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We explore effects of the light vector U boson, which is weakly coupled to nucleons, on the transition

density �t and pressure Pt at the inner edge separating the liquid core from the solid crust of neutron

stars. Three methods, i.e., the thermodynamical approach, the curvature matrix approach, and the Vlasov

equation approach, are used to determine the transition density �t with the Skyrme effective nucleon-

nucleon interactions. We find that the �t and Pt depend on not only the ratio of coupling strength to mass

squared of the U boson g2=�2 but also its mass � due to the finite-range interaction from the U-boson

exchange. In particular, our results indicate that the �t and Pt are sensitive to both g2=�2 and � if the

U-boson mass � is larger than about 2 MeV. Furthermore, we show that both g2=�2 and � can have

significant influence on the mass-radius relation and the crustal fraction of total moment of inertia of

neutron stars. In addition, we study the exchange term contribution of the U boson based on the density

matrix expansion method, and demonstrate that the exchange term effects on the nuclear matter equation

of state as well as the �t and Pt are generally negligible.
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I. INTRODUCTION

The possible existence of a neutral weakly coupled light
spin-1 gauge U boson [1], which is originated from super-
symmetric extensions of the standard model with an extra
Uð1Þ symmetry, has recently attracted much attention due
to its multifaceted influences in particle physics, nuclear
physics, astrophysics, and cosmology. For instance, the U
boson can provide annihilation of light dark matter that can
be responsible for the excess flux of 511 keV photons
coming from the central region of our Galaxy observed
by the SPI/INTEGRAL satellite [2–5]. It is also proposed
that the U boson can be mediator of the putative ‘‘fifth
force’’ providing a possible mechanism for non-Newtonian
gravity, i.e., the violation of the inverse-square law of
Newtonian gravitational force at short distance [6–23].
Thus far, various upper limits on the deviation from the
inverse-square law have been put forward down to fem-
tometer range [12,16,19]. Furthermore, the U boson can
involve a rich phenomenology in particle physics and
nuclear physics and may have observable effects in particle
decays [24–27] and nucleon scattering processes
[16,18,19,28,29], which can also put limits on the
U-boson properties. Studying properties of the U boson
is thus important for understanding the relevant new phys-
ics beyond the standard model.

Very recently, the effects of the U boson on the nuclear
matter equation of state (EOS) and neutron star structure
have been investigated [30–33] and it is shown that the
vector U boson can significantly stiffen the nuclear matter
EOS and thus enhance drastically the maximum mass of

neutron stars. In particular, by considering theU boson, the
stability and observed global properties of neutron stars can
be reasonably explained by using the neutron-rich matter
EOS with a supersoft nuclear symmetry energy at super-
saturation densities consistent with the available terrestrial
laboratory data on the ��=�þ radio in relativistic heavy-
ion collisions from FOPI/GSI [34,35], while the supersoft
nuclear symmetry energy at supersaturation densities gen-
erally cannot support a canonical mass (1:4M�) neutron
star if the U boson is not introduced [31]. The U boson has
also been introduced to describe the recently discovered
new holder of neutron star maximum mass of 1:97� 0:04
M� from PSR J1614-2230 [36] using soft EOS’s consistent
with existing terrestrial nuclear laboratory experiments for
hybrid neutron stars containing a quark core described by
MIT bag model using reasonable parameters [33,37], and it
is found that the constraints on the U-boson properties are
consistent with existing constraints from neutron-proton
and neutron-lead scatterings [18,19] as well as the
spectroscopy of antiproton atoms [16].
In the studies about the U-boson influences on neutron

star structure [30–33], the exchange term contribution of
the U boson to the nuclear matter EOS has been neglected
and only the direct term contribution has been considered,
leading to that the nuclear matter EOS depends only on the
ratio the coupling strength to mass squared of the U boson,
namely, g2=�2. Physically, the exchange term contribution
of the U boson to the nuclear matter EOS will depend on
both the coupling constant g and the U-boson mass � due
to the finite-range interaction mediated by the U boson. It
is thus interesting to see how the exchange term contribu-
tion of the U boson will influence the nuclear matter EOS.
Furthermore, neutron stars are expected to have a solid
inner crust surrounding a liquid core. Knowledge on
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properties of the crust plays an important role in under-
standing many astrophysical observations [38–48]. The
inner crust spans the region from the neutron dripout
point to the inner edge separating the solid crust from the
homogeneous liquid core. While the neutron drip-out
density �out is relatively well determined to be about
4� 1011 g=cm3 [49], the transition density �t at the inner
edge is still largely uncertain mainly because of our very
limited knowledge on the EOS of neutron-rich nucleonic
matter, especially the density dependence of the symmetry
energy [42,43]. The transition density �t and the corre-
sponding pressure Pt at the inner edge might be measur-
able indirectly from observations of pulsar glitches [43,45].
Since the U boson can have significant influence on the
nuclear matter EOS, it is therefore very interesting to see
how the U boson will affect the inner edge of neutron star
crusts.

In the present work, we investigate effects of the light
vectorU boson on the transition density �t and pressure Pt

at the inner edge of neutron stars crust. The density matrix
expansion approach [50,51] is used to describe the ex-
change term contribution of the finite-range interaction
due to the U-boson exchange. Based on the Skyrme effec-
tive nucleon-nucleon interactions, we use three methods,
i.e., the thermodynamical approach, the curvature matrix
approach, and the Vlasov equation approach to determine
the transition density �t. As expected, our results indicate
that the �t and Pt depend on not only the ratio of coupling
strength to mass squared of the U boson g2=�2 but also its
mass � due to the finite-range interaction from the
U-boson exchange. Furthermore, we find that the �t and
Pt are sensitive to both g2=�2 and � if the U-boson mass
� is larger than about 2 MeV and both g2=�2 and � can
have significant influence on the mass-radius relation and
the crustal fraction of total moment of inertia of neutron
stars. We also demonstrate that the exchange term has
minor influence on the nuclear matter EOS as well as the
�t and Pt for the parameter values of g2=�2 and � con-
sidered in this work.

II. THEORETICAL MODELS AND METHODS

A. Nuclear matter symmetry energy

The EOS of isospin asymmetric nuclear matter, defined
by its binding energy per nucleon, can be expanded to 2nd
order in isospin asymmetry � as

Eð�; �Þ ¼ E0ð�Þ þ Esymð�Þ�2 þOð�4Þ; (1)

where � ¼ �n þ �p is the baryon density with �n and �p

denoting the neutron and proton densities, respectively;
� ¼ ð�n � �pÞ=ð�p þ �nÞ is the isospin asymmetry;

E0ð�Þ ¼ Eð�; � ¼ 0Þ is the binding energy per nucleon
in symmetric nuclear matter, and the nuclear symmetry
energy is expressed as

Esymð�Þ ¼ 1

2!

@2Eð�; �Þ
@�2

���������¼0
: (2)

In Eq. (1), the absence of odd-order terms in � is due to the
exchange symmetry between protons and neutrons in nu-
clear matter when one neglects the Coulomb interaction
and assumes the charge symmetry of nuclear forces. The
higher-order terms in � are negligible, leading to the well-
known empirical parabolic law for the EOS of asymmetric
nuclear matter, which has been verified by all many-body
theories to date, at least for densities up to moderate values
(see, e.g., Ref. [52]). As a good approximation, the density-
dependent symmetry energy Esymð�Þ can thus be extracted

from Esymð�Þ � Eð�; � ¼ 1Þ � Eð�; � ¼ 0Þ.
Around the nuclear matter saturation density �0, the

nuclear symmetry energy Esymð�Þ can be expanded as

Esymð�Þ ¼ Esymð�0Þ þ L

3

�
�� �0

�0

�
þO

��
�� �0

�0

�
2
�
; (3)

where L is the slope parameter of the nuclear symmetry
energy at �0, i.e.,

L ¼ 3�0

@Esymð�Þ
@�

���������¼�0

: (4)

The slope parameter L characterizes the density depen-
dence of the nuclear symmetry energy around normal
nuclear matter density, and thus carries important informa-
tion on the properties of nuclear symmetry energy at both
high and low densities.
The EOS of isospin asymmetric nuclear matter is a basic

ingredient to determine the properties of neutron stars. For
symmetric nuclear matter with equal fractions of neutrons
and protons, its EOS E0ð�Þ is relatively well determined. In
particular, the incompressibility K0 of symmetric nuclear
matter at its saturation density �0 has been determined to
be 240� 20 MeV from analyses of the nuclear giant
monopole resonances [53–62], and its EOS at densities
of 2�0 < �< 5�0 has also been constrained by measure-
ments of collective flows [63] and subthreshold kaon pro-
duction [64,65] in relativistic nucleus-nucleus collisions.
On the other hand, the EOS of asymmetric nuclear matter,
especially the density dependence of the nuclear symmetry
energy, is largely unknown. Although the nuclear symme-
try energy at �0 is known to be around 30 MeV from the
empirical liquid-drop mass formula [66,67], its values at
other densities, especially at supra-saturation densities, are
poorly known [52,68]. During the last decade, significant
progress has been made both experimentally and theoreti-
cally on constraining the behavior of the symmetry energy
at subsaturation density and the value of L constrained
from different experimental data or methods has
become consistently convergent to about 60� 30 MeV
[69–71] (see, e.g., Refs. [72,73] for recent summary).
Furthermore, the IBUU04 transport model analysis of the
FOPI data on the ��=�þ ratio in central heavy-ion
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collisions at SIS/GSI [34] energies suggests a very soft
symmetry energy at the supersaturation densities [35] (see
also Refs. [74,75]). These studies have significantly im-
proved our understanding for the EOS of asymmetric
nuclear matter, which have important implications on the
neutron star physics.

B. Skyrme-Hartree-Fock approach

For the nuclear effective interaction, we use in the
present work the so-called standard Skyrme force (see,
e.g., Ref. [76]), which has been shown to be very success-
ful in describing the structure of finite nuclei. In the stan-
dard Skyrme Hartree-Fock (SHF) approach, the nuclear
effective interaction is taken to have a zero-range, density-
and momentum-dependent form [76], i.e.,

V12ðR; rÞ ¼ t0ð1þ x0P�Þ�ðrÞ þ 1
6t3ð1þ x3P�Þ��ðRÞ�ðrÞ

þ 1
2t1ð1þ x1P�ÞðK02�ðrÞ þ �ðrÞK2Þ

þ t2ð1þ x2P�ÞK0 � �ðrÞK
þ iW0ð�1 þ �2Þ � ½K0 � �ðrÞK�; (5)

with r ¼ ~r1 � ~r2 and R ¼ ð ~r1 þ ~r2Þ=2. In the above ex-
pression, the relative momentum operators K ¼
ðr1 � r2Þ=2i and K0 ¼ �ðr1 � r2Þ=2i act on the wave
function on the right and left, respectively. The quantities
P� and �i denote, respectively, the spin exchange operator
and Pauli spin matrices. The �, t0 � t3, x0 � x3 are the 9
Skyrme interaction parameters and W0 is the spin-orbit
coupling constant.

Within the standard form [see Eq. (5)], the total energy
of the nuclear system can be written as

E ¼
Z

H ðrÞd3r; (6)

with H the Skyrme energy density. In the standard SHF
model, the total energy density of a spin-saturated nuclear
system considered in this work is written as [76]

H ¼ KþH 0 þH 3 þH eff þH fin þH Coul;

(7)

where K ¼ ℏ2

2m � is the kinetic-energy term and H 0, H 3,

H eff , H fin are given by

H 0 ¼ t0½ð2þ x0Þ�2 � ð2x0 þ 1Þð�2
p þ �2

nÞ�=4; (8)

H 3 ¼ t3�
�½ð2þ x3Þ�2 � ð2x3 þ 1Þð�2

p þ �2
nÞ�=24; (9)

H eff ¼ ½t2ð2x2 þ 1Þ � t1ð2x1 þ 1Þ�ð�n�n þ �p�pÞ=8
þ ½t1ð2þ x1Þ þ t2ð2þ x2Þ���=8; (10)

H fin¼½3t1ð2þx1Þ� t2ð2þx2Þ�ðr�Þ2=32�½3t1ð2x1þ1Þ
þ t2ð2x2þ1Þ�½ðr�nÞ2þðr�pÞ2�=32 (11)

in terms of the 9 Skyrme interaction parameters �, t0 � t3,
x0 � x3. In the above equations, �i and �i are, respectively,
the local nucleon number and kinetic-energy densities,
whereas � and � are corresponding total densities. H Coul

is the Coulomb term given by

H Coul ¼ 1

2
e2�pð ~rÞ

Z �pð ~r0Þ
j~r� ~r0j d~r

0 � 3

4
e2
�
3

�

�
1=3

�4=3
p ð ~rÞ:

(12)

The nucleon single-particle energy can be obtained from
minimizing the total energy of the nuclear system with
respect to its wave function as

�q ¼ p2

2m
þUq ¼ p2

2m?
q

þU?
q ; q ¼ n; p; (13)

where Uq is the single-particle potential while m
?
q and U?

q

represent, respectively, the nucleon effective mass and
effective single-particle potential, which can be expressed,
respectively, as

ℏ2

2m?
q

¼ ℏ2

2mq

þ 1

8
�½t1ð2þ x1Þ þ t2ð2þ x2Þ�

þ 1

8
�q½t2ð2x2 þ 1Þ � t1ð2x1 þ 1Þ�; (14)

and

U?
q ¼ 1

2
t0½ð2þ x0Þ�� ð2x0 þ 1Þ�q� þ 1

24
�t3�

��1½ð2þ x3Þ�2 � ð2x3 þ 1Þð�2
p þ �2

nÞ�

þ 1

12
t3�

�½ð2þ x3Þ�� ð2x3 þ 1Þ�q� þ 1

8
½t1ð2þ x1Þ þ t2ð2þ x2Þ��þ 1

8
½t2ð2x2 þ 1Þ � t1ð2x1 þ 1Þ��q

þ 1

16
½t2ð2þ x2Þ � 3t1ð2þ x1Þ�r2�þ 1

16
½3t1ð2x1 þ 1Þ þ t2ð2x2 þ 1Þ�r2�q: (15)

For protons, the additional Coulomb potential is given by

UCoul ¼ e2
Z �pð~r0Þ

j~r� ~r0j d~r
0 � e2

�
3�pð~rÞ
�

�
1=3

: (16)
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For the kinetic-energy density, we use in this work the
results from the extended Thomas-Fermi approximation
[77], i.e.,

�q ¼ a�5=3
q þ b

ðr�qÞ2
�q

þ cr2�q; (17)

where a ¼ 3
5 ð3�2Þ2=3, b ¼ 1=36, and c ¼ 1=3. From the

nucleon single-particle energy, the nucleon chemical po-
tential in infinite nuclear matter, i.e.,�q, can be obtained as

the value of the single-particle energy without gradient

terms at the Fermi surface pF
q ¼ ℏð3�2�qÞ1=3.

C. The weakly coupled light vector U boson

Fujii [6] first proposed that the non-Newtonian gravity
can be described by adding a Yukawa term to the conven-
tional gravitational potential between two objects of mass
m1 and m2, i.e.,

VgraðrÞ ¼ �Gm1m2

r
ð1þ �e�r=	Þ; (18)

where � is a dimensionless strength parameter, 	 is the
length scale, and G is the gravitational constant. In the
boson exchange picture, the light and weakly coupled
vector U boson is a favorite candidate mediating the extra
interaction for the non-Newtonian gravity [1], leading to
the finite-range Yukawa potential between two nucleons,
which can be expressed as

VUBðrÞ ¼ g2

4�

e��r

r
; (19)

where g and � represent the U-boson-nucleon coupling
constant and the U-boson mass, respectively. Comparing
Eq. (19) with the Yukawa term in Eq. (18), one can find the
relations � ¼ �g2=ð4�Gm2Þ and 	 ¼ 1=� (in natural
units) where m is the nucleon mass. By adding the
Yukawa potential of Eq. (19) to the standard Skyrme
effective nucleon-nucleon interaction in Eq. (5), the extra
binding energy of the nuclear system due to the U boson
(UB) can be expressed as the integral of energy density
H UB as follows:

EUB ¼
Z

H UBðrÞd3r; (20)

with

H UB ¼ H D
UB þH E

UB; (21)

where H D
UB and H E

UB are the direct and exchange con-
tribution to the energy density, respectively. For the finite-
range Yukawa interaction of Eq. (19), the direct term
contribution to the energy density can be easily obtained
as [30–33]

H D
UB ¼ 1

2V

Z
�ð~r1Þ g

2

4�

e��r

r
�ð~r2Þd~r1d~r2 ¼ 1

2

g2

�2
�2;

(22)

where V is the normalization volume, � ¼ �n þ �p is the

baryon number density, and r ¼ j~r1 � ~r2j.
Although the direct term contribution of a finite-range

interaction to the nuclear energy density can be treated
exactly, it is numerically challenging to evaluate the ex-
change contribution. The latter can be, however, approxi-
mated by that from a Skyrme-like zero-range interaction
using the density matrix expansion [50,51], and the results
can be obtained as

H E
UB ¼ X

q¼p;n

g2

4

�
2�q�qI1q þ 1

2

�
I1q þ �q

@I1q
@�q

�
ðr�qÞ2

�

� X
q¼p;n

g2

4

�
6

5
ð3�2Þ2=3�8=3

q I1q þ �2
qI2q

�
: (23)

The integrations in Eq. (23) are defined as

I1q ¼
Z

drr4�SLðkFq rÞgðkFq rÞ e
��r

r
; (24)

I2q ¼
Z

drr2�2
SLðkFq rÞ

e��r

r
; (25)

with

�SLðkFq rÞ ¼ 3

kFq r
j1ðkFq rÞ; (26)

gðkFq rÞ ¼ 35

2ðkFq rÞ3
j3ðkFq rÞ; (27)

where j1 and j3 are, respectively, the first- and third-order

spherical Bessel functions and kFq ¼ ð3�2�qÞ1=3 is the

Fermi momentum.
One can see from Eq. (22) that for the direct term, the U

boson contributes to the nuclear energy density only
through the combination g2=�2. On the other hand, it is
indicated from Eq. (23) that the exchange term contribu-
tion to the nuclear energy density depends on both the
coupling constant g and the mass � in a complicated
way. Furthermore, the density gradient terms appear auto-
matically in the exchange term contribution to the nuclear
energy density due to the density matrix expansion of the
finite-range Yukawa potential. It is interesting to see that
the exchange term contribution to the nuclear matter EOS
further depends on the isospin asymmetry although the
direct term contribution to the nuclear matter EOS is iso-
spin independent due to the fact that the U boson is an
isoscalar boson. Therefore, the U boson will contribute to
the nuclear symmetry energy through the exchange term.
However, as will be shown later, the exchange term con-
tribution to the nuclear matter EOS and the symmetry
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energy is quite small and can be neglected safely within the
parameter value region of the coupling constant g and the
U-boson mass � considered in the present work.

The nucleon single-particle energy due to the U boson
can be obtained from variation of the corresponding energy
of Eq. (20) with respect to its wave function. The U-boson
contribution to the nucleon effective mass can be expressed
as

ℏ2

2m?
q;UB

¼ g2

2
�qI1q; (28)

which should be added to the right-hand side of Eq. (14) to
obtain the total nucleon effective mass m?

q . It should be

noted that the U-boson contribution to the nucleon effec-
tive mass is from the exchange term with the density matrix
expansion of the finite-range Yukawa potential, which
leads to the isospin-dependent contribution to the nucleon
effective mass although the U boson is isoscalar. The
U-boson contribution to the effective single-particle po-
tential can be written as

U?
q;UB ¼ g2

4�

Z e��j~r�~r0j

j~r� ~r0j �ð ~r
0Þd~r0

� g2

4

�
�q

�
2I2q þ �q

@I2q
@�q

�
þ 2ð3�2Þ2=3�5=3

q I1q

�

þ g2

4

�
1

18

I1q
�q

� 17

18

@I1q
@�q

� 1

2
�q

@2I1q

@�2
q

�
ðr�qÞ2

� g2

12

�
I1q þ �q

@I1q
@�q

�
r2�q; (29)

where the first term in the right-hand side of Eq. (29) is
from the direct term contribution while the other terms are
from the exchange term contribution. As expected, the
direct term contribution is isospin independent while the
exchange term contribution depends on the isospin asym-
metry as well as the density gradients. Furthermore, one
can see that the U-boson contribution to the single-particle
potential depends on both the coupling constant g and the
mass � in a complicated way.

D. The transition density in neutron stars

The transition density is the baryon number density that
separates the liquid core from the inner crust in neutron
stars and it plays an important role in determining the
structural properties of neutron stars such as the crustal
fraction of total moment of inertia and the mass-radius
relations of static neutron stars. In principle, the transition
density can be obtained from comparing relevant proper-
ties of the nonuniform solid crust and the uniform liquid
core mainly consisting of neutrons, protons, and electrons
(npe matter). However, this is practically very difficult
since the inner crust may contain the so-called ‘‘nuclear
pasta’’ with very complicated geometries [46,78–81]. In

practice, a good approximation is to search for the density
at which the uniform liquid first becomes unstable against
small amplitude density fluctuations with clusterization.
This approximation has been shown to produce a very
small error for the actual core-crust transition density
and it would yield the exact transition density for a
second-order phase transition [41,82–84]. So far, several
such methods including the thermodynamical method
[43,85,86], the dynamical curvature matrix method
[38–41,82,87,88], the Vlasov equation method [89–93],
and the random phase approximation [84,91,94] have
been applied extensively in the literature. Here, we briefly
introduce the thermodynamical method, the dynamical
curvature matrix method, and the Vlasov equation method,
which will be used to calculate the transition density in this
work.

1. The thermodynamical method for transition
density in neutron stars

In the thermodynamical method, the system is required
to obey the following intrinsic stability condition
[43,85,95]:

�
�
@P

@v

�
�np

> 0; (30)

�
�
@�np

@qc

�
v
> 0; (31)

where the P ¼ Pb þ Pe is the total pressure of the npe
matter system with Pb and Pe denoting the contributions
from baryons and electrons, respectively, and the v and qc
are the volume and charge per baryon number. The �np is

defined as the chemical potential difference between neu-
trons and protons, i.e.,

�np ¼ �n ��p: (32)

The conditions of Eqs. (30) and (31) are equivalent to
require the convexity of the energy per particle in the single
phase [43,85] by ignoring the finite-size effects due to
surface and Coulomb energies [96]. In fact, Eq. (30) is
simply the well-known mechanical stability condition of
the system at a fixed �np, which ensures that any local

density fluctuation will not diverge. On the other hand,
Eq. (31) is the charge or chemical stability condition of the
system at a fixed density. It means that any local charge
variation violating the charge neutrality condition will not
diverge.
The pressure Pe is only a function of the chemical

potential difference �np by assuming the 
-equilibrium

condition is satisfied, i.e., �np ¼ �e. By using the relation
@Ebð�;xpÞ

@xp
¼ ��np with Ebð�; xpÞ being energy per baryon

from the baryons in the 
-equilibrium neutron star matter
and xp ¼ �p=�, and treating the electrons as free Fermi

gas, one can show [96] that the thermodynamical relations
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Eqs. (30) and (31) are actually equivalent to the following
condition:

Vther ¼ 2�
@Ebð�; xpÞ

@�
þ �2

@2Ebð�; xpÞ
@�2

�
�
@2Ebð�; xpÞ

@�@xp
�

�
2
=
@2Ebð�; xpÞ

@x2p
> 0; (33)

which determines the thermodynamical instability region
of the 
-equilibrium neutron star matter. The baryon num-
ber density that violates the condition Eq. (33) then corre-
sponds to the core-crust transition density in neutron stars
for the thermodynamical method.

2. The curvature matrix method for transition
density in neutron stars

In the curvature matrix method, the instability region of
homogeneous nuclear matters against clusterization is de-
termined by introducing a finite-size spatially periodic
density fluctuation �� to the system and then examining
how the system free energy varies with the fluctuation [88].
The fluctuation will affect the three components of homo-

geneous nuclear matter (neutrons, protons, and electrons)
independently when assuming it occurs only on finite
microscopic scale in the 
-equilibrium nuclear matter as

�q ¼ �0
q þ ��q; (34)

with q ¼ n, p, e. Then, the free energy f at each point of
density �qðrÞ ¼ �0

q þ ��q can be expressed as

fð�qÞ ¼ fð�0
qÞ þ

X
q¼n;p;e

�
@f

@�q

�
0
��q þ

X
q;q0¼n;p;e

1

2

�
�

@2f

@�q@�q0

�
0
��q��q0 þ � � � : (35)

For a stable homogeneous npe matter system, the first-

order term ð @f@�q
Þ0 in Eq. (35) must equal to zero and a

density fluctuation ��q should lead to an increasing of

the free energy, which is equivalent to requiring the
second-order term in Eq. (35) to be positive for any density
fluctuation ��q. This can be ensured by the positive def-

initeness of the following curvature matrix:

Cf
CM ¼

@2f
@�2

n

@2f
@�n@�p

@2f
@�n@�e

@2f
@�p@�n

@2f
@�2

p

@2f
@�p@�e

@2f
@�e@�n

@2f
@�e@�p

@2f
@�2

e

0
BBBB@

1
CCCCA

¼
@�n

@�n

@�n

@�p
0

@�p

@�n

@�p

@�p
0

0 0 @�e

@�e

0
BBB@

1
CCCAþ k2

Dnn Dnp 0
Dpn Dpp 0
0 0 0

0
@

1
Aþ g2

k2 þ�2

1 1 0
1 1 0
0 0 0

0
@

1
Aþ 4�e2

k2

0 0 0
0 1 �1
0 �1 1

0
@

1
A; (36)

where k is the wave vector of the spatially periodic density
fluctuations and the effective density gradient coefficients
are defined as

DnnðDppÞ ¼ 3

16
½t1ð1� x1Þ � t2ð1þ x2Þ� � 1

24
½t1ð1� x1Þ

þ 3t2ð1þ x2Þ� þ g2

12

�
I1nðpÞ þ �nðpÞ

@I1nðpÞ
@�nðpÞ

�
;

(37)

DnpðDpnÞ ¼ 1

16
½3t1ð2þ x1Þ � t2ð2þ x2Þ�

� 1

24
½t1ð2þ x1Þ þ t2ð2þ x2Þ�: (38)

From Eq. (36), one can see that the matrix Cf
CM includes

four parts. The bulk part, i.e., the first term in the right-hand
side of Eq. (36), is k independent but the following 3 parts
are all k dependent due to the density gradient terms in
Eq. (15), the direct term contribution of the finite-range

interaction from the U-boson exchange, and the Coulomb
interaction, respectively.

The matrix Cf
CM is defined for each point (�n; �p; �e),

and the sign of its three eigenvalues determines the sign of
the second-order term in Eq. (35), namely, only if all the
eigenvalues of the matrix are positive, the free energy of
the system will remain the minimum value and the nuclear
system will be stable for all the density fluctuations. So, the
baryon number density violating the positive definiteness

of the matrix Cf
CM corresponds to the core-crust transition

density in neutron stars for the curvature matrix method.

3. The Vlasov equation method for transition
density in neutron stars

To determine the core-crust transition density in neutron
stars within the Vlasov equation method, we include here
for completeness a brief description for the method (see,
e.g., Refs. [51,89] for the details). For a 
-stable and
electrically neutral npe matter, the Vlasov equation can
be expressed as
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@fqð ~R; ~p; tÞ
@t

þ ~vq � r ~Rfqð ~R; ~p; tÞ
� r ~RUq � r ~pfqð ~R; ~p; tÞ ¼ 0 (39)

in terms of the semiclassical Wigner function for particle
type q ¼ n; p; e, i.e.,

fqð ~R; ~p; tÞ ¼ 1

ð2�Þ3
X
i

Z
�qi

�
~R� ~r

2
; t

�
�?

qi

�
�
~Rþ ~r

2
; t

�
ei ~p� ~rd3r; (40)

where �qi is the wave function of ith particle of type q, ~R

and ~r are defined as the same as R and r in the previous

section. In Eq. (39), ~vq ¼ ~p=ðm?2
q þ p2Þ1=2 denotes the

particle velocity and m?
e ¼ me.

The density fluctuation due to a collective mode with

frequency ! and wave vector ~k in nuclear matter can be
studied through following the standard procedure [89] by
writing

fqð ~R; ~p; tÞ ¼ f0qð ~pÞ þ �fqð ~R; ~p; tÞ (41)

with

�fqð ~R; ~p; tÞ ¼ �~fqð ~pÞe�i!tþi ~k� ~R: (42)

By expressing �qð ~R; tÞ ¼ �0
q þ ��qð ~R; tÞ with

��qð ~R; tÞ ¼ 2

ð2�Þ3
Z

�fqð ~R; ~p; tÞd3p; (43)

we obtain the Vlasov equation

��q � XqLq

�X
q0

�Uq

��q0
��q0

�
; (44)

where Lq is the usual Lindhard function

Lq ¼
Z 1

�1

cos�dðcos�Þ
sq � cos�

¼ �2þ sq ln

�
sq þ 1

sq � 1

�
; (45)

with sq ¼ !=kvF
q and vF

q ¼ pF
q=ðm?2

q þ pF2
q Þ1=2 being the

Fermi velocity. The momentum integration can be eval-
uated approximately as

Xq ¼ 1

2�2

Z pF
q

0

�
�@f0q

@�q

�
p2dp � pF

qm
?
q

2�2
(46)

for q ¼ n; p with �Fq � pF2
q =2m?

q and

Xe � �2
e

2�2
; (47)

for electrons, where �e � pF
e is the electron chemical

potential.
For protons, there are additional direct and exchange

Coulomb contributions to the factor
P

q0
�Uq

��q0
��q0 in

Eq. (44) given, respectively, by

�UCD
p ¼ 4�e2

k2
ð��p � ��eÞ; (48)

�UCE
p ¼ � 1

3
e2
�
3

�

�
1=3

��2=3
p ��p: (49)

For electrons, there are only direct and exchange Coulomb

contributions to
P

q0
�Uq

��q0
��q0 .

After linearizing the Vlasov equation, we can reexpress
Eq. (44) as a function of the collective density fluctuation

Cf
VEð��n; ��p; ��eÞT ¼ 0; (50)

with

Cf
VE ¼

XnLn
@Un

@�n
� 1 XnLn

@Un

@�p
0

XpLp
@Up

@�n
XpLp

@Up

@�p
� 1 XpLp

@Up

@�e

0 XeLe
@Ue

@�p
XeLe

@Ue

@�e
� 1

0
BBBB@

1
CCCCA

¼
XnLn 0 0

0 XpLp 0

0 0 XeLe

0
BB@

1
CCA

@Un

@�n

@Un

@�p
0

@Up

@�n

@Up

@�p

@Up

@�e

0 @Ue

@�p

@Ue

@�e

0
BBBB@

1
CCCCA

�
1 0 0

0 1 0

0 0 1

0
BB@

1
CCA: (51)

In Eq. (51), the Uq is the single-particle potential in the

npe system and the matrix

U ¼
@Un

@�n

@Un

@�p
0

@Up

@�n

@Up

@�p

@Up

@�e

0 @Ue

@�p

@Ue

@�e

0
BBB@

1
CCCA (52)

has the same k-dependent terms as in Eq. (36).

The determinant jCf
VEj ¼ 0 determines the dispersion

relation !ðkÞ of the collective density fluctuation that also
determines the nontrivial solutions of Eq. (50). The tran-
sition density in neutron stars is the density at which the
frequency ! becomes imaginary, leading to that the col-
lective density fluctuation would grow exponentially and
thus the instability of the neutron star matter occurs. To
determine the condition for this to occur, we let sq ¼ �iq

ðq > 0Þ and rewrite the Lindhard function as Lq ¼ �2þ
2q arctanð1=qÞ. Since the values of Lq are in the range of

�2< Lq < 0, the critical values Ln ¼ Lp ¼ Le ¼ �2,

corresponding to q ¼ 0, then determine the spinodal

boundary of the system when they are substituted into

jCf
VEj ¼ 0. The baryon number density that makes jCf

VEj
vanish then corresponds to the spinodal boundary in the
neutron star matter or the core-crust transition density of
neutron stars for the Vlasov equation method.
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III. RESULTS

In the present work, for the Skyrme effective nucleon-
nucleon interaction, we use the modified Skyrme-like
(MSL) parameter [97,98] for which the 9 Skyrme interac-
tion parameters �, t0 � t3, x0 � x3 are obtained analyti-
cally in terms of 9 macroscopic quantities �0, E0ð�0Þ, the
incompressibility K0, the isoscalar effective mass m�

s;0, the

isovector effective mass m�
v;0, Esymð�0Þ, L, the gradient

coefficient GS, and the symmetry-gradient coefficient GV .
In particular, the MSL0 parameter set [97] is obtained by
using the following empirical values for the 9 macroscopic
quantities: �0 ¼ 0:16 fm�3, E0ð�0Þ ¼ �16 MeV, K0 ¼
230 MeV, m�

s;0 ¼ 0:8m, m�
v;0 ¼ 0:7m, Esymð�0Þ ¼

30 MeV, L ¼ 60 MeV, GV ¼ 5 MeV � fm5, and GS ¼
132 MeV � fm5. And the spin-orbit coupling constant
W0 ¼ 133:3 MeV � fm5 is used to fit the neutron p1=2 �
p3=2 splitting in

16O. It has been shown [97] that the MSL0

interaction can give a good description of the binding
energies and charge rms radii for a number of closed-shell
or semi-closed-shell nuclei.

For the U-boson-nucleon coupling constant g and the
U-boson mass �, their values are largely uncertain. As
argued by Krivoruchenko et al. [30], in order to ensure that
the U-boson effects on finite nuclei should be negligible,
the Compton wavelength of the U boson is usually as-
sumed to be greater than the radius of heavy nuclei, i.e.,
about 7 fm, leading to� & 30 MeV. At the same time, the
g2=�2 value of the U boson should be less than about
200 GeV�2, which roughly corresponds to the value of the
ordinary vector! boson. Otherwise, theU boson is neither
weakly coupled nor light. On the other hand, there also
exist some constraints on properties of the U boson from
cosmology and astrophysical observations. For example,
the U-boson mass� is required to exceed the mass of light
cold dark matter, i.e.,	 MeV, to explain the excess flux of
511 keV photons coming from the central region of our
Galaxy observed by the SPI/INTEGRAL satellite [99].
Based on above discussions, in the present work we as-
sume the U-boson mass is in the range of 2 MeV & � &
30 MeV (the corresponding Compton wavelength of the U
boson is thus between about 7 fm and 100 fm) and the
g2=�2 value of the U boson satisfies g2=�2 &
150 GeV�2. The latter is further consistent with existing
constraints from neutron-proton and neutron-lead scatter-
ings, the spectroscopy of antiproton atoms as well as the
recently discovered new holder of neutron star maximum
mass of 1:97� 0:04 M� from PSR J1614-2230
[16,18,19,33].

A. Nuclear matter symmetry energy from the U boson

As has been seen in the previous section, the direct term
of the U boson contributes to the nuclear matter EOS only
through the combination g2=�2, and, in particular, its
contribution to the energy per nucleon is given by

1
2g

2=�2�. As it was emphasized by Fujii [100], for the

direct term contribution, though both the coupling constant
g and the mass � are small for the light and weakly
coupled bosons, the value of the ratio g2=�2 can be large.
Therefore, the light and weakly coupled bosons can sig-
nificantly affect the nuclear matter EOS and thus the
properties of neutron stars [30–33]. On the other hand,
the exchange term contribution to the nuclear matter
EOS depends on both the coupling constant g and the
mass� in a complicated way. Furthermore, it is interesting
to see that the isoscalar U boson will contribute to the
nuclear matter symmetry energy due to the exchange term
contribution though the direct term does not have such
contribution.
To see quantitatively how the exchange term of the U

boson affects the nuclear matter EOS, we show in Fig. 1 the
exchange term contribution of the U boson to the EOS of
symmetric nuclear matter EE

0;UBð�Þ [(a) and (b)] and the

nuclear matter symmetry energy Esym;UBð�Þ [(c) and (d)] as
functions of density with several typical values of � and
g2=�2. Here, the Esym;UBð�Þ is extracted from the

parabolic approximation Esym;UBð�Þ � EUBð�; � ¼ 1Þ�
EUBð�; � ¼ 0Þ with EUBð�; �Þ being the energy per nu-
cleon from the U-boson contribution. One can see from
Fig. 1 that both EE

0;UBð�Þ and Esym;UBð�Þ increase with

increasing values of both � and g2=�2. As expected,
however, both the contributions of the exchange term to
energy per nucleon of symmetric nuclear matter and the
symmetry energy are quite small and can be safely ne-
glected compared with the direct term contribution for the
values of� and g2=�2 considered here. For example, even
at very high baryon density such as � ¼ 1:0 fm�3 with
� ¼ 30:0 MeV and g2=�2 ¼ 150 GeV�2 (see the right

FIG. 1 (color online). The exchange term contribution of the U
boson to the EOS of symmetric nuclear matter [(a) and (b)] and
the symmetry energy [(c) and (d)] as functions of density with
several typical values of � and g2=�2. Note: The results with
� ¼ 1:97 MeV [(a) and (c)] have been rescaled by multiplying a
factor of 200 for convenience.
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panels of Fig. 1), the EE
0;UBð�Þ is only about 1.1 MeV and

the Esym;UBð�Þ is less than about 0.32 MeV while the direct

term contribution to the energy per nucleon of symmetric
nuclear matter reaches about 576 MeV. The EE

0;UBð�Þ and
Esym;UBð�Þ will further decrease if smaller values of � and

g2=�2 are used (see, e.g., the left panels of Fig. 1). These
results verify the validity of neglecting the exchange term
contribution of the U boson to nuclear matter EOS in the
literature [30–33].

B. The core-crust transition density and pressure in
neutron stars with the U boson

We now turn to the numerical results on the core-crust
transition density and pressure in neutron stars with the
thermodynamical approach, the curvature matrix ap-
proach, and the Vlasov equation approach. We note that

both the matrices Cf
CM in Eq. (36) andCf

VE in Eq. (51) are k
dependent, and for the curvature matrix approach and the
Vlasov equation approach, the core-crust transition density
corresponds to the critical baryon number density above
which the neutron star matter is always stable for all
possible values of k while below which one can always
find a k value to violate the stability conditions of the
neutron star matter. On the other hand, for the thermody-
namical method, the transition density can be directly
obtained by solving the equation Vther ¼ 0 [see Eq. (33)
for the expression of Vther].

Theoretically, it has been established that there exists a
strong correlation between the transition density �t and the
nuclear symmetry energy. In particular, a strong linear
correlation between the transition density �t and the slope
parameter L of the nuclear symmetry energy has been
observed in many different theoretical calculations
[96,97,101,102]. To see the symmetry energy dependence
of the inner edge of neutron star crusts, we show in Fig. 2
the transition density �t and pressure Pt in neutron stars as
functions of the L parameter with MSL0 interaction by
varying individually L using the thermodynamical method,
the curvature matrix method, and the Vlasov equation
method. When varying individually the L parameter, we
keep all other macroscopic quantities �0, E0ð�0Þ, K0, m

�
s;0,

m�
v;0, Esymð�0Þ, GS, GV , and W0 at their default values in

MSL0. It should be noted that the original agreement of
MSL0 with the experimental data of binding energies or
charge radii of finite nuclei essentially still holds with the
individual change of the L parameter.

For the results shown in Fig. 2, the U-boson contribu-
tions are not considered. It is seen that all the three methods
give similar results for the L dependence of the transition
density �t and pressure Pt with the curvature matrix
method giving slightly smaller values of �t and Pt than
the thermodynamical method while slightly higher values
of �t and Pt than the Vlasov equation method for a fixed
value of L. The nonmonotonous variation of the L

dependence of the transition pressure Pt in the thermody-
namical method is due to the fact that the Pt is a compli-
cated function of �t, L, and the isospin asymmetry �t at the
transition density (See, e.g., [96]). The smaller values of �t

from the curvature matrix method than from the thermo-
dynamical method imply that the density gradient terms
and Coulomb term considered in the former can make the
neutron star matter more stable, which are consistent with
the results in Refs. [96,97] (The curvature matrix method is
called dynamical method there). On the other hand, the
slightly smaller values predicted by the Vlasov equation
method than the curvature matrix method are due to the
quantum effects considered in the Vlasov equation method,
indicating that the quantum effects will make the neutron
star matter more stable as expected.
To see how the light and weakly coupled vectorU boson

affects the inner edge of neutron star crusts, we show in
Fig. 3 the g2=�2 dependence of the transition density �t

and pressure Pt in neutron stars from the MSL0 interaction
by including the U boson with � ¼ 1:97 MeV and
30.0 MeV, respectively, using the thermodynamical
method, the curvature matrix method, and the Vlasov
equation method. One can see clearly that while the cur-
vature matrix method and the Vlasov equation method
predict very similar results for the g2=�2 dependence of
�t and Pt, the thermodynamical method predicts very
different results with �t and Pt decreasing very quickly
as the g2=�2 increases. In particular, we find that for
g2=�2 > 20 GeV�2, the neutron star matter is always
stable and the transition density does not exist in the
thermodynamical method. This is due to the fact that the
k-dependent terms in Eqs. (36) and (51) originating from

FIG. 2 (color online). Transition density �t (a) and pressure Pt

(b) in neutron stars as functions of the L parameter with the MSL
interaction using the thermodynamical method, the curvature
matrix method, and the Vlasov equation method.
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the finite-range interaction and density gradient contribu-
tions play an important role in determining the transition
density when the U boson is considered. Therefore, the
thermodynamical method that ignores the k-dependent
terms would be no longer appropriate to determine the
inner edge of neutron star crusts when theU boson is taken
into account.

It is interesting to see from Fig. 3 that for the curvature
matrix method and the Vlasov equation method, the effects
of the U boson on the transition density �t and pressure Pt

depend on not only the ratio g2=�2 but also the U-boson
mass �. In particular, for a heavier U boson (e.g., � ¼
30:0 MeV), the �t decreases significantly with increment
of g2=�2 from 0 to 150 GeV�2. On the other hand, for a
very light U boson (e.g., � ¼ 1:97 MeV), the transition
density �t exhibits very weak dependence on g

2=�2. These
features imply that for a fixed value of g2=�2, a heavier U
boson can make the neutron star matter more stable while a
very light U boson essentially has no influence on the
transition density.

As shown in Fig. 3, for the curvature matrix method and
the Vlasov equation method, although the transition den-
sity �t displays a somewhat complicated relationship with
the properties of the U boson, the transition pressure Pt

simply increases with the ratio g2=�2 whether theU-boson
mass is light or heavy. Furthermore, it is interesting to see
from Fig. 3(b) that the transition pressure Pt increases
almost linearly with g2=�2 for a very light U boson (i.e.,
� ¼ 1:97 MeV), while it exhibits much slower increment
with g2=�2 for a heavierU boson (e.g.,� ¼ 30:0 MeV) as
shown in Fig. 3(d). The linear correlation between Pt and
g2=�2 for � ¼ 1:97 MeV observed in Fig. 3(b) is easily
understood since the U-boson contribution to the pressure

Pt;UB is dominated by the direct term contribution, i.e.,

Pt;UB � 1
2g

2=�2�2
t , if � is independent of the density as

we assume in the present work, and the �t remains ap-
proximately a constant value for � ¼ 1:97 MeV when
g2=�2 varies from 0 to 150 GeV�2 as shown Fig. 3(a).
In the case of � ¼ 30:0 MeV, the �t decreases signifi-
cantly with the increment of g2=�2 as shown Fig. 3(c),
which leads to the transition pressure Pt displaying much
slower increment with g2=�2 as shown in Fig. 3(d).
In order to see the U-boson mass dependence of �t and

Pt at a fixed value of g2=�2, we display in Fig. 4 the 1=�
dependence of the transition density �t and pressure Pt in
neutron stars from the MSL0 interaction by including the
U-boson contribution with g2=�2 ¼ 75 GeV�2 using the
curvature matrix method and the Vlasov equation method.
It is seen that the two methods predict very similar 1=�
dependence of the transition density �t and pressure Pt

with the Vlasov equation method giving smaller values. It
is interesting to see that �t becomes sensitive to�when the
U-boson mass� is larger than about 2 MeValthough theU
boson almost has no influence on the transition density �t

if its mass � is less than about 2 MeV. The transition
pressure Pt displays similar 1=� dependence as the �t

due to the relation Pt;UB � 1
2g

2=�2�2
t . Therefore, these

results demonstrate that the transition density �t in neutron
stars can be sensitive to the value of both� and g2=�2, and
any experimental or observational constraints on �t may
put important limits on � and g2=�2, or equivalently on�
and g.
As have been shown above, the exchange term contri-

bution of the U boson to the nuclear matter EOS can be

FIG. 3 (color online). The g2=�2 dependence of the transition
density �t and pressure Pt in neutron stars from the thermody-
namical method, the curvature matrix method, and the Vlasov
equation method with the MSL0 interaction for � ¼ 1:97 MeV
and 30.0 MeV, respectively.

FIG. 4 (color online). The 1=� dependence of the transition
density �t and pressure Pt in neutron stars from the curvature
matrix method and the Vlasov equation method with the MSL0
interaction for g2=�2 ¼ 75 GeV�2.
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safely neglected. It is thus interesting to see how the
exchange term affects the inner edge of neutron star crusts.
To check this point, we show in Fig. 5 the 1=� dependence
of the transition density �t in neutron stars with the MSL0
interaction for g2=�2 ¼ 75 GeV�2 from the Vlasov equa-
tion method together with that by neglecting the direct
term contribution or neglecting the exchange term contri-
bution. It is seen that the exchange term contribution of the
U boson has very small influence on the transition density
�t, especially for the light mass U boson. On the other
hand, the direct term significantly affects the 1=� depen-
dence of the transition density �t. Particularly, neglecting
the direct term contribution of the U boson leads to very
weak 1=� dependence of the transition density �t, imply-
ing that the observed strong 1=� dependence of the tran-
sition density �t is essentially due to the direct term
contribution that produces a k-dependent term in the ma-
trix (36) or (51), i.e., the third term in the right-hand side of
Eq. (36). We note that using the curvature matrix method
leads to the same conclusion.

C. The mass-radius relation and crustal
fraction of moment of inertia for static

neutron stars with the U boson

As we have showed above, the U boson may have
significant influence on the nuclear matter EOS and the
inner edge of neutron star crusts. Here, we investigate
effects of the U boson on the global properties of static
neutron stars. To calculate the global properties, such as the
mass-radius relation and crustal fraction of moment of
inertia, of static neutron stars, one needs the EOS of
neutron star matter over a broad density region ranging
from the center to the surface of neutron stars. Besides the

possible appearance of nuclear pasta in the inner crust,
various phase transitions and non-nucleonic degrees of
freedom may appear in the core of neutron stars. In this
work, we restrict ourselves to the simplest and traditional
model, and make the minimum assumption that the core of
neutron stars contains the uniform
-stable and electrically
neutral npe� matter only and there is no phase transition.
Generally, a typical neutron star contains the liquid core,

inner crust, and outer crust from the center to surface. For
the liquid core, we use the EOS of npe� matter from SHF
calculations including the U-boson contributions to the
nuclear EOS. For the Skyrme effective nucleon-nucleon
interaction, the MSL interaction with a soft symmetry
energy of L ¼ 30 MeV is used. We note that the MSL
interaction with L ¼ 30 MeV predicts a npe�matter EOS
very similar to the more sophisticated EOS containing
nucleons, hyperons, and quark degrees of freedom [37].
In the present work, the U-boson contribution to the EOS
of liquid core includes both the direct term contribution
[i.e., Eq. (22)] and the exchange term contribution [i.e.,
Eq. (23) without the density gradient terms] although the
latter is negligible. In particular, the fractions of neutrons,
protons, electrons, and muons in the neutron star matter are
obtained from self-consistently solving the set of equations
for 
-stable condition (i.e., �np ¼ �e ¼ ��) and charge

neutral condition (i.e., �p ¼ �e þ ��) by considering the

U-boson exchange term contribution to the chemical po-
tential of neutrons and protons. It should be noted that the
U-boson direct term does not change the neutron and
proton chemical potential difference �np as it contributes

equally to the single-particle potential of neutrons and
protons, and thus the chemical compositions of the neutron
star matter will not change if only the U-boson direct term
contribution is considered as pointed out in previous work
[30–33]. In this way, the contributions of U boson to the
energy density, the pressure, the nucleon effective masses,
and chemical potentials are considered self-consistently in
the neutron star matter calculations for the liquid core.
In the inner crust with densities between �out and �t

where the nuclear pastas may exist, because of our poor
knowledge about its EOS from first principle, following
Carriere et al. [84] (see also Ref. [96]) we construct its
EOS according to

P ¼ aþ b�4=3: (53)

This polytropic form with an index of 4=3 has been found
to be a good approximation to the crust EOS [42,45]. The
�out ¼ 2:46� 10�4 fm�3 is the density separating the in-
ner from the outer crust. The constants a and b are then
determined by

a ¼ Pout�
4=3
t � Pt�

4=3
out

�4=3t � �4=3out

; (54)

FIG. 5 (color online). The 1=� dependence of the transition
density �t in neutron stars from the Vlasov equation method with
the MSL0 interaction for g2=�2 ¼ 75 GeV�2. The results of
neglecting the U-boson direct term contribution or neglecting
the U-boson exchange term contribution are included for
comparison.
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b ¼ Pt � Pout

�4=3t � �4=3out

; (55)

where Pt, �t and Pout, �out are the pressure and energy
density at �t and �out, respectively. In the outer crust with
6:93� 10�13 fm�3 < �< �out, we use the EOS of BPS
[38,103], and in the region of 4:73� 10�15 fm�3 < �<
6:93� 10�13 fm�3 we use the EOS of Feynman-
Metropolis-Teller [38]. For the U-boson contribution to
the EOS of neutron star crusts and surface, we add the
energy density and pressure from the U-boson direct term
contribution, i.e., �UB ¼ PUB � 1

2g
2=�2�2, to the corre-

sponding parts since the exchange term contribution is
negligible as shown in the above.

As an example, we show in Fig. 6 the EOS for different
parts of a neutron star. As we have discussed earlier, the
transition density �t is obtained by studying the onset of
instabilities in the liquid core, namely, it is the critical
density below which small density fluctuations will grow
exponentially. Therefore, the transition density �t and the
EOS of the liquid core are obtained self-consistently from
the same interaction and in this sense they are on the same
footing. We use in Fig. 6 the �t obtained within the Vlasov
equation method using the full EOS with the MSL inter-
action of L ¼ 30 MeV for different values of g2=�2 with
� ¼ 1:97 MeV. Using the above EOS for different parts of
the neutron star, the radial distribution of the total energy
density and the pressure in neutron stars is continuous, but
the derivative of the pressure is not continuous at �t and
�out. It is seen that the EOS’s of the inner crust and the
liquid core are quite different for different values of g2=�2.
Interestingly, one can see that because the transition den-
sity �t displays very weak dependence on g2=�2 for the
very lightU-boson mass (1:97 MeV here), the �t (and thus
the corresponding "t) has essentially the same value for

different g2=�2, and the difference of the EOS for different
values of g2=�2 observed in Fig. 6 is essentially due to the
variation of Pt with g

2=�2 because of the relation Pt;UB �
1
2g

2=�2�2
t .

Using the EOS constructed above, one can solve the
Tolman-Oppenheimer-Volkoff equations to obtain the
mass-radius relations and the results are shown in Fig. 7.
Indicated by the shaded band in Fig. 7 is the latest
new holder of the maximum mass of neutron stars of
1:97� 0:04M� from PSR J1614-2230 [36]. For MSL in-
teraction with a soft symmetry energy (L ¼ 30 MeV)
without considering the U-boson contribution, the neutron
star massM decreases quickly with increasing radius R and
the maximummass is about 1.47M�, which is significantly
less than the observed maximum neutron star mass of
1:97� 0:04M�. On the other hand, the neutron star mass
can be enhanced strongly if the effects of U boson are
considered. In particular, a larger value of g2=�2 leads to a
larger neutron star mass at a fixed radius since the nuclear
EOS is increasingly stiffened with increment of g2=�2 as
shown in Fig. 6. In particular, the neutron star maximum
mass can reach 2:07M� with g2=�2 ¼ 75 GeV�2, and the
corresponding radius of the maximum mass neutron star is
about 14.8 km.
To see more clearly the U-boson effects on the proper-

ties of neutron stars, we include in Fig. 7 the mass-radius
relations for different values of g2=�2 with two values of
the U-boson mass, i.e., � ¼ 1:97 and 30.0 MeV, respec-
tively. Furthermore, the results with �t from both the
Vlasov equation method and the curvature matrix method
are included for comparison although the former is

FIG. 6 (color online). The EOS’s of different parts in neutron
stars using the MSL interaction with L ¼ 30 MeV for different
values of g2=�2 ranging from 0 to 75 GeV�2 with � ¼
1:97 MeV. The energy density (pressure) at �t and �out is
indicated as "t (Pt) and "out (Pout), respectively, and the �t is
obtained from the Vlasov equation method.

FIG. 7 (color online). The mass-radius relation of static neu-
tron stars using the MSL interaction with L ¼ 30 MeV and
different values of g2=�2 for � ¼ 1:97 MeV (solid lines) and
30.0 MeV (dashed lines), respectively. The results with �t

from both the Vlasov equation method (thick lines) and the
curvature matrix method (thin lines) are included for compari-
son. The shaded band represents the latest new holder of the
maximum mass of neutron stars of 1:97� 0:04M� from PSR
J1614-2230 [36].
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believed to be more realistic. As expected, for the larger
value of the U-boson mass, a smaller value of the neutron
star mass M at a fixed radius R is obtained due to the
smaller transition density and pressure obtained for a larger
� as shown in the previous section. This U-boson mass
effect on the neuron star mass-radius relation will become
more pronounced for a larger value of g2=�2 (e.g.,
g2=�2 ¼ 75 GeV�2). In addition, one can see that using
the �t from the curvature matrix method predicts a little
larger neutron star mass M at a fixed radius R than using
the �t from the Vlasov equation method. However, the
maximum mass of the neutron stars is almost the same
for different values of � using the �t from either the
curvature matrix method or the Vlasov equation method.
These results indicate that, essentially regardless of the
values of theU-boson mass and the �t, a value of g

2=�2 ¼
75 GeV�2 can reasonably describe the latest new holder of
the neutron star maximum mass of 1:97� 0:04M� from
PSR J1614-2230 [36].

The crustal fraction of total moment of inertia of a static
neutron star, �I=I, is a particularly interesting quantity as
it can be inferred from observations of pulsar glitches, i.e.,
the occasional disruptions of the otherwise extremely regu-
lar pulsations from magnetized, rotating neutron stars.
Furthermore, as was stressed by Lattimer and Prakash
[42], the �I=I depends sensitively on the �t and Pt, which
are essentially determined by the EOS of asymmetric
nuclear matter at subsaturation densities as shown above,
but there is no explicit dependence upon the EOS of
neutron star matter at higher densities. These features

imply that the �I=I may provide a good probe for proper-
ties of the U boson. To illustrate the U-boson mass depen-
dence of the�I=I, we show in Fig. 8 the�I=I as a function
of the neutron star mass for static neutron stars using the
MSL interaction with L ¼ 30 MeV for g2=�2 ¼
75 GeV�2 with � ¼ 1:97 and 30.0 MeV, respectively.
Furthermore, the results with �t obtained from both the
Vlasov equation method and the curvature matrix method
are included for comparison. The �I=I is obtained here
from direct numerical calculations as in Ref. [96]. As
expected, one can see that the �I=I indeed exhibits a clear
sensitivity to the U-boson mass with a heavier U-boson
mass giving a smaller�I=I for a fixed neutron star mass. In
addition, one can see that using the �t obtained from the
curvature matrix method gives a little larger value for�I=I
at a fixed neutron star mass M than using the �t from the
Vlasov equation method. Empirically, the crustal fraction
of total moment of inertia has been constrained as �I=I >
0:014 from studying the glitches of the Vela pulsar [45] and
the lower limit �I=I ¼ 0:014 of the constraint is also
indicated in Fig. 8. It is seen from Fig. 8 that the calculated
results of �I=I with the two values of � ¼ 1:97 and
30.0 MeV using the �t obtained from either the curvature
matrix method or the Vlasov equation method are all
consistent with the observation constraint of �I=I >
0:014 for the Vela pulsar.
Based on the results above, we conclude that the vector

U boson can significantly stiffen the nuclear matter EOS
and thus enhance strongly the (maximum) mass of neutron
stars. Furthermore, as the �t and Pt are sensitive to both
g2=�2 and � if the U-boson mass is larger than about
2 MeV, both g2=�2 and � can thus affect the mass-radius
relation of neutron stars although the maximum mass of
neutron stars is essentially independent of the U-boson
mass�. In addition, our results demonstrate that the crustal
fraction of total moment of inertia �I=I may depend
sensitively on the U-boson mass � for a fixed value of
g2=�2.

IV. SUMMARY

Using the thermodynamical approach, the curvature
matrix approach, and the Vlasov equation approach with
the Skyrme effective nucleon-nucleon interaction, we have
investigated effects of the light vector gauge U boson, that
is weakly coupled to nucleons, on the core-crust transition
density �t and pressure Pt of neutron stars. For the ex-
change term contribution of the U boson, we have applied
the density matrix expansion approach, which automati-
cally leads to the density gradient terms in the single
nucleon potential and nuclear energy density functional.
Our results have demonstrated that the exchange term
contribution to energy per nucleon of symmetric nuclear
matter and the symmetry energy is quite small and can be
safely neglected compared with the direct term contribu-
tion for the parameter range of � and g2=�2 considered in

FIG. 8 (color online). The crustal fraction of total moment of
inertia �I=I as a function of the neutron star mass for static
neutron stars using the MSL interaction with L ¼ 30 MeV for
g2=�2 ¼ 75 GeV�2 with � ¼ 1:97 MeV (solid lines) and
30.0 MeV (dashed lines), respectively. The results with �t

from both the Vlasov equation method (thick lines) and the
curvature matrix method (thin lines) are included for compari-
son. The lower limit �I=I ¼ 0:014 of the observation constraint
for the Vela pulsar [45] is also indicated.
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this work, verifying the validity of neglecting the U-boson
exchange term contribution to the nuclear matter EOS as
has been done in the literature. Furthermore, the exchange
term has also been found to have negligible influence on
the core-crust transition density �t and pressure Pt, espe-
cially for very light U boson.

Interestingly, our results have shown that the �t and Pt

depend on not only the ratio of coupling strength to mass
squared of the U boson g2=�2 but also its mass �. The
U-boson mass dependence of �t and Pt is due to the finite-
range interaction from the U-boson exchange. In particu-
lar, we have found that the �t and Pt will be sensitive to
both g2=�2 and � if the U-boson mass � is larger than
about 2 MeV, and both g2=�2 and � can have significant
influence on the mass-radius relation and the crustal frac-
tion of total moment of inertia of neutron stars. Therefore,
our results presented in this work have demonstrated that
astrophysical observations on neutron star structures, such
as the mass-radius relation and the crustal fraction of total

moment of inertia from pulsar glitches, can be potentially
useful to constrain properties of the U boson, e.g., its mass
� and the coupling constant g to nucleons.
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X. Roca-Maza, and M. Centelles, Phys. Rev. C 80, 024316
(2009).

[72] C. Xu, B. A. Li, and L.W. Chen, Phys. Rev. C 82, 054607
(2010).

[73] L.W. Chen, Phys. Rev. C 83, 044308 (2011).
[74] Z. Q. Feng and G.M. Jin, Phys. Lett. B 683, 140 (2010).
[75] P. Russotto et al., Phys. Lett. B 697, 471 (2011).
[76] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R.

Schaeffer, Nucl. Phys. A627, 710 (1997).
[77] M. Brack, C. Guet, and H.-B. Håkansson, Phys. Rep. 123,
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