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We explore the reconstruction of the gravitational lensing field of the cosmic microwave background in

real space. We show that very little statistical information is lost when estimators of short range on the

celestial sphere are used in place of the customary estimators in harmonic space, which are nonlocal and

in principle require a simultaneous analysis of the entire sky without any cuts or excisions. Because

virtually all the information relevant to lensing reconstruction lies on angular scales close to the resolution

scale of the sky map, the gravitational lensing convergence and shear fields (which unlike the deflection

field or lensing potential are directly related to the observations in a local manner) may be reconstructed

by means of quadratic combinations involving only closely separated pixels. Even though harmonic space

provides a more natural context for understanding lensing reconstruction theoretically, the real space

methods developed here have the virtue of being faster to implement and are likely to prove useful for

analyzing realistic maps containing a galactic cut and possibly numerous small excisions to exclude point

sources that cannot be reliably subtracted.
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I. INTRODUCTION

Recently there has been much discussion of how the
intervening clustered matter between the last scattering
surface (at z � 1100) and an observer at the present time
distorts the CMB anisotropy by means of gravitational
lensing [1–5]. On the level of the two-point correlation
function, this effect distorts the TT (temperature-
temperature) correlation power spectrum [6] and mixes
the EE and BB polarization power spectra as well as
distorting them [7–9]. Lensing also introduces non-
Gaussianities that manifest themselves in the higher-point
correlation functions [10,11]. At the level of the three-point
correlation function, to leading order there is no nonzero
expectation value if we regard the lensing potential as a
random field [12,13]. However, if we consider the CMB
lensing potential� as fixed, we find that expectation values
of the form

hTð�ÞTð�0Þi�ð�00Þ � hTð�ÞTð�0Þi�¼0 (1)

do not vanish, and this property may be exploited to
recover or ‘‘reconstruct’’ the lensing field using estimators
quadratic in T (or in E and B) [14–16]. Here, �, �0 and �00
denote points on the celestial sphere.

Much effort has been devoted to developing an op-
timal reconstruction of the lensing potential. Hu and
Okamoto [17,18] analyzed lensing reconstruction in
Fourier space, noting that in the presence of lensing qua-
dratic combinations of the form Tð‘ÞTð‘0Þ have an expec-
tation value proportional to �ð‘� ‘0Þ, where � is the

lensing potential. They constructed an unbiased minimum
variance combination of such quadratic factors to obtain an
estimator of the lensing potential. This approach in har-
monic space is optimal when there is full sky coverage, no
galactic cut, no bad pixels due to point sources that must be
excised, and no need for nonuniform weighting to account
for nonuniform instrument noise [19–21]. However, when
these conditions are not satisfied, the harmonic approach
offers little guidance on how to proceed. Another approach
would be to start with the likelihood for a lensed sky
map after linearization. In this way, the problem can be
reduced to a linear algebra problem, albeit a rather messy
one given the large dimensions of the matrices [22,23]. The
improvement gained from using an even more optimal
maximum likelihood estimator [24] is marginal in the
case of temperature data, though the situation is different
for polarization data where the higher order corrections to
the quadratic estimator present in the maximum likelihood
estimator may no longer be negligible [25].
In this paper we adopt a different, real space approach.

For lensing reconstruction the bulk of the statistical infor-
mation lies at very small scales, near the resolution limit of
the survey. The fractional statistical information contrib-
uted by the long wavelength temperature and polarization
anisotropies is negligible. This fact suggests developing an
estimator based on a long-wavelength limit in which the
effect of the lensing is approximated as a constant linear
transformation of the form ð� � �0Þ ¼ Sð�0 � �0

0Þ, where
S is a matrix and the primed and unprimed coordinates
refer to the lensed and unlensed sky, respectively. Such an
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estimator provides an optimal weak lensing reconstruction
in the limit j‘0j ! 0, but is less optimal at large wave
numbers.

Our interest lies in considering slightly nonoptimal esti-
mators that have been modified to have a finite range in
pixel space so that cuts, excisions of pixels, and nonuniform
coverage may be included in a simple way. We believe that
such nonideal but more robust local estimators defined in
real space may prove superior for confronting the compli-
cations inherent in analyzing real data [22,26,27]; a similar
approach is taken in [28]. Another advantage of the ap-
proach here is that the convergence and pure shear estima-
tors provide separate and essentially independent lensing
reconstructions which may be confronted with each other.
This feature may prove useful to diagnose spurious signals,
which are unlikely to affect the two reconstructions in the
sameway.Moreover, the presence of two shear components
enables one to estimate the noise of the reconstruction
through the implied transverse shear field, which is forbid-
den in weak lensing.

The organization of the paper is as follows. In Sec. II we
derive a simple real space estimator that allows us to
recover the convergence field �0ð�Þ and two components
of the pure shear field �þð�Þ and ��ð�Þ by taking the
product of the temperature map with an appropriately fil-
tered temperature map. It is shown that the small scale
temperature anisotropies, near the resolution limit of the
survey, supply the bulk of the exploitable statistical infor-
mation. In Sec. III, we show how the range of the filter
kernel in angular space can be truncated with very little
excess variance, or equivalently information loss. The esti-
mators of Sec. II are unbiased and of minimum variance in
the long-wavelength limit of the lensing fields. In Sec. IV,
we analyze what happens at larger wave numbers for the
lensing fields and also indicate when nonlinearity becomes
relevant. Section V digresses slightly by showing how
lensing reconstruction estimators can be devised based on
particular features in the CMB spectrum. Finally, in Sec. VI
we present the results of some simulations validating our
approach as well as some concluding remarks.

II. A REAL SPACE LENSING ESTIMATOR

In this section, we develop a simple lensing estimator in
real space. First, we develop an estimator of the conver-
gence �0ð�Þ and the pure shear �þð�Þ, ��ð�Þ that is
unbiased and of minimum variance in the limit of long
wavelength for the lensing field. Then in the following
section, we show how to truncate the support of the filter
in an optimal way.

Before deriving and implementing the real space esti-
mator, it is useful to consider the relation between the
various descriptions of the lensing and the deforma-
tion of the anisotropies in real space. It is also useful
to consider which angular scales contribute the most sta-
tistical weight to the lensing reconstruction. The CMB

anisotropy originating from the surface of last scatter is
distorted by intervening matter that deforms the photon
paths connecting the surface of last scatter to us today. This
distortion may be described in three ways: by a lensing
potential �, by a deflection field � ¼ �r�, or by the
three components of the deformation tensor

� ¼ �0 þ �þ ��
�� �0 � �þ

� �
¼ rarb�: (2)

Here, �0 is the convergence, �þ and �� are the two pure
shear components, and we have neglected a rotation in the
shear tensor. The lensed temperature map T0 is related
to the unlensed temperature T according to T0ð�0Þ ¼
Tð� ¼ �0 � �Þ. In the most general case, the angular po-
sition in the unlensed sky � is an arbitrary function of the
angular position �0 in the lensed (observed) sky, which we
shall denote � ¼ Sð�0Þ, but we shall assume that the lens-
ing is weak, meaning that the displacement and its deriva-
tive may be regarded as small.
Even if we had simultaneous access to the entire sky,

the descriptions using � or � would suffer from an ambi-
guity. The scalar potential � cannot be distinguished from
�þ ðconstantÞ and the vector field � can be measured
only up to a constant translation (or more properly a
rotation in the presence of sky curvature). This is because
if we know only the CMB power spectrum, a patch of sky
and its translation necessarily have the same likelihood on
account of the isotropy of the underlying stochastic pro-
cess. Consequently, the absolute translation due to lensing
cannot be observed. By contrast, locally the shear and
convergence (which are gradients of the translation vector
field) are completely well defined.
Let S be a constant symmetric matrix. We define the

lensing transformation as follows:

T0ð�0Þ ¼ Tð� ¼ S�0Þ: (3)

We define the transform of the temperature map as

að‘Þ ¼ 1ffiffiffiffiffiffi
A

p
Z

d2� exp½i‘ � ��Tð�Þ (4)

where A is the area (solid angle) of the region of integra-
tion, so that cð‘Þ ¼ hjað‘Þj2i and

hT2ð0Þi ¼
Z d2‘

ð2�Þ2 cð‘Þ: (5)

We now compute the power spectrum c0ð‘Þ of the ensemble
of lensed maps T0 in terms of cð‘Þ for the unlensed maps T.
We have

a0ð‘Þ ¼ 1ffiffiffiffiffiffiffiffi
A0p

Z
d2�0 exp½i‘ � �0�T0ð�0Þ

¼ 1ffiffiffiffiffiffi
A

p
Z

d2�

��������@ð�01; �02Þ@ð�1; �2Þ
��������1=2

exp½i‘ � S�1��Tð�Þ

¼ det�1=2½S�aðS�1‘Þ (6)
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so that

c0ð‘Þ ¼ det�1½S�cðS�1‘Þ ¼ det�1½S�cðjS�1‘jÞ: (7)

We now linearize setting

S ¼ Iþ � ¼ 1 0
0 1

� �
þ �0 þ �þ ��

�� �0 � �þ

� �
; (8)

so that

c0ð‘Þ¼cðj‘jÞ�
�
trð�Þcðj‘jÞþð‘ �� �‘Þ

j‘j
�
dcð‘Þ
d‘

��
‘¼j‘j

(9)

and

�cð‘Þ ¼ c0ð‘Þ � cðj‘jÞ

¼ �0

�
‘
dcð‘Þ
d‘

þ 2cð‘Þ
�

þ ð�þ cosð2�Þ þ �� sinð2�ÞÞ
�
‘
dcð‘Þ
d‘

�
(10)

where ð‘;�Þ are the polar coordinates of ‘. This results in
the distorted power spectrum

cð‘Þ ! c0ð‘Þ ¼ cð‘Þ�
�
1þ�0

�
d ln½cð‘Þ�
d ln½‘� þ 2

�
þð�þ cosð2�Þþ�� sinð2�ÞÞ

�
d ln½cð‘Þ�
d ln½‘�

��
:

(11)

This result is not surprising because the derivative
� ¼ d ln cð‘Þ=d lnð‘Þ is the local spectral index of the
power at a given ‘, with � ¼ �2 corresponding to a
scale-invariant spectrum and � ¼ 0 corresponding to a
white noise spectrum. Thus the spectrum is invariant under
pure dilatations (i.e., �0 � 0, �þ;� ¼ 0) when � ¼ �2,
and is invariant under pure shear transformations (i.e.,
�0 ¼ 0, �þ;� � 0) when � ¼ 0. The distortion of the

power spectrum described above mathematically is illus-
trated in Fig. 1.

In a region of area A over which �0, �þ, and �� are
spatially constant, the unbiased minimum variance estima-
tor of �0, constructed using inverse variance weighting of
the estimators from different ‘, would be

�̂0 ¼ 1

AN�̂0

Z Ad2‘

ð2�Þ2
cð‘Þ

ðcð‘Þ þ nð‘ÞÞ2

�
�
d ln½cð‘Þ�
d ln½‘� þ 2

�
ðc0obsð‘Þ � hcð‘ÞiÞ (12)

where

N�̂0
¼
Z d2‘

ð2�Þ2
c2ð‘Þ

ðcð‘Þ þ nð‘ÞÞ2
�
d ln½cð‘Þ�
d ln½‘� þ 2

�
2

(13)

where nð‘Þ is the instrument noise. In Eq. (12), we subtract
a constant bias hcð‘Þi�¼0 because we want to probe the
difference with the power spectrum expected in the

absence of lensing. The expression for the estimator is
obtained in the usual way: using Eq. (11) we make an
ansatz for �̂0 that involves an integral over the observed
temperature power spectrum with an appropriate weight
function and normalization, which are solved for by as-
suming that the estimator has minimum variance and is
unbiased. For a finite region, A

R
d2‘=ð2�Þ2 corresponds

to a discrete sum over modes. Physically, N�̂0
denotes the

total ðS=NÞ2 per unit area for a deformation corresponding
to �0 ¼ 1.
Setting

K�̂0
ð�Þ ¼ 1

N�̂0

Z d2‘

ð2�Þ2 exp½�i‘ � �� cð‘Þ
ðcð‘Þ þ nð‘ÞÞ2

�
�
d ln½cð‘Þ�
d ln½‘� þ 2

�
¼ 1

2�N�̂0

Z 1

0
‘d‘J0ð‘�Þ cð‘Þ

ðcð‘Þ þ nð‘ÞÞ2

�
�
d ln½cð‘Þ�
d ln½‘� þ 2

�
; (14)

we may rewrite Eq. (12) as

�̂0 ¼ 1

A

Z
d2�

Z
d2�0

� K�̂0
ð�� �0Þ½Tð�ÞTð�0Þ � hTð�ÞTð�0Þi�¼0�: (15)

Now the key point is that the kernel K�̂0
ð�Þ is peaked at

small values of �, so that we may translate the above
localized estimation of �0 to different points in the map.
Therefore,

�̂0ð�Þ¼Tð�ÞðK�̂0
�TÞð�Þ�hTð�ÞðK�̂0

�TÞð�Þi�¼0; (16)

where the operator � denotes a convolution, provides an
unbiased minimum variance estimator of the underlying
lensing field �0ð�Þ in the long-wavelength limit. The con-
vergence estimator is then simply a product of the observed
temperature map with another copy of the temperature map
that has been convolved with the kernel, K�̂0

ð�Þ, with the

constant bias removed.
Wemay analogously estimate the two components of the

pure shear as follows:

�̂þ
�̂�

 !
¼ 1

AN�̂þ;�̂�

Z Ad2‘

ð2�Þ2
cð‘Þ

ðcð‘Þ þ nð‘ÞÞ2

�
�
d ln½cð‘Þ�
d ln½‘�

�
cosð2�Þ
sinð2�Þ

 !
c0obsð‘Þ (17)

where

N�̂þ;�̂� ¼ 1

2

Z d2‘

ð2�Þ2
c2ð‘Þ

ðcð‘Þ þ nð‘ÞÞ2
�
d ln½cð‘Þ�
d ln½‘�

�
2

(18)

and for the local estimator, again in the long-wavelength
approximation, we define the kernel
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K�̂þ;�̂�ð�Þ ¼
1

N�̂þ;�̂�

Z 1

0

d‘

2�

cð‘Þ
ðcð‘Þ þ nð‘ÞÞ2

�
�
d ln½cð‘Þ�
d ln½‘�

�
J2ð‘�Þ (19)

so that

�̂þð�Þ ¼ Tð�ÞðK�̂þ � TÞð�Þ;
�̂�ð�Þ ¼ Tð�ÞðK�̂� � TÞð�Þ;

(20)

where

ðK�̂þ � TÞð�Þ
ðK�̂� � TÞð�Þ

� �
¼
Z

d2�0K�̂þ;�̂�ðj� � �0jÞTð�0Þ

� cos½2�ð� � �0Þ�
sin½2�ð� � �0Þ�

� �
(21)

and

tan½2�ð� � �0Þ� ¼ 2ð�1 � �01Þ � ð�2 � �02Þ
ð�1 � �01Þ2 � ð�2 � �02Þ2

: (22)

FIG. 1 (color online). Distortion of power spectrum due to shear. The plots on the left indicate an unlensed map simulated using the
WMAP power spectrum on a torus in angular space (top) and in harmonic space (bottom). The right panels indicate the same
simulation but with a 10% pure shear applied. While the maps are almost indistinguishable to the eye in angular space, the shear of the
rings (corresponding to acoustic oscillations) in harmonic space is readily apparent.
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For the pure shear estimator, there is no need to subtract a
bias because cosð2�Þ, sinð2�Þmake the expectation values
vanish for an unlensed sky.

We previously mentioned that the estimators defined in
Eqs. (16) and (20) are unbiased and of minimum variance
in the j‘j ! 0 limit where ‘ is the wave number of the
lensing field. We now turn to the question of how small ‘
has to be for this estimator to be efficient. When j‘j is no
longer small, two things happen: (1) because the above
estimators average the lensing field over a finite area, this
smoothing causes the components of the lensing field at
higher wave numbers to be underestimated; (2) after the
scale dependent multiplicative correction has been put in
place, the estimator is no longer of minimum variance and
thus more noisy than the harmonic quadratic estimator of
Hu and Okamoto. We may get an idea of which angular
scales contribute most to the statistical weight by consid-
ering which ‘’s contribute most to the integrals for N�̂0

and

N�̂þ;�̂� in Eqs. (13) and (18), respectively. The values of

these integrals indicate the ðS=NÞ2 per unit �0, �þ or ��,
respectively, per unit solid angle.

In order to address this question, we must define
a specific CMB experimental configuration, because

formally at least these integrals would diverge at large ‘
if there were no instrument noise. In the case of a Gaussian
beam, we have

nð‘Þ ¼ �2
p exp½þ‘2�2beam� ¼ �2

p exp½þ‘2=‘2beam� (23)

where �beam is the Gaussian width of the beam, �p is the

detector noise in a pixel of side �beam, and the beam cut-
off sets in at the multipole ‘beam ¼ 810ð100=�fwhmÞ, with
�fwhm the full width at half maximum of the beam. In the
simulations in this paper, we shall use the sensitivity and
resolution parameters for the Planck experiment (where the
100, 143 and 217 GHz channels have been combined in
quadrature) using the values given in the Planck bluebook
[29]. The lower two panels of Fig. 2 show the cumulative
integrals from, and to, large ‘ after the integrals have been
normalized. The relevant quantity that enters into the ex-
pression for the cumulative information is the local spectral
index, d lnC‘=d ln‘ (shown in the top right panel of Fig. 2),
of the CMB power spectrum (shown in the top left panel
of Fig. 2). We observe that the central 80% of the infor-
mation is concentrated in the range ‘¼800–1600. Smaller
‘ contribute almost no information because there are com-
paratively very few independent multipoles, and moreover

FIG. 2. Character of the signal. The top row shows as a function of multipole number ‘ the temperature power spectrum and local
spectral index, defined as d lnc‘=d ln‘, for the standard cosmology (WMAP best-fit model). On the bottom row, the left panel shows
the normalized cumulative 	2 (or equivalently N�̂0

and N�̂þ;� ) as a function of ‘ integrated both from the left and from the right using

the sensitivity and resolution parameters for the Planck experiment (where the 100, 143 and 217 GHz channels have been combined in
quadrature) [29].
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the angular spectrum in the sky is very nearly scale invari-
ant. At much larger ‘, instrument noise and beam smearing
wash out the usable signal. In the intermediate range a
structure of plateaus connected by steep rises can be ob-
served. This structure is a direct result of the Doppler
oscillations. Around the crests and troughs the spectrum
is almost scale invariant and hence does not contain any
information for determining the convergence. In the cor-
responding plot for the shear, one observes that the pla-
teaus are less pronounced.

The rightmost panel of Fig. 3 shows the shear-
convergence power spectrum as a function of multipole
number ‘, and we observe that for ‘ < 100, the distortion is
always less than about 1.5%. This implies that in order to
attain an ðS=NÞ of approximately unity it is necessary to
consider a region containing at least Oð103Þ resolution
elements, where a resolution element is a pixel of the
map of sufficient size so that the noise and angular reso-
lution of the survey give S=N � 1. Consequently, there is
little point to trying to reconstruct the lensing field over a
region not having at least 30 resolution elements on a side.
If the distortion from lensing were greater, the situation
would be different.

III. REAL SPACE ESTIMATOR
WITH TRUNCATED RANGE

In the previous section, we developed simple estimators
for the convergence and pure shear components of the
gravitational lensing field (see Eqs. (16) and (20)) based
on taking the product of a CMBmap and a filtered map. We
argued that the dominant part of the filters is short-range
except for a rapidly falling off tail. This fact suggests that
the tail of the filter kernel can be cut off with very little
loss. In this section, we investigate the performance of
kernels of restricted range in more detail and show how
to truncate the filters in an optimal way.

Mathematically, the problem is as follows. We first
consider the convergence field estimator, which we require
to take the form

�̂ 0ð�;�maxÞ ¼ Tð�ÞðF � TÞð�Þ (24)

where the kernel Kð�;�maxÞ, defining the filterF , vanishes
for � � �max. The form of the kernel becomes unique if we
add the requirements that the reconstruction be unbiased
and of minimum variance in the long-wavelength limit.
To solve this problem, it is convenient to introduce the

following inner product in order to reduce the problem to a
simple problem in the geometry of Hilbert spaces. Let �cA

and �cB be small changes with respect to the fiducial
power spectrum cfid. We define their inner product as

h�cA; �cBi ¼ X
‘;m

1

2ðc‘ þ n‘Þ2
�cA‘;m�c

B
‘;m

¼ A
Z d2‘

ð2�Þ2
1

2½cð‘Þ þ nð‘Þ�2 �c
Að‘Þ�cBð‘Þ

(25)

where we give both the spherical and flat sky continuum
forms. h�c; �ci represents the ðS=NÞ2 for distinguishing
the spectrum cobs ¼ cfid þ �c from the spectrum cfid in the
presence of cosmic variance and instrument noise. Setting
�cð‘Þ�0¼1 � cð‘Þ½d lncð‘Þ=d ln‘þ 2�, we may express the

estimator �̂0 in Eq. (15) in terms of the above inner product
as follows:

�̂ 0;ideal ¼
h�cð‘Þ�0¼1; �cobsi

h�cð‘Þ�0¼1; �cð‘Þ�0¼1i

¼ h�cð‘Þ�0¼1; cobsi � h�cð‘Þ�0¼1; cfidi
h�cð‘Þ�0¼1; �cð‘Þ�0¼1i : (26)

We now consider nonideal estimators where �cð‘Þ�0¼1 is

replaced by an arbitrary weight vector w, with the ideal

FIG. 3. Lensing power spectrum. The lensing field power spectrum is shown represented in several manners. The three panels (from
left to right) illustrate the lensing field expressed as a potential, a deflection field, and a convergence/shear field, respectively. Plotted

are ½‘ð‘þ 1ÞCXX=ð2�Þ�1=2 where XX ¼ ��, ��, ��. Here C
��
‘ ¼ ‘ð‘þ 1ÞC��

‘ , and C��
‘ ¼ ‘2ð‘þ 1Þ2C��

‘ =4. Of the three, the last
power spectrum is more directly related to the observed distortion.
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weight vector given by wideal ¼ cð‘Þ½d lncð‘Þ=d ln‘þ 2�.
Using the above inner product, we may define the follow-
ing unbiased estimator of �0

�̂ 0ðwÞ ¼ hw; �cobsi
hw;wideali (27)

provided that the denominator does not vanish, with the
variance of �̂0ðwÞ given by hw;wi=hwideal; wi2, so that the
increase in variance with respect to the ideal estimator is
given by the following geometric expression for the secant
squared

Varð�̂0ðwÞÞ
Varð�̂0ðwidealÞÞ

¼ hw;wihwideal; wideali
hw;wideali2

¼ sec2ð	Þ: (28)

For �̂þ and �̂�, analogous formulae may be derived
straightforwardly.
In real space, according to Eq. (13), the minimum vari-

ance full-sky estimator kernel for �̂0 is given by

KðidealÞ
�̂0

ð�Þ ¼
Z 1

0
‘d‘J0ð‘�Þ 1

2�NðidealÞ
�̂0

cð‘Þ
½cð‘Þ þ nð‘Þ�2

�
�
dðln½cð‘Þ�Þ
d½lnð‘Þ� þ 2

�
: (29)

FIG. 4. Performance of estimator with truncated angular support. We indicate how limiting the angular support of the filter in our
estimator increases the noise. The left panels refer to the convergence filter, while the right panels refer to the shear filter. The top
panels indicate how the estimator variance (with the estimator normalized to be unbiased) increases as the angular support (disk radius
in degrees) is reduced. The middle and bottom panels indicate the profiles of the optimal truncated estimators in angular and harmonic
space, respectively. We assume the experimental noise specifications for the Planck experiment [29] in each of the plots.
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This kernel may be inverted using the following inverse
Bessel transform

~K �̂0
ð‘Þ ¼ 1

2�

Z 1

0
�d�J0ð‘�ÞK�̂0

ð�Þ: (30)

We limit the support of the kernel by requiring that
K�̂0

ð�Þ be nonzero only for � 	 �max where �max is varied.

This is accomplished numerically by expressing K�̂0
ð�Þ

as a linear combination of cubic spline basis functions
spanning the interval � 2 ½0; �max� and optimizing for
the shape that minimizes the variance calculated according
to Eq. (28). Analogous expressions may be obtained for the
shear by replacing J0 with J2. Figure 4 shows the variance
ratio as a function of �max for the convergence and shear
estimators. The shapes of the kernels of limited angular
support are shown in both real and harmonic space. We
observe that the increase in variance at small �max is more
modest for the shear estimator. We also observe that there
is a negligible increase in variance of the convergence and
shear estimators for �max as small as 2� in the case of the
Planck experiment. This suggests that it is possible to
construct compact versions of the real space lensing esti-
mators that have comparable sensitivity to their harmonic
space counterparts.

IV. PERFORMANCEOFREAL SPACE ESTIMATOR

The estimators developed in the previous two sections
were derived assuming that the lensing fields vary slowly
compared to the small scales at which most of the statis-
tical information exploitable for the lensing reconstruction

is located. This implies that in the low-‘ limit the non-
truncated estimator is unbiased and of minimum variance,
but as ‘ increases this statement becomes increasingly
approximate. In this section, we characterize how the
performance degrades with ‘. Mathematically, the estima-
tors developed above can also be derived as a limiting case
of the harmonic estimator first presented by Hu and
Okamoto [17,18]. The details of this derivation appear in
Appendix A. In a nutshell, the calculation there approx-
imates cð‘Þ using d lncðlÞ=d lnðlÞ as the leading approxi-
mation. Since the scale over which the local effective
spectral index varies is approximately �‘ ¼ 200, we ex-
pect our estimator to break down when the wave number of
the lensing field approaches this value. This expectation is
borne out in the quantitative comparison that follows,
which assumes noise parameters corresponding to a
Planck-like survey.
As ‘ increases, the reconstruction is biased by a multi-

plicative factor equal to unity at ‘ ¼ 0 and decreasing for
larger ‘. This multiplicative bias arises because the esti-
mator probes the power spectrum over a window of a finite

FIG. 5 (color online). Multiplicative bias of estimators at large
lensing wave numbers. We plot as a function of multipole
number the multiplicative biases for the convergence, longitudi-
nal shear, and cross shear reconstructions using the filters de-
scribed in the text. Noise for the Planck instrument combining
the 100þ 143þ 217 GHz channels is assumed using Planck
bluebook values and combining channels in quadrature [29].

FIG. 6 (color online). Comparison with quadratic estimator
We plot the noises of the various estimators compared to the
expected signal, assuming the experimental specifications for the
Planck experiment [29]. The quadratic estimator is indicated in
thick black. The convergence and shear estimators are shown in
dashed red and green, respectively, and when combined nomi-
nally give the dashed magenta curve, but when the imperfect
overlap with the expected signal is taken into account, yield the
solid magenta curve. The dashed magenta curve would be
indicative of the actual noise in the recovered maps, but if the
imperfect overlap were corrected to remove the bias at high ‘
the heavy magenta curve would result. For comparison, we show
the predicted lensing signal (as computed by CAMB [31] for the
WMAP best-fit model [32]) as the heavy red curve.
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width in angular space, and consequently smooths the
underlying exact lensing field thus reducing its amplitude.
We measure the multiplicative bias using simulations,
comparing the amplitude of an input plane wave to the
amplitude of the recovered signal to derive the loss in
power for a range of input wave numbers. The multiplica-
tive bias can also be calculated analytically using the
relation between the long-wavelength approximation and
the result exact to linear order following the treatment in
Appendix A. The multiplicative bias is plotted in Fig. 5 for
the convergence, longitudinal shear and transverse shear.
We recall that a longitudinal shear is one that can be
derived from a potential, and hence is the pure shear pre-
dicted from weak lensing, whereas the transverse shear is
the B-mode, a longitudinal shear rotated by 45�. The exact
shape of the multiplicative bias depends on the filter shape
and in turn the experimental noise assumed. We observe
that the longitudinal shear estimator experiences less
smoothing than the convergence estimator because the
form of the ‘-space filter has less cancellations as can be
seen in Fig. 4. This multiplicative bias can be corrected for
by appropriate filtering.

At non-negligible ‘, these estimators also suffer from
excess variance, which is shown in Fig. 6. The correspond-
ing expressions for the variance of the different estimators
shown in Fig. 6 are presented in Appendix A. At low wave
number, the quadratic estimator variance exhibits a flat
spectrum, which subsequently diverges at large ‘. At low
‘ the variance of the quadratic estimator is the same as the

quadrature combination of the convergence and longitudi-
nal shear estimators, which indicates that the difference in
performance between the estimator developed here and the
linearly optimal quadratic estimator is minimal at low ‘. At
higher wave numbers (‘ * 100Þ, however, the variance of
the real space estimator increases rapidly due to lack of
overlap with the ideal kernel. There is no simple way to
reduce this excess variance other than using another
estimator.

FIG. 7 (color online). Estimator nonlinearity. We plot the re-
covered root-mean-square distortion versus the input root-mean-
square distortion in order to characterize the range of linear
response for our estimator. The input is a long-wavelength longi-
tudinal deformation, so that the two-dimensional shear and
convergence are exactly half the one-dimensional convergence.
Exactly the same nonlinearity will plague the quadratic estimator
as well, since the two have been demonstrated to be equivalent at
low wave numbers.

FIG. 8 (color online). Bandpass filters. We generate a conver-
gence reconstruction filter by an alternative procedure whereby
Gaussian filters are placed at the locations in multipole space
where the magnitude of the derivative of ‘2Cð‘Þ is greatest. The
widths of the filters are chosen to correspond roughly to the
width of the rise and fall of this quantity.

TABLE I. Performance of individual feature filters. The first
nine entries correspond to Gaussian filters whose centers and
widths are indicated and have been placed where the features of
the power spectrum change the most in response to a small
convergence. The last column expresses the sensitivity of each
filter. The next-to-last row shows ðS=NÞ2 resulting when the
filters are combined using inverse covariance weighting. This is
compared to the ideal filter. The indicated errors result from
Monte Carlo noise.

‘center �‘ ðS=NÞ2deg�2 � ��2
0

300 50 3:13
 0:26
470 40 1:56
 0:13
600 40 3:02
 0:25
770 40 0:13
 0:01
900 50 61:51
 5:02
1070 40 23:24
 1:90
1200 50 30:66
 2:50
1370 50 1:44
 0:12
1550 40 42:53
 3:47

Optimal linear combination 167:22
 13:65
Ideal filter 140:50
 11:47
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Another possible source of error arises from nonlinear-
ity, which sets in when the local power spectrum
is distorted so much that the first derivative approxima-
tion is no longer valid. This problem is inherent to
all quadratic estimators, and the multiplicative error

factor is shown in Fig. 7 as a function of the amplitude
of the distortion. We observe that the linear response
breaks down when the root-mean-square convergence
or pure shear is around 2–3%. Ignoring higher order
terms in the deflection angle expansion thus gives

FIG. 9 (color online). Simulations of lensing reconstruction.We simulate CMB maps on a 40� � 40� flat region of the sky assuming
7 yr WMAP best-fit cosmological parameters [32] and the lensing predicted within the framework of this model. In the top row the
convergence is shown for practically no lensing, actually one twentieth the predicted signal (left) and the predicted signal boosted by a
factor of five (right). The contours show the predicted signal and the pseudocolor image shows the recovered signal. Both maps are
normalized so as to highlight the degree of correlation manifested as the coincidence of the contours and lines of constant color. The
bottom row shows the same plots but with one of the two shear components. Whereas on the left there is no visible correlation, on the
right the agreement is very good, although some noise is still visible. The maps of the underlying and reconstructed convergence and
shear have been filtered using a filter centered at ‘ ¼ 20 of width �‘=‘ ¼ 0:3.
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rise to a bias in these estimators which must be corrected
[24,30].

V. ESTIMATORS TARGETING
PARTICULAR FEATURES

In this section, we digress slightly showing how lensing
can be reconstructed focusing on particular features of the
CMB temperature spectrum. We concentrate on the con-
vergence field reconstruction. Eqs. (12) and (13) indicate
that those values of ‘ for which the local spectral index is
scale-invariant (d lncðlÞ=d lnð‘Þ � �2) contribute no use-
ful information for the lensing reconstruction. The filter
implied by Eq. (12) weights values of ‘ for which ‘2cð‘Þ
rises with the opposite sign compared to those values
where ‘2cð‘Þ falls.

This suggests that one could develop a series of estima-
tors of �0 filtering around the various rises and falls in the
power spectrum ‘2cð‘Þ, as indicated in Fig. 8. Table I
indicates the noise levels associated with each of the
features in the spectrum. It is intriguing to notice that
when these partial estimators are combined according to
inverse variance weighting, the total noise of the recon-
struction is the same as the ideal estimator in Eq. (12) to
within the error of our Monte Carlo simulations. Ideas
along these lines could prove useful in diagnosing system-
atic errors in the lensing reconstruction.

VI. SIMULATIONS AND CONCLUDING REMARKS

We have demonstrated how to reconstruct in real space
using a filter of compact support the weak gravitational
lensing field, here represented as three fields, a conver-
gence field �0ð�Þ and the two components of the pure shear
distortion field �þð�Þ and ��ð�Þ. To demonstrate that the
estimator works as claimed, we generated lensed and un-
lensed CMB maps on a 40� x 40� square region assuming
the 7 yr WMAP best-fit cosmological model and the asso-
ciated lensing power spectrum. The results are shown in
Fig. 9, where the expected lensing signal has been en-
hanced by a factor of five in order to make the correlations
between the recovered and input lensing apparent to the
eye without a detailed statistical analysis. The top row
shows the recovered convergence map with no lensing
(left) and lensing (right). The bottom row shows the
same for one of the two pure shear components. It is clear
that there is no visible correlation between the predicted
and recovered signals in the absence of lensing, whereas
the degree of correlation in the lensing case is very good,
although some noise is still visible.

Except for an integration constant and two translational
and one rotational zero modes, the weak lensing may
alternatively, and equivalently, be described by either
(1) a gravitational lensing potential �ð�Þ, (2) a displace-
ment field �ð�Þ, or (3) the convergence field �0ð�Þ and the
two components of the pure shear distortion field �þð�Þ

and ��ð�Þ. In this paper we argue that for the purpose of
reconstruction the representation (3) is advantageous be-
cause this is the representation for which the lensing field
bears a local relation to the real space CMB maps. This
locality comes at a price because the three components
are not independent and subject to nonlocal consistency
conditions, which may be exploited to improve the recon-
struction. Locality allows different regions of the sky to be
analyzed independently in a natural way, quite unlike the
quadratic reconstruction in harmonic space, where the
entire sky must be analyzed simultaneously. This approach
and variations thereof hold promise for dealing with partial
sky coverage and excised point sources. For the filters
developed in this paper there is very little loss of informa-
tion for the lensing field at low wave numbers. However at
larger wave numbers the lensing signal is attenuated
according to a wave number dependent multiplicative
bias, which can be deconvolved by applying a correction
filter.
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APPENDIX A: COMPARISON WITH THE HU
AND OKAMOTO QUADRATIC ESTIMATOR

We provide here the details showing that the estimator
defined in Eq. (1) is a limiting case of the quadratic
harmonic estimator of Hu and Okamoto. In angular space,
the change in the temperature map due to lensing (valid to
linear order) is given by

�Tð�Þ ¼ r�ð�Þ � rTð�Þ; (A1)

which in harmonic space translates into

�Tð‘Þ ¼
Z d2‘0

ð2�Þ2 ð�‘0Þ � ð‘� ‘0Þ�ð‘0ÞTð‘� ‘0Þ (A2)

where we define hTð‘ÞTð‘0Þi ¼ ð2�Þ2�2ð‘þ ‘0Þcð‘Þ. Since
Tsky ¼ T þ �T, it follows that to leading (linear) order�
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It follows that

�̂ð‘0Þ ¼ N�1
X
‘

Wð‘0; ‘ÞTsky

�
‘0

2
þ ‘

�
Tsky

�
‘0

2
� ‘

�
(A4)

is the minimum variance unbiased estimator for the Fourier
coefficient �ð‘0Þ where

Wð‘0;‘Þ ¼ ½ð‘02 � ‘Þ � ‘0cðj‘� ‘0
2 jÞ þ ð‘02 þ ‘Þ � ‘0cðj‘þ ‘0

2 jÞ�
½cð‘� ‘0

2Þ þ nð‘� ‘0
2Þ�½cð‘þ ‘0

2Þ þ nð‘þ ‘0
2Þ�
(A5)

and

N ¼ X
‘

½ð‘02 � ‘Þ � ‘0cðj‘� ‘0
2 jÞ þ ð‘02 þ ‘Þ � ‘0cðj‘þ ‘0

2 jÞ�2
½cð‘� ‘0

2Þ þ nð‘� ‘0
2Þ�½cð‘þ ‘0

2Þ þ nð‘þ ‘0
2Þ�

:

(A6)

We may approximate the quantity in the square brackets in
Eq. (A3) to linear order assuming j‘0j � j‘j to obtain�
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(A7)

where � is the angle between ‘ and ‘0. Approximating the
numerator of (A5) as (A7) and the denominator of (A5) as
½cð‘Þ þ nð‘Þ�2, we obtain

dr2�ð‘0Þ ¼ 1

2

1

Ndr2�

Z d2‘
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½cð‘Þ þ nð‘Þ�2

�
�
@ðln½‘2cð‘Þ�Þ

@½lnð‘Þ� þ cos½2�ð‘; ‘0Þ�

� @ðln½cð‘Þ�Þ
@½lnð‘Þ�

�
Tsky

�
‘0

2
� ‘

�
Tsky

�
‘0

2
þ ‘

�
(A8)

where

Ndr2�
ð‘0Þ¼1
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Because the cross terms cancel under the integral, we may
rewrite the above normalization factor as

1

4
A

Z d2‘

ð2�Þ2
½cð‘Þ�2

½cð‘Þ þ nð‘Þ�2
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�
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(A10)

which is simply equal to the sum of N�̂0
and N�̂þ previ-

ously defined in Eqs. (12) and (17) in Sect. II. We obtain
the following relation between the Hu and Okamoto esti-
mator and ours valid in the long-wavelength limit:

dr2�ð‘0Þ ¼ N�̂0
ð‘0Þ

N�̂0
ð‘0Þ þ N�̂þð‘0Þ

2�̂0ð‘0Þ

þ N�̂þð‘0Þ
N�̂0

ð‘0Þ þ N�̂þð‘0Þ
2�̂þð‘0Þ; (A11)

which is simply the inverse variance weighted linear com-
bination of the convergence and pure shear longitudinal
component with respect to ‘0 from Sec. II. The other
component of the shear is forbidden for weak lensing.
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