupled being ultrarelativ-
istic during the radiation dominated era. (Ref. [17] has
recently considered this issue).

The expansion of the Universe dilutes matter in the early
universe and particle decoupling happens when the particle
collisions become sufficiently rare and can be neglected.
Therefore, and it is well known, the particle distribution
generically freezes out at decoupling. This happens irre-
spective of whether the particles are in or out of thermal
equilibrium (see Ref. [5], Sec. 2 of Ref. [12] and Ref. [18])

The treatment of the cosmology density fluctuations
presented here and in the companion paper Ref. [19] is
valid for generic freezed out distribution functions,
whether at thermal equilibrium or out of thermal equilib-
rium and holds irrespective of the particular DM particle
model.
The linearized Boltzmann-Vlasov equation provides an

appropriate framework to follow the evolution of the pri-
mordial fluctuations since the DM decoupling till today.
The linearized B-V equation turns to be particularly diffi-
cult to solve since it is in general a partial differential
equation on a distribution function which depends on seven
variables. Two strategies have been used to solve the
linearized B-Vequation. One method consists in expanding
the distribution function on Legendre polynomials trans-
forming the B-V equation into an infinite hierarchy of
coupled ordinary differential equations [1–4]. Another ap-
proach to the linearized B-V equation integrates the distri-
bution function over the particle momenta and recast the
linearized B-V equation into a linear integral equation of
the Volterra type [20] [6,18,21–23]. In the case of non-
relativistic particles in a matter dominated universe this
leads to the so-called Gilbert equation [20]. This approach
leads to linear integral equations of the Volterra type while
the Legendre polynomials expansion produces an infinite
hierarchy of coupled ordinary differential equations. The
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Volterra type integral equation exhibits a long-range mem-
ory of the gravitational interaction [23]. However, the
memory of the radiation dominated (RD) era turns out to
fade out substantially in the matter dominated (MD) era.

In this paper we derive a system of integral equations of
the Volterra type valid for relativistic as well as for non-
relativistic particles propagating in the radiation and matter
dominated eras. For warm dark matter and neutrinos we
obtain a pair of coupled Volterra integral equations for the
density fluctuations and the anisotropic stress.

We start by writing down the collisionless Boltzmann-
Vlasov equation in a spatially flat Friedmann-Robertson-
Walker (FRW) space-time with adiabatic fluctuations in

the conformal gauge. The distribution function ~fdmð�; ~q; ~xÞ
of the DM particles after their decoupling and to linear
order in the fluctuations can be written as

~f dmð�; ~q; ~xÞ ¼ N̂dmgdmf̂
dm
0 ðqÞ þ ~fdm1 ð�; ~q; ~xÞ

¼ N̂dmf̂
dm
0 ðqÞgdm½1þ ~�dmð�; ~q; ~xÞ�; (1.1)

where f̂dm0 ðqÞ is the homogeneous and isotropic zeroth-
order distribution at decoupling, gdm is the number of

internal degrees of freedom of the DM particle and N̂dm

is a normalization factor. � is the conformal time, ~q and ~x
stand for the particle momentum and position, respectively.

We use the superscript tilde in configuration space as ~�ð ~xÞ
to indicate the Fourier transform of the momentum space

function�ð ~kÞ. The superscript hat stands for dimensionful

functions as f̂dm0 ðqÞ whose dimensionless counterpart
fdm0 ðQÞ does not bear a hat.

Neutrinos are analogously described by a distribution

function ~f�ð�; ~q; ~xÞ
~f �ð�; ~q; ~xÞ ¼ N̂�ð�Þg�f̂�0ðqÞ þ ~f�1ð�; ~q; ~xÞ

¼ N̂�ð�Þf̂�0ðqÞg�½1þ ~��ð�; ~q; ~xÞ�; (1.2)

where f̂�0ðqÞ stands for the zeroth-order Fermi-Dirac dis-
tribution function for neutrinos after decoupling, g� is the

number of neutrino internal degrees of freedom and N̂�ð�Þ
is a normalization factor.

We obtain as the collisionless B-V equation for DM
including linear terms in the fluctuations

@ ~�dm

@�
þ 1

E
qi@i ~�dm þ @ lnf̂dm0

@ lnq

�
@ ~�

@�
� E

q2
qi@i ~c

�
¼ 0:

(1.3)

The neutrino distribution function obeys the massless ver-
sion of Eq. (1.3)

@ ~��

@�
þ ni@i ~�� þ d lnf̂�0

d lnq

�
@ ~�

@�
� ni@i ~c

�
¼ 0; (1.4)

where ~c is the Newtonian potential and ~� corresponds to
the spatial curvature perturbation.
The B-V equations (1.3) and (1.4) are coupled to the

linearized Einstein equations for the gravitational poten-

tials ~c and ~�. After Fourier transforming, the linearized
Einstein equations read

3hð�Þ @�
@�

þ k2�ð�; ~kÞ þ 3h2ð�Þc ð�; ~kÞ

¼ �4�G

�
�dmð�; ~kÞ þ��ð�; ~kÞ

a2ð�Þ
þ 4a2ð�Þ��ð�Þ�0ð�; ~kÞ

�
; (1.5)

�ð�; ~kÞ � �ð�; ~kÞ � c ð�; ~kÞ
¼ 4�G

k2a2ð�Þ ½�dmð�; ~kÞ þ ��ð�; ~kÞ�

¼ �dmð�; ~kÞ þ ��ð�; ~kÞ; (1.6)

where ��ð�Þ is the photon energy density, �0ð�; ~kÞ the

photon temperature fluctuations integrated over the ~q di-

rections, �ð�; ~kÞ is the anisotropic stress perturbation and

�dmð�; ~kÞ �
Z d3q

ð2�Þ3Eð�;qÞf
dm
1 ð�; ~q; ~kÞ;

�dmð�; ~kÞ ¼�2
Z d3q

ð2�Þ3
q2

Eð�;qÞP2ð �k � �qÞfdm1 ð�; ~q; ~kÞ

hð�Þ � 1

a

da

d�
; Eð�;qÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2ð�Þþq2

q
: (1.7)

P2ðxÞ the Legendre polynomial of order two. Equations
analogous to Eq. (1.7) hold for neutrinos with the index dm
replaced by � and Eð�; qÞ replaced by q.

The customary DM density contrast �ð�; ~kÞ is connected
with �dmð�; ~kÞ by [2]

�ð�; ~kÞ ¼ �dmð�; ~kÞ
�dm½aeq þ að�Þ� ; aeq ’ 1

3200
; (1.8)

where �dm is the average DM density today.
We start this paper by deriving the collisionless

Boltzmann-Vlasov equation for DM particles which de-
coupled being ultrarelativistic (UR) and become nonrela-
tivistic in the radiation dominated era. This treatment is
general and applies to any DM particle candidate decou-
pling being UR during the RD era. In particular, it is
appropriated for keV scale WDM particles which become
nonrelativistic by redshift z� 5� 106. Furthermore, we
generalize the whole treatment to particles that decouple
being nonrelativistic as CDM.
Combining the linear and collisionless Boltzmann-

Vlasov equations (1.3) and (1.4) with the linearized
Einstein equations (1.5), (1.6), and (1.7) at initial times
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strongly constrain the initial conditions on the distribution
functions and the gravitational potentials. The initial
conditions are efficiently investigated expanding the

distribution functions in powers of � and i �q � ~k�. Our
analysis includes the initial conditions for DM, neutrinos
and photons. This analysis is valid both for DM that
decouples being ultrarelativistic and nonrelativistic (as

CDM). We show in this framework that the ~k dependence
factorizes out in the initial distribution functions

�dmð0; ~q; ~kÞ and ��ð0; ~q; ~kÞ as well as in the initial den-

sities�dmð0; ~kÞ,��ð0; ~kÞ and anisotropic stresses�dmð0; ~kÞ,
��ð0; ~kÞ. The dependence on the directions of ~k stays
factorized for all times considerably simplifying the dy-
namical evolution.

The primordial inflationary fluctuations [1,24] deter-

mine the initial gravitational potential c ð0; ~kÞ. c ð0; ~kÞ is
given by the product of a k dependent amplitude propor-

tional to kns=2�2 times a Gaussian random field with unit

variance that depends on the ~k-direction, ns being the
scalar primordial index.

We derive from the linearized Boltzmann-Vlasov equa-
tion (1.3) a system of four linear integral equations of the

Volterra type for the density fluctuations �dmð�; ~kÞ,
��ð�; ~kÞ and the anisotropic stress fluctuations �dmð�; ~kÞ,
��ð�; ~kÞ valid both for ultrarelativistic and nonrelativistic
particles in the RD andMD eras. This is a generalization of
Gilbert’s equation. Gilbert’s equation is only valid for
nonrelativistic particles in a matter dominated universe
[20]. The remarkable fact in these new Volterra integral
equations is that the density and anisotropic stress fluctua-
tions obey a closed system of integral equations. Although

the B-Vequation is an equation on functions of �, ~k and ~q

with coefficients depending on �, ~k and ~q, integrating the
distribution functions on ~q with appropriated weights, the
density and anisotropic stress fluctuations obey a closed
system of integral equations. Namely, no extra information
on the ~q dependence of the distribution functions is needed,
which is a truly remarkable fact.

In summary, the pair of partial differential Boltzmann-
Vlasov equations in seven variables Eqs. (1.3) and (1.4)
becomes a system of four Volterra linear integral equations

on �dmð�; ~kÞ, �dmð�; ~kÞ, ��ð�; ~kÞ and ��ð�; ~kÞ. In addi-
tion, because we deal with linear fluctuations evolving on
an homogeneous and isotropic cosmology, the Volterra

kernel turns to be isotropic, independent of the ~k directions.

As stated above, the �k dependence factorizes out and we
arrive to a final system of two Volterra integral equations in
two variables: the modulus k and the time that we choose to
be the scale factor.

We have thus considerably simplified the original prob-
lem: we reduce a pair of partial differential B-V equations
on seven variables �, ~q, ~x into a pair of Volterra integral
equations on two variables: �, k.

It is convenient to define dimensionless variables as

	 � klfsffiffiffiffiffiffiffi
Idm4

q ; lfs ¼ 2

H0

Td

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Idm4

aeq�dm

vuut ;

where lfs stands for the free-streaming length [13,23,25],
Td is the comoving DM decoupling temperature and Idm4 is
the dimensionless square velocity dispersion given by

Idmn ¼
Z 1

0
Qnfdm0 ðQÞdQ;

while fdm0 ðQÞ is normalized by Idm2 ¼ 1:

(1.9)

Q is the dimensionless momentum Q � q=Td whose typi-
cal values are of order one. We choose as time variable

y � að�Þ=aeq ’ 3200að�Þ:
A relevant dimensionless rate emerges: the ratio between
the DM particle mass m and the decoupling temperature at
equilibration,


dm � maeq

Td

¼ 4900
m

keV

�
gd
100

�
1=3

;

gd being the effective number of UR degrees of freedom at
the DM decoupling. Therefore, 
dm is a large number
provided the DM is nonrelativistic at equilibration. For m
in the keV scale we have 
dm � 5000.
DM particles and the lightest neutrino become nonrela-

tivistic by a redshift

ztrans þ 1 � m

Td

’ 1:57� 107
m

keV

�
gd
100

�
1=3

for DM particles;

z�trans ¼ 34
m�

0:05 eV
for the lightest neutrino:

(1.10)

ztrans denoting the transition redshift from ultrarelativistic
regime to the nonrelativistic regime of the DM particles.
Since WDM decouples being ultrarelativistic it contrib-

utes to radiation for large redshifts z > ztrans. However,
WDM turns to produce a small relative correction of the
order 1=
dm to the photonsþ neutrino density. We find a
little slow down of the order 1=
dm in the expansion of the
universe when the WDM becomes nonrelativistic around

dmy ’ 1.
We obtain a pair of coupled Volterra equations for the

functions ��ðy; 	Þ and ��ðy; 	Þ defined as follows:

��ðy; 	Þ ¼ � 1

2I


�
1


dm

��dmðy; 	Þ þ R�ðyÞ
I�3

���ðy; 	Þ
�
;

��ðy; 	Þ ¼ ��ðy; 	Þ � 1; ��ðy; 	Þ ¼ �ð�; ~kÞ
c ð0; ~kÞ ;

��ð0; 	Þ ¼ 1; (1.11)
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where we choose to factor out the initial gravitational

potential c ð0; ~kÞ, R�ðyÞ is the neutrino fraction of the
average energy density,

I
 � Idm3

dm

þ R�ð0Þ;
��dmðy; 	Þ ¼ m

�dmTdc ð0; ~kÞ�dmð�; ~kÞ;

���ðy; 	Þ ¼ I�3

�rc ð0; ~kÞR�ðyÞ
��ð�; ~kÞ;

�dmð�; ~kÞ being given by Eq. (1.7). Notice that the DM

contribution to ��ðy; 	Þ is suppressed by a factor 1=
dm ’
1=5000. The growth of the DM fluctuations in the MD era
largely overcomes this suppression.

Expanding the Boltzmann-Vlasov equations (1.3) and

(1.4) in powers of � and i �q � ~k� as remarked above, we
obtain the initial gravitational potentials related by

�ð0; ~kÞ ¼ ½1þ 2
5I
�c ð0; ~kÞ ’ ½1þ 2

5R�ð0Þ�c ð0; ~kÞ:
Notice above the small Oð1=
dmÞ correction in I
.

The final pair of dimensionless Volterra integral equa-
tions take the form

��ðy; 	Þ ¼ Cðy; 	Þ þ B
ðyÞ ��ðy; 	Þ
þ

Z y

0
dy0½G	ðy; y0Þ ��ðy0; 	Þ

þG�
	ðy; y0Þ ��ðy0; 	Þ�; (1.12)

��ðy; 	Þ ¼ C�ðy; 	Þ þ
Z y

0
dy0½I�	ðy; y0Þ ��ðy0; 	Þ

þ I	ðy; y0Þ ��ðy0; 	Þ�; (1.13)

with initial conditions ��ð0; 	Þ ¼ 1, ��ð0; 	Þ ¼ 2
5 I
. This

pair of Volterra equations is coupled with the linearized
Einstein equations (1.5) and (1.6).

The kernels and the inhomogeneous terms in Eqs. (1.12)
and (1.13) are given explicitly by Eqs. (4.7), (4.8), (4.9),
(4.10), (4.15), (4.16), (4.17), (4.29), (4.30), (4.31), (4.32),
and (4.33). The arguments of these functions contain the
dimensionless free-streaming distance lðy;QÞ,

lðy;QÞ ¼
Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1þ y0�½y02 þ ðQ=
dmÞ2�
p : (1.14)

The coupled Volterra integral equations (1.12) and (1.13)
are easily amenable to a numerical treatment.

When the anisotropic stress ��ðy; 	Þ is negligible,
Eqs. (1.12) and (1.13) reduce to a single Volterra integral

equation for the DM density fluctuations ��dmðy; 	Þ. We
find the solution of this single Volterra equation for a broad
range of wave numbers 0:1=Mpc< k< 1=5 kpc and ana-
lyze the transfer function and density contrast in the ac-
companying paper Ref. [19].

The framework derived here reducing the full evolution
of the primordial cosmological fluctuations to a pair
Volterra integral equations is general for any type of DM
and provides, in particular, in the nonrelativistic limit in the
MD era the so-called Gilbert equations.
In summary, the Volterra integral equations obtained

here provide a useful and precise method to compute the
primordial DM fluctuations (both WDM and CDM) over a
wide range of scales including very small scales up to
5 kpc.
It is easy to introduce the cosmological constant in the

framework and equations presented here. Moreover, bary-
ons and photons can be treated in this framework at the
price of introducing further coupled Volterra integral
equations.
In Sec. II we derive the linearized and collisionless

Boltzmann-Vlasov equations for DM and for neutrinos.
We present the linearized Einstein equations for the gravi-
tational potentials which are coupled to the B-Vequations.
In Sec. III we then provide the adiabatic initial condi-

tions for the fluctuations which turns to be constrained by
the B-V and linearized Einstein equations.
In Sec. IV we recast the linearized DM and neutrino B-V

equations as a system of linear integral equations of the
Volterra type.
We derive in Appendix A the Poisson equation from the

explicit solution of the linearized Einstein equations and
the systematic corrections to it in the short wavelength
regime (
dm	y � 1). Some useful angular integrals are
computed in Appendix B.

II. THE BOLTZMANN-VLASOV EQUATION
IN THE FRW UNIVERSE

We derive in this section the collisionless B-V equation
for DM particles which decoupled being ultrarelativistic
and become nonrelativistic in the radiation dominated era.
This treatment is appropriate for keV scale DM particles
which become nonrelativistic by z� 2� 107 and applies
also to any DM particle candidate decoupling being UR
during the RD era.

A. Particle propagation in the FRW universe
including fluctuations

We consider spatially flat FRW spacetimes with adia-
batic perturbations of the metric in the conformal gauge. In
conformal time � the metric takes the form

ds2 ¼ �a2ð�Þ½1þ 2 ~c ð�; xiÞ�d�2

þ a2ð�Þ½1� 2 ~�ð�; xiÞ�ðdxiÞ2; (2.1)

where ~c is the Newtonian potential and ~� corresponds to
the perturbation of the spatial curvature.
The particle propagation equations follow from the

Lagrangian
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L ¼ 1

2
g	�

dx	

d�

dx�

d�
; (2.2)

where x	 are the contravariant particle coordinates and � is
the affine parameter on the trajectory.

The covariant canonical momentum follows from
Eq. (2.2) as

p	 � @L
@ðdx	d� Þ

¼ g	�
dx�

d�
¼ g	�p

� (2.3)

and the equations of motion take the form

dp	

d�
¼ � 1

2
p�p�

@g��

@x	
: (2.4)

The equations of motion have to be supplemented by
the on-shell condition

m2 ¼ �g	�p
	p�; (2.5)

where m is the mass of the DM particle.
The derivative with respect to � is related to the deriva-

tive with respect to the conformal time using Eq. (2.3) for
	 ¼ 0:

d

d�
¼ 1

p0

d

d�
: (2.6)

The equations of motion (2.4) are then

dpj

d�
¼ � 1

a2ð�Þp0
ðp2

i @j
~�þ p2

0@j
~c Þ: (2.7)

To first order in the fluctuations, it is convenient to define
the momentum qj and the energy variable Eð�; qÞ as in

Refs. [2,6],

qj � ð1þ ~�Þpj;

Eð�; qÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2ð�Þ þ q2

q
where qi ¼ qi;

q2 � qjqj:

(2.8)

The on-shell condition Eq. (2.5) becomes to first order in
the fluctuations,

m2a2ð�Þ ¼ p2
0 � p2

i � 2ðp2
0
~c þ p2

i
~�Þ or

E2 ¼ p2
0ð1� 2 ~c Þ:

We therefore have to first order in ~�,

pj¼ 1

a2ð�Þð1þ
~�Þqj; p0¼ 1

a2ð�Þð1�
~�ÞEð�;qÞ;

Eð�;qÞ¼�p0ð1� ~�Þ; p2¼pip
i¼ q2

a2ð�Þ ;

p2
i þp2

0¼E2ð�;qÞþq2þ2 ~�m2a2ð�Þ: (2.9)

In terms of qi the equations of motion (2.7) to first order in

the fluctuations ~� take the form

dqi
d�

¼ qi
d ~�

d�
�

�
E@i ~c þ q2

E
@i ~�

�
(2.10)

and therefore

dq

d�
¼ qi

q

dqi
d�

¼ q
d ~�

d�
�

�
Eni@i ~c þ q2

E
ni@i ~�

�
; (2.11)

where

ni � qi
q
; nin

i ¼ �ijninj ¼ 1; ni
dni

d�
¼ 0:

(2.12)

The total derivative d ~�=d� can be expressed in terms of
partial derivatives as

d ~�

d�
¼ @ ~�

@�
þ qi

E
@i ~�; (2.13)

where from Eqs. (2.3), (2.6), and (2.8) to zeroth-order in the
fluctuations,

dxi

d�
¼ pi

p0
¼ qi

E
: (2.14)

Combining Eqs. (2.11) and (2.13) yields

dqi
d�

¼ qi
@ ~�

@�
� E@i ~c � q2

E
ð�ij � ninjÞ@j ~� (2.15)

dq

d�
¼ q

@ ~�

@�
� Eni@i ~c : (2.16)

B. The zeroth-order WDM distribution and the
space-time in the RD and MD eras

Wework in the universe where radiation and dark matter
are both present. The radiation and DM densities are given
in general at zeroth order by

�rðaÞ ¼ �r

a4
;

�dmðaÞ ¼ N̂dm

a4
gdm

Z d3q

ð2�Þ3 Eð�; qÞf̂
dm
0 ðqÞ;

(2.17)

where �r ¼ �r�c stands for the radiation energy density

today, f̂dm0 ðqÞ is the homogeneous and isotropic zeroth-
order distribution that freezed out at decoupling, normal-
ized as

Z 1

0
q2dqf̂dm0 ðqÞ ¼ 1: (2.18)

gdm is the number of internal degrees of freedom of the
DM particle, typically 1 � gdm � 4 and the normalization

factor N̂dm reproduces the DM average density today
�dm ¼ �dm�c as
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N̂ dmmgdm
Z d3q

ð2�Þ3 f̂
dm
0 ðqÞ ¼ �dm�c; hence;

N̂dm ¼ 2�2�dm

gdmm
;

(2.19)

where �dm ¼ 0:233 is the DM fraction and �c is the
critical density of the Universe

�c ¼ 3M2
PlH

2
0 ¼ ð2:518 meVÞ4; 1 meV ¼ 10�3 eV;

H0 ¼ 1:502810�42 GeV; M2
Pl ¼

1

8�G
: (2.20)

We consider generic freezed out distribution functions

f̂dm0 ðqÞ. We call Td the scale of the average momentum q at
the zeroth-order freezed-out homogeneous and isotropic
distribution at decoupling. When the DM particles de-
couple at thermal equilibrium, Td is just the (covariant)
decoupling temperature. Td is related by entropy conser-
vation to the CMB temperature today and to the effective
number of UR degrees of freedom at decoupling gd as

Td ¼
�
2

gd

�
1=3

Tcmb; where Tcmb ¼ 0:2348 meV:

(2.21)

In case the decoupling happens out of thermal equilibrium,
Td gives the (covariant) momentum scale of the DM par-
ticles at decoupling. We thus introduce the dimensionless
momentum both for in and out of equilibrium decoupling,

Q � q

Td

; (2.22)

which typical values are of order one.
We now consider the dimensionless zeroth-order

freezed-out density fdm0 ðQÞ and the dimensionless normal-

ization constant Ndm

fdm0 ðQÞ ¼ T3
df̂

dm
0 ðqÞ;

Z 1

0
Q2dQfdm0 ðQÞ ¼ 1;

Ndm ¼ N̂dm

T3
d

¼ 2�2�dm

gdmmT3
d

; (2.23)

where we used Eqs. (2.18) and (2.19). For example, we
have for DM fermions decoupling ultrarelativistically at
thermal equilibrium

fdm0 ðQÞ ¼ 2

3ð3Þ
1

eQ þ 1
; (2.24)

where ð3Þ ¼ 1:202 056 9 . . . . Out of equilibrium freezed-
out distribution functions for sterile neutrinos [8,9,17,26,27]
are considered in the accompanying paper [19].

Equation (2.23) and the value of the average DM density
�dm Eq. (2.20) imposes on the parameters of the DM
particle:

gdmNdmm ¼ 0:6988 keV
gd
100

:

This relation suggests that DM decoupling ultrarelativisti-
cally can have its mass in the keV scale. Moreover, an
increasing body of evidence from the combination of
theory and astronomical observations points towards DM
particles with mass in the keV scale [12–14]: we thus take
1 keV as the reference scale for the mass of DM particles.
We consider gd ¼ 100 as reference value for the number
gd of ultrarelativistic degrees of freedom at decoupling in
thermal equilibrium. This corresponds to a physical decou-
pling temperature Td phys ¼ ðzd þ 1ÞTd � 100 GeV, Td

being the covariant decoupling temperature.
The normalized momenta Idmn for fermions in thermal

equilibrium and for out of equilibrium sterile neutrinos are
defined as

Idmn �
Z 1

0
Qnfdm0 ðQÞdQ; I�n �

Z 1

0
Qnf�0 ðQÞdQ:

(2.25)

Explicit expressions for them are given in the accompany-
ing paper [19].
From now on we use for the dimensionless one-particle

energy [see (2.8)],

"ðy;QÞ � Eð�; qÞ
Td

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
dmÞ2y2 þQ2

q
where

a ¼ aeqy and 
dm � maeq

Td

: (2.26)

We find from Eqs. (2.21), (2.23), and (2.26),


dm ¼ maeq
Td

¼ 4900
m

keV

�
gd
100

�
1=3

¼ 5520

�
m

keV

�
4=3ðgdmNdmÞ1=3: (2.27)

That is, 
dm will normally be a large number 
dm � 5000.
The parameter 
dm is the ratio between the DM particle
mass m and the physical decoupling temperature at equili-
bration redshift zeq þ 1 ¼ 1=aeq ’ 3200. Therefore, 
dm is

a large number provided the DM is nonrelativistic at
equilibration.
It is convenient to use the dimensionless wave num-

bers [23]

� � k�	 and 	 � 2


dm

� ¼ 2

H0

Td

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aeq�dm

q k

where �	 �
ffiffiffiffiffiffiffiffi
aeq

�M

s
1

H0

¼ 143 Mpc:

(2.28)

The free-streaming length is given by [13,23]

lfs ¼ 2

H0

Td

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Idm4

aeq�dm

vuut ¼ 2�	


dm

ffiffiffiffiffiffiffi
Idm4

q
; (2.29)
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where the momenta Idmn are defined by Eq. (2.25) and
therefore,

	 ¼ klfsffiffiffiffiffiffiffi
Idm4

q and

lfs ¼ 57:2 kpc
keV

m

�
100

gd

�
1=3

¼ 50:8 kpc

�
keV

m

�
4=3ðgdmNdmÞ�ð1=3Þ: (2.30)

The DM energy density is given in general by Eq. (2.17)
that we can write as

�dmðyÞ ¼ �dm

a3ðyÞ
R0ðyÞ

y
; (2.31)

y is defined in Eq. (2.26), aeq ¼ �r=�M ’ 1=3200 is the

scale factor at equilibration,

R0ðyÞ � �dmðyÞ
�rðyÞ ¼

Z 1

0
Q2dQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ Q2


2
dm

s
fdm0 ðQÞ;

�rðyÞ ¼ �r

a4ðyÞ (2.32)

and R0ðyÞ ¼

8>>><
>>>:

Idm
3


dm
½1þOð
2

dmy
2Þ�; 
dmy & 1

yþ Idm4
2
2

dm
y
þO

�
1


4
dm
y3

�
; 
dmy * 5:

(2.33)

When 
dmy * 1 and the WDM particles are nonrelativ-
istic the WDM density from Eqs. (2.31) and (2.33) dilutes
as 1=a3 as expected. For 
dmy & 1 the WDM particles are
ultrarelativistic and from Eqs. (2.31) and (2.33) the WDM
density dilutes as radiation as 1=a4. Equation (2.33)
shows that �dmðyÞ and �radðyÞ become equal at equilibra-
tion y ¼ 1 (up to 1=
2

dm corrections), as it must be. In

Fig. 1 we plot log10R0ðyÞ vs log10y for fermions decou-
pling in thermal equilibrium and for sterile neutrinos
decoupling out of thermal equilibrium in the � model
where sterile neutrinos are produced by the decay of a
real scalar [26,28]. (These particle models are analogous
to those in Ref. [29] which consider a complex scalar
field.)

We find from Eqs. (2.31), (2.32), and (2.33) that WDM
gives a small contribution of the order 1=
dm to the radia-
tion density for 
dmy & 1:

�dmðyÞ ¼ �rðyÞR0ðyÞ ¼
dmy&1 Idm3

dm

�rðyÞ:

That is, the quantity 
dm gives the order of magnitude of
the ratio of densities �rðyÞ=�dmðyÞ for 
dmy & 1 while the
WDM is still relativistic.

Taking into account Eq. (2.31) the Friedmann equation
takes the form

a2eq

�
dy

d�

�
2 ¼ H2

0�r½1þR0ðyÞ�; (2.34)

with the explicit solution

� ¼ �	 Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR0ðyÞ

p : (2.35)

When the WDM particles are UR, we find that they
give small corrections of the order 1=
dm to the scale
factor að�Þ

að�Þ ¼
dmy&1 aeq
�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Idm3


dm

s
�; að�Þ ¼
dmy*1;y
1

aeq
�

�	 :

(2.36)

Hence, Eq. (2.36) indicates a little slow down of the
order 1=
dm in the expansion of the universe when the
WDM becomes nonrelativistic around 
dmy ’ 1. When
the WDM particles are NR (
dmy * 1) the WDM cor-
rections are even smaller, of the order 1=
2

dm.

In summary, up to small 1=
dm or 1=
2
dm corrections for


dmy & 1 or 
dmy * 1, respectively, the scale factor thus
results from Eq. (2.35),

að�Þ ¼ aeqyð�Þ; yð�Þ ¼ �

�	

�
1þ �

4�	

�
;

� ¼ 2�	ð ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p � 1Þ: (2.37)

The scale factor Eqs. (2.37) has the radiation dominated
behavior for � 
 �	 and the matter dominated behavior
for � � �	. Notice that yeq ¼ 1 and ytoday ’ 3200.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

-6 -5 -4 -3 -2 -1  0

FIG. 1 (color online). log10R0ðyÞ defined in Eq. (2.32) vs
log10y. The solid (red) line corresponds to fermions in thermal
equilibrium; the dotted (green) line corresponds to sterile neu-
trinos out of thermal equilibrium in the �model. Both freeze-out
distributions give the same R0ðyÞ values for 
dmy * 5 [as in
Eq. (2.33)] whileR0ðyÞ does depend on the details of the freeze-
out distribution for 
dmy & 5. For 
dmy & 1, R0ðyÞ takes the
constant value given analytically in Eq. (2.33).
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We have for the ratio R0ðyÞ

1þR0ðyÞ ¼

8>>><
>>>:
1þO

�
1


dm

�
; 
dmy & 1;

1þ yþO
�

1

2
dm

�
; 
dmy * 5:

: (2.38)

Therefore, we can always approximate 1þR0ðyÞ by
1þ y because in the case 
dmy & 1, R0ðyÞ 
 1. We will
therefore replace 1þR0ðyÞ by 1þ y in most cases.

We obtain for hð�Þ defined as

hð�Þ � 1

a

da

d�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR0ðyÞ

p
�	y

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
�	y

�
1þO

�
1


dm

��
;

(2.39)

where we used Eqs. (2.35) and (2.38).
Modes reenter the horizon when their physical wave

number kreenter=a is equal to the inverse of the Hubble
radius H ¼ h=a, that is,

kreenter ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
�	y

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
y

1

1:43105 kpc
: (2.40)

C. The linear and collisionless Boltzmann-Vlasov
equation for DM and neutrinos

The distribution function ~fdmð�; ~q; ~xÞ of the DM parti-
cles after their decoupling is described by the collisionless
B-V equation. The distribution function is thus a constant
over the particle trajectories (Liouville):

0 ¼ d~fdm
d�

¼ @~fdm
@�

þ dqi
d�

@~fdm
@qi

þ dxi

d�

@~fdm
@xi

; (2.41)

�, qi ¼ ~qi, ~x
i ¼ xi being the independent variables in the

distribution function.
To linear order in the fluctuations the distribution func-

tion of the decoupled particles can be written as

~fdmð�; ~q; ~xÞ ¼ N̂dmgdmf̂
dm
0 ðqÞ þ ~fdm1 ð�; ~q; ~xÞ

¼ N̂dmf̂
dm
0 ðqÞgdm½1þ ~�dmð�; ~q; ~xÞ�: (2.42)

Terms of order higher than one in ~fdm1 are neglected in the
linear B-V equation. We have from Eq. (2.42)

~f dm
1 ð�; ~q; ~xÞ ¼ N̂dmgdmf̂

dm
0 ðqÞ ~�dmð�; ~q; ~xÞ: (2.43)

Since dqi=d�, @~fdm=@x
i and @~fdm=@ni are of order one

[see Eqs. (2.15) and (2.42)], we can write Eq. (2.41) to the
first order as

@~fdm
@�

þ dq

d�

@~fdm
@q

þ qi
E

@~fdm
@xi

¼ 0; (2.44)

where we used Eq. (2.14). Inserting the linearized distri-
bution function Eq. (2.42) into Eq. (2.44) yields,

@ ~�dm

@�
þ q

E
ni@i ~�dm þ d lnf̂dm0

d lnq

�
@ ~�

@�
� E

q
ni@i ~c

�
¼ 0;

(2.45)

where we used Eq. (2.16). Fourier transforming,

~�dmð�; ~q; ~xÞ ¼
Z d3k

ð2�Þ3 e
i ~k� ~x�dmð�; ~q; ~kÞ;

~fdm1 ð�; ~q; ~xÞ ¼
Z d3k

ð2�Þ3 e
i ~k� ~xfdm1 ð�; ~q; ~kÞ;

(2.46)

~�ð�; ~xÞ ¼
Z d3k

ð2�Þ3 e
i ~k� ~x�ð�; ~kÞ;

~c ð�; ~xÞ ¼
Z d3k

ð2�Þ3 e
i ~k� ~xc ð�; ~kÞ;

fdm1 ð�; ~q; ~kÞ ¼ N̂dmgdmf̂
dm
0 ðqÞ�dmð�; ~q; ~kÞ;

(2.47)

Equation (2.45) becomes [2]

@�dm

@�
þ iq

E
nik

i�dm þ d lnf̂dm0
d lnq

�
@�

@�
� iE

q
nik

ic

�
¼ 0;

(2.48)

or, equivalently

@�dm

@�
þ i ~q � ~k

Eð�; qÞ�dm

þ d lnf̂dm0
d lnq

�
@�

@�
� iEð�; qÞ ~q � ~k

q2
c

�
¼ 0: (2.49)

Neutrinos are described by a distribution function
f�ð�; ~q; ~xÞ obeying after decoupling a Boltzmann-Vlasov
equation similar to Eq. (2.41). Neutrinos decouple in
thermal equilibrium [1,25] at redshift z�d ’ 6� 109. T�

d

is the comoving decoupling temperature of the neutrinos
T�
d ’ ð1 MeV=z�dÞ ’ 0:17� 10�3 eV.
We can linearize the B-V equation around the equilib-

rium zeroth-order neutrino distribution as

~f �ð�; ~q; ~xÞ ¼ N̂�ð�Þg�f̂�0ðqÞ þ ~f�1ð�; ~q; ~xÞ
¼ N̂�ð�Þf̂�0ðqÞg�½1þ ~��ð�; ~q; ~xÞ�; (2.50)

where

f̂ �
0ðqÞ ¼

2

3ð3ÞðT�
d Þ3

1

eq=T
�
d þ 1

: (2.51)

The normalization of the neutrino distribution Eq. (2.50) is
fixed by the neutrino energy density being a fraction R�ð�Þ
of the radiation energy density �r ¼ �r�c in the radiation
dominated era
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R�ð�Þ�r ¼ N̂�ð�Þg�
Z d3q

ð2�Þ3 qf̂
�
0ðqÞ

¼ N̂�ð�Þg�
2�2

Z 1

0
q3dqf̂�0ðqÞ; (2.52)

which gives using Eq. (2.51)

g�T
�
d

2�2
N̂�ð�Þ ¼ �r

I�3
R�ð�Þ; (2.53)

where I�3 ¼ 7ð4Þ=½2ð3Þ� for the Fermi-Dirac distribu-

tion. The neutrino fraction R�ð�Þ changes at the tempera-
ture of electron-positron annihilation (see Ref. [5] and the
accompanying paper [19]) and becomes negligible in the
matter dominated era.

Neutrinos can be considered massless and otherwise can
be neglected. Therefore ��ð�; ~q; ~xÞ obeys the massless
version of Eq. (2.48)

@��

@�
þ inik

i�� þ d lnf̂�0
d lnq

�
@�

@�
� inik

ic

�
¼ 0: (2.54)

D. The linearized Einstein equations for the
gravitational potentials

The Einstein equations for the FRW metric plus fluctua-
tions Eq. (2.1) give for the gravitational potential at linear
order [1,2]

3hð�Þ @�
@�

þ k2�ð�; ~kÞ þ 3h2ð�Þc ð�; ~kÞ

¼ 4�Ga2ð�Þ�T0
0ð�; ~kÞ; (2.55)

k2½�ð�; ~kÞ � c ð�; ~kÞ� ¼ 4�G
�ð�; ~kÞ
a2ð�Þ ; (2.56)

where hð�Þ is defined in Eq. (2.39), �T0
0 contains the

contributions to the energy density from the photons, neu-

trinos and DM fluctuations and �ð�; ~kÞ is the anisotropic
stress perturbation.

During the RD era radiation dominates over matter and
therefore the DM fluctuations are much smaller than the
radiation fluctuations. Thus, the gravitational potential is
dominated by the radiation fluctuations (photons and neu-
trinos). The photons can be described in the hydrodynam-
ical approximation (their anisotropic stress is negligible).

The tight coupling of the photons to the electron/protons
in the plasma suppresses before recombination all photon
multipoles except �0 and �1. (The �l stem from the
Legendre polynomial expansion of the photon temperature

fluctuations �ð�; ~q; ~kÞ [1]).
�0 and �1 obey the hydrodynamical equations [1]

d�0

d�
þ k�1ð�; ~kÞ ¼ d�

d�
; (2.57)

d�1

d�
� k

3
�0ð�; ~kÞ ¼ k

3
�ð�; ~kÞ: (2.58)

This is a good approximation for the purposes of following
the DM evolution [1].
The energy-momentum fluctuations are the sum of the

DM, photons and neutrino contributions

�T0
0ð�; ~kÞ ¼ ��dmð�; ~kÞ þ ��ð�; ~kÞ

a4ð�Þ
� 4R�ð�Þ�rð�Þ�0ð�; ~kÞ;

while only DM and neutrinos contribute to the anisotropic

stress �ð�; ~kÞ

�ð�; ~kÞ ¼ �dmð�; ~kÞ þ ��ð�; ~kÞ: (2.59)

R�ð�Þ stands for the photon fraction of the radiation

and �rð�Þ for the radiation density (neutrinos plus pho-
tons). R�ð�Þ vanishes in the MD era.

The DM contribution to the energy-momentum tensor
and to the anisotropic stress take the form

�dmð�; ~kÞ �
Z d3q

ð2�Þ3 Eð�; qÞf
dm
1 ð�; ~q; ~kÞ

¼ N̂dmgdm
Z d3q

ð2�Þ3 Eð�; qÞf̂
dm
0 ðqÞ�dmð�; ~q; ~kÞ;

(2.60)

�dmð�; ~kÞ ¼
Z d3q

ð2�Þ3
q2

Eð�;qÞ ½1� 3ð �k � �qÞ2�fdm1 ð�; ~q; ~kÞ ¼
(2.61)

¼ �2N̂dmgdm
Z d3q

ð2�Þ3
q2P2ð �k � �qÞ
Eð�; qÞ f̂dm0 ðqÞ�dmð�; ~q; ~kÞ;

(2.62)

where P2ðxÞ ¼ ð3x2 � 1Þ=2 is the Legendre polynomial of

order two and �dmð�; ~kÞ stands for the DM density fluctu-
ations in general (whatever ultrarelativistic, nonrelativistic
or intermediate regimes).
Similarly, the neutrino contributions take the form

��ð�; ~kÞ ¼ N̂�ð�Þg�
Z d3q

ð2�Þ3 qf̂
�
0ðqÞ��ð�; ~q; ~kÞ; (2.63)

��ð�; ~kÞ¼�2N̂�ð�Þg�
Z d3q

ð2�Þ3qf̂
�
0ðqÞP2ð �k � �qÞ��ð�; ~q; ~kÞ:

(2.64)

The gravitational potentials �ð�Þ, c ð�Þ thus obey
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3hð�Þ@�
@�

þ k2�ð�; ~kÞ þ 3h2ð�Þc ð�; ~kÞ

¼ �4�G

�
�dmð�; ~kÞ þ ��ð�; ~kÞ

a2ð�Þ
þ 4a2ð�Þ��ð�Þ�0ð�; ~kÞ

�
; (2.65)

�ð�; ~kÞ � �ð�; ~kÞ � c ð�; ~kÞ

¼ 4�G

k2a2ð�Þ ½�dmð�; ~kÞ þ��ð�; ~kÞ�

where ��ð�Þ ¼ R�ð�Þ�rð�Þ;

(2.66)

as follows from Eqs. (2.55), (2.56), (2.57), (2.58), (2.59),
(2.60), (2.61), (2.62), (2.63), and (2.64).

In the radiation/matter domination eras the gravitational
potential Eq. (2.65) takes in the dimensionless variables y
and ~� the form,

y½1þR0ðyÞ�@�@y þ 1

3
ð�yÞ2�ðy; ~�Þþ ½1þR0ðyÞ�c ðy; ~�Þ

¼�4�G�	2

3a2eq
½�dmðy; ~�Þþ��ðy; ~�Þ�� 2R�ðyÞ�0ðy; ~�Þ;

(2.67)

where � is defined in Eq. (2.28) and we used

16�Ga4ð�Þ��ð�Þ ¼ 2R�ð�Þ
3a2eq

�	2 ; R0ðyÞ ¼ �dmðyÞ
�rðyÞ :

(2.68)

�dmð�; ~kÞ is connected to the customary DM density con-

trast �ð�; ~kÞ by [2]

�ð�; ~kÞ � ��T0
0dmð�; ~kÞ

�dm

a3
þ �r

a4
¼ �dmðy; ~�Þ

�dmaeqðyþ 1Þ : (2.69)

In the short wavelength limit k2 � h2, Eq. (2.65) be-
comes the Poisson equation, as expected

k2�dmð�; ~kÞ ¼non-relativistic
4�G�dm

að�Þ þ aeq

a2ð�Þ �ð�; ~kÞ:
(2.70)

In Appendix Awe provide the explicit integral representa-
tion (A1) to the solution of the first order differential
equation (2.67). Then, we derive the asymptotic expansion
of Eqs. (2.67) and (A1) in the �y � 1 (short wavelength)
regime. We obtain in this way the Poisson equation
Eq. (2.70) plus the next to leading terms in this regime
in Eq. (A2).

Notice that the anisotropic stress �ðy; ~kÞ vanishes for
�y � 1.

III. INITIAL CONDITIONS FOR THE LINEARIZED
BOLTZMANN-VLASOVAND

EINSTEIN EQUATIONS

We investigate in this section the initial conditions

for the DM linearized distribution function �ð�; ~q; ~kÞ
solution of Eq. (2.49) and the gravitational potentials

�ðy; ~kÞ and c ðy; ~kÞ which obey the linearized Einstein
equations (2.65).
Strictly speaking we should take the initial conditions

when both neutrinos and dark matter are decoupled,
namely, at y ¼ 0:510�6 (see Ref. [2] instead of y ¼ 0.
However, setting the initial conditions at y ¼ 0 as we do
here introduces at most an error of the order 10�6, that we
can safely ignore, because both the distribution function
and its adiabatic fluctuations (including the gravitational
potentials) are regular at y ¼ 0.
Equation (2.65) yields in the � ¼ 0 limit

c ð0; ~kÞ ¼ � 4�G�	2

3a2eq
½�dmð0; ~kÞ þ��ð0; ~kÞ�

� 2R�ð0Þ�0ð0; ~kÞ: (3.1)

In order �ð�; ~kÞ and c ð�; ~kÞ be regular at � ¼ 0,
Eq. (2.66) implies that

�dmð0; ~kÞ ¼ 0; ��ð0; ~kÞ ¼ 0 and

@�dm

@�
ð0; ~kÞ ¼ 0;

@��

@�
ð0; ~kÞ ¼ 0: (3.2)

These two conditions are fulfilled provided the integrals

over the directions ~q of �dmð0; ~q; ~kÞ, @�dmð0; ~q; ~kÞ=@�,
��ð0; ~q; ~kÞ and @��ð0; ~q; ~kÞ=@� times the Legendre poly-

nomial P2ð �k � �qÞ vanish in Eqs. (2.62) and (2.64),
respectively.
In the � ! 0 limit all fluctuation modes become super-

horizon and therefore adiabatic modes must become ~q
independent except for the proportionality to the zeroth-

order distributions [5]. In any case, �dmð0; ~q; ~kÞ and

��ð0; ~q; ~kÞ must be independent of the direction of ~q:

�dmð0; ~q; ~kÞ ¼ �dmð0; q; ~kÞ and

��ð0; ~q; ~kÞ ¼ ��ð0; q; ~kÞ: (3.3)

The linearized Boltzmann-Vlasov equation Eq. (2.49)
yields to the order �0:

i �q � ~k
�
�dmð0; q; ~kÞ � d lnf̂dm0

d lnq
c ð0; ~kÞ

�
þ @�dm

@�
ð0; ~q; ~kÞ

þ d lnf̂dm0
d lnq

@�

@�
ð0; ~kÞ ¼ 0; (3.4)
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and a similar expression for the neutrino distribution
function. The superhorizon arguments above and
Eqs. (3.3) and (3.4) suggest an expansion in powers of �

and i �q � ~k� for the distribution function:

@�dm

@�
ð0; ~q; ~kÞ ¼ Edmðq; ~kÞi �q � ~kþ Fdmðq; ~kÞ;

@��

@�
ð0; ~q; ~kÞ ¼ E�ðq; ~kÞi �q � ~kþ F�ðq; ~kÞ:

(3.5)

Equation (3.4) determines the coefficients Edmðq; ~kÞ and

Fdmðq; ~kÞ as

Edmðq; ~kÞ ¼ d lnf̂dm0
d lnq

c ð0; ~kÞ ��dmð0; q; ~kÞ;

Fdmðq; ~kÞ ¼ �d lnf̂dm0
d lnq

@�

@�
ð0; ~kÞ:

(3.6)

Similar equations hold for E�ðq; ~kÞ and F�ðq; ~kÞ.
Equations (3.3) and (3.5) together with the integrals

Eqs. (2.62) and (2.64) guarantee that Eqs. (3.2) are fulfilled.
To the first order in � we obtain from Eq. (2.49)

@2�dm

@�2
ð0; ~q; ~kÞ¼ ði �q � ~kÞ2

�
�dmð0;q; ~kÞ�dlnf̂dm0

dlnq
c ð0; ~kÞ

�

þ i �q � ~kdlnf̂
dm
0

dlnq

�
@c

@�
ð0; ~kÞþ@�

@�
ð0; ~kÞ

�

�dlnf̂dm0
dlnq

@2�

@�2
ð0; ~kÞ; (3.7)

and an analogous formula for the neutrino distribution
function ��.
The knowledge of the second derivative of the distribu-

tion functions with respect to � at � ¼ 0 is necessary in
order to compute the initial anisotropic stress and the

difference between �ð0; ~kÞ and c ð0; ~kÞ from Eq. (2.66).
We compute the initial DM and neutrino density fluctu-

ations from Eqs. (2.60) and (2.63), respectively

�dmð0; ~kÞ ¼ N̂dmgdm
2�2

Z 1

0
dqq3f̂dm0 ðqÞ�dmð0; q; ~kÞ;

��ð0; ~kÞ ¼ N̂�ð0Þg�
2�2

Z 1

0
dqq3f̂�0ðqÞ��ð0; q; ~kÞ: (3.8)

Inserting this result in the linearized Einstein equations
(3.1) at � ¼ 0 gives

c ð0; ~kÞ ¼�4�G�	2

3a2eq

�
N̂dmgdm
2�2

Z 1

0
dqq3f̂dm0 ðqÞ�dmð0;q; ~kÞ

þ N̂�ð0Þg�
2�2

Z 1

0
dqq3f̂�0ðqÞ��ð0;q; ~kÞ

�

� 2R�ð0Þ�0ð0; ~kÞ: (3.9)

We compute the initial value of the anisotropic stress
taking the � ! 0 limit in Eq. (2.62) with the help of
Eq. (3.7)

lim
�!0

�dmð�; ~kÞ
k2�2

¼ � N̂dmgdm
k2

Z d3q

ð2�Þ3 qP2ð �k � �qÞf̂dm0 ðqÞ@
2�dm

@�2
ð0; ~q; ~kÞ

¼ N̂dmgdm
Z d3q

ð2�Þ3 qP2ð �k � �qÞð �q � �kÞ2
�
�dmð0; q; ~kÞ � d lnf̂dm0

d lnq
c ð0; ~kÞ

�
f̂dm0 ðqÞ: (3.10)

These integrals can be evaluated using Eq. (3.8) and

Z d�ð �qÞ
4�

ð �q � �kÞ2P2ð �k � �qÞ ¼ 2

15
;

with the final result

lim
�!0

�dmð�; ~kÞ
k2�2

¼ 2

15

�
�dmð0; ~kÞ þ 2

�2
N̂dmgdmc ð0; ~kÞ

�
Z 1

0
dqq3f̂dm0 ðqÞ

�
;

lim
�!0

��ð�; ~kÞ
k2�2

¼ 2

15
½��ð0; ~kÞ þ 4R�ð0Þ�r�cc ð0; ~kÞ�:

(3.11)

Inserting this result in Eq. (2.66) gives the difference
between the two gravitational potentials at the initial time

�ð0; ~kÞ ¼ �ð0; ~kÞ � c ð0; ~kÞ

¼ 1

5�r

½�dmð0; ~kÞ þ��ð0; ~kÞ� þ 4

5

�
R�ð0Þ

þ N̂dmgdm
2�2�r

Z 1

0
dqq3f̂dm0 ðqÞ

�
c ð0; ~kÞ; (3.12)

where we used Eqs. (2.37), (2.52), and (2.53) and

4�G�	2

3a2eq
¼ 1

2�r

:
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We see from Eqs. (3.1), (3.9), and (3.12) that all depen-

dence on ~k in the initial values of �dmð0; ~kÞ, ��ð0; ~kÞ,
�0ð0; ~kÞ,�dmð0; q; ~kÞ,��ð0; q; ~kÞ and �ð0; ~kÞ can be taken
proportional to c ð0; ~kÞ. We can therefore factor out c ð0; ~kÞ
from these initial values as

�dmð0; q; ~kÞ ¼ c ð0; ~kÞ �c0dmðqÞ;
��ð0; q; ~kÞ ¼ c ð0; ~kÞ �c0�ðqÞ:

(3.13)

More generally, because the linear fluctuations evolve on
an homogeneous and isotropic cosmology, the linear evo-
lution equations only depend on the modulus k (as we shall

see explicitly in the next section), the dependence on the ~k
directions keeps factorized for all times �. This is true for

the distribution functions�dmð�; ~q; ~kÞ and��ð�; ~q; ~kÞ and
for both gravitational potentials c and �.

Notice that from Eq. (2.23)

gdm
N̂dm

2�2
Td ¼ �dm

Td

m
¼ aeq

�dm


dm

;

and its neutrino counterpart Eq. (2.53).

The initial gravitational potential c ð0; ~kÞ is a Gaussian
random field with variance given by the primordial infla-
tionary fluctuations [1,5,24]

hc ð0; ~kÞc ð0; ~k0Þi ¼ Pc ðkÞ
ð2�Þ3 �ð

~kþ ~k0Þ; (3.14)

where we can use,

Pc ðkÞ ¼ 2�2

k3
�2

c ðkÞ ¼
8�2

9

j�0j2
k3

�
k

k0

�
ns�1

;

�c ðkÞ ¼ 2

3
�RðkÞ; �2

RðkÞ ¼ j�0j2
�
k

k0

�
ns�1

:

(3.15)

The subscripts c andR refer to the gravitational field and
the scalar curvature, respectively. j�0j stands for the pri-
mordial power amplitude, ns is the spectral index, and k0 is
the pivot wave number [24,30]:

j�0j ’ 4:9410�5; ns ’ 0:964; k0 ¼ 2 Gpc�1:

(3.16)

The initial value of the gravitational potential c ð0; ~kÞ can
therefore be written as

c ð0; ~kÞ ¼ j�0j
3

ffiffiffiffi
�

p
k3=2

�
k

k0

�ð1=2Þðns�1Þ
gð ~kÞ; (3.17)

where gð ~kÞ is a Gaussian random field with unit variance

hgð ~kÞg	ð ~k0Þi ¼ �ð ~k� ~k0Þ:

Physical magnitudes in dimensionless variables

From the analysis in the previous subsection we see that
it is convenient to define dimensionless density fluctuations
and dimensionless anisotropic stress fluctuations factoring

out the initial gravitational potential c ð0; ~kÞ in order to

obtain quantities independent of the ~k direction:

�dmðy; ~�Þ ¼ ��dmðy; 	ÞgdmN̂dmTd

2�2
c ð0; ~kÞ; ��ðy; ~�Þ ¼ ���ðy; 	Þg�N̂�ðyÞT�

d

2�2
c ð0; ~kÞ;

�ðy; ~�Þ ¼ c ð0; ~kÞ ��ðy; 	Þ; c ðy; ~�Þ ¼ c ð0; ~kÞ �c ðy; 	Þ and �c ð0; 	Þ ¼ 1;

�dmðy; ~�Þ ¼ c ð0; ~kÞ ��dmðy; 	Þ; ��ðy; ~�Þ ¼ c ð0; ~kÞ ���ðy; 	Þ; �ðy; ~�Þ ¼ c ð0; ~kÞ ��ðy; 	Þ;
��ðy; 	Þ ¼ ��ðy; 	Þ � �c ðy; 	Þ; ��ð0; 	Þ ¼ ��ð0; 	Þ � 1; �0ðy; ~�Þ ¼ c ð0; ~kÞ ��0ðy; 	Þ:

(3.18)

For ultrarelativistic neutrinos in dimensionless variables
we have [see Eq. (2.26)]:

Eð�; qÞ ) q ¼ T�
dQ; "ðy;QÞ ) Q: (3.19)

The dimensionless density fluctuations are expressed in
terms of the distribution functions as

��dmðy; �Þ ¼
Z d3Q

4�
"ðy;QÞfdm0 ðQÞ�dmðy; ~Q; ~�Þ

c ð0; ~�Þ ;

���ðy; �Þ ¼
Z d3Q

4�
Qf�0 ðQÞ��ðy; ~Q; ~�Þ

c ð0; ~�Þ ; (3.20)

where we used Eqs. (2.60), (2.63), and (3.18).

We find from Eqs. (3.3), (3.13), and (3.20),

��dmð0; �Þ ¼
Z 1

0
Q3dQfdm0 ðQÞ �c0dmðQÞ;

���ð0; �Þ ¼
Z 1

0
Q3dQf�0 ðQÞ �c0�ðQÞ:

(3.21)

The customary DM and neutrino number density fluctua-

tions are related to ��dmðy; �Þ and ���ðy; �Þ by
�Ddmðy; �Þ ¼ 1

4Idm3

��dmðy; �Þ;

�N�ðy; �Þ ¼ 1

4I�3

���ðy; �Þ:
(3.22)

The linearized Einstein equations (2.67) become for the
dimensionless quantities Eq. (3.18),
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�
ð1þR0ðyÞÞ

�
d

dy
þ 1

�
þ 1

3
ð�yÞ2

�
��ðy; 	Þ

¼ ½1þR0ðyÞ� ��ðy; 	Þ � 1

2
dm

��dmðy; 	Þ

� R�ðyÞ
2I�3

���ðy; 	Þ � 2R�ðyÞ ��0ðy; 	Þ: (3.23)

From Eqs. (3.12) and (3.18) the dimensionless density
fluctuations and anisotropic stress fluctuations take as ini-
tial values,

��ð0; 	Þ ¼ 1

5

�
1


dm

��dmð0; 	Þ þ R�ð0Þ
I�3

���ð0; 	Þ
�

þ 4

5

�
Idm3

dm

þ R�ð0Þ
�
: (3.24)

Equations (3.23) and (3.24) suggest to introduce the
quantities

��ðy; 	Þ � 1
�I


�
1


dm

��dmðy; 	Þ þ R�ðyÞ
I�3

���ðy; 	Þ
�
;

��ð0; 	Þ ¼ 1; I
 � Idm3

dm

þ R�ð0Þ;

�I
 �
��dmð0; 	Þ


dm

þ R�ð0Þ
I�3

���ð0; 	Þ:

(3.25)

The relation between the initial values Eq. (3.24) be-
comes,

5 ��ð0; 	Þ ¼ 4I
 þ �I
 and ��ð0; 	Þ ¼ 1þ 4

5
I
 þ 1

5
�I
:

(3.26)

The linearized Einstein equations (3.23) can be thus writ-
ten in a more compact form�
ð1þR0ðyÞÞ

�
d

dy
þ 1

�
þ 1

3
ð�yÞ2

�
��ðy;	Þ

¼ ½1þR0ðyÞ� ��ðy;	Þ� 1

2
�I
 ��ðy;	Þ� 2R�ðyÞ ��0ðy;	Þ:

(3.27)

Equation (3.27) at y ¼ 0 gives the relation

1þ Idm3

dm

¼ � 1

2
�I
 � 2R�ð0Þ ��0ð0; 	Þ: (3.28)

where we used from Eq. (2.33) that R0ð0Þ ¼ Idm3 =
dm.

The initial number density fluctuations of photons
��0ð0; 	Þ, neutrinos �N�ð0; 	Þ and DM �Ddmð0; 	Þ are cus-
tomary set equal to each other [1,2,5,18,31] which gives
from Eqs. (3.22), (3.25), and (3.28)

1þ Idm3

dm

¼ �2R�ð0Þ �N�ð0; 	Þ � 2
Idm3

dm

�Ddmð0; 	Þ

� 2R�ð0Þ ��0ð0; 	Þ; (3.29)

and therefore

�N �ð0; 	Þ ¼ ��0ð0; 	Þ ¼ �Ddmð0; 	Þ ¼ �1
2;

��dmð0; 	Þ ¼ �2Idm3 ; ���ð0; 	Þ ¼ �2I�3 :
(3.30)

It follows in addition from Eqs. (3.25) and (3.30) that

�I 
 ¼ �2I
 ’ �2R�ð0Þ; ��ð0; 	Þ ¼ 2
5I
 ’ 2

5R�ð0Þ:
(3.31)

The approximation symbol ’ here indicates that DM con-
tributions to the initial data of the order 1=
dm 
 1 have
been neglected. As is known, DM is negligible in the RD
era and its contributions to the initial data relative to the
radiation contribution are of the order 1=
dm.
Using Eq. (3.31) we can rewrite Eq. (3.26) as the relation

between the two initial gravitational potentials

�ð0; ~kÞ ¼ ½1þ 2
5I
�c ð0; ~kÞ:

When corrections 1=
dm are neglected this becomes a
known relation [2,5]

�ð0; ~kÞ ’ ½1þ 2
5R�ð0Þ�c ð0; ~kÞ:

In summary this yields for the initial gravitational potential

��ð0Þ � ��ð0; 	Þ ¼ 1þ 2
5I
 ’ 1þ 2

5R�ð0Þ: (3.32)

Equations (3.21), (3.30), and (3.31) impose constraints on
the functions �c0dmðQÞ and �c0�ðQÞ defining the initial distri-

bution functions. We have to specify the initial functions
�c0dmðQÞ and �c0�ðQÞ to completely define the initial data.

There are two well motivated physical initial conditions.
First, the thermal initial conditions (TIC) (or thermal per-
turbation) [2,6,23],

Td ! Td

�
1þ �Tð ~kÞ

Td

�
;

in which case �c0dmðQÞ and �c0�ðQÞ are proportional to

d lnfdm0 =d lnQ and d lnf�0=d lnQ, respectively. Second,

the Gilbert initial conditions (GIC) [20,23] where �c0dmðQÞ
and �c0�ðQÞ are chosen to be constants. In order to fulfill
Eq. (3.30) we must choose for both DM and for neutrinos

�c0dmðQÞ ¼
8<
:

1
2

d lnfdm
0

d lnQ ðTICÞ;
�2 ðGICÞ:

�c0�ðQÞ ¼
8<
:

1
2

d lnf�0
d lnQ for ðTICÞ;

�2 for ðGICÞ:

(3.33)

This completes the analysis of the initial conditions.
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IV. THE LINEAR BOLTZMANN-VLASOV
EQUATION AS A SYSTEM OF VOLTERRA

INTEGRAL EQUATIONS

We recast in this section the linearized DM and neutrino

B-V equations (2.49) and (2.54) for �ðy; ~q; ~kÞ and

��ðy; ~q; ~kÞ, coupled with the linearized Einstein’s equa-
tion, as a system of linear integral equations of the Volterra
type.

A. From the Boltzmann-Vlasov equations
to the Volterra integral equations

In the dimensionless variables Eqs. (2.22) and (2.23) the
B-V equation (2.49) takes the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR0ðyÞ

q @�dm

@y
þ i ~Q � ~�

"ðy;QÞ�dmðy; ~Q; ~�Þ

þ d lnfdm0
d lnQ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR0ðyÞ

q @�

@y
ðy; ~�Þ

� i"ðy;QÞ
Q2

~Q � ~�c ðy; ~�Þ
�
¼ 0: (4.1)

It is convenient to set

�dmðy; ~Q; ~�Þ ¼ e�i ~�� ~Qlðy;QÞ=
dm�1ðy; ~Q; ~�Þ
¼ e�i ~	� ~Qlðy;QÞ=2�1ðy; ~Q; ~�Þ; (4.2)

where ~	 is related with ~� according to Eqs. (2.28), (2.29),
and (2.30) and

lðy;QÞ � 
dm

Z y

0

dy0

"ðy0; QÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR0ðy0Þ

p
¼

Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1þR0ðy0Þ�½y02 þ ðQ=
dmÞ2�
p ; (4.3)

the one-particle energy "ðy;QÞ is defined by Eq. (2.26).
Notice that the free-streaming distance lðy;QÞ depends on
Q through the ratio Q=
dm. From Eq. (2.33) and the dis-
cussion after it, we can set from now on R0ðyÞ ¼ y ignor-
ing inessential 1=
dm or 1=
2

dm corrections. (Except in

Sec. IV B of Ref. [19]).
Since q=Eð�; qÞ ¼ Q="ðy;QÞ is the velocity of the

DM particle at time �, its corresponding coordinate free-
streaming length [25] is given by

�FS ¼ q
Z �

0

d�0

Eð�0; qÞ ¼
�	


dm

Qlðy;QÞ ¼ lfs

2
ffiffiffiffiffiffiffi
Idm4

q Qlðy;QÞ;

(4.4)

where we used Eqs. (2.37) and (4.3). lfs is given by

Eq. (2.29) and sets the scale of the coordinate free-
streaming length �FS.

Inserting Eq. (4.2) into Eq. (2.48) yields for �1ðy; ~Q; ~�Þ
the equation

@�1

@y
¼ �d lnfdm0

d lnQ
eþi ~	� ~Qlðy;QÞ=2

�
�
@�

@y
� i"ðy;QÞffiffiffiffiffiffiffiffiffiffiffiffi

1þ y
p

Q2
~� � ~Qc ðy; ~�Þ

�
:

Integrating on y we obtain:

�1ðy; ~Q; ~�Þ ¼ �1ð0; ~Q; ~�Þ � d lnfdm0
d lnQ

Z y

0
dy0eþi ~	� ~Qlðy0;QÞ=2

�
�
@�

@y0
� i"ðy0; QÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0
p

Q2
~� � ~Qc ðy0; ~�Þ

�
:

Integrating the term @�=@y0 by parts in y0 and using

Eqs. (4.2), we find for �dmðy; ~Q; ~�Þ:

�dmðy; ~Q; ~�Þ ¼ c ð0; ~�Þ
�
�c0dmðQÞe�i ~	� ~Qlðy;QÞ=2 þ d lnfdm0

d lnQ
½e�i ~	� ~Qlðy;QÞ=2 ��ð0; 	Þ � ��ðy; 	Þ�

þ i
~� � ~Q

Q2

d lnfdm0
d lnQ

Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0

p eþi ~	� ~Q½lðy0;QÞ�lðy;QÞ�=2
��

"ðy0; QÞ þ Q2

"ðy0; QÞ
�
��ðy0; 	Þ � "ðy0; QÞ ��ðy0; 	Þ

��
:

(4.5)

Here we used Eqs. (3.3) and (3.13) for the initial value
�dmð0; ~Q; ~�Þ. Multiplying both sides of Eq. (4.5) by
"ðy;QÞfdm0 ðQÞ, integrating over ~Q and using Eq. (3.20)
for the DM density fluctuations yields,

�� dmðy; 	Þ ¼ aðy; 	Þ þ y
dmbdmðyÞ ��ðy; 	Þ

þ �
Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0

p ½N	ðy; y0Þ ��ðy0; 	Þ

þ N�
	 ðy; y0Þ ��ðy0; 	Þ�; (4.6)

where we factored out the initial gravitational potential
c ð0; ~�Þ from the density fluctuations according to
Eqs. (3.13) and (3.18) in order to obtain a quantity inde-
pendent of the directions of ~	:

aðy; 	Þ �
Z 1

0
Q2dQ"ðy; QÞ

�
fdm0 ðQÞ �c0dmðQÞ

þ ��ð0Þ df
dm
0

d lnQ

�
j0

�
	

2
Qlðy;QÞ

�
; (4.7)
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y
dmbdmðyÞ �
Z 1

0

Q2dQ

"ðy;QÞ f
dm
0 ðQÞ½4Q2 þ 3ð
dmyÞ2�;

(4.8)

N	ðy; y0Þ ¼
Z 1

0
Q2dQ"ðy;QÞ df

dm
0

dQ
j1½	lQðy; y0Þ�

�
�
"ðy0; QÞ þ Q2

"ðy0; QÞ
�
; (4.9)

N�
	 ðy;y0Þ ¼�

Z 1

0
Q2dQ

dfdm0
dQ

j1½	lQðy;y0Þ�"ðy;QÞ"ðy0;QÞ:
(4.10)

We used Eqs. (B1) and (B4), jnðxÞ for 0 � n � 3 are
spherical Bessel functions [32],

lQðy; y0Þ � 1

2
Q½lðy;QÞ � lðy0; QÞ�

¼ Q

2

Z y

y0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞ½x2 þ ðQ=
dmÞ2�
p ;

and we used the relation

4�G�	2

3a2eq

gdmNdmT
4
d

2�2
¼ 1

2
dm

: (4.11)

Notice from Eq. (3.32) that

��ð0Þ ’ 1þ 2
5R�ð0Þ:

The kernels N	ðy; y0Þ and N�
	 ðy; y0Þ only depend on the

modulus of ~	 and not on its direction since we consider
linear fluctuations evolving on an homogeneous and iso-
tropic cosmology.

We derive now for ��dmðy; 	Þ an equation analogous to
Eq. (4.6). We first obtain from Eqs. (2.62), (2.66), (3.13),
(3.14), (3.15), (3.16), (3.17), and (3.18)

c ð0; ~	Þ ��dmðy; 	Þ ¼ 4�G

k2a2ð�Þ�dmð�; ~kÞ

¼ � 3


dm�
2y2

Z d3Q

4�

Q2

"ðy;QÞ
� P2ð �� � �QÞfdm0 ðQÞ�dmðy; ~Q; ~�Þ:

(4.12)

We multiply Eq. (4.5) by

Q2

"ðy;QÞP2ð �� � �QÞfdm0 ðQÞ; (4.13)

integrate over ~Q and using Eqs. (3.20) and (4.12) we find,


dm ��dmðy;	Þ ¼ a�ðy;	Þþ�
Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0

p ½U	ðy;y0Þ ��ðy0;	Þ

þU�
	ðy;y0Þ ��ðy0;	Þ�; (4.14)

where,

a�ðy; 	Þ � 3

�2y2

Z 1

0

Q4dQ

"ðy;QÞ
�
fdm0 ðQÞ �c0dmðQÞ

þ ��ð0Þ df
dm
0

d lnQ

�
j2

�
	

2
Qlðy;QÞ

�
; (4.15)

U	ðy;y0Þ¼� 3

5�2y2

Z 1

0

Q4dQ

"ðy;QÞ
dfdm0
dQ

�
"ðy0;QÞþ Q2

"ðy0;QÞ
�

�f2j1½	lQðy;y0Þ��3j3½	lQðy;y0Þ�g; (4.16)

U�
	ðy; y0Þ ¼ 3

5�2y2

Z 1

0

Q4dQ

"ðy;QÞ
dfdm0
dQ

"ðy0; QÞ

� f2j1½	lQðy; y0Þ� � 3j3½	lQðy; y0Þ�g: (4.17)

We used here Eq. (B1) and (B4).
Equations (4.6) and (4.14) form a system of Volterra

equations

��dmðy; 	Þ ¼ aðy; 	Þ þ y
dmbdmðyÞ ��ðy; 	Þ

þ �
Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0

p ½N	ðy; y0Þ ��ðy0; 	Þ

þ N�
	 ðy; y0Þ ��ðy0; 	Þ�; 
dm ��dmðy; 	Þ

¼ a�ðy; 	Þ þ �
Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0

p ½U	ðy; y0Þ ��ðy0; 	Þ

þU�
	ðy; y0Þ ��ðy0; 	Þ�: (4.18)

Notice that aðy; 	Þ, a�ðy; 	Þ, ��ðy; 	Þ; ��dmðy; 	Þ, ��dmðy; 	Þ
and ��ðy; 	Þ only depend on the modulus of ~	 and not on
the directions of ~	. The dependence on the ~	 directions
comes from the initial power spectrum c ð0; ~�Þ through the
random field gð ~kÞ in Eq. (3.17) and turns to factor out,
which simplifies the resolution of the Volterra integral
equations (4.18). The factorization of the dependence on
the ~	 directions is possible because we consider linear
fluctuations evolving on an homogeneous and isotropic
cosmology where all the evolution kernels N	ðy; y0Þ,
N�

	 ðy; y0Þ, U	ðy; y0Þ and U�
	ðy; y0Þ are independent of the

~	 directions.
The B-V distribution function as well as the coefficients

in the B-Vequation depend on y, ~	 and ~Q. We integrate the

distribution function over ~Q multiplied by appropriated
weights. The distribution function times "ðy;QÞ produces
the density Eq. (3.20) and the distribution function times
the expression (4.13) produces the anisotropic stress fluc-
tuations Eq. (4.12). The density and the anisotropic stress
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fluctuations defined with such specific weights obey a
closed system of Volterra integral equations. Namely, no

extra information on the ~Q dependence of the distribution
functions is needed, which is a truly remarkable fact.

We derive below the Volterra integral equations for
neutrinos Eqs. (4.26) similar to Eqs. (4.18) for DM.

B. The pair of Volterra integral equations
for DM and neutrinos

The Volterra integral equations for neutrinos are ob-
tained from Eq. (2.54) following the same steps
Eqs. (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9),
(4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16), and
(4.17) which lead to the DM Volterra integral equations
(4.18). These Volterra integral equations for ultrarelativis-
tic neutrinos are simpler than the corresponding DM equa-
tions and follow from Eqs. (4.7), (4.8), (4.9), (4.10), (4.11),
(4.12), (4.13), (4.14), (4.15), (4.16), and (4.17) making the
following substitutions:

"ðy;QÞ ) Q; 	lQðy; y0Þ ) �rðy; y0Þ;
	lðy;QÞ ) 2�

Q
rðy; 0Þ; gdmNdm ) g�N�ðyÞ;

fdm0 ðQÞ ) f�0 ðQÞ; ��dmðy; 	Þ ) ���ðy; 	Þ;

dm ) I�3

R�ðyÞ ;
�dmðy; 	Þ ) ��ðy; 	Þ ¼ c �ðy; 	Þ ���ðy; 	Þ; (4.19)

where

rðy; y0Þ � 2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0

q �
;

rðy; 0Þ ¼ 2
� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ y
p � 1

	 (4.20)

and we used Eq. (4.3). [See also Eq. (3.19)].
Upon these changes the kernels N	ðy; y0Þ, N�

	 ðy; y0Þ,
U	ðy; y0Þ, U�

	ðy; y0Þ in Eqs. (4.9), (4.10), (4.11), (4.12),
(4.13), (4.14), (4.15), (4.16), and (4.17) and the inhomoge-
neous terms aðy; 	Þ and a�ðy; 	Þ in Eq. (4.7) simplify
considerably. For ultrarelativistic neutrinos (ur) (0< y <
34m�=0:05 eV) using Eqs. (3.29), (3.30), (3.31), (3.32),
(3.33), (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8),
(4.9), (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16),
(4.17), (4.18), (4.19), and (4.20) these kernels become:

N	ðy; y0Þ )un neutrinos
Nur

	 ðy; y0Þ � �8I�3 j1½�rðy; y0Þ�;

U	ðy; y0Þ )un neutrinos
Uur

	 ðy; y0Þ � 24I�3
5�2y2

f2j1½�rðy; y0Þ�

� 3j3½�rðy; y0Þ�g;
(4.21)

N�
	 ðy; y0Þ )un neutrinos � 1

2N
ur
	 ðy; y0Þ;

U�
	ðy; y0Þ )un neutrinos � 1

2U
ur
	 ðy; y0Þ;

(4.22)

aðy; 	Þ )ur neutrinos
aurðy; 	Þ � �2I�3 ½1þ 2 ��ð0Þ�j0½�rðy; 0Þ�;

(4.23)

a�ðy; 	Þ )ur neutrinos
aur�ðy; 	Þ

� �6I�3 ½1þ 2 ��ð0Þ� j2½�rðy; 0Þ�
�2y2

; (4.24)

where we used Eqs. (2.25), (3.21), (3.30), (4.7), (4.8), (4.9),
(4.10), (4.15), (4.16), and (4.17).
In addition, when relevant the neutrinos are massless and

using Table I, the coefficient of ��ðy; 	Þ in Eqs. (4.18) for
neutrinos becomes:

y
dmbdmðyÞ ) 4I�3 : (4.25)

Therefore, making the changes Eqs. (4.19), (4.20), (4.21),
(4.22), (4.23), (4.24), and (4.25) in Eqs. (4.18) yields the
following Volterra integral equations for ultrarelativistic
neutrinos

���ðy;	Þ¼aurðy;	Þþ4I�3
��ðy;	Þ

þ�
Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffi
1þy0

p Nur
	 ðy;y0Þ

�
��ðy0;	Þ�1

2
��ðy0;	Þ

�
;

(4.26)

I�3
R�ðyÞ ��

�ðy; 	Þ ¼ aur�ðy; 	Þ þ �
Z y

0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0

p Uur
	 ðy; y0Þ

�
�
��ðy0; 	Þ � 1

2
��ðy0; 	Þ

�
: (4.27)

Notice that the DM and neutrino Volterra integral equa-
tions Eqs. (4.18) and (4.26) are coupled to each other and to
the linearized Einstein equations Eq. (3.23) as well as to the
hydrodynamic photon equations (2.57) and (2.58).
It is possible to simplify the set of four Volterra integral

equations (4.18) and (4.26) into two Volterra equations.
Taking linear combinations of Eqs. (4.18) and (4.26) we

find for ��ðy; 	Þ [defined in Eq. (3.25)] and ��ðy; 	Þ,
��ðy; 	Þ ¼ Cðy; 	Þ þ B
ðyÞ ��ðy; 	Þ

þ
Z y

0
dy0½G	ðy; y0Þ ��ðy0; 	Þ

þG�
	ðy; y0Þ ��ðy0; 	Þ�;

��ðy; 	Þ ¼ C�ðy; 	Þ þ
Z y

0
dy0½I�	ðy; y0Þ ��ðy0; 	Þ

þ I	ðy; y0Þ ��ðy0; 	Þ�;

(4.28)

with the initial conditions Eqs. (3.25) and (3.31)
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��ð0; 	Þ ¼ 1; ��ð0; 	Þ ¼ 2
5I
 ’ 2

5R�ð0Þ:

We have in Eq. (4.28)

Cðy; 	Þ � � 1

2I


�
aðy; 	Þ

dm

þ R�ðyÞ
I�3

aurðy; 	Þ
�
;

C�ðy; 	Þ � a�ðy; 	Þ

dm

þ R�ðyÞ
I�3

aur�ðy; 	Þ;
(4.29)

B
ðyÞ�� 1

2I

½ybdmðyÞþ4R�ðyÞ�;

G	ðy;y0Þ¼� �

2I

ffiffiffiffiffiffiffiffiffiffiffiffi
1þy0

p
�

1


dm

N	ðy;y0ÞþR�ðyÞ
I�3

Nur
	 ðy;y0Þ

�
;

(4.30)

G�
	ðy;y0Þ¼� �

2I

ffiffiffiffiffiffiffiffiffiffiffiffi
1þy0

p
�

1


dm

N�
	 ðy;y0Þ�R�ðyÞ

2I�3
Nur

	 ðy;y0Þ
�
;

(4.31)

I	ðy; y0Þ ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0

p
�

1


dm

U	ðy; y0Þ þ R�ðyÞ
I�3

Uur
	 ðy; y0Þ

�
;

(4.32)

I�	ðy; y0Þ ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0

p
�

1


dm

U�
	ðy; y0Þ � R�ðyÞ

2I�3
Uur

	 ðy; y0Þ
�
:

(4.33)

In Eqs. (4.28) we can use I
 ’ R�ð0Þ.
Notice that the G and I kernels in Eqs. (4.30), (4.31),

(4.32), and (4.33) result expressed as the sum of the DM
contribution from the N and U kernels plus the (ultrarela-
tivistic) neutrino contribution Nur

	 ðy; y0Þ and Uur
	 ðy; y0Þ,

respectively. The inhomogeneous terms Cðy; 	Þ and
C�ðy; 	Þ and the coefficient B
ðyÞ in Eqs. (4.29) and

(4.30) turn also to be expressed as the sum of the DM
plus the neutrino contributions.
In the MD era the neutrinos are negligible and its

fraction R�ðyÞ becomes 
 1 and can be neglected. Once
neutrinos are negligible in the MD era, the DM contribu-
tion to ��ðy; 	Þ from Eqs. (4.28), (4.29), (4.30), (4.31),
(4.32), and (4.33) is of the order 1=
dm 
 1 and the
anisotropic stress becomes negligible. This reduces the
coupled Volterra integral equations (4.28) in the MD era

to a single Volterra integral equation for ��ðy; 	Þ as we
explicitly show in the accompanying paper [19].
All functions in the inhomogeneous terms, coefficient

and kernels in the Volterra equations (4.28) are explicitly
known from Eqs. (4.29), (4.30), (4.31), (4.32), and (4.33)
Therefore, Eqs. (4.28) plus the linearized Einstein equa-
tions (3.27) and the hydrodynamic photon equations (2.57)
and (2.58) provide a close system of equations determining

TABLE I. Some useful formulas.

Some useful formulas

H2
0 ¼ 8�G

3 �c, M2
Pl ¼ 1

8�G , �dm ¼ �dm�c, �r ¼ �r�c,
1
aeq

¼ �M

�r
’ 3200

�	 ¼
ffiffiffiffiffiffi
aeq
�M

q
1
H0

’ 143 Mpc, � ¼ k�	 ¼ 1
2
dm	, gdmNdm ¼ 2�2 �dm

mT3
d

, y ¼ a
aeq

’ 3200
zþ1


dm ¼ maeq
Td

¼ 4900 m
keV ð gd100Þ1=3 ¼ 5520ð m

keVÞ4=3ðgdmNdmÞ1=3, 4�G�	2
3a2eq

¼ 1
2�r

	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
aeq�dm

p 2Td

mH0
k, 4�G�	2

3a2eq

gdmNdmT
4
d

2�2 ¼ 1
2
dm

, 4�G�	2
3a2eq

g�N�ðyÞðT�
d
Þ4

2�2 ¼ R�ðyÞ
2I�

3

"ðy;QÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
dmÞ2y2 þQ2
p

, "�ðy;QÞ ¼ Q for z > 95 m�

0:05 eV , ��ðy; y0Þ ¼ ð1þy
1þy0 e

y0�yÞ�2=3

lðy;QÞ ¼ Ry
0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þy0Þ½y02þðQ=
dmÞ2�

p , lQðy; y0Þ � 1
2Q½lðy; QÞ � lðy0; QÞ�

Idmn ¼ R1
0 Qnfdm0 ðQÞdQ, I�n ¼ R1

0 Qnf�0 ðQÞ , Idm2 ¼ I�2 ¼ 1

�dmð�; ~kÞ ¼ ��dmðy; 	Þ gdmNdmT
4
d

2�2 c ð0; ~kÞ, ��ð�; ~kÞ ¼ ���ðy; 	Þ g�N�ðyÞðT�
d
Þ4

2�2 c ð0; ~kÞ ��ðy; 	Þ ¼ � 1
2I


½ 1

dm

��dmðy; 	Þ þ R�ðyÞ
I�
3

���ðy; 	Þ�,
I
 ¼ Idm

3


dm
þ R�ð0Þ ’ R�ð0Þ ¼ 0:727, ��ð0; 	Þ ¼ 1

�ð�; ~kÞ ¼ c ð0; ~kÞ ��ðy; 	Þ, c ð�; ~kÞ ¼ c ð0; ~kÞ �c ðy; 	Þ, �c ð0; 	Þ ¼ 1, ��ð0Þ ’ 1þ 2
5R�ð0Þ ¼ 1:291 ��ðy; 	Þ ¼ ��dmðy; 	Þ þ ���ðy; 	Þ,

�ð�; ~kÞ ¼ c ð0; ~kÞ ��ðy; 	Þ, �dmð�; ~kÞ ¼ c ð0; ~kÞ ��dmðy; 	Þ, ��ð�; ~kÞ ¼ c ð0; ~kÞ ���ðy; 	Þ
rðy; y0Þ ¼ 2ð ffiffiffiffiffiffiffiffiffiffiffiffi

1þ y
p � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0
p Þ, sðyÞ ¼ �ArgSinhð 1ffiffi

y
p Þ

bdmðyÞ¼y!0 4Idm
3


dmy
þ Idm1 
dmyþOðy3Þ, bdmðyÞ¼y�1 3þ 5Idm

4

2½
dmy�2 þO
�

1
½
dmy�4

�
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��ðy; 	Þ, ��ðy; 	Þ and ��ðy; 	Þ. Once ��ðy; 	Þ, ��ðy; 	Þ and
��ðy; 	Þ are known we can insert them in the right-hand

side of Eqs. (4.18) and (4.26) to obtain ��dmðy; 	Þ,
��dmðy; 	Þ, ���ðy; 	Þ and ���ðy; 	Þ, respectively.
We now set y ¼ 0 in the system of the Volterra equations

(4.28) to check their consistency. Taking into account
Eqs. (4.7), (4.8), (4.9), (4.10), (4.15), (4.16), (4.17), (4.29),
(4.30), (4.31), (4.32), and (4.33) we obtain

Cð0; 	Þ ¼ 1þ 2 ��ð0Þ; B
ð0Þ ¼ �2;

C�ð0; 	Þ ¼ � 2

5
½1þ 2 ��ð0Þ�;

lim
y!0

Z y

0
dy0G	ðy; y0Þ ��ðy0; 	Þ ¼ 0;

lim
y!0

Z y

0
dy0G�

	ðy; y0Þ ��ðy0; 	Þ ¼ 0;

(4.34)

lim
y!0

Z y

0
dy0I	ðy; y0Þ ��ðy0; 	Þ ¼ 8

5
I
 ��ð0Þ;

lim
y!0

Z y

0
dy0I�	ðy; y0Þ ��ðy0; 	Þ ¼ � 8

25
I
R�ð0Þ:

(4.35)

Equations (4.28) are identically satisfied at y ¼ 0 due to
Eqs. (3.26), (4.34), and (4.35).

The system of Volterra equations (4.28) is collisionless
and it is therefore valid after both DM and neutrinos
decoupled for y > y�d ’ 0:5� 10�6 (see Table II). Since

we are interested in adiabatic fluctuations which are regu-
lar solutions of Eqs. (4.28) at y ¼ 0 we can start the
evolution at y ¼ 0 instead of y ¼ y�d ’ 0:5� 10�6 with a

negligible error.
For the DM particles, the range 0:5� 10�6 < y< 0:01

corresponds to the transition from ultrarelativistic to non-
relativistic kinematics (see Table II).

The density contrast �ðy; ~	Þ can be expressed in terms of

the normalized DM fluctuations ��dmðy; 	Þ from Eqs. (2.69)
and (3.18) as

�ðy; ~	Þ ¼ 1


dm

��dmðy; 	Þ
yþ 1

c ð0; ~	Þ with

�ð0; ~	Þ ¼ � 2Idm3

dm

c ð0; ~	Þ; (4.36)

where we used Eq. (3.30) and c ð0; ~	Þ is given by the
primordial fluctuations Eq. (3.17) and 
dm is given explic-
itly by Eq. (2.27).
The integral equation (4.28) supplemented by the fluid

equations (2.57) and (2.58) for the photons and the line-
arized Einstein equations (3.23) provide a closed system of
equations to determine the DM, photon and neutrino den-
sity fluctuations. This system of Volterra-type integral
equations is valid for relativistic as well as nonrelativistic
particles propagating in the radiation and matter dominated
eras. This is the generalization of Gilbert’s equation which
is only valid for nonrelativistic particles in a matter domi-
nated universe [20].
We solve in an accompanying paper [19] the cosmologi-

cal evolution of warm dark matter density fluctuations
presented here in the absence of neutrinos. In that case
the anisotropic stress vanishes and the Volterra equations
(4.28) reduce to a single integral equation.
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APPENDIX A: THE DM GRAVITATIONAL
POTENTIAL FOR LARGE WAVE NUMBERS

In Secs. II and IV we found integrals of the type

I�ðyÞ¼
Z y

0

dx

1þx

�
1þy

1þx
ex�y

�
�
fðxÞ; �¼�2=3: (A1)

The function ��ðyÞ � I�ðyÞ=y solves the first order differ-
ential equation

�
yð1þ yÞ d

dy
þ 1þ yþ �y2

�
��ðyÞ ¼ fðyÞ;

which has the form of the linearized Einstein equations
(3.23) and (2.27).
We derive here the asymptotic expansion of I�ðyÞ in the

limit where � � 1.
It is convenient to change the integration variable x in

Eq. (A1) to s defined as

TABLE II. Main events in the DM, neutrinos and universe evolution.

Universe event Redshift z y ¼ a
aeq

¼ zeqþ1

zþ1 ’ 3200
zþ1

DM decoupling zd � 1:6� 1015
Tdp

100 GeV ð gd100Þ1=3 yd ’ 2� 10�12

Neutrino decoupling z�d ’ 6� 109 y�d ’ 0:5� 10�6

DM particles transition from UR to NR ztrans ’ 1:6� 107 keV
m ð gd100Þ1=3 ytrans ¼ 1


dm
’ 0:0002� 10�6 < y< 0:01

Transition from the RD to the MD era zeq ’ 3200 yeq ¼ 1
The lightest neutrino becomes NR z�trans ¼ 95 m�

0:05 eV y�trans ¼ 34 0:05 eV
m�

Today z0 ¼ 0 y0 ’ 3200
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sðxÞ � log
1þ x

1þ y
þ y� x; sðyÞ ¼ 0;

sð0Þ ¼ y� logð1þ yÞ:
The integral in Eq. (A1) becomes

I�ðyÞ ¼
Z y�logð1þyÞ

0
e��sf½xðsÞ� ds

xðsÞ :

In the � � 1 regime this integral is dominated by the
endpoint of integration s ¼ 0. Expanding f½xðsÞ�=xðsÞ
around s ¼ 0 and integrating term by term yields

I�ðyÞ ¼��1 fðyÞ
�y

� 1þ y

ð�yÞ2
�
df

dy
� fðyÞ

y

�
þO

�
1

ð�yÞ3
�
: (A2)

APPENDIX B: ANGULAR INTEGRALS

We proceeded in sec. IV to compute integrals over
the directions of ~q with the help of the partial wave
expansion [33]

ei�
�k� �q ¼ X1

l¼0

ð2lþ 1Þiljlð�ÞPlð �k � �qÞ:

Integrating this expansion over the angles yields [32]

Z d�ð �qÞ
4�

ei�
�k� �qPlð �k � �qÞ ¼ iljlð�Þ: (B1)

In Sec. IV we use Eq. (B1) for 0 � l � 3, the relations [33]

j0ðxÞ¼ sinx

x
; jlþ1ðxÞ¼ l

x
jlðxÞ�djl

dx
; l�0 (B2)

and the formulas for Legendre polynomials [32]

P0ðxÞ ¼ 1; P1ðxÞ ¼ x;

Plþ1ðxÞ ¼ x
2lþ 1

lþ 1
PlðxÞ � l

lþ 1
Pl�1ðxÞ; l � 1:

It follows from these relations, in particular, that

xP2ðxÞ ¼ 3
5P3ðxÞ þ 2

5P1ðxÞ: (B3)

We get combining Eqs. (B1) and (B3),

Z d�ð �QÞ
4�

eþi ~	� ~Q½lðy0;QÞ�lðy;QÞ�=2 �� � �QP2ð �� � �QÞ

¼ � i

5
f2j1½	lQðy; y0Þ� � 3j3½	lQðy; y0Þ�g: (B4)
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