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Entropic force scenarios and eternal inflation
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We examine various entropic inflation scenarios, under the light of eternality. After describing the
inflation realization and the normal condition for inflation to last at the background level, we investigate
the conditions for eternal inflation with the effect of thermal fluctuations produced from standard radiation
and from the holographic screen. Furthermore, we incorporate stochastic quantum fluctuations through a

phenomenological, Langevin analysis, studying whether they can affect the inflation eternality. In one-
holographic-screen scenarios eternality can be easily obtained, while in double-screen considerations
inflation is eternal only in the high-energy regime. Thus, from the cosmological point of view, one should
take these into account before he can consider entropic gravity as a candidate for the description of nature.
However, from the string theory point of view, inflation eternality may form the background for the
“landscape” of string or M theory vacua, leading to new perspectives in entropy gravity.
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L. INTRODUCTION

After almost three decades of extensive research,
inflation is now considered to be a crucial part of the
cosmological history of the Universe [1], having affected
indelibly its observational features. The inflation paradigm,
in conventional as well as in higher dimensional frame-
works [2-4], can successfully solve theoretical problems
such as the flatness, the horizon, and the monopole ones,
and moreover it provides the right behavior of primordial
fluctuations with a nearly scale-invariant power spectrum.

One important issue that has to be encountered in infla-
tionary cosmology is that of eternality, that is, whether
inflation has a beginning and/or an end [5,6]. In general
there are two different points of view for its incorporation.
On the one hand, from the cosmological point of view, a
picture that indicates that there are always parts of the
Universe that inflate and parts that have exit inflation,
like our own observable universe part, in a procedure
without beginning, offers a way out from the singularity
[7,8] and trans-Planckian [9] problems. However, in order
for such a procedure to be the case in nature, one still needs
to find a mechanism that can lead areas of the Universe of
nonzero measure to exit inflation, since in our “local” part
inflation has obviously ended. We stress that these parts
must be of nonzero measure since a minimal requirement,
that inflation has to end at least in one part amongst infinite
eternally inflating areas, leads to an intense fine-tuned and
anthropic description of nature [10]. On the other hand,
from the string theory point of view, eternal inflation may
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form the background for (or be formed by) the landscape of
string or M theory vacua [11], induced by flux compacti-
fication [12] or other mechanisms [13,14], that is, for the
existence of a huge number of possible (false) vacua. Thus,
from this point of view, inflation eternality has an addi-
tional reason of being a desirable feature of a cosmological
theory, and furthermore one does not need to worry so
much about the inflation exit, since it is adequate for it to be
realized in only one area of the Universe (which is equiva-
lent to choosing a specific vacuum along a landscape of
approximately 10°% ones [14]).

Recently, an extended holographic picture was sug-
gested by Verlinde [15], in which gravity is no longer a
fundamental theory, but emerges from a statistic effect of a
holographic screen (a similar scenario was discussed by
Padmanabhan in [16], based on the earlier considerations
of [17]). Such an ““entropic’ origin of gravity was based on
the holographic principle, conjectured as a significant
property of quantum gravity, stating that the physics of a
volume of space is encoded on its boundary, such as the
gravitational horizon [18]. Although there is a controversy
in the foundations of entropic gravity itself [19], the idea is
very interesting and the cosmological implications of its
various scenarios were extensively studied in the literature.
Besides the original formulation (see [20] and references
therein), people proposed various inflation models of
which inflation was assumed to be driven by one or two
holographic screen(s). In the one-screen inflation model,
the holographic screen acts as a boundary term in the
Einstein equation, which can force the Universe to
accelerated expansion even if the Universe is radiation
dominated [21]. In two-screen model, an “‘inner”
Schwarzschild screen was added inside the holographic
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screen, which made the inflation realization easier [22,23].
Additionally, there are many other implications of entropic
gravity, such as explaining late-time acceleration [24,25]
and incorporating black holes [26].

In the present work, we focus on the eternality issue of
inflation realization in the various entropic scenarios of the
literature, both at background and fluctuation levels. In
particular, we examine on what conditions inflation can be
eternal, and whether its eternality can be prevented by
stochastic quantum fluctuations. The plan of the work is as
follows. In Sec. II we briefly review Verlinde’s basic en-
tropic gravity formulation. In Sec. III we examine the eter-
nality for the single-screen inflation scenario, while in
Sec. IV we study the case of the double-screen inflation
model. Finally, Sec. V is devoted to the summary of the
results.

Lastly, we mention that, in the whole manuscript, in
order to simplify the symbolism we set the light speed ¢
and the reduced Planck 7 and the Boltzmann kz constants
to 1, but we keep Newton’s constant explicitly for clarity.

I1. VERLINDE’S BASIC SCENARIO

The basic ingredient of Verlinde’s idea is that the bound-
ary physics can be described by thermodynamics satisfying
a holographic distribution, where the number of degrees of
freedom on this holographic screen is proportional to its
area, that is,

dA
dN = —, 1
G ()
where G is the Newtonian gravitational constant. Thus, the
classical holographic entropy on this screen is given by

Sp= e =" 2)

where 7, is the radius location of the boundary surface S.
The variation of energy with respect to the radius will
provide the entropic force [15]:

dE dS Tbrb
F,=—(2) =—(r%2) = 2 .G
¢ (dl")b ( dr)b G ©)

in which T}, is the temperature of the boundary of the

system. Finally, due to the Unruh effect (when a test

particle with mass m is located nearby the holographic

screen the variation of the entropy on this screen with
s —

respect to the radius takes the form &> = —27rm) the above

force yields an entropic acceleration a, of the form [27]:

F€
a, = — = 27T, “4)
m
Note that the corresponding entropic pressure is negative
—F_ _ 17 o ;
e = A= TG and so it is expected to realize an

accelerating process of the Universe.
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The above simple analysis can be straightforwardly
generalized to the full relativistic case. The natural gener-
alization of Newton’s potential is ¢ = 1 log(£9¢,), where
£ is a global timelike Killing vector,' and the exponential
e? represents the redshift factor that relates the local time
coordinate to that at a reference point with ¢ = 0, which
we will take to be at infinity. One considers a holographic
screen on a closed surface of a constant redshift ¢, enclos-
ing a certain static mass configuration with total mass M
[15]. Because of the equipartition M =3 [sTdN, the
Unruh temperature now writes as

T = ied’N - V. (5)
2

Therefore, for the total mass we obtain 47GM =
[s e?V ¢ - dA or, expressed in terms of the Killing vector,

=37G [ dx® A dxb €4V EL (6)
Thus, expressing the total mass in terms of the energy-
momentum tensor, it results in the Einstein equations,
namely,

1 1
2[( ab 2Tgab) aé:de 4 G

where 2 is the three-dimensional volume bounded by the
holographic screen & and n“ is its normal. Since this
relation can hold for all appropriate Killing vectors and
for arbitrary screens [15], it is sufficient in providing the
full Einstein equations.

The above formulation of gravity as an entropic force,
which could therefore lead to descriptions of the infla-
tionary as well as the dark-energy epoches, is quite general.
Nonetheless, one still needs to construct more precise and
detailed models in order to proceed to a quantitative analy-
sis of various cosmological eras. Concerning inflation,
which is the subject of the present work, we stress here
that the entropic origin of gravity itself is consistent with
both finite or eternal behavior, similar to the case of
standard gravitational theories. Thus, the eternality subject
has to be examined in each explicit inflationary model
separately, since it depends on the details of each scenario.
This is performed in the next two sections.

abn” Ebdv, (7)

III. THE SINGLE-SCREEN MODEL

Although the qualitative features of inflation in the en-
tropic context were discussed in [28], the first explicit
quantitative inflation model was proposed in [21]. The basic
feature of this model is that acceleration is driven by an

"Note that in the present manuscript we follow the
(+, —, —, —) metric signatures and thus, in the above definition,
we have inverted the sign inside the logarithm comparing to the
original expression in [15].
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additional surface term in Einstein’s equations, which
comes from the holographic screen assumed by Verlinde.
In this section, after briefly reviewing the model, we first
examine the condition in which inflation lasts classically,
then we study its eternality, incorporating thermal fluctua-
tions, and finally we perform a detailed Langevin analysis,
as a first approach to the stochastic quantum effects. In the
following, we assume a flat Friedmann-Robertson-Walker
background geometry with metric

ds? = dr* — az(l)aijdxidxj, (8)

where ¢ is the cosmic time, x’ are the comoving spatial
coordinates, and a(¢) is the scale factor. We also introduce
the Hubble parameter H = d/a, with a dot denoting dif-
ferentiation with respect to ¢.

In the single-screen inflation model, one of the two
Friedmann equations reads

g T %(p +3P) + CyH* + CyH, )

where Cy and Cj are dimensionless coefficients, which
are expected to be bounded by Cy <1 and 0 = Cy =
3 /41 according to the authors who first constructed the
scenario [21].% Moreover, taking into account higher order
corrections to the entropy, the above relation becomes

a B 477G

a 3
where the dimensionless factor g incorporates the effective
number of independent degrees of freedom which is di-
mensionless (note that since we have set c = h = kp = 1,
GH? is dimensionless and thus all the formulas have are
homogeneous in units). On the other hand, the second
Friedmann equation writes as

8mG .

. G
(p +3P) + CyH* + CyH + g—H* (10)
o

Amazingly enough, the combination of (10) and (11)
provides us the modified second Friedmann equation
independent on Cy and Cj, namely,

. G
H=—47G(p + P) + g— H*. (12)
a

Moreover, differentiating (11) with respect to ¢ and
ignoring the higher order derivative of H under slow-roll
approximation, we have the continuity equation:

p+3H(L—Cy)p+P) =0 (13)

“We mention here that the same authors, when they apply the
same scenario in the late-time accelerated epoch instead of
inflation, they use a different lower limit for Cpy [24,29].
Although this behavior would require an explanation by those
authors, for the purpose of the present work the lower limit of Cy;
is irrelevant, since only the sign of Cy — 1 plays a role, that is,
its upper limit, which is always 1 in all works.
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(note that this relation can be viewed as originating
from the well-known generalized conservation equation
in which matter exchanges energy with vacuum). Finally,
the expression for the entropic pressure that drives

inflation is
2 H? G H*

p, = _§pco<ﬁﬁ+%i§)’ (14)
where we have introduced the critical energy density p, =
3H?/(87G), with the subscript 0 denoting the present-day
value of a quantity. Clearly, when gH*/m = 4m(p + P),
which, in the case of relativistically high energies, becomes
gH*/m = 167p/3, we acquire H = 0 and thus a de Sitter
expanding phase can be obtained [21].

Before proceeding to the investigation of the eternality
issues of the model at hand, let us make some comments.
First, note that the last two terms in Friedmann equation
(11) can be viewed as an “effective” inflation part, which
can drive acceleration. Straightforwardly, the same equa-
tion can also be applied to the dark-energy epoch, that is, to
explain the late-time acceleration, as it is done in the so-
called “‘running cosmological constant” scenarios [30,31]
(though from a different ideological point of view). In this
approach, the time-dependent part of the effective cosmo-
logical constant A(f) can be made to be « H?, which is
similar to the case at hand except for the H term. However,
and more important, A(z) should also contain a nonvanish-
ing constant additive term, in order to fit the combined
observational data [31]. This is a disadvantage of the
present model, since one should provide an explanation
for the modification of Friedmann equation (11) between
early and late times, in order to acquire a realistic model. In
the same lines, as it was mentioned above, one could put
into question the bounds Cy < 1 and 0 = C; = 3/47 [21]
that the authors give for their model. In summary, the one-
screen model examined here seems to have ambiguities
concerning the correct quantitative behavior. Clearly, one
could study a generalization, including a constant term
in (11), or abandon the aforementioned bounds in the
model parameters. However, in the present work we prefer
to remain in the original version of the scenario, and
examine it under the eternality point of view, instead of
trying to improve it first, which could be the subject of
interest of a separate work.

A. Inflation eternality: Background analysis

Let us now discuss the inflation eternality realization in
the one-screen entropic scenario. First, we have to deter-
mine the condition for a global inflation exit, that is, with
no part of the Universe going on inflating. In the scalar-
field driven inflation models, this is just the slow-roll
condition. In the scenario at hand there is no field slow
rolling, however, we can still use the definition of the
“slow-roll” parameter € = —H/H?, and thus the condi-
tion for inflation lasting remains € =< 1 (this condition
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arises from the definition of inflation and thus it is model-
independent), or equivalently

H+H>=0. (15)

Starting from Eqgs. (10) and (11) and assuming that the
Universe is filled with radiation (P = p/3), we can elimi-
nate p and obtain an equation with H(r) only:

H)( - 2Cy) = 2Cpy — DH? + ggm. (16)

Using this equation, condition (15) imposes a constraint on
H(#), namely,

H= \/giG[ch —1+2(1 = Cy)l (17)

In summary, as long as H(¢) is larger than the value of the
right-hand-side of the above condition, inflation will not
globally exit, and thus we obtain its eternality realization at
the background level. Taking into account the allowed inter-
vals of the parameters, we deduce that this condition can be
easily fulfilled. However, one must also investigate the role
of fluctuations generated during inflation, on the eternality
condition. This is performed in the next subsections.

B. Condition for eternal inflation:
Thermal-fluctuation analysis

In the previous subsection we investigated the back-
ground evolution, extracting the corresponding condition
for inflation lasting in the whole Universe. Here we exam-
ine the role of thermal fluctuations. Note that during in-
flation, the Universe will expand to nearly e* =~ 20
causally independent Hubble-sized regions in one Hubble
time At = H~!. In any of these regions, the energy density
will be decreased by 8.p = |p|At = |p|H™', however,
this may be corrected when we take into account the
fluctuations. In particular, if there is nonzero probability
that there exist regions of the Universe where the fluctua-
tions are bigger than the corresponding classical change,
then in these regions inflation will be eternal, despite the
fact that in the other regions inflation will have an ending
[6]. In a holographic system, the fluctuations are generated
in a thermal way [21], so we define the condition for the
inflation to be eternal as

8.0 > b.p, (18)

where 6,p is the thermal fluctuation generated during
inflation. We desire to emphasize that this condition looks
similar to the well-known condition for eternal inflation
driven by the scalar field [6]: 6,¢ > 5.¢,° but the differ-
ence is that, in that case, fluctuations come from the
quantum behavior of the scalar field. From this comparison
one can see that our condition is very reasonable too.

3Note that the condition for eternal inflation in case of non-
commutativity or nonminimal coupling has also been discussed,;
see [32,33], respectively.
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Using (13) and the Friedmann equations (10) and (11),
we can express the classical change of the energy density
S.p as

ocp =

_B3A=CHE T 8CH
27TG(1—ZCH)[(1 Ci) - ] (19)

where we have also made use of the fact that p =
—4Hp(1 — Cy)

(a relation that holds for a radiation-dominated universe) is
always negative. On the other hand, the thermal change &, p
can be estimated through its correlation function in position

space, namely, 8,p =+/(8p?), with the relation [34]:
T2

F >

where Cy(R) = 9(E)/dT is the heat capacity in a sphere of
radius R. Usually, two kinds of thermal fluctuations could
be taken into account, namely, thermal particle fluctuations
from normal radiation inside the bulk of the Universe, and
holographic fluctuations from the boundary screen.
According to different fluctuating mechanisms, the condi-
tion for eternal inflation will certainly be different. Thus, in

the next two paragraphs we will investigate both of them
separately.

(6p%) = Cy(R) (20)

1. Normal radiation

The energy density of normal radiation inside the bulk of
universe can be written as [21]

pu = 40G(T)T*, 2

where G(T) = 45g is the effective number of degrees of
freedom at temperature 7. The subscript “tr”” stands for
“thermal radiation.” Thus, from the heat capacity defini-
tion we acquire

Cy = 960mgo RT3, (22)

where R, is the correlation length of radiation fluctuations,
given as usual from R, = ¢,;/H, with ¢, the sound speed of
the radiation. Therefore, we get the following thermal

fluctuation of the system: &,pl, = v/9607goT’/R;,.

Setting T = H /2 as the Gibbons-Hawking temperature,
we finally obtain

1 |30¢0
Siple = — 8T, (23)

Cs

From (19) and (23) we can see that in the single-screen
model, the condition for eternal inflation (18) with normal
radiation fluctuation has the form,

1 [30go .,
PW’ 3 H* >

which gives the constraint on H:

20G(1—2Cp)

[0-cn 226 ]
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e V3m(1—Cy)
VG[2(1 —2Cy)e; ¥P30g0 +3(1 — Cpy)gCy 17>
24

Finally, we mention here that (24) has to be considered
along with (17) in order for inflation to be eternal, since
when inflation globally exits, there will be no eternal in-
flation. Thus, if the right-hand side of (24) is larger than that
of (17), which depends on the parameter choice, we can
take (24) as the eternality condition safely, while if it is not,
(17) should be taken as the eternal condition. Again, we can
see that the eternality conditions can be easily fulfilled.

2. Holographic screen

Now we focus on the case that the thermal-fluctuation is
produced holographically. The number of (finite) degrees of
freedom on the boundary screen is proportional to the sur-
face area approximately Rﬁs, where Ry is the correlation
length and ‘““hs” stands for ‘““holographic screen.” The en-
ergy of each degree of freedom is roughly the temperature of
the screen 7 in thermal equibrilium, thus the total energy of
the holographic screen is (E) ~ R3.T/G, and the heat ca-
pacity Cy ~ c,,RﬁS /G where c,, is a constant of the order of
O(1) determined by the detailed microscopic quantities of
quantum  gravity. Therefore, (20) gives &,ply =
T+Jc,/G/R3,, and setting Ry, =~ 1/H and T = H/2 [23]
we finally obtain

PHYSICAL REVIEW D 85, 043504 (2012)

¢, H?
o = L= —. 25
tplhs G 2w ( )

From (19) and (25) we deduce that in single-screen
scenarios the condition for eternal inflation (18), under

holographic fluctuations, becomes

o, H® _ 3(1 — Cp)H? Cpg
1/—“—>— 1-C ——GH2:|,
G27  2wG(1 —2Cp) [( W

which gives the constraint on H:

7(1-2C})

- \/C 368C,(1—Cy)®
6gCp(1— CH)\/—G— !

77(1 —ZCH)2

(26)

and both (17) and (26) have to be taken into account for the
same reason mentioned at the end of the above paragraph.

Before closing this subsection we have to make the
following comment. In the above two paragraphs we cal-
culated separately the thermal fluctuations from normal
radiation and from the holographic screen, and we gave
the corresponding conditions for eternal inflation, namely,
relations (24) and (26), respectively. However, although
these are two independent mechanisms, they can exist
simultaneously and thus lead to a combined effect, namely,
8,ply + 8,plhs > 8.p. This forces H(r) to satisfy

- —7(1 —2Cp) Jc, + Jw2cv(1 —2C,)? + 127(1 — Cp)2(1 — 2Cp)cs 3% /30ga + 3(1 — Cp)gCh]

2JG[2(1 — 2Cp)cs Y2 B0go + 3(1 — Cy)gChl

for eternal inflation.

C. Effects from quantum corrections:
Langevin analysis

In the previous subsection we investigated the condi-
tions for eternal inflation involving thermal fluctuations
generated both from normal radiation and holographic
screen. Here, we examine the backreaction of the metric
and the quantum fluctuations on the background space-
time, in order to see whether it can prevent inflation from
eternality. In particular, we proceed to an indirect inves-
tigation of quantum fluctuations and incorporate them as a
stochastic effect, without caring about their specific micro-
scopic origin. Such an approach covers all possible effects
of quantum fluctuations at the phenomenological level, as
is used in many cosmological systems [33,35].

According to evolution equation (16) and following
[35], we formulate the overall cosmological evolution,
including the classical motion and the quantum fluctua-
tions as a stochastic effect modeled through a random
walk, which can then be described by a Langevin equation

27)

|

and analysis. In particular, considering the system being
perturbed by microfluctuations described by a Gaussian
white noise normalized as

n@)y=0,  (n@n()) =06 —1), (28

we can write the Langevin equation for Eq. (16) as
H(t) = D\H? + D,H* + qn(t), (29)
where we have defined the coefficients D = — 21(1:ng)
D, = 77(157(2}%), q, = % (note that according to the

bounds on Cy, Cp, we deduce that D; <0 and D, > 0).
Note also that D; and D, have dimensions of 0 and —2,
respectively. In the stochastic term the coefficient G~3/4 is
inserted as usual for dimensional reasons, and e is a
dimensionless coefficient with rather small value [35].

In Eq. (29), if the last term on the right-hand side is
absent, we recover the usual equation of motion (16) and
the system will follow a classical trajectory H,(z).
Therefore, we expand H(t) around its classical value
H (1) up to order O(g?), namely,

043504-5
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H(f) = H.(1) + q,G*YH (1) + G H, (1) + O(q3),
(30)

where G®/% and G/ have been inserted for dimensional
reasons. Substituting this expansion into (29) and setting
the coefficients of the g, powers to zero, we acquire the
equations

H .= DH; + D,H}, (1)
H, =2DH,H, + 4D,H,H? + G~3/%p, (32)

These equations cannot accept analytical solutions,
however we can obtain approximate solutions in the limit
|t/T| < 1 where T > H™', that is performing our cal-
culation within one Hubble interval (z ~ H™') [35], with
t = 0 the time where inflation starts, and then we impose
the requirement that the stochastic fluctuations be able to
stop the eternal inflation. The explicit calculations are
presented in Appendix A. We find that stochastic fluctua-
tions can hardly have any significant effect on preventing
inflation from eternality caused at the background or
thermal-fluctuation levels.

In summary, in this section we obtained the conditions
for eternal inflation in one-screen entropic inflation scenar-
ios, taking into account two types of thermal-fluctuation
productions. As we saw, for general parameter choices the
eternality conditions can be easily fulfilled. We also per-
formed a Langevin analysis and we found that the
quantum-stochastic effects from microfluctuations can
hardly change the behavior, and thus in the model at
hand, inflation has a large probability to be eternal.
Actually this result had already been discussed in the
original paper [21], and thus the authors resorted to quan-
tum fluctuations in order to induce the inflation exit, but the
incorporation of the quantum fluctuations remained at the
qualitative level. However, in this section we performed a
quantitative analysis and our conclusions seem trustwor-
thy. Obviously, the Langevin analysis is not a full incor-
poration of quantum fluctuations, which is a relatively
unknown subject, but it can provide phenomenologically
trustworthy results. Definitely, one could try to incorporate
quantum fluctuations differently, paying the price of being
model dependent, but our above result seems difficult to to
change.

IV. THE DOUBLE-SCREEN MODEL

Single-screen entropic inflation is the simplest model
inspired from Verlinde’s idea, and the scenario is interest-
ing and totally different from other inflation models.
However, this scenario presents difficulties in quantita-
tively describing the thermal history of the Universe due
to the reason that the screen temperature is always much

PHYSICAL REVIEW D 85, 043504 (2012)

lower than that of the cosmological microwave background
and thus the Universe would be unstable under Hawking
radiation. In order to alleviate such a problem, a double-
screen extension was proposed in [22,23]. In this model,
apart from the usual outer holographic screen formed by
the Hubble horizon (or a surface near it), an additional
inner boundary has also been introduced, which was con-
sidered as the Schwarzschild horizon of the whole
Universe. At early time, both screens give rise to mutually
competing forces, which drive inflation, while at late times,
when the inner screen evaporates, the remaining outer
screen drives the Universe acceleration.
The Schwarzschild radius rg is given by

877G
r¢ =2GMy, = 2G | pdv = 227P

= STOP 3y
M, 3B°H? (34

where we have used the fact that the volume of the Universe
is V=4mr3,/3, with r; = (BH) ™! the outer screen radius
and 8 a dimensionless parameter quantifying the possible
divergence of the outer screen from the Hubble horizon. Its
corresponding temperature is given by

. 1 . 3,33H3
87GM,,, 32mGp’

Ty (35)
and therefore its induced acceleration (with the simple
entropy form) will be ag = 27T, but with the direction
toward the inner screen, opposite to the outer one.
Therefore, in double-screen entropic cosmology the total
induced acceleration is

B 352H2
167Gp

a, =2m(Ty —Ts) = ,BH(I ) (36)
with Ty = BH/(27), namely, it incorporates a competition
of entropic effects from the outer and the inner screens.
Taking also the higher order corrections on the entropy
expressions into account, one extracts the modified
Friedmann acceleration equation in this scenario as [22,23]
a 47G
with the form of the surface function being

352[_12) . enGRH*

167Gp 447
27gBCHO

1024gH7T3G3p3)’

Flp, H) = BZHZ(I -

x(1-

where gy and gg are the corresponding dimensionless
correction coefficients for each boundary. Here we have
neglected the higher order correction term that appeared in
[22,23]. The cosmological system will close, as usual, by
the consideration of the evolution equation of the total
energy density p. In the case at hand, in which one may
have flow through the boundaries, the corresponding equa-
tion is modified as [22,23]

(38)
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p+3H(p+P)=T, (39
with the effective coupling term I" being
_ 21B%HS 3B8°HH (1 B
102473633 " " a4mG

27p*H*
25672G2p?

), (40)

at the classical level.

Focusing on the early-time universe evolution, and, in
particular, on the inflation realization, we assume that the
Universe is radiation dominated and thus the equation of
state of the total Universe content is P = p/3. Solving the
equations of motion (37) and (39) up to leading order, one
can obtain the following approximate solution for the
Hubble parameter at early times [23]:

87G 8(gy —4g5)G? 2:| 87TG< p2)
+ = +2) @
3 [p T p 3T \” 5 (41)

where p = 69/(82G?), with g = gy — 4gs. An interesting
property of this scenario is that when g > 0, the Hubble
parameter is proportional to the energy density at high-
energy scales. Therefore, in this case the p> term could
make the early-time inflation much easier to be realized,
compared to single-screen models.

H2=

A. Inflation eternality: Background analysis

We now focus on the conditions for inflation eternality in
double-screen scenarios. Similarly to the previous section,
we consider that inflation will continue as long as condition
(15) holds, since it is model independent. In order to
simplify the expressions we restrict the analysis in the
high-energy regime p > p, where inflation is realized,
since when p < p inflation will always end [23]. In the
p >> p case, the second term in (41) dominates, leading to
a linear approximate relation between p and H:

’ 207 H
42
p 647T G3/2 ( )

Substituting this into the second Friedmann equation (37)
and considering also the radiation equation of state P =
p/3, we can eliminate p, resulting in an equation depend-
ing only on H:

23 418G
BT g -y - P8
gG 2 V237
gHB gsB 2 [mg
S AZ2GOPHT. (43
m 184 Y23 “43)
Thus, condition (15) becomes
23 ,3 gHB
—‘/—H+ 2 - B |86 s 81 G
gG A 2 23 A7

gsB" & [mg
- 2 =2GYPHT =0, 44
m 184V 23 “)

H=—

oA GH 4
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In order to be more specific, as an example we consider
the parameter choice of [22], thatis 8 = V2.2 gs =0, and
g = gy = 10'5. Moreover, in the regime where p > p,

the relation (42) leads to H > 4/237/(gG). Setting
s=H+/gG/(237)>> 1, condition (44) can be simplified as

nforesf(- LY+ Sl =0 as

Since s >> 1, this condition is always satisfied, that is,
under the approximation p >> p, the Universe will not
globally exit inflation. Note that this is consistent with
the result of [23].

B. Condition for eternal inflation:
Thermal-fluctuation analysis

In the previous subsection we extracted the requirement
for inflation lasting at the background level, in the case of
double-screen scenarios. Here we desire to incorporate the
thermal fluctuations and, in particular, to examine under
what conditions the inflation can be eternal. Similar to the
single-screen case, we will estimate the change in energy
density 6,p due to thermal fluctuations arising from nor-
mal radiation and from the holographic screens, and we
will compare it with the classical change §.p. The condi-
tion for eternal inflation will again be d,p > 6.p.

Concerning the classical change, things are different
from the single-screen model due to the different back-
ground dynamics. In particular, using (39), (42), and (43),
we obtain

3[BH(1 — _218'H \ _4p
_ °l4=c 25672G2p?) 3

_ 27B°HS
1 33,43
102473G3 p

3H2 e 2
69 + = [-3s2+1} (46
877Gs{ s[( 23) 529] g } (46)

However, concerning the thermal fluctuations, the calcu-
lations are similar to the single-screen scenario, since the
mechanisms producing the fluctuations are independent of
the background. Therefore, in the next subsection we study
the conditions with both kinds of fluctuation productions.

1. Normal radiation

For standard radiation, the energy density writes as

_ 38,

P =1 67TT“, (47)

“This [ value ensures that at late times, when the Friedmann
equations become those of general relativity, that is H> =
87Gp/3, the temperatures of the two screens will become equal,
and thus according to (36) the acceleration of the Universe
caused by entropic force will vanish and inflation will exit
[22]. This provides an exiting mechanism of inflation that is
absent in the single-screen model.
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where g, corresponds to the term 6470 G(T)/3 of the
single-screen model. Therefore, the heat capacity Cy =
g,R3T3. Setting R, = ¢,/H and T = BH /2 we have

8B’ 7t
Qmped

8:ple = (48)

Thus, comparing (46) and (48) we deduce that the condi-
tion for eternal inflation reads

[4.5° 3H? e 2
(277)5c§H4>877Gs4{69S3[<S—23) +@]—3s2+ 1}.

This expression contains the higher order term of H and

s = Hy\/gG/(23), and thus since s > 1, it can be sim-
plified to give a constraint on H(r) as

23gc3
H>9m,| =85 (49)
2¢,8°G

Since from this relation one can see that H?>

97y/(238¢3)/(24,8°G)H ~ 5/G > G~ and thus H >>

1/7/G, eternal inflation can only be realized at a very
high-energy regime.

2. Holographic screen

Concerning the holographic production of fluctuations,
we can consider that it can mainly be produced on the outer
screen [23]. Similar to the single-screen model, the total
energy of the screen is (E) ~ R2.T/G, the heat capacity
Cy ~ ¢, R}, /G, and thus 8,ply, = T+/c,/G/R3,. Setting
Rys=1/H and T = BH/27 (this 8 modification is the
only difference between the two models) we finally obtain

¢, B°H?
G 27

8:pls = (50)

From (46) and (50) we can see that the eternality con-
dition (18) turns out to be

3773 o )
B H > 3 {69s3[<s 1) +22]—3s2+1},

G 27 87Gs - 23) 529
(51

and in the regime s >> 1, it can be simplified as

(4,83\3/CUG B

g g g .
69\/2377) 2377_H +6 2377_H 3>0. (52)
For standard values of the parameters [g > G, c,,
B = O(1)] the expression on the left-hand side does
not accept nontrivial real roots, and thus condition (52) is
never satisfied. Therefore, we conclude that in the double-
screen inflation model with the thermal fluctuations from
the holographic screen, the background result is not
changed.
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Finally, if we desire to take into account simultaneously
the thermal fluctuations from standard radiation and from
the holographic screen, that is requiring 8,pl, + 8,plps >
6.p, and under the approximation s >> 1, we return again
to (49) since the holographic fluctuation §,p|,, cannot have
any contributions on eternal inflation. Thus, this is the total
condition for eternal inflation, taking into account the
thermal effect of fluctuations.

C. Effects from quantum corrections:
Langevin analysis

In the previous subsections we extracted the requirement
for eternal inflation in double-screen scenarios with both
types of thermal-fluctuation productions. Similar to the
single-screen case, in the present subsection we incorpo-
rate the microfluctuations, and we examine whether they
can prevent eternal inflation. In particular, we perform a
Langevin analysis in order to formulate the overall cosmo-
logical evolution, that is, the classical motion and the
quantum fluctuations, as a stochastic effect modeled
through a random walk.

According to Eq. (43) we can construct the correspond-
ing Langevin equation as

H=CH+ C,H*+ C3H> + C4H* + C;H" + q n(1), (53)

where g, ~ eG4, n(r) satisfies (28), and the parameters
Ci(i=1,273,4,7) are

237 B* /gG
Ci=—4—— C=p*—1 C3=-"2 ,
! 3G’ 2 k 3 2 V237

_ = 54
_suB'G o _ gsPU & 78 s oY
4 m 184V23 7
with dimensions of 1, 0, —1, —2, and —35, respectively.
Now, imposing the expansion solution (30) (with
qs — q4), we obtain the separate equations

Hc = Cch + CQHE + C3H3 + C4Hf + C7HZ, (55)

Cy

Hl = ClHl +2C2H1HC +3C3H1H(2 +4C4H1H2
+7C;HHS + GG/, (56)

H,=C\H,+ Cy(H? +2H,H,) +3C3H (H? + H,H )
+2C4H?(3H} +2H,H,) +7C,H}(3H} + H,H.,).
(57)

These equations cannot accept analytical solutions, how-
ever, we can extract approximate solutions in the limit
|t/T| < 1 with T > H™!, that is, performing our calcu-
lation within one Hubble interval (t ~ H ') [35], and then
we impose the requirement stochastic fluctuations to be
able to stop an eternal inflation. The explicit calculations
are presented in Appendix B. We find that although it is
very complicated to perform a general analysis due to high
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nonlinearity of the equations, in the specific parameter
choice of [23] it is still hard for the microfluctuations to
have a significant effect on preventing inflation from its
eternality.

In summary, in this section we extracted the eternality
conditions for inflation in double-screen entropic scenar-
ios, with thermal fluctuations induced by normal radiation
and holographic production. As we saw, inflation is eternal
in the high-energy regime. Furthermore, we considered the
quantum corrections from stochastic effects by performing
the Langevin analysis, which were shown to hardly prevent
the inflation eternality. On the other hand, in the low-
energy regime, inflation exits globally [23].

V. CONCLUSIONS

In this work, we examined entropic cosmological sce-
narios under the light of inflation eternality. Going beyond
Verlinde’s basic idea, which cannot describe inflation
quantitatively, we considered both the single-screen en-
tropic inflation model [21], in which the holographic
screen acts as an additional boundary term, as well as its
double-screen extension [22,23], where one adds a second,
inner holographic screen. In particular, after describing the
inflation realization, we examined under what conditions
the inflation is eternal, taking into account both the back-
ground evolution and mechanisms of thermal-fluctuation
production. Furthermore, we incorporated quantum fluctu-
ations through a phenomenological, stochastic, Langevin
analysis, and we examined whether they can prevent the
inflation from eternality. Although the Langevin analysis is
not a full incorporation of quantum fluctuations, which is a
relatively unknown subject, it can provide phenomenolog-
ically trustworthy results.

After describing the inflation realization and the normal
condition for inflation to last at the background level, we
discussed its eternality at the thermal fluctuations level.
First, we defined the general condition for eternal inflation
as 8,p > 6.p, which is very natural compared to the well-
known relation of scalar-field-driven inflation. In the case
of one-screen scenarios, we extracted the conditions for
eternal inflation with fluctuations from normal radiation
and the holographic screen, (24) and (26), respectively,
which should be considered with (17). These eternality
conditions can be easily fulfilled for general parameter
choices. In the case of the double-screen model, we found
that in the high-energy region when p > p and inflation is
always going on, the condition for eternal inflation with
radiation fluctuation remains (49), while for a fluctuation
produced by the holographic screen, eternal inflation is not
affected. Finally, after performing a Langevin analysis, we
found that it might be hard in either of these two scenarios
to prevent eternal inflation by stochastic effects, unless we
severely fine-tune the parameters. As a side remark, how-
ever, we recognize that since the Langevin analysis is still a
random walk simulation instead of a complete calculation
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of the quantum fluctuations, there could still be some
ambiguity in the validity of this result, which deserves
more study.

The above discussion indicates that from the cosmologi-
cal point of view one must be careful with the entropic
origin of gravity, since the induced inflationary dynamics
must have an exit, at least at some parts of the Universe, in
order to be consistent with observations. It seems that one-
screen scenarios can easily lead to inflation eternality,
while double-screen considerations present a better behav-
ior. Finally, note that apart from these two models, in [36]
the authors discussed the case where the holographic
screen is open and the Brown-York surface stress tensor
is introduced, while in [37] noncommutative geometry was
used to describe the microstructure of the quantum space-
time of entropic gravity. It would be interesting to inves-
tigate the inflation realization in such scenarios, and then
focusing on the eternality issues, examining whether the
above behaviors can be improved.

However, the easy realization of eternal inflation in
entropic gravity could still be very interesting from the
string theory point of view, since it may form the back-
ground for the landscape of string or M theory vacua, that
is, for the existence of a huge number of possible (false)
vacua [11-14]. Additionally, it may also be worth inves-
tigating the probability of tunneling between different
vacua, either Coleman-De Luccia—type [38] or Hawking-
Moss—type [39]. In order to study these subjects, the full
extension of our Langevin analysis will become important.
Such considerations may lead to new perspectives in en-
tropy gravity, and deserve further investigation.
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APPENDIX A: SOLUTION OF THE LANGEVIN
EQUATIONS: THE SINGLE-SCREEN SCENARIO

Since we are dealing with stochastic variables, we per-
form the average of any physical quantity by defining the
statistical measure. In particular, we use the Fokker-Planck
approach and define the measure to be the physical volume
of the Hubble patch, and thus the average is defined as

e3N(t)
), = A0

. N = [ H@ar,
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TAOTAO QIU AND EMMANUEL N. SARIDAKIS

Since the Hubble patch that is eternally inflating will have
an exponentially larger physical volume, taking the largest
weight in the average at late times, the physical volume can
be a good measure to characterize eternal inflation.
Therefore, the average (H(t)), could be significantly
changed by stochastic fluctuations if eternal inflation is
realized. Furthermore, we shall use the functional tech-
nique developed in [35] and define a generating functional

(M), M [u] = [0 "W H()dr

Wlu] =
Thus, (H(?)), can be evaluated by functionally differenti-
ating W,[ ] with respect to w and setting u = 3, resulting
to the following equations up to O(g?):

@@y, =YLy [ wnomyyar,
Su() | umn=3 0

(A1)

CHWOHEY = HOHW) — HO)HE,.  (A2)

After these definitions we can proceed to the solution of the
Langevin equations (31) and (33).

In general, these equations cannot accept analytical
solutions, however we can obtain approximate solutions
in the limit |¢/7 | < 1 (with 7 > H™"), that is perform-
ing our calculations within one Hubble interval (t ~ H™ '),
where ¢ = 0 is the time where inflation starts. In this case
we can assume an ansatz for the H () solution, namely,

2
+A(L) + A < ) (A3
Hy 1<T) A7 (A3)
H(t = 0). Inserting this ansatz into Eq. (31)

Hc(t) =

where H,y =

and by rescaling A, = A, 7!, A, = A,7 72, we obtain
H.(t) = Hy+ At + Ay .., (A4)
with
i _( 15+\/_D)(l/2)
0 28 D,)
A, = DH% + D,H%, (A5)

Ay = (DyHy + 2D,HY)A,,

Where we recall that D, = 2(] CH)<O and D, =
W > (. Note that Al » have dlmensmns of 1, while

A, and A, have dimensions of 2 and 3, consistently with
the dimensions of D and D, as stressed before. One could
also check that this leads to A; < 0, which is asymptoti-
cally quintessencelike inflation.

Thus, knowing the solution H(f), we can acquire solu-
tions of H,(¢) and H,(¢) as

Hy(1) = hll-E(t){l + ﬁ fo tn(t’)E*I(t’)dt’}, (A6)

1i
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Hy(f) = E(1) fo "AWHE\(1)ar, (A7)

convenience we have defined E(7) =

e Jo@PHA4D DAY g A(t) = D, + 6D,H?. Note that
we have taken the initial condition for the first-order cor-
rection of the Hubble parameter to be h,;, while initial
conditions for higher order corrections have been
neglected.

Now, from (30) we can straightforwardly write (H(z)) =
H (1) + q,GPY(H, (1)) + ¢*G®/P{H,(1)), and therefore
(A1) gives

(H(1)), = H_.(t) + g,G¥YH, (1)) + g2 G/ (H, (1))
+3¢2G6/? fo t[<H {(OH (1)) — (H  (0)XH (1)) ]dY’

=Hyo+ Myt +q,GVhyE(n) + g3 GO

X {<H2<z>> +3 fo H, (DH, (1)

where for

— (H, (D)H, <ﬂ>>]dz'}, (A8)

where we have used the fact that (H,(r)) = h,;E(¢) and that
(HOXH() = H(NH(f) + q,G%/Y[H (1) H\ (1)
+ H () (H ()] + ¢iGO/P[(H, (1)
X(H, (")) + H (){Hy(t) + H.(t')
X (Hy(1))]:

The last terms on the right-hand side of (A8) can be ex-
pressed using

(HOH(t')) = H(DH () + q,G/[H (1)(H, (1))
+ H () H (0)] + i G2 [H, (0H, (1)
+ H ()(H, (1)) + H (t'){H,(1))],
and then, using relations (A6), (A7), and (28), we obtain

1 min(s,r')

(Ho (1) = E(7) jo "A)E()

t
x[h%l.+G—<3/2> [O IE‘2(t2)dt2]dt1. (A9)
Thus, inserting (A9) into (A8) and keeping terms up to
leading order in E(¢) and H, we acquire
(H(1)), =Hyo+ q,G%Yhy; + A1 +2q,GYPhyHyg
X (D) +2D,H)t + g2G®/? h} (D, + 6D, H)t.

(Hy(DH, (1)) = h%,E(t)E(t’)[l P

This expression provides the stochastic-fluctuation cor-
rected Hubble-parameter evolution, namely, the first two
terms on the right-hand side give the classical result, while
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the last term provides the stochastic correction. Therefore,
requiring the stochastic-fluctuations to be able to prevent
eternal inflation, we need to impose

2q,G%/Phy;Hyo (D, + 2D, Hy) + 3G/ 3 (D, + 6D, Hy)
= Ay, (A10)
where A is given in (A5). This expression provides the

constraints on the initial condition of stochastic fluctua-
tions in leading order, namely, %;, as

< hy s, (A11)
where

L Hy
1.2 q,GG/Y

Dt 2D, H}) *4(2D3 + 11D, D, H} + 10D3H;,
D, +6D,H? '

Inserting in these expressions the definitions of Dy, D,, and
g, as functions of the parameters Cy and Cy [see Eq. (29)],
we find that in the required intervals Cy <1 and 0 =
Cy = % [21] there are no real solutions. Thus, condition
(A10) cannot be satisfied and therefore stochastic effects
from quantum fluctuations cannot stop eternal inflation.
We mention here that performing the calculations within
one Hubble interval is a reasonable approximation, since
the above result will still be valid if one considers succes-
sively many Hubble intervals.

APPENDIX B: SOLUTION OF THE LANGEVIN
EQUATIONS: THE DOUBLE-SCREEN SCENARIO

In this appendix we solve Egs. (55)—(57), using also the
introductory relations of Appendix A. In general, these
equations cannot accept analytical solutions; however, we
can acquire approximate solutions in the limit |7/7 | < 1
(with 7> H~'). Assuming an ansatz for the H,(r)
solution as

H,(t) = Hy + i(%) iz(%)z .

:Hto‘f‘E]["‘Eztz..., (Bl)

where in the second step we use the similar rescaling as

was done in Appendix A, with %, of dimension 1 while
3, and X, of dimensions 2 and 3, respectively, consistently
with the dimensions of C;’s stressed before. Substituting it
into (55) we obtain

21 = ClHtO + CZle() + C3HI30 + C4H?0 + C7Ht70,
3, =3C, +2C,Hy + 3C3HY + 4C4Hy + TC;HG).,.
(B2)

Thus, the solutions for H; and H, read

PHYSICAL REVIEW D 85, 043504 (2012)

1 t =y g
i [ (e JiE O ),
Ty Jo

(B3)

H,y ()= hl,-eféilv’w{l +

t o= N g4 1 _ r’: Ay M
Hy(r) = eJs =0 / (e H2e Jo = g (B4
0

where

2,(t) = C, +2C,H, + 3C;H? + 4C,H? + 7C;HS,
Ez(t) = Cl + 2C2HC + 3C3H% + 4C4HL31 + 7C7Hg,
II(1) = C, + 3C3H, + 6C,4H? + 21C,H>.

Following the procedure of Appendix A we finally
obtain

(H(1)),=H,+ 31+ q,GYH, (1))

+ q%,G<3/2>{<H2(r)> 3 [ [CH, (0, ()

X () |

=Hyp+quG*Phy + 211+ ¢G5 hy,
X (Cy+2CyH,g+3C3HA +4C4HY +7C,HS)t
+q3GO 13, (Cy+3C3Hyg+6C,HA +21C, Hip)t.

Therefore, requiring the stochastic fluctuations to be able
to prevent the eternal inflation, we result to the constraint:

3 > q,G% Yy (Cy + 2C,Hy + 3C3HE) + 4C,H3,
+7CHy) + q3GPPh3,(Cy + 3C3Hyg + 6C,H
+ 21C;Hy).

Inserting the definition of 3’s from (B2) and of C;’s from
(54), we find that

rl < hy =g, (BS)
where
4 Xy * “,X(z) + 4Py,
r = - 1)
v 244G**Pq
with

XO = C] + ZCZHIO + 3C3H120 + 4C4H?0 + 7C7H,60,
PO = Cz + 3C3Ht0 + 6C4Ht20 + 21C7H§O

Relation (B5) imposes tight constraints on the model
parameters. For example, in the particular parameter
choice B =+2, g, =0, g = gy = 10'¢ of [22] it does
not accept real solutions. Therefore, we conclude that on
the double-screen model at hand, the stochastic effects
cannot induce an exit from an eternal inflation caused by
the background evolution and thermal fluctuations, unless
one tunes the model parameters accordingly.
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