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Gravitational lensing by large scale structure introduces non-Gaussianity into the cosmic microwave

background and imprints a new observable, which can be used as a cosmological probe. We apply a four-

point estimator to the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year coadded temperature

maps alone to reconstruct the gravitational lensing signal. The Gaussian bias is simulated and subtracted,

and the higher-order bias is investigated. We measure a gravitational lensing signal with a statistical

amplitude of C ¼ 1:27� 0:98 using all the correlations of the W- and V-band differencing assemblies .

We therefore conclude that WMAP 7-year data alone cannot detect lensing.

DOI: 10.1103/PhysRevD.85.043513 PACS numbers: 98.80.Cq, 98.62.Sb, 98.80.Es

I. INTRODUCTION

Gravitational lensing of the cosmic microwave back-
ground (CMB) provides information on the mass distribu-
tion between the surface of last scattering and the observer,
thus potentially providing information, for example, on
dark energy and neutrino masses. In addition, gravitational
lensing causes E-modes to be converted into large angular
scale B-modes, thereby potentially contaminating B-mode
signature of inflationary gravitational waves [1]. Because
lensing deflects CMB photons by approximately 30, a
perturbative treatment to first order is generally valid. An
estimator for the deflection angle has been devised by
Hu [2,3].

The first attempt to detect lensing by Hirata et al. [4]
used the cross-correlation between the WMAP 1-year data
and selected luminous red galaxies (LRGs) from the Sloan
Digital Sky Survey. No statistically significant signal was
found. The first detection of lensing was performed by
Smith et al. [5] who used the cross-correlation between
the NRAOVLA Sky Survey (NVSS) of radio galaxies with
a higher mean redshift than the Sloan LRGs and a
fully-optimal lensing estimator on the statistically more
powerful WMAP 3-year data. Evidence for lensing was
found at the 3:4� level. Using a similar estimator as in [4],
Hirata et al. [6] obtained results consistent with, though at
slightly lower significance than [5], using WMAP 3-year
data, LRGs, and quasars from the Sloan Digital Sky Survey
data, as well as data from the NVSS. Recently, Smidt et al.
[7] used an estimator based upon the kurtosis of the CMB

temperature four-point correlation function to estimate
lensing from WMAP 7-year data only and claimed evi-
dence for lensing at the 2� level. Recently, the Atacama
Cosmology Telescope (ACT) collaboration successfully
detected gravitational lensing [8] at the 4� level. The
South Pole Telescope (SPT) detected the effects of gravi-
tational lensing on the angular power spectrum [9].
In this paper we present a search for gravitational lens-

ing using the WMAP 7-year data alone and the standard
optimal quadratic estimator [2,3] which differs from the
kurtosis estimator of [7]. We apply the quadratic estimator
to WMAP-7 temperature maps alone for the first time in
the hopes that our analysis might serve as a touchstone
allowing for consistent comparison between different lens-
ing extraction techniques. We review the notation for full-
sky reconstruction of gravitational lensing in Sec. II. We
discuss the sky cut used in our analysis in Sec. III. Then we
introduce our modified estimator in Sec. IV making use of
the optimal quadratic estimator of [2]. We introduce the
WMAP 7-year data in Sec. V, and describe the details of
the calculations, including the noise model, and analysis in
Sec. VI. Results of a null test are shown in Sec. VII, and we
discuss the conclusions of our work in Sec. VIII.

II. GRAVITATIONAL LENSING

The effect of lensing on the CMB’s primordial tempera-
ture ~T in direction n can be represented by

TðnÞ ¼ ~Tðnþ dðnÞÞ; (1)

where T is the lensed temperature and dðnÞ ¼ r�, with �
being the lensing potential. The two-point correlation func-
tion of the temperature field following [10], is*cfeng@physics.ucsd.edu
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hTlmTl0m0 i ¼ ~CTT
l �ll0�m�m0 ð�1Þm

þX
LM

ð�1ÞM l l0 L

m m0 �M

 !
fTTlLl0�LM; (2)

where the second term encodes the effects of lensing with
the weighting factor fTTlLl0 given by

fTTlLl0 ¼ ~CTT
l 0Fl0Ll þ ~CTT

l0 0FlLl0 : (3)

Here ~CTT
l are the unlensed temperature power spectra and

0FlLl0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

4�

s
� 1

2
½LðLþ 1Þ

þ l0ðl0 þ 1Þ � lðlþ 1Þ� l L l0

0 0 0

 !
: (4)

The lensing estimator is constructed from an average
over a pair of two-point correlations [2,3] and has the form

dTTLM ¼ ATT
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðLþ 1Þp � X
ll0mm0

ð�1ÞMgTTl0l ðLÞ

� l0 l L

m0 m �M

 !
Tl0m0Tlm: (5)

The requirement that the estimator in Eq. (5) is unbiased
and has minimal variance results in

ATT
L ¼ LðLþ 1Þð2Lþ 1Þ

�X
gTTll0 ðLÞfTTlLl0

��1
(6)

and

gTTll0 ðLÞ ¼
fTTlLl0

2Ctot
l Ctot

l0
; (7)

with Ctot
l ¼ CTT

l þ NTT
l , where CTT

l are the lensed power

spectra and NTT
l is the instrumental noise. In the following,

the summations are from l and l0 ¼ 0 to 750 and jmj � l,
jm0j � l0. The WMAP 7-year data do not contain addi-
tional information at higher multipoles.

To reduce computation time we follow [10] and define
three maps for the TT estimator:

0A
TðnÞ ¼ X

lm

1

Ctot
l

Tlm0YlmðnÞ; (8)

XðnÞ ¼X
lm

~CTT
l

Ctot
l

Tlm�l0þ1YlmðnÞ; (9)

YðnÞ ¼ X
lm

~CTT
l

Ctot
l

Tlm�l0�1YlmðnÞ; (10)

and take the inverse spherical harmonic transform (SHT)
of 0A

TX and 0A
TY to get

�ð1Þ
LM ¼ �L0

Z
dnþ1Y

�
LM0A

TX (11)

�ð2Þ
LM ¼ �L0

Z
dn�1Y

�
LM0A

TY (12)

with

�ls ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� sÞðlþ sþ 1Þ

2

s
(13)

�ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl� sþ 1Þ

2

s
: (14)

Using Eqs. (8)–(10) the expression for dTTLM in Eq. (5)
becomes

dTTLM ¼ ATT
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðLþ 1Þp ½�ð1Þ
LM þ�ð2Þ

LM�: (15)

A similar procedure is followed for the efficient calcu-
lation of ATT

L in Eq. (6). The resulting expression is given in
[11] (originally proposed in [12]):

ATT
l ¼

Z �1

þ1
½½�T

00ð�Þ�T
11ð�Þ � �T

01ð�Þ�T
01ð�Þ�dl�1�1ð�Þ

þ ½�T
00ð�Þ�T

1�1ð�Þ � �T
01ð�Þ�T

0�1ð�Þ�dl1�1ð�Þ�dðcos�Þ
(16)

with the �T given by

�T
00ð�Þ ¼

X
l

2lþ 1

4�

1

CTT
l þ NTT

l

dl00ð�Þ; (17)

�T
0�1ð�Þ ¼

X
l

2lþ 1

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ~CTT

l

CTT
l þ NTT

l

dl0�1ð�Þ; (18)

�T
1�1ð�Þ ¼

X
l

2lþ 1

4�
lðlþ 1Þ ð ~CTT

l Þ2
CTT
l þ NTT

l

dl1�1ð�Þ; (19)

here dlss0 ð�Þ are Wigner d-functions.

III. SKY CUT

In order to eliminate contaminated data, regions such as
the galactic plane and bright point sources in the full-sky
map must be removed using a mask, thereby introducing a
sky cut. For example, in [6], the Kp2 mask was used to
make 84.7% of the sky uncontaminated. In [7], the more
conservative KQ75 mask was used to clean artifacts around
the galactic plane and point sources.
The sky cut can be removed as a separate component to

get a full-sky map before we process the data. One such
technique is the ‘‘inpainting’’ method in which the esti-
mated values of pixels in the map are substituted for
those removed by the mask. Perotto et al. have simulated
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the full-sky reconstruction for PLANCK [13]. The full-sky
map recovered in this way will bias the lensing reconstruc-
tion slightly.

Another method proposed by A. Benoit-Levy [14] apod-
izes the masked regions of the map and inpaints the
masked regions of the map by constrained Gaussian ran-
dom values of the unlensed temperature. In this way, the
sky-cut-induced coupling approximately reduces to a unit
matrix. However, for WMAP, we have to remove a big
portion of the sky, reducing fsky dramatically to 0.3. The

unbiased estimator could be scaled up by a factor of 1=fsky,

but the signal-to-noise ratio would be reduced significantly.
This means the uncertainty of the reconstructed signal
would be larger.

As opposed to a separate-component solution, we obtain
an all-inclusive lensing reconstruction pipeline, using the
built-in filter of the estimator to treat the data without
preconditioning it. The optimal estimator for the potential
based on the maximum likelihood is derived by Hirata
[15]. The full inverse variance ðCþNÞ�1, instead of
ðCTT

L þ NTT
L Þ�1, was used by [5] because it is an optimal

filter when there are sky cuts and inhomogeneous noise.
The sky cut generates artifacts in harmonic space, as does
lensing. ðCþNÞ�1 can be used to filter those modes
affected by the sky cut. However, we do not use this filter
because the inversion of (CþN) is computationally
challenging [5]; instead we use the estimator Eq. (5) which
is identical to the one of [6], and it is an excellent approxi-
mation to the maximum likelihood estimator. We note
that, while ðCTT

L þ NTT
L Þ�1 will be suboptimal to a full

ðCþNÞ�1 filter, it preserves the simplicity and efficiency
of the lensing reconstruction procedure.

IV. THE LENSING ESTIMATOR

For WMAP, we modify the estimator slightly to deal
with the instruments’ anisotropic temperature noise.

The observed lensed temperature map T is given by

T ðnÞ ¼ MðnÞ½
Z

dn0Tðn0ÞBðn;n0Þ þ NðnÞ� (20)

and likewise the ‘‘observed’’ unlensed temperature map ~T
is

~TðnÞ ¼ MðnÞ
�Z

dn0 ~Tðn0ÞBðn;n0Þ þ NðnÞ
�
: (21)

Here MðnÞ represents the mask, Bðn;n0Þ the beam, and
NðnÞ the noise.

For a pair of maps � and �, ‘‘TTð�� �Þ’’ denotes the
cross-correlation between these two temperature maps. A
harmonic mode of the reconstruction including noise is
estimated as

dTTð���Þ
LM ¼ ATTð���Þ

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp X

ll0mm0
ð�1ÞMfTTlLl0

� l0 l L

m0 m �M

 !
Tð�Þ
l0m0

Cð�Þ
l0

Tð�Þ
lm

Cð�Þ
l

(22)

following Eq. (5), and a harmonic mode of the Gaussian
bias is estimated as

NTTð���Þ
LM ¼ ATTð���Þ

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp X

ll0mm0
ð�1ÞMfTTlLl0

l0 l L

m0 m �M

 !

�
~Tð�Þ
l0m0

Cð�Þ
l0

~Tð�Þ
lm

Cð�Þ
l

: (23)

Here C are the power spectra of the observed lensed
temperature, determined from hTlmTl0m0 i. As was done in
[8,16] we use the same power spectra in Eq. (22) and (23).
In order to deal with the nonuniform noise distribution in

the WMAP data, we symmetrize dTTð���Þ
LM as in [6], denot-

ing the symmetrized cross-correlation ‘‘TTð� � �Þ’’
between these two temperature maps,

d TTð���Þ
LM ¼ dTTð���Þ

LM þ dTTð���Þ
LM

2
(24)

and

NTTð���Þ
LM ¼ NTTð���Þ

LM þ NTTð���Þ
LM

2
: (25)

We refer to Cest
L ¼ hd�LMdLMi as the reconstruction in-

cluding noise, and Nð0Þ
L ¼ hN�

LMNLMi as the Gaussian bias,
with the superscript ‘‘TTð� � �Þ’’ omitted. Thus we obtain

dTTð���ÞLM ¼ 1

2

�
ATTð���Þ
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp

�
�L0

Z
dnþ1Y

�
LM0A

Tð�ÞXð�Þ

þ �L0

Z
dn�1Y

�
LM0A

Tð�ÞYð�Þ
�

þ ATTð���Þ
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp

�
�L0

Z
dnþ1Y

�
LM0A

Tð�ÞXð�Þ

þ �L0

Z
dn�1Y

�
LM0A

Tð�ÞYð�Þ
��
; (26)

ATTð���Þ
L ¼

Z �1

þ1
dðcos�Þ½ð�Tð�Þ

00 ð�Þ�Tð�Þ
11 ð�Þ

��Tð�Þ
01 ð�Þ�Tð�Þ

01 ð�ÞÞdL�1�1ð�Þ
þð�Tð�Þ

00 ð�Þ�Tð�Þ
1�1 ð�Þ��Tð�Þ

01 ð�Þ�Tð�Þ
0�1 ð�ÞÞdL1�1ð�Þ�;

(27)

following a reasoning similar to the one near the end of
Sec. II.
The two-point correlation of the Gaussian bias estimator

is essentially a four-point correlation function of the
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primordial temperature modes. It should be carefully sub-
tracted since, for a noise-dominated experiment such as
WMAP, the Gaussian four-point bias is several orders of
magnitude larger than the lensing power spectra. In [8]
phase-randomized data maps are used to simulate this
Gaussian bias. However, this approach does not work for
the present lensing reconstruction since WMAP’s noise is
not isotropic. Evidence for this can be seen from the

normalization factor ATTð���Þ
L which is not equal to

Nð0ÞTTð���Þ
L whereas they should be equal for isotropic

noise [10]. The normalization factor Eq. (27) only contains
the partial contribution coming from the nonisotropic noise
while the Gaussian bias squared from Eq. (25) consists of
all the correlations generated by the nonisotropic noise, see
[17,18]. If the phases of the WMAP temperature maps are
randomized in order to remove the lensing-induced cou-
pling between modes, it will also remove the strong corre-
lation of the noise. The Gaussian bias calculated in this
way will be significantly lower than that from the standard
approach [19]. So we have to perform simulations which
use the simulated WMAP noise and temperature maps,
rather than the randomized WMAP data to get the
Gaussian bias term.

The deflection power spectrum is

Cdd
L ¼ h½dTTð���ÞLM ��dTTð���ÞLM � ½NTTð���Þ

LM ��NTTð���Þ
LM i: (28)

This estimator is essentially the same as in [8] except
that here it is the full-sky version and the noise NLM is not
obtained from the phase-randomized data. We subtract the
Gaussian bias for each realization of the estimator, and all
the estimated power spectra are averaged to get the binned
power spectra hCdd

b i for the bth bin [16]. The averaged

power spectrum in a range of L labeled by the index b is

Cdd
b ¼ X

L2b

LðLþ 1Þ
bðbþ 1Þ C

dd
L : (29)

The statistical uncertainty is given by �b ¼ ½hðCb �
�CbÞ2i�1=2. After the subtraction of the Gaussian bias, there
remains the higher-order biases, see [8] (where it was
called ‘‘null bias’’), [16,20].

We expand T in harmonic space as

TLM ¼ ~TLM þ �TLM þ �2TLM þ �3TLM þ . . . ; (30)

see [21]. Here the power n in �n denotes the order in �n.
We expand the noise bias as

NL ¼ Nð0Þ
L þ Nð1Þ

L þ Nð2Þ
L þ . . . ; (31)

where the index n in NðnÞ denotes the order of its depen-
dence upon ½�2�n, excluding terms that contribute to the
lensed power spectrum. The four-point function hd�LMdLMi
contains terms of different order in �nT. A term of the type

h�T�T ~T ~Ti contributes to Cdd
L and the first-order noiseNð1Þ

L

while terms of the type h�T�T�T�Ti, h�2T�2T ~T ~Ti,

h�2T�T�T ~Ti, and h�3T�T ~T ~Ti generate the second-order
noise Nð2Þ

L . Following [21], the higher-order bias term is
calculated as the difference between the estimated power
spectrum and the sum of its prediction and the lowest-order

noise (i.e., Gaussian bias): Cest
L � ðCdd

L þ Nð0Þ
L Þ, using

Monte Carlo simulations.
We study the statistical significance of the detection as

follows. Following [6], the reconstructed power spectra

CðobsÞ are compared with their theoretical prior CðthÞ by
minimizing a 	2 defined as

	2ðCÞ ¼ X
AB

ðCðobsÞ
A � CCðthÞ

A ÞC�1
ABðCðobsÞ

B � CCðthÞ
B Þ (32)

and varying C. Here A or B label the range in L, and CA or
CB is the band-power. The covariance matrix C is calcu-

lated from theMonte Carlo simulation asCAB ¼ hðCðsimÞ
A �

�CðsimÞ
A ÞðCðsimÞ

B � �CðsimÞ
B Þi. The best fit C is obtained by setting

the derivative of 	2 to zero

C ¼
P
AB

CðthÞ
A C�1

ABC
ðobsÞ
B

P
AB

CðthÞ
A C�1

ABC
ðthÞ
B

: (33)

A nonzero value of C indicates the presence of lensing. The
significance of a nonzero value can be judged if its variance
is known. The variance of C is given by

ð�CÞ2 ¼ 1P
AB

CðthÞ
A C�1

ABC
ðthÞ
B

(34)

and the significance of the detection of lensing is C=�C.

FIG. 1 (color online). The higher-order bias calculated from

ðCest
L � Nð0Þ

L Þ � Cdd
L for all correlations of the WMAP’s W- and

V-band DAs. The simulated higher-order bias from averaging
700 (to be discussed in Fig. 10) realizations is shown in orange.
For comparison, the simulated lensing signal is shown in green.
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We show the higher-order bias in Fig. 1. The higher-

order bias Nð1Þ
L þ Nð2Þ

L þ � � � is seen to be negative for L <
20 and positive for L > 170 and consistent with zero for
20<L< 170 where the amplitude is �0:42� 0:98
ð0:43�Þ, compared to the simulated lensing signal Cdd

L by

using 15 bins with �L ¼ 10 starting from L ¼ 20. In
Fig. 2, the likelihood of the amplitude of the higher-order
bias limited to the region 20< L< 170 confirms that the
bias is consistent with zero. Thus subtraction of the higher-
order bias is not required as long as we limit L to this
region.

V. WMAP 7-YEAR DATA

The lensing reconstruction depends most sensitively on
the high-L modes which are supplied by WMAP’s DAs in
the V (2 DAs) and W (4 DAs) frequency bands. Thus we
use WMAP’s coadded temperature maps with r9 resolution
(HEALPIX’s nside ¼ 512) using all possible distinct pair-
ings: three autocorrelations for the two V-band DAs, 10
autocorrelations for the four W-band DAs, and eight cross-
correlations between the W- and V-band DAs for a total of
21 correlations (labeled ‘‘ALL’’). Smith et al. [5], used the
Q-band DAs in addition to the W- and V-band DAs of
WMAP 3-year temperature maps. Hirata et al. [6], used
153 one-year DAs from the WMAP 3-year data in the
W- and V-bands. Recently, Smidt et al. [7] used the
W- and V-frequency bands of the WMAP 7-year data.
This work adopts six DAs of WMAP’s 7-year temperature
map, making the data selection slightly different from
other work, although the same signal-to-noise is expected.

The WMAP temperature maps contain very high levels of
noise as shown in Fig. 3. The normalization factor AL

shown in Fig. 4 is about 2 orders of magnitude higher
than the signalCdd

L ; indicative of the difficulty of extracting
the lensing from the noisy data. We calculate the noise in
each band from WMAP’s data instead of using an analyti-
cal form as [4,6] do. The noise is simulated according to
the prescription in [19], and the beam transfer functions are
supplied by WMAP.

-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

Li
ke

lih
oo

d

Amplitude of higher order bias
relative to lensing signal

FIG. 2 (color online). The normalized likehood of the ampli-
tude of the higher-order bias limited to the region 20< L< 170,
to the simulated lensing signal. This confirms that the higher-
order bias is consistent with zero and negligible.

FIG. 3 (color online). WMAP noise for each DA and the TT
power spectrum as a function of L.

FIG. 4 (color online). Comparison of AL (Eq. (27)) and the
expected lensing signal as function of L. The estimator noise is
about 2 orders of magnitude higher that the signal Cdd

L , indicat-

ing the difficulty of detecting lensing from WMAP-7 data alone.
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VI. SIMULATION AND ANALYSIS

We use the CAMB code [22] to obtain the power spectra
~CTT
l , and C��

l using a six-parameter �CDM model with

P ¼ !bh
2, !ch

2, h, 
, As, ns ¼ 0:0226, 0.112, 0.70, 0.09,
2:1� 10�9, 0:96. These are input into a pipeline that has
elements as follows.

Gaussian maps of the deflection angle field dðnÞ and
unlensed temperature ~TðnÞ are generated using their re-

spective power spectra. We use ~CTT
l , and C��

l to create one

realization of the simulated deflection field and lensed
temperature maps TðnÞ are generated using Eq. (1) with
the ~TðnÞ and dðnÞ found above.

Using the inverse SHT, the temperature maps are con-
verted into harmonic modes alm which are convolved with
the beam transfer functions bl. Using SHT, these are trans-
formed into configuration space andWMAP-based noise is
added. We mask the galactic plane and point sources using
WMAP’s KQ75 mask. Using inverse SHT, the resulting
maps are transformed back into harmonic space where new
alm are kept up to lmax ¼ 750 and jmmaxj ¼ 750.

The noise simulation is crucial to this work because the

Nð0Þ
L is 100 times larger than Cdd

L . The six V- and W-band
DAs, labeled by � ¼ V1, V2, W1, W2, W3, W4, have
different noise variances, different beam transfer functions,
and different relative phases. To mimic the WMAP DAs,
we simulate the Gaussian bias as follows. Using

~TðiÞ�ðnÞ¼MðnÞ
�Z

dn0 ~TðiÞðn0ÞB�ðn;n0ÞþNðiÞ�ðnÞ
�
; (35)

we set the index i (an arbitrary running index) for Eq. (35)

and generate an unlensed temperature map ~TðiÞðnÞ, and six

noise maps NðiÞ�ðnÞ, � ¼ V1, V2,W1,W2,W3,W4. Then

we make an observed map ~TðiÞ�ðnÞ using Eq. (35), and
repeat this procedure to make another observed map
~TðiÞ�ðnÞ. Subsequently, we calculate the Gaussian bias

Nð0Þ
L using Eq. (25) for the pair ð� � �Þ. In the same way,

we generate 21 realizations for all the correlations. Finally
we increase the index i, and repeat the whole procedure

until the ensemble fNð0Þ
L g has 700 elements.

We proceed in a similar manner simulating the recon-

struction including noise, except setting TðiÞðnÞ ¼ TðnÞ
and NðiÞ�ðnÞ ¼ N�ðnÞ. Using

TðiÞ�ðnÞ¼MðnÞ
�Z

dn0TðiÞðn0ÞB�ðn;n0ÞþNðiÞ�ðnÞ
�
; (36)

we set the index i for Eq. (36), and generate a lensed

temperature map TðiÞðnÞ, and six noise maps NðiÞ�ðnÞ, � ¼
V1, V2,W1,W2,W3,W4. Then we make an observed map

TðiÞ�ðnÞ using Eq. (36) and repeat this procedure to make

another observed map TðiÞ�ðnÞ. Subsequently we calculate
the reconstruction including noise Cest

L using Eq. (24) for
the pair ð� � �Þ. In the same way, we generate 21 realiza-
tions for all the correlations. Finally we increase the index

i, and repeat the whole procedure until the ensemble fCest
L g

has 700 elements. Equation (28) is then used to obtain the
deflection power spectrum Cdd

L .
We show the reconstruction including noise Cest

L and the

Gaussian bias Nð0Þ
L in Figs. 5 and 6 for the real and the

FIG. 5 (color online). The averaged reconstruction including

noise (Cest
L ) (blue) of WMAP data and the Gaussian bias Nð0Þ

L

(red) from 700 realizations. Since lensing is approximately 100
times smaller than Cest

L , the two curves are almost indistinguish-
able; however, this confirms the precision of the noise model.

FIG. 6 (color online). The averaged reconstruction including
noise (Cest

L ) (blue) of simulated WMAP data and the Gaussian

bias Nð0Þ
L (red) from 700 realizations. Since lensing is approxi-

mately 100 times smaller than Cest
L , the two curves are almost

indistinguishable; however, this confirms the precision of the
noise model.
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simulated WMAP data, respectively. The simulation is
consistent with the data, and we confirm that the two terms
in Eq. (28) nearly have the same magnitude, and the
lensing-induced difference is not visible because the lens-
ing signal Cdd

L is 100 times smaller than the Gaussian bias

Nð0Þ
L . We use Eq. (28) to calculate the reconstructed lensing

power spectra in Fig. 7.
The likelihood distribution of C is shown in Fig. 8, where

it is seen lensing is detected at only 1:30� confidence level.

FIG. 7 (color online). The reconstructed power spectra (Cdd
L )

of the deflection angle field from all correlations of WMAP’s W-
and V-band DAs. The green curve is the simulated lensing signal,
and the data points are the reconstructed lensing signal from
simulations (red), and the reconstructed lensing signal from data
(blue). The red and blue data points show the consistency
between the simulated and real WMAP data for the lensing
reconstruction.
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FIG. 8 (color online). The normalized likelihood distribution
for C for all 21 correlations of WMAP’s W- and V-band DAs.

FIG. 9 (color online). Curl null test for all correlations of
WMAP’s W- and V-band DAs: C��

L from the simulated
WMAP data (red), and C��

L from the real WMAP data (blue),
for comparison, the simulated lensing signal Cdd

L (solid green).

The red and blue data points show the consistency between the
simulated and the real WMAP data for the curl null test.

100 200 300 400 500 600 700
0.0

0.5

1.0

1.5

2.0

2.5

3.0

number of iteration

FIG. 10 (color online). The convergence behavior. The values
of mean amplitude C (red), the error �C (blue), and the detection
significance C=�C (green) of the reconstructed lensing signal
Cdd
L are plotted for every 10 realizations. It is seen that con-

vergence is reached after 700 realizations.
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VII. CURL NULL TEST

To check for systematic effects, we employ the ‘‘curl
null test.’’ The deflection angle field can be written as the
sum of a gradient and a curl term [23]

DiðnÞ ¼ diðnÞ þ �ijrj�ðnÞ: (37)

The first term leads to the Hu estimator [2,3]

dTTLM ¼ ATT
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðLþ 1Þp Z
dnY�

LMri½0ATðnÞri0B
TðnÞ�; (38)

whose efficient form is given in Eq. (26); here 0A
TðnÞ is

given by Eq. (8) and

0B
TðnÞ ¼X

lm

~CTT
l

Ctot
l

Tlm0YlmðnÞ: (39)

The estimator for the curl part in Eq. (37) is

�TT
LM ¼ X

ij

�ij
ATT
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðLþ 1Þp Z
dnY�

LMri½0ATðnÞrj0B
TðnÞ�

(40)

and the corresponding efficient form is

�TTð���Þ
LM ¼ 1

2

�
ATTð���Þ
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp

�
�L0

Z
dnþ1Y

�
LM0A

Tð�ÞXð�Þ

� �L0

Z
dn�1Y

�
LM0A

Tð�ÞYð�Þ
�
þ ATTð���Þ

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp

�
�
�L0

Z
dnþ1Y

�
LM0A

Tð�ÞXð�Þ

� �L0

Z
dn�1Y

�
LM0A

Tð�ÞYð�Þ
��
; (41)

which can be compared with Eq. (26). We show the result-
ing power spectra C��

L , averaged from 700 realizations
from the real and the simulated WMAP data separately

in Fig. 9. The averaged curl component amplitude is
0:38� 0:79 consistent with zero as expected, compared
to the simulated Cdd

L .

VIII. RESULTS AND DISCUSSION

In this work, we have applied the optimal quadratic
estimator to WMAP-7 temperature maps alone for the first
time.
We have monitored the convergence behavior for the

mean value C, the error �C, and the detection significance
C=�C of the reconstructed lensing signal Cdd

L . We find that
all these quantities converge after producing 700 realiza-
tions of the reconstructed lensing signal, see Fig. 10. We
determine the significance of the lensing detection and
find C ¼ 1:27� 0:98 ð1:30�Þ, while Smidt et al. found
C ¼ 0:97� 0:47 ð2:06�Þ. The result is shown in Table I as
well as a comparison with [4–9]. All our results have been
corrected by the sky fraction. We find evidence for lensing
only at 1:30�, using all correlations of WMAP-7’s W- and
V-band DAs. The resulting constraint on the lensing am-
plitude differs from [7] and this can be explicated from
several aspects. In terms of the estimator, we use the
optimal estimator derived from minimum variance princi-
ple [2], rather than the kurtosis estimator in [7]. We adopt
the individual beam transfer function associated with each
DA, not the averaged one for each frequency. We have
taken into account the impact of the higher-order bias,
afterward restricting the reconstruction in a proper multiple
range that marginally overlaps with [7]. In terms of the

TABLE I. Measurements of lensing C and its significance C=�C.

Data set C C=�C

WMAP-7 ALLa 1:27� 0:98 1:30�
WMAP-7 VþWb 0:97� 0:47 2:06�
WMAP-1 ALL� LRGsc 1:0� 1:1 0:91�
WMAP-3 ALL� ðLRGsþ QSOsþ NVSSÞd 1:06� 0:42 2:52�
WMAP-3 ðQþ VþWÞ � NVSSe 1:15� 0:34 3:38�
ACTf 1:16� 0:29 4:00�
SPTg - 	4:90�

aAll 21 correlations of WMAP-7’s W- and V-band DAs in this work.
b[7] WMAP-7 V and W bands.
c[4] WMAP-1 W- and V-band DAs, LRGs.
d[6] WMAP-3 W- and V-band DAs, LRGs, QSOs and NVSS.
e[5] WMAP-3 Q-, V-, W-band DAs, NVSS.
f[8] ACT temperature maps.
g[9] SPT temperature maps.

TABLE II. Summary of C and its significance C=�C for this
work.

Type C C=�C

Higher-order bias �0:42� 0:98 0:43�
Curl null test 0:38� 0:79 0:47�
Reconstructed lensing 1:27� 0:98 1:30�
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noise model, we estimate the noise in a way which mimics
WMAP, not simply generating random underlying skies
and associated noises with independent phases. All these
factors may jointly contribute to the difference between us
and Smidt et al. A summary of various tests in this work is
shown in Table II. We do not observe a significant lensing
signal from the WMAP 7-year temperature data.

We did not apply a correction for higher-order bias terms

Nð1Þ
L ; Nð2Þ

L ; . . . , because they are expected to be small owing
to the fact that we limited the region of L to 20<L< 170,
where the higher-order bias is consistent with zero. The
higher-order bias can be obtained via an iterative solution
[18] but it is computationally demanding and not war-
ranted in the present case because we do not obtain a
significant signal.

We applied the curl null test to all the correlations of
W- and V-band DAs as a systematic check, since we
observe a small amount of power from the reconstructed
gravitational lensing signal (Fig. 7). The reconstruction
procedure passes the curl null test.

The effects of beam systematics and the galactic and
foreground contaminations are quite small compared to the
statistical error. We do not correct the statistical result for
the presence of point sources because they introduce neg-
ligible systematics [19].
We have demonstrated, using a nearly optimal estimator,

that WMAP-7 data does not have the power to detect
gravitational lensing, which is unfortunate since WMAP
data is the only publicly available data set with sufficient
angular resolution to detect lensing. However, WMAP-7
does have value as a publicly available tool to assess the
efficacy of lensing algorithms and to test for systematic
biases.
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