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4Laboratoire d’Annecy-le-Vieux de Physique Théorique, Université de Savoie, 5108, 9 chemin de Bellevue, Annecy-Le-Vieux, France

(Received 19 November 2011; published 14 February 2012)

In the curvaton scenario, residual isocurvature perturbations can be imprinted in the cosmic neutrino

component after the decay of the curvaton field, implying in turn a nonzero chemical potential in the

neutrino distribution. We study the constraints that future experiments like Planck, SPIDER or CMBPol

will be able to put on the amplitude of isocurvature perturbations in the neutrino component. We express

our results in terms of the square root � of the nonadiabaticity parameter � and of the extra relativistic

degrees of freedom �Neff . Assuming a fiducial model with purely adiabatic fluctuations, we find that

Planck (SPIDER) will be able to put the following upper limits at the 1� level: ��5:3�10�3ð1:2�10�2Þ
and �Neff � 0:16ð0:40Þ. CMBPol will further improve these constraints to � � 1:5� 10�3 and �Neff �
0:043. Finally, we recast these bounds in terms of the background neutrino degeneracy parameter �� and the

corresponding perturbation amplitude ��, and compare with the bounds on �� that can be derived from big

bang nucleosynthesis (BBN).
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I. INTRODUCTION

In single-field inflationary models, the same field is
responsible for driving an accelerated expansion stage
and for the generation of a nearly scale invariant primordial
perturbation spectrum. As there is only one degree of
freedom, this class of models predicts that perturbations
are necessarily adiabatic, i.e., the ratio between the number
densities of the different particle species is spatially homo-
geneous. Significant non-Gaussianities in the fluctuations
are also excluded. To date, both these features, adiabaticity
and Gaussianity, are consistent with data.

However, the presence of a significant, albeit subdomi-
nant, nonadiabatic (otherwise called isocurvature) pertur-
bation component cannot be excluded (see e.g. [1–6]). This
component must be necessarily related to some extra field
other than the inflaton, as in multifield inflationary models,
where nontrivial trajectories in field space are possible.
Since in these cases the adiabatic and isocurvature fluctua-
tions would be related to different fields, generating a
sizeable isocurvature fluctuation requires in general a cer-
tain amount of fine-tuning.

A different mechanism for isocurvature modes produc-
tion has been proposed in [7,8]. While the inflaton is only
responsible for driving the exponential expansion, primor-
dial fluctuations are generated by a ‘‘curvaton’’ field. The
initial isocurvature perturbation in the curvaton is then
converted into an adiabatic component after inflaton decay.
This model allows for some residual isocurvature compo-
nents imprinted in the other components of the cosmologi-
cal fluid, cold dark matter, baryons and neutrinos, after
curvaton decay. In particular neutrino isocurvature

perturbations requires a nonvanishing chemical potential
for their background distribution in phase space. Probing
their nonadiabatic perturbations is thus a way to constrain
the lepton number in neutrino sector. An analysis of the
bounds on neutrino isocurvature perturbations using recent
data is presented in Ref. [9], while limits on isocurvature
perturbations in an extra radiation component (not neces-
sarily related to neutrinos) have been derived in Ref. [10].
Quite interestingly, a future detection of isocurvature per-
turbations will allow for a reconstruction of the inflationary
potential [11].
The aim of the present paper is to assess the capability of

future CMB experiments like Planck [12,13], SPIDER [14]
and CMBPol [15] to constrain simultaneously the ampli-
tude of isocurvature perturbations in the neutrino compo-
nent and the extra energy density associated to the neutrino
chemical potential. The bounds can then be translated into
constraints on the neutrino chemical potential to tempera-
ture ratio �i (i ¼ e, �, �) and the corresponding perturba-
tion amplitudes. These are complementary to bounds on
the �i’s which can be derived using BBN. Light nuclei
yields in fact, are quite strongly influenced by neutrino
asymmetries, mainly in the �e sector; see e.g. [16]. Since
flavor oscillations are efficient in mixing different flavor
distributions, the three parameters are driven to almost the
same value at the onset of BBN [17], with possible differ-
ences in the e and �, � sectors which cannot be larger than
few percents depending on the value of the �13 mixing
angle [18,19].
The paper is organized as follows. In Sec. II we review

the neutrino isocurvature perturbations which are
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generated in the curvaton scenario. Section III contains a
forecast analysis of bounds on these perturbations from
future experiments, while a comparison with the corre-
sponding BBN constraints is described in Sec. IV. Our
conclusions are reported in Sec. V.

II. NEUTRINO ISOCURVATURE PERTURBATIONS

Density perturbations are conveniently described in
terms of the gauge-invariant quantity 	 [20–22]

	 ¼ �c �H

�

_�
; (1)

where c is the (gauge-dependent) curvature perturbation,
H the Hubble parameter, � the total energy density, and the
dot denotes derivatives with respect to the cosmological
time t.

The quantity 	 describes the curvature perturbation on
slices of uniform total density. In the case of multicompo-
nent fluids, it is useful to define quantities 	i describing the
curvature perturbation on slices of uniform density of the
i-th component

	i ¼ �c �H

�i

_�i

: (2)

An adiabatic fluctuation is defined as one for which the
ratios 
�i= _�i are all the same, so that 	i ¼ 	 for all
components. Correspondingly, a nonadiabatic (or isocur-
vature) fluctuation Si in the i-th fluid component is defined
as the relative entropy fluctuation with respect to photons:

S i � 3ð	i � 	�Þ: (3)

In the following, we shall consider neutrinos with an
equilibrium distribution function

fiðEÞ ¼ ½expðE=T� � �iÞ��1; (4)

where T� is their temperature, and �i ¼ �i=T�, �i being
the chemical potential. The index i runs over the three
standard model neutrino families, i ¼ e, �, �, and the
minus (plus) sign is for neutrinos (antineutrinos). Notice
that the existence of neutrino isocurvature perturbations
necessarily implies a nonzero lepton asymmetry in the
neutrino sector, nL � n� � n ��, unless the asymmetries in
the three flavors exactly cancel. At this stage, we have
allowed for the possibility of the three neutrino families
having different chemical potentials. The neutrino tem-
perature is T� ¼ T� until the time of electron-positron

annihilation, occurring at T� ’ 1 MeV (shortly after neu-

trino decoupling), while at later times it is given by T� ¼
ð4=11Þ1=3T�, up to tiny corrections due to neutrino reheat-

ing at the e� annihilation stage [23].
Given the distribution function Eq. (4), the energy

density �i���i þ� ��i
in the high-temperature limit T��

m� writes [24]:

�i ¼ 7�2

120
AiT

4
� ¼ 7

8
Ai

�
T�

T�

�
4
��; (5)

where

Ai �
�
1þ 30

7

�
�i

�

�
2 þ 15

7

�
�i

�

�
4
�
: (6)

When dealing with cosmological neutrinos, it is custom-
ary to define the effective number of neutrino families Neff

as the ratio between the total neutrino density and the
density of a single nondegenerate (� ¼ 0) neutrino species

in thermal equilibrium at T� ¼ ð4=11Þ1=3T�. In the stan-

dard cosmological scenario Neff ¼ 3:046 (see [23]), and
any deviation �Neff from this value indicates the presence
of an extra energy density of relativistic particles in the
early Universe. It is clear, from our definition that Neff ¼P

iAi. We can thus relate the isocurvature perturbation in

the total neutrino density to the fluctuations 
NðiÞ
eff :

S � ¼ 3ð	� � 	�Þ ’
P

i 
N
ðiÞ
eff

4Neff

: (7)

III. CMB CONSTRAINTS AND FORECAST

In the following, lacking a better theoretical motivation,
for simplicity we shall assume that both the average values
and the fluctuations in the chemical potentials are flavor
blind, i.e. ��e ¼ ��� ¼ ��� ¼ ��, and similarly for the 
�’s.

Also, we assume that fluctuations in the neutrino degener-
acy parameter are Gaussian distributed with variance �2

�

around the mean ��. In general, both quantities can have a
scale and epoch dependence.
Conventionally, rather than in terms of S� of Eq. (7), in

CMB studies the ‘‘nonadiabaticity’’ of perturbations is
expressed in terms of the ratio of the power spectrum
PSðkÞ of isocurvature perturbations to the curvature per-
turbation spectrum P	 ðkÞ, evaluated at a fixed pivot wave

number k0 ¼ 0:002 Mpc�1. In particular, one introduces
the quantity � defined by [4,6]

�ðk0Þ
1� �ðk0Þ

� PSðk0Þ
P	 ðk0Þ : (8)

Another necessary ingredient to be taken into account is
the correlation between the adiabatic and isocurvature
modes [25–27]. Given the cross-correlation power spec-
trum P	SðkÞ, this is parameterized in terms of the cross-

correlation coefficient 
, defined as


 ¼ P	Sðk0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSðk0ÞP	 ðk0Þ

q : (9)

We remark that we choose the sign convention for the
curvature perturbation such that the temperature fluctua-
tion at large scales is given by �T=T ¼ 	=5� 2S=5. In
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terms of the variables used in the WMAP analysis [6,28],

	 ¼ ~R ¼ �R, and our definition of 
 coincides with the
one used there. In this case, the physically observable
effect is that correlated perturbations (
> 0) reduce the
temperature power spectrum at low multipoles.

Given the above convention, the adiabatic and isocurva-
ture fluctuations in the curvaton scenario are totally anti-
correlated [29–31], so that in the following we will always
take 
 ¼ �1. We also take the two power spectra to have
the same spectral tilt ns:

�2
R;SðkÞ �

k3PR;S

2�2
/ kns�1: (10)

Note that the CMB is sensitive to the parameters of the
scenario not only via�, but also via the total�Neff induced
by the average value �� and, if sufficiently large, in principle
also by the variance �2

�. For analyses or forecasts, one

should thus consider the constraints in the �Neff–� plane.
Current WMAP7 bounds on totally anticorrelated iso-

curvature perturbations are at the level�ðk0Þ< 1:1� 10�2

(at the 95% confidence level); inclusion of additional data
sets can improve this bound by a factor 2 or 3 [6,32]. For
what concerns the effective number of relativistic species,
WMAP7 observations only provide a lower limit Neff >
2:7; interestingly, when other cosmological measurements
are considered, the result is Neff ¼ 4:34� 0:9 [6], indicat-
ing that the data seem to prefer �Neff > 0.

The total CMB power spectrum can be parameterized in
terms of the adiabatic, neutrino isocurvature density and
totally anticorrelated spectra as follows

C‘ ¼ ð1� �ÞCad
‘ þ �Cnid

‘ þ ½�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þp

Ccorr
‘ �; (11)

with � defined in Eq. (8). A shortcoming of this parame-

terization is that the partial derivative @C‘

@� , needed for the

Fisher matrix computation (see below), diverges for
� ¼ 0. This prevents the use of the Fisher matrix formal-
ism for the fiducial value � ¼ 0. For this reason, we find
convenient to introduce the auxiliary parameter � ¼ ffiffiffiffi

�
p

and write

C‘¼ð1��2ÞCad
‘ þ�2Cnid

‘ þ
�
�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1��2Þ

q
Ccorr
‘

�
: (12)

It is straightforward to check that the partial derivative @C‘

@�

is finite for � ¼ 0.
In the following we will derive forecasts for the Planck

[12], SPIDER [14] and the CMBPol [15] experiments. The
Planck satellite [12,13], launched in May 2009, is currently
measuring the CMB temperature and polarization fluctua-
tions with unprecedented precision (�T=T 	 2� 10�6)
over the whole sky and down to very small angular scales
(	50). Planck measurements, planned to be publicly
released to the scientific community in January 2013,
will significantly improve the determination of cosmologi-

cal parameters and will allow to test further the �CDM
paradigm. SPIDER [14], scheduled to fly in 2012, is a
ballon-borne polarimeter design to accurately measure
the B-mode of CMB polarization down to ‘	 100.
Finally, CMBPol [15] is a next-generation satellite cur-
rently in the concept study phase.
In order to derive forecasts for these experiments, we use

a Fisher matrix formalism, for three frequency channels for
each experiment (the experimental specifications are listed
in Table I). We consider a detector noise of ð��Þ2 for each
frequency channel where � is the FWHM of the beam
assuming a Gaussian profile and � is the sensitivity. We
add to each fiducial spectrum C‘, calculated with CAMB

[33], a noise spectrum given by

N‘ ¼ ð��Þ2elðlþ1Þ=l2
b ; (13)

where lb �
ffiffiffiffiffiffiffiffiffiffi
8 ln2

p
=�. In the analysis, we assume that

beam and foreground uncertainties are smaller than the
statistical errors.

TABLE I. Experimental specifications for Planck [12],
SPIDER [14] and CMBPol [15]. For each experiment, we list
the observed fraction fsky of the sky, the channel frequency in

GHz, the FWHM in arcminutes, the sensitivity per pixel for the
Stokes I (�T), Q and U (�P) parameters in �K.

Experiment Channel [GHz] FWHM �T½�K� �P½�K�
Planck 217 5:00 13.1 18.5

fsky ¼ 0:65 143 7:00 5.99 8.48

100 9:50 6.75 9.55

SPIDER 280 170 0.20 0.29

fsky ¼ 0:1 150 300 0.08 0.11

90 490 0.08 0.11

CMBPol 220 3:80 0.66 0.93

fsky ¼ 0:65 150 5:60 0.25 0.35

100 8:40 0.22 0.31

FIG. 1. 68% and 95% C.L. likelihood contours for Planck
(solid line), SPIDER (dashed-dotted line) CMBPol (dashed line).
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The Fisher matrix is defined as

Fij �
�
� @2 lnL

@pi@pj

�
p0

; (14)

where LðdatajpÞ is the likelihood function of a set of
parameters p given some data; the partial derivatives and
the averaging are evaluated using the fiducial values p0 of
the parameters. The Cramér-Rao inequality implies that
ðF�1Þii is the smallest variance in the parameter pi, so we
can generally think of F�1 as the best possible covariance
matrix for estimates of the vector p. The 1-� error for each
parameter is then

�pi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF�1Þii

q
: (15)

The Fisher matrix for a CMB experiment is (see [34])

FCMB
ij ¼ Xlmax

l¼2

@Cl

@pi

ðCovlÞ�1 @Cl

@pi

; (16)

where Covl is the spectra covariance matrix. We use infor-
mation in the power spectra up to lmax ¼ 2500. The partial

derivative @Cl

@� is analytical in � ¼ 0:

@Cl

@�
� ð�2�ÞCad

‘ þ 2�Cnid
‘ � 2ð1� 2�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �2Þp Ccorr

‘ : (17)

As anticipated above, the parameterization in terms of �,
instead of � ¼ �2 as often seen in the literature, cancels

the divergence of the partial derivative @Cl

@� in � ¼ 0. Thus

this parameterization allows us to use the Fisher matrix
formalism for the fiducial value � ¼ 0.

In the present analysis, we take as a fiducial model a flat
�CDM model with parameter values given by the
WMAP7 measurements [32], i.e. �bh

2 ¼ 0:02258 and
�dmh

2 ¼ 0:1109, the optical depth to reionization � ¼
0:088, H0 ¼ 71 km=s=Mpc, the spectral index ns ¼
0:963, and the amplitude of the curvature perturbation
�2

Rðk0Þ ¼ 2:43� 10�9. We consider three families of

massless neutrinos, but we checked that taking massive
neutrinos with total mass M� ¼ 0:6 eV neutrinos did not
affect the results. Finally, we take the fiducial values
�Neff ¼ 0, � ¼ 0.

The results of our analysis are shown in Fig. 1, where we
draw the two-dimensional likelihood in the �Neff–� plane
for Planck, SPIDER and CMBPol. The corresponding 1-�
constraints for � and �Neff are reported in Table II.

IV. COMPARISON WITH BBN CONSTRAINTS

Big bang nucleosynthesis, and, in particular, the primor-
dial helium abundance Yp, is recognized to be the most

sensitive cosmic ‘‘leptometer’’ presently available (see for
example [35,36] or the review [16]). So, it would be
interesting to compare BBN constraints to the ones derived
above. This task is made nontrivial by the fact that BBN is
sensitive to different parameters than the CMB, in particu-
lar, to a combination of the role of Neff , entering the
expansion rate of the universe, and in principle to all the
parameters describing the distribution of the �e-flavor
neutrinos. In the case of interest, which assumes flavor-
independent parameters and Gaussian distributions, the
only two independent parameters turn to be �� and ��,

with �Neff fully specified in terms of them, but subleading
and essentially negligible for the values �� 
 1 of interest
here. Even assuming that the average value �� is scale
independent, a slight dependence on the scale is expected
for the width of the distribution of fluctuations. Let us fix
(arbitrarily) �� at a scale �BBN, roughly corresponding to

the horizon size at the time of BBN, of the order of
	Oð100Þ comoving parsecs. Namely, we fix �2

� 	
�2

�ðkBBNÞ where kBBN ¼ 2�=�BBN � 6� 104 Mpc�1.

The CMB constraints can be translated into �2
� by just

evaluating �2
	 ðkBBNÞ (given that �2

S has the same scale

dependence). Using WMAP7 best fit values �2
	 ðk ¼

0:002 Mpc�1Þ ¼ 2:42� 10�9 and ns ¼ 0:966 gives
�2

	 ðkBBNÞ ¼ 1:35� 10�9. A first important consequence

of this estimate is that the order of magnitude of the present
constraints from CMB on � also holds for BBN-relevant
fluctuations. In turn, it can be seen that this implies that ��

is very small. This is an important information, since it
allows us to use the predictions of homogeneous, degener-
ate BBN to infer the results of an otherwise inhomogene-
ous degenerate BBN scenario (see [37] for an early study
of this subject). In fact, for a Gaussian probability distri-
bution for �,

Pð�Þ ¼ ð2��2
�Þ�1=2 exp½�ð�� ��Þ2=ð2�2

�Þ�; (18)

one can estimate, for a generic nuclide abundance X,

hXi ¼
Z

Pð�Þ½Xð ��Þ þ X0ð ��Þð�� ��Þ þOð½�� ���Þ�d�
¼ Xð ��Þ þOð�2

�Þ: (19)

The vanishing of the integrand linear in � depends on the
fact that Pð�Þ is an even function of �� ��. Additionally, if
the curvature of the function Xð�Þ is relatively small (as it
happens to be, see Fig. 13 in [16]) the approximation hXi �
Xð ��Þ works even better (see also Figs. in [37]). We esti-
mated that even for a value as large as �� ’ 0:1 the error of
the approximation with respect to a proper averaging is of
	0:6% for deuterium (hence well below the observational
error) or of the order of 0.3% for helium-4, comparable

TABLE II. 1-� constraints for � and �Neff , for the Planck,
SPIDER and CMBPol experiments.

Fiducial value �(Planck) �(SPIDER) �(CMBPol)

� 0.0 5:3� 10�3 1:2� 10�2 1:5� 10�3

�Neff 0.0 0.16 0.40 0.043
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with the theoretical error and well below the error on the
observations. For smaller ��, it scales as �

2
� and becomes

soon negligible. As a consequence, the bounds computed
in homogeneous, degenerate BBN can be used, to an ex-
cellent approximation, also for the case at hand. Needless
to say, this also implies that BBN may give excellent
constraints on ��, but it is insensitive to physically relevant
values of the fluctuation ��.

By using the same conservative input as in [38] (fourth
line in their Table I), we obtain the bounds

�� min ¼ �0:055; ��max ¼ 0:12; (20)

corresponding to the value below/above which only 5% of
the area of the marginalized distribution of probability of �
lies, respectively. The BBN computation is based on the
public algorithm evaluating the nucleosinthesis of primor-
dial elements [39].

In order to illustrate the synergy between BBN and
CMB, it turns useful to translate the CMB forecasts in
the ��–�� plane. For simplicity, let us write down the

relation between variables in the (plausible) assumptions
of 
� 
 1 and 
� 
 ��. Then, the relation between the
power spectrum of the isocurvature perturbation S� to that
of � writes

S � ¼ 3

�

��
� þ ��3

�3

7
15 þ 2 ��2

�2 þ ��4

�4


� � Fð ��Þ
�: (21)

The relation above implies �2
S ¼ Fð ��Þ2�2

�, so that

�2
SðkBBNÞ ¼ Fð ��Þ2�2

� ) � ’ 7:4� 108Fð ��Þ2�2
�; (22)

where we have used the fact that the data constrain � to be
Oð0:01Þ or less. Recalling that � ¼ ffiffiffiffi

�
p

, we finally get the
relation that we were looking for

� ’ 2:7� 104Fð ��Þ��: (23)

On the other hand, recalling that Neff ¼
P

Ai, with Ai

given by Eq. (6), we can translate the bounds from the
ð�;�NeffÞ plane to the ð ��;��Þ plane. For this analysis, we
only consider Planck and CMBPol since they give the
better constraints on the parameters and can possibly
become competitive with BBN in this respect. The two-
dimensional 68% and 95% confidence regions for Planck
and CMBPol are shown in Fig. 2, along with the present
BBN constraints on �� reported in Eq. (20).

V. CONCLUSIONS

We have considered models in which a residual compo-
nent of isocurvature fluctuations, and consequently a non-
zero chemical potential, are generated in the neutrino
component after curvaton decay. Using Fisher matrix tech-
niques, we have assessed the constraints that Planck,
SPIDER and CMBPol will be able to put on the amplitude
of the isocurvature component and on the extra energy
density associated to the nonvanishing neutrino chemical
potential. These bounds have been expressed in terms of
the average value of the degeneracy parameter �� and its
spatial variance �2

�, and then compared with the con-

straints resulting from the effect of neutrino degeneracy
on BBN.While the latter is only sensitive to the mean value
��, for small ��, CMB data provide a negative correlation

between �� and ��: for 
� 
 �� (on which our analysis is

based), large values of the fluctuations are allowed for
sufficiently small ��.
In particular, assuming a fiducial model with purely

adiabatic primordial fluctuations, we find that the future
experiments will sensibly improve the constraints on the
nonadiabaticity parameter � and on the effective number
of neutrino families �Neff . The current 95% confidence
level WMAP bound corresponds to � & 0:1; we find that,
at the same level, SPIDER will be able to constrain �
below 2:4� 10�2, representing an improvement of a factor
4. Planck and CMBPol will be able to put 95% confidence
level upper limits � < 1:1� 10�2 and � < 3:0� 10�3,
i.e. to improve by a factor of 10 and 30 over current
data, respectively. For what concerns �Neff , we already
noticed how WMAP only provides a lower bound for this
quantity. In general, current data allow to constrain this
parameter with precision �ð�NeffÞ ’ 1 or smaller (see
e.g. Ref. [40] for a detailed analysis). In terms of the
average value of the degeneracy parameter, this reads1

�ð ��Þ ’ 0:9, which is quite large with respect to the BBN
bound. For comparison, we find that if �Neff ¼ 0, Planck,

FIG. 2 (color online). 68% and 95% C.L. likelihood contours
in the ðlogj ��j; log��Þ plane for Planck (solid line) and

CMBPol (dashed line). The BBN allowed region are also
shown (left of vertical lines), corresponding to the case
considered in Eq. (20).

1We note that for finite neutrino masses the effects of �� on the
CMB observables are not completely encoded by �Neff [24,41].
Joint constraints on �� and �Neff have been derived, for example,
in Refs. [41,42].
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Spider and CMBPol will be able to bound �Neff & 0:3,
0.8, 0.08 at the 95% confidence level, respectively, corre-
sponding to �� < 0:5, 0.8, 0.24. Although these values rep-
resent considerable improvements over present CMB
constraints, they show that future CMB experiments,
with the partial exception of CMBPol, will still be unable
to compete with BBN in this respect. Moreover BBN is the
only one sensitive to the sign of ��. Both effects are actually
due to the dominant weak interaction probe provided by

BBN, as opposed to purely gravitational effect to which
CMB is sensitive.
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