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We analyze detector responses of gravitational wave detectors for gravitational waves with arbitrary

polarizations predicted in the metric theories of gravity. We present the general formulas for the frequency

responses valid in various interferometric arrangements including Michelson, Delay-Line and Fabry-Perot

detectors. We analyze the angular and frequency behavior and the sensitivity patterns of the responses for

each polarization mode.
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I. INTRODUCTION

The expected direct detection of the gravitational waves
will give the unique opportunity to study relativistic astro-
physical phenomena predicted by the general theory of
relativity and to improve our understanding of the
Universe [1–3]. The multiple detectors are currently oper-
ating on Earth (LIGO [4], VIRGO [5], TAMA 300 [6],
GEO 600 [7]) and the development of next generation
interferometers is underway. Gravitational waveforms in-
ferred in the process of a data analysis will carry a remark-
ably rich information about their sources. For Earth-based
detectors they include stellar-mass black-hole binaries,
neutron-star-binary mergers, neutron-star normal mode
oscillations or core-collapse supernovae. Planned space
born detectors, LISA [8], BBO [9] and DECIGO [10],
working in the lower frequency bands, below 0.1 and
10 Hz, will complement the high-frequency observations
on Earth (10–1000 Hz) with signals from compact binary
systems, supermassive black holes mergers, captures of
compact stars by massive black holes and stochastic
sources of the Galactic and cosmological origins, (see
[11,12] and references therein). Despite the possibility of
extending our knowledge of astrophysical phenomena con-
fronting them with models based on general relativity
gravitational waves will be used to test the theory itself
potentially discriminating among various competing alter-
natives. The present paper aims at this direction by pre-
senting an analysis of the frequency responses, in low and
high frequency domains, of gravitational wave detectors
excited by gravitational waves predicted in a class of
metric theories of gravity.

In recent years these theories have attracted much
attention as they naturally emerge as the effective levels
of more fundamental models of quantum gravity, string-
inspired gravity or in the dimensional reduction of higher
dimensional theories [13]. On the other hand, a number of
them constitute phenomenological models with an ability
to explain some fundamental astrophysical and cosmo-
logical puzzles without evoking dark matter or dark
energy [14].

In the metric theories of gravity, matter fields are mini-
mally and universally coupled to the physical metric g so
the Einstein Equivalence principle is satisfied. However,
the dynamics of the physical metric may differ from the
one determined by the standard Einstein-Hilbert action.
Metric theories allow for the additional degrees of freedom
in the gravitational sector. They can either be postulated as
extra scalar, vector and tensor fields as in Tensor-Vector-
Scalar theories (TeVeS) [14], or can effectively appear as in
the higher dimensional models [15] or in four-dimensional
theories with modified Hilbert action like fðRÞ-gravity
[16,17].
In the metric theories, test bodies (e.g. mirrors, beam

splitters of detectors) move along geodesics of the physical
metric. From the point of view of the gravitational waves
experiments, one is interested in ‘‘signatures’’ that the
modified dynamics leaves on the waves. First, it influences
the dynamical processes of wave generations by astrophys-
ical sources. Thus, for example, it was pointed out in [18]
that oscillation spectra of the neutron star models in TeVeS
theories differ from those expected in general relativity. In
[19] correction to gravitational waves from nonspinning
black-holes for a large class of alternative theories which
do not admit the Kerr solution were found. The spacetime
metric in this case can be studied with the gravitational
waves generated during the inspiral of a compact objects
into the massive black hole. In [20] the magnitude of the
scalar gravitational waves modeled in the collapse of a
spherical dust in the Brans-Dicke theory was estimated to
be large enough to be detected by the advanced Earth-
based interferometers for a stellar-mass supernova in our
Galaxy provided the coupling parameter !BD is less than
several thousands. The inspiral of a neutron star into an
intermediate-mass black hole in the scalar-tensor theories
was investigated in [21] and the estimated bounds on the
parameter !BD were given in the context of the proposed
LISA mission.
Second, in spite of the indirect tests of the strong-field

dynamics, one can directly determine the polarization
components of the detected gravitational waves. As pre-
dicted in [22] a plane gravitational wave in any metric
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theory can have at most six polarization modes: scalar
longitudinal and scalar transversal modes, two independent
longitudinal-transversal (vector) modes and two transver-
sal tensorial modes. The linearized theory of TeVeS was
investigated in [23] where the polarization states and
propagation speeds of gravitational waves were found.
Similar analysis was performed in [24,25] for theories
with a dynamical preferred frame and in [26,27] for fðRÞ
theories. The angular pattern functions for all polarization
modes for the Earth-based interferometers were studied in
[28]. Their detectability with pulsar timing at frequencies
�10�8 Hz was investigated in [29]. In [30,31] a method-
ology for the detection and separation of different
polarization modes potentially present in the stochastic
gravitational-wave background was carried out for
Earth-based and space-based detectors. In [32] Tinto
et al. investigated the sensitivity of the LISA detector for
all polarization modes and various interferometric observ-
ables in the low and high frequency domains.

Third, in some alternative theories gravitational wave
speed may differ from the speed of light. It can happen
when gravity is coupled to a distinguished frame which can
be postulated as a nondynamical background as e.g. in
Rosen bimetric theory [33] or be defined by a dynamical
tensor field as e.g. in ‘‘Einstein-aether’’ theory [24], where
the physically consistent velocities of different polariza-
tion modes span two-dimensional manifold. Another pos-
sibility arises in theories with nonzero mass of gravitons in
their spectra [34]. These theories are particularly interest-
ing because mass-like effects with the associated Compton
wavelength of the order of the radius of the visible
Universe might shed a light on the dynamics of the late
time cosmic acceleration. Although light gravitons may
arise in several alternative theories (higher dimensional
models, fðRÞ-gravities, bimetric theories) it was already
pointed out in [35,36] that construction of a well-defined
massive gravity that is consistent with cosmological ob-
servations is a nontrivial open problem. Irrespective of the
underlying mass-generation mechanism it is important that
the gravitational waves exhibit dispersion relation and thus
their speed depends on their energy or wavelength. For the
dispersion relation !2 � c2k2 ¼ ðmgc

2=ℏÞ2, where mg is

the graviton mass, ! is the angular frequency of the wave
and k its wave vector the phase velocity is given by

vð!Þ ¼ c

�
1�

�
mgc

2

ℏ!

�
2
��1=2

: (1.1)

Assuming the modification of the Newtonian gravitational

potential by the Yukawa term, e�r=�g , where �g ¼
h=ðmgcÞ is the graviton Compton wavelength, one obtains

the strongest current bounds for the graviton mass 4:4�
10�22 ½eV=c2� from the solar-system experiments [37,38]
and 2:0� 10�29 ½eV=c2� from the galaxy and clusters
observations [39]. In turn in a dynamical and relativistic
regime waves propagated by a massive gravitons alter the

orbital decay rate of binary stars. Observations of
binary pulsars set the best current ’dynamical’ bound to
7:6� 10�20 ½eV=c2� [40].
In the present paper we derive the explicit, general

expressions for frequency responses in various interfero-
metric configurations valid in low and high frequency
bands. Since the status of the future missions and the
detector designs are still under scrutiny we derive
the frequency responses for each polarization mode for
the Michelson, Delay-Line and Fabry-Perot interferome-
ters. We refer the reader also to [41,42] where the high-
frequency behavior and various interferometric designs
were investigated for the tensor modes. We assume that
the interferometers (emitters, beam splitters and mirrors)
move freely along their geodesics. For low frequencies the
responses reduce to the known angular pattern functions.
We show that our general result applied to the scalar
transversal mode agrees with the frequency response de-
rived with a different method in [43]. To illustrate the
results we apply the obtained explicit formulas in the
numerical analysis of the antenna pattern functions for
the stochastic gravitational-wave signal.
The paper is organized as follows. In Sec. II we intro-

duce the one-way Doppler shifts which play the role of
basic constituents for the full responses; in Secs. III and IV
we recall the forms of the gravitational waves in different
polarization modes and give the definitions of the fre-
quency response and antenna pattern function. Finally, in
Sec. V we present the frequency responses in various
interferometric configurations and we analyze their angu-
lar and frequency behavior.
For the rest of the paper we take the unit c ¼ 1.

II. DOPPLER TRACKING

We consider the Doppler tracking system which consists
of two spacecraft, emitter and receiver of the laser beam,
moving freely in a background geometry with a metric

g�� ¼ ��� þ h��

where a small perturbation h�� represents a gravitational

wave passing through the Minkowski spacetime. Without
loss of generality we chose the coordinates so that the
gauge condition h�0 ¼ 0 is satisfied. We also assume

that spacecraft are placed at fixed positions of the coordi-
nate system.
The Doppler shift is defined as the frequency fluctua-

tions, ya;bðtÞ � �bðt;xbÞ��aðta;xaÞ
�aðta;xaÞ , where �aðta;xaÞ is the fre-

quency of the photon emitted from the point xa at the time
ta and �bðt;xbÞ is the frequency of that photon received in
the point xb at the time t. The frequency shift results from
the fluctuations of the phase of the light at the detector
which in turn arise due to time variation of the time-of-
flight of photons moving along the trajectory of the per-
turbed geometry. Let us denote �Ta;bðtÞ the time defined
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by the requirement that the light reaching xb at the coor-
dinate time t left xa at the coordinate time t� �Ta;bðtÞ so
that the phase of the light at xb is 2��aðt��Ta;bðtÞÞ and
the Doppler shift is given by ya;bðtÞ ¼ �d=dt½�Ta;bðtÞ�.

In the Doppler tracking experiment photons follow just
the geodesic line between spacecraft however in other
detectors such as Delay-Line (DL) link, Fabry-Perot (FP)
cavity or in multi spacecraft constellations, path lines of
photons are in general more complex. In the case of
Michelson (M) or Delay Line Michelson (DLM) interfer-
ometers the emitted laser ray reaches the beam splitter
where it is divided into two rays which enter into the two
arms of the detector and then after taking single or multiple
round trips between mirrors returns to the beam splitter.
The typical path of the photon entering one of the arm in
the Delay-Line interferometer is shown in Fig. (1). The full
trajectory consists of the concatenations of several paths:
xem;bs from the emitter to the beam splitter, xbs;f from the

beam splitter to the front mirror, multiple round-trip xf;e,

xe;f from the front mirror to the end mirror and backward,

and the return pass xf;bs from the front mirror to the beam

splitter. Assuming N round trips (with N reflections by the
end mirror) one can write the formula for the cumulative
frequency shift of the laser measured at the beam splitter:

yNðtÞ¼yem;bsðt�2Lf;bs�2NLÞþybs;fðt�Lf;bs�2NLÞ

þXN
i¼1

yf;eðt�Lf;bs�ð2i�1ÞLÞ

þXN
i¼1

ye;fðt�Lf;bs�2ði�1ÞLÞþyf;bsðtÞ; (2.1)

where we have shortened the notation for the length be-
tween the two mirrors, Lf;e ¼ Le;f � L. The total fre-

quency fluctuation yNðtÞ in the formula (2.1) consists of
the sum of the terms yem;bs, ybs;f, yf;e, ye;f, yf;bs which

determine the contributions of the corresponding Doppler

shifts along the paths xem;bs, xbs;f, xf;e, xf;e, xf;bs respec-

tively and are taken at the proper time delays.

III. POLARIZATION STATES

To characterize the polarization states of the perturba-
tion tensor, we expand a plain gravitational wave moving
in the direction � with respect to the polarization tensors,
hðt;xÞ ¼ P

�h�ðt;xÞ��. We assume that in the source
frame fx0; y0; z0g (see Fig. 2) components of �� take the
following forms,

~�sl ¼
0 0 0

0 0 0

0 0 1

0
BB@

1
CCA; ~�st ¼

1 0 0

0 1 0

0 0 0

0
BB@

1
CCA; (3.1)

~�vx ¼
0 0 1

0 0 0

1 0 0

0
BB@

1
CCA; ~�vy ¼

0 0 0

0 0 1

0 1 0

0
BB@

1
CCA; (3.2)

~�tp ¼
1 0 0

0 �1 0

0 0 0

0
BB@

1
CCA; ~�tc ¼

0 1 0

1 0 0

0 0 0

0
BB@

1
CCA (3.3)

defining two scalar (longitudinal ’sl’ and transversal ’st’),
two vectorial (longitudinal-x ’vx’ and longitudinal-y ’vy’)
and two tensorial (transversal-þ ’tp’ and transversal-�
’tc’) modes, respectively. For each polarization mode �
we define function F�ðna;b;�;�; c Þ which depends on the
unit vector na;b determining the attitude of the arm of the

interferometer and the angles �, �, c specifying orienta-
tion of the source frame (see Fig. 2):

FIG. 1. The full trajectory of the photon relevant in definition
of the response (2.1). The following abbreviations are used:
’em’—emitter, ’bm’—beam splitter, ’f’—front mirror, ’e’—end
mirror.

FIG. 2. Convention used in the definition of the polar angle c
and the source frame fx0; y0; z0g. In that frame gravitational waves
take their canonical forms discussed in Sec. III. The dashed unit
vectors are tangent to the lines of constant � and �; z0 axis lies
along the direction of the wave propagation. It is assumed that
the origins of the frames fx; y; zg and fx0; y0; z0g coincide. The unit
vector na;b indicates the orientation of the detector’s arm.

ANGULAR AND FREQUENCY RESPONSE OF THE . . . PHYSICAL REVIEW D 85, 043005 (2012)

043005-3



F�ðna;b;�;�; c Þ :¼ 1

2
na;b � na;b: �

� ¼ 1

2
~nTa;b~�

�~na;b;

(3.4)

where the colon denotes the double contraction, ~na;b is the
column-vector of the components of na;b in the source

frame and T stands for a matrix transposition. Functions
F� given in Eqs. (3.4) are called the angular pattern
functions and play the role of the antenna pattern functions
(for the one-arm detector) in the long-wavelength (LW)
approximation which is defined as the leading-term in the
!L ! 0 limit of the exact response.

In turn we define functions u and v by the
decompositions

F� ¼: u for � ¼ sl; st (3.5)

F� ¼: u cosc þ v sinc for � ¼ xz; yz (3.6)

F� ¼: u cos2c þ v sin2c for � ¼ tp; tc (3.7)

reflecting spin-0, spin-1 and spin-2 contents of the cor-
responding perturbations.

IV. FREQUENCY RESPONSE AND
ANTENNA PATTERN FUNCTION

In this section we present explicit expressions for the
responses �Ta;bðtÞ and ya;bðtÞ and recall the definitions of

the frequency response and antenna pattern function for
one-arm interferometer.

A. Deterministic signal

First we assume that the perturbed geometry is defined
by a plane wave moving with the velocity v in the direction
determined by the unit vector �: hðt;xÞ ¼ hðt�� �
x=vÞ. The unit vector na;b is oriented from the emitter to

the receiver and La;b is the separation between the space-

craft. Following Finn [44] we express �Ta;bðtÞ as

�Ta;bðtÞ ¼ La;b þ na;b � na;b

2
:
Z t

t�L
h½t0ð�Þ;x0ð�Þ�d�

¼ La;b þ na;b � na;b

2ð1� ��na;b

v Þ
:
Z uðtÞ

uðt�La;bÞ
hðuÞdu; (4.1)

where uð�Þ ¼ t0ð�Þ �� � x0ð�Þ=v and the integrals on
the right hand sides are taken along the unperturbed
trajectory

t0ð�Þ ¼ �; (4.2)

x 0ð�Þ ¼ xb � na;bðt� �Þ: (4.3)

From this we obtain the Doppler shift

ya;bðtÞ ¼ � d

dt
�Ta;bðtÞ

¼ na;b � na;b

2ð1� ��na;b

v Þ
: ½hðt� La;b �� � xa=vÞ

� hðt�� � xb=vÞ�: (4.4)

The last formula can also be obtained by the algebraic
method making use of the Killing vectors of the perturbed
metric ([45,46]). It can be used to obtain the responses in
more complex interferometric configurations and we will
apply it to get the full detector response (2.1).
More generally, one has a superposition of monochro-

matic plane waves with different velocities specified by a
dispersion relation v! so that the retarded time u! ¼ t�
� � x=v! can be different for each frequency component:

h ðt;xÞ ¼
Z 1

�1
~hð!Þei!ðt���x=v!Þd!: (4.5)

In this case the time-dependent part of the travel time reads

�Ta;bðtÞ ¼
Z 1

�1
Dð!;na;b;�Þ: ~hð!Þei!u!ðtÞd!; (4.6)

where u!ðtÞ ¼ t�� � xb=v!. The one-arm detector ten-
sor is given by

D ð!;n;�Þ ¼ L

2
n � nT ð!;x;�Þ; x ¼ Ln (4.7)

and the one-way transfer function reads

T ð!;x;�Þ¼ sinc

�
!L

2
ð1�� �n=v!Þ

�
e�ði!LÞ=2ð1���n=v!Þ:

(4.8)

In the next chapters, we will consider the angular and
frequency characteristics of interferometers for plain

waves in a definite polarization states, ~hð!Þ ¼ ~h�ð!Þ��.
We define the frequency response function Hð!Þ by

�TðtÞ ¼ i
Z 1

�1
~h�ð!ÞHð!Þei!u!ðtÞd!: (4.9)

Thus in the case at hand of one-arm interferometer
Hð!Þ ¼ �iLa;bT ð!;xa;b;�ÞF�ðna;bÞ. If one takes the

Doppler shift as a basic observable the frequency response
would be given by �i!Hð!Þ. To compare with the fre-
quency responses given in a literature in the paper we state
our results in terms of Hð!Þ.
The above formulas, Eqs. (4.1), (4.4), (4.7), and (4.8), are

valid for an arbitrary frequency-dependent velocity v!.
They show that effects of v! � 1 can generally be taken
into account by replacing � with �=v! in the detector
responses. This shows that the corrections to the detector
response are due to the offset in the time spent by the
perturbation in the detector’s arm. These corrections are
negligible in theories of massive graviton if one assumes
the current upper limits on the graviton mass. (But in this
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case one should exclude in the detector response frequen-
cies below ðmgc

2Þ=hwhich is out of the observable band of

any present or planned detector.) For these two reasons in
the rest of the paper we put v! ¼ 1. We note however that
even if different wavelengths of a gravitational wave travel
with slightly different velocities they can give in the case of
distant sources detectable corrections in the evolution of
the signal’s phase [38].

B. Stochastic signal

We will also consider a stochastic signal of the back-
ground field formed by a superposition of the plane mono-
chromatic waves

h ðt;xÞ ¼ X
�

Z 1

�1
d!

Z
S2
d�~h�ð!;�Þ��ð�Þei!ðt���xÞ

(4.10)

where the zero-mean random Fourier amplitudes ~h� are
characterized by the power spectral density Sð!;�Þ:

h ~h��ð!;�Þ~h�0 ð!0;�0Þi¼1

2
Sð!;�Þ	��0	ð!�!0Þ	

2ð�;�0Þ
4�

;

Sð�!;�Þ¼Sð!;�Þ; (4.11)

and star denotes complex conjugation.
In the case of stochastic signals the quantity one wants to

detect is the spectral density Sð!;�Þ of the possibly
anisotropic background. Since the mean value of the signal
measured by the interferometer vanishes one needs to
perform the correlation analysis so the observable quantity
are correlations hsIðtÞsJðtÞi of the two signals, sI and sJ,
measured by detectors located at points xI and xJ.
Depending on the search strategy self-correlations
(sI ¼ sJ) or cross-correlations can be used. For the time-
of-flight �TðtÞ measurements using Eqs. (4.6), (4.10), and
(4.11) one obtains

hsIðtÞsJðtÞi¼1

2

Z 1

�1

Z
S2
Sð!;�ÞF IJð!;�Þd�

4�
d!; (4.12)

so that the response of the detector can be characterized by
the antenna pattern function

F IJð!;�Þ ¼ ei!��ðxJ�xIÞ
X
�

½DIð!;�Þ: ��ð�Þ�

� ½D�
Jð!;�Þ: ��ð�Þ�; (4.13)

where DI and DJ are the detector tensors. Explicit expres-
sions for D: �� will be given in Sec. VC.

V. DETECTOR RESPONSES

A. Single arm

For the derivation of the N-round-trip response yNðtÞwe
refer the reader to Appendix A. The frequency response
function for the single-arm detector working in the

Delay-Line setup as in Fig. 1 with N round trips has the
following explicit form

HNð!Þ ¼ �ifLbs;fT ð!;xf;bs;�Þ
þ 2NLT Nð!;x;�Þe�i!Lbs;fð1þcÞ

þ Lbs;fT ð!;xbs;f;�Þe�i!Lbs;fð1þcÞe�2Ni!L�gF�ðnÞ
� iLem;bsT ð!;xem;bs;�Þe�2i!Lbs;f e�2iN!LF�ðnem;bsÞ;

(5.1)

where x � xf;e, n � nf;e, c � � � n and we omitted the

angular variables in F�. The transfer functions T N for a
multiple round trips entering Eq. (5.1) is defined in
Appendix A.
For a Fabry-Perot cavity, we assume that the reflection

coefficients of the front mirror inside and outside cavity are

 and -
 respectively, the transmission coefficient of the
front mirror is given by �; we also assume that the end
mirror has a perfect reflectivity and the system is loss-free,
i.e. 
2 þ �2 ¼ 1. In this case the signal at the beam splitter
is given by

yFPðtÞ ¼ �
yð0ÞðtÞ þ �2
X1
N¼1


N�1yðNÞðtÞ (5.2)

and the frequency response HFPð!Þ reads

HFPð!Þ ¼ �i

�
Lbs;fT ð!;xf;bs;�Þ

þ 2L
1þ 


1� 

T FPð!;x;�Þe�i!Lbs;fð1þcÞ

þ Lbs;fT ð!;xbs;f;�Þe�i!Lbs;fð1þcÞ e
�2i!L � 


1� 
e�2i!L

��
F�ðnÞ

� iLem;bsT ðxem;bsÞe�2i!Lbs;f
e�2i!L � 


1� 
e�2i!L
F�ðnem;bsÞ;

(5.3)

where the transfer functionT FP for a Fabry-Perot cavity is
defined in Appendix A.
In the approximation when !Lbs;f 	 1, !Lem;bs 	 1,

Lbs;f 	 L, Lem;bs 	 L the frequency responses (5.1) and

(5.3) read

HNð!Þ ¼ HLW
N ð!ÞT N; (5.4)

HFPð!Þ ¼ HLW
1 ð!Þ 1þ 


1� 

T FP; (5.5)

where the frequency response in the LW limit is given by

HLW
N ð!Þ ¼ �2iNLF�ðnÞ

ðLem;bs 	 L; Lbs;f 	 L;!L 	 1Þ: (5.6)

We see from Eqs. (5.4), (5.5), and (5.6) and (A2)–(A4) that
the frequency responses for the single round trip, DL and
FP arms are related by the same simple multiplication
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factors independently on the type of polarization mode.
Likewise the response function for a single round trip
defines the upper envelope (modulo the amplification fac-
tor ð1þ 
Þ=ð1� 
Þ) for the response of FP cavity and the
two are equal at the resonant frequencies !L ¼ n� which
was observed in [47] in the case of tensorial polarizations.

The high-frequency behavior of the single arm interfer-
ometers is determined by the transfer functions T , T N ,
T FP given in Eqs. (4.8), (A3), and (A4), which depend on
the frequency and the angle # between the link and the
direction of the wave propagation (# should not be con-
fused with � defined in Fig. 2). All three functions are
normalized so in the LW limit they tend to unity. At high-
frequency they define functions that vanish as 1=ð!LÞ for
all #’s except # ¼ � where T ð#Þ ¼ 1 and # ¼ 0, �

where T Nð#Þ ! 1=2 and T FPð#Þ oscillates between 1
and ð1� 
Þ=ð1þ 
Þ. In Fig. 3 we show #-dependence
of the transfer functions for some selected frequencies
and their dependence on the frequency at # ¼ �� (see
similar plots in [47] for different values of #). Using now
the functions u and v (see Eqs. (B4)–(B9) in Appendix B)
that determine the shape of the detector response in the low
frequency band from Eqs. (5.1) and (5.3) one can infer the
single-arm detector responses for each polarization mode.
We note here the distinctive frequency dependence of the
scalar longitudinal mode at #0 ¼ 
�. This mode alone
has nonvanishing antenna pattern function usl at #0 and
consequently the frequency response for the wave coming
from that direction approaches constant nonzero value at
high frequency. This effect was already noticed in [32] in
the study of sensitivity of the LISA array. One can better
understand it by considering the change of the time of
arrivals of photons moving from the emitter to the receiver
in a background of gravitational wave traveling in the same
direction. In this particular case one can show using the
geodesic equation of motion that the trajectory of photons
is unaffected for all polarizations given in (3.1), (3.2), and
(3.3) save the scalar longitudinal mode in which case the
delay in the time of arrival of photons is a frequency
independent constant and thus equal to its LW limit.
Heuristically then one can admit the view of photons
surfing on the gravitational wave and perceiving it as a
constant gravitational field.

B. Two arms

The response for the differential interferometers can be
obtained as the difference of two responses (5.1) or (5.3)
given in Sec. VA defined for single-arm interferometers.
Assuming that !Lbs;f 	 1, !Lem;bs 	 1, Lbs;f 	 L,

Lem;bs 	 L for both arms we obtain for the Michelson

interferometer

HMð!Þ ¼ Hð1Þ
1 ð!Þ �Hð2Þ

1 ð!Þ (5.7)

where we have introduced the frequency responses for the
two arms:

HðiÞ
1 ð!Þ ¼ �1þ e�2i!Li þ ð1þ e�2i!Li � 2e�i!Lið1þciÞÞci

!ð1� c2i Þ
F�ðniÞ ði ¼ 1; 2Þ: (5.8)

For the DLM and Fabry-Perot Michelson (FPM) detectors
we then have

HDLMð!Þ¼ sinN!L1

sin!L1

e�i!L1ðN�1ÞHð1Þ
1 ð!Þ�ð1$2Þ (5.9)

HFPMð!Þ ¼ 1þ 


1� 
e�2i!L1
Hð1Þ

1 ð!Þ � ð1 $ 2Þ: (5.10)

When the two arms of the interferometer lie along the x and
y axes as in Fig. 4 we have c1 ¼ � cos� sin� and c2 ¼
� sin� sin�. The general case with arbitrarily oriented
arms is set out in Appendix C. We note that the exact
formulas (C1) and (C2) given in Appendix C applied to
n1 ¼ ex and n1 ¼ ey reproduce, in the case of the scalar
transversal mode, all the results derived in [43]. In that
paper the frequency response was obtained in rigorous
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FIG. 3. Angular dependence of the magnitude of the transfer
functions T (upper left) and T 1 (upper right) for !La;b equal

0.1 (dotted line), 2 (dashed line), 5 (thick line) and 20 (thin line).
Lower plot shows the dependence on the frequency of T (dotted
curve), T 1 (dashed curve), T 20 (thin curve) and T FP for 
 ¼
0:9 (thick curve) at the point # ¼ ��.
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analysis of the geodesic equation of motion of the emitter,
beam splitters and mirrors and the Maxwell field equation
for the propagation of the laser ray. Moreover, the calcu-
lations were carried out in a different gauge so the com-
patibility of the two methods comprises a relevant
consistency check.
In Figs. 5 and 6 we give plots of the frequency responses

of the equal-arm Michelson interferometer in the configu-
ration shown in Fig. 4 as functions of the sky position and
as functions of the azimuthal angle for sections � ¼ const:
for some selected frequencies.
In Fig. 5 for the vectorial and tensorial modes we take

the sum of the squared responses
FIG. 4. The configuration and orientation of the two arms of
the Michelson, Delay-Line and Fabry-Perot interferometers
discussed in Sec. VB.

FIG. 5 (color online). Shapes of the frequency response functions of the equal-arm Michelson interferometer for different
polarization mode. From above: scalar longitudinal, scalar transversal, vectorial and tensorial polarization. We use the normalized
frequencies !L, where L is the arm length. From the left: !L ¼ 0:1, 2, 5 and 10. The scale is not preserved.
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½Hv
Mð!Þ�2 ¼ 1

2
ðjHvx

M ð!; �;�; c Þj2 þ jHvy
M ð!; �;�; c Þj2Þ

(5.11)

½Ht
Mð!Þ�2 ¼ 1

2
ðjHtp

M ð!; �;�; c Þj2 þ jHtc
Mð!;�;�; c Þj2Þ

(5.12)

which are polarization angle c -independent and are equal

to the c -square-averaged Hvx
M and Htp

M responses (or,
equally, square-averaged Hvy

M and Htc
M).

In Fig. 7 we plotted the frequency responses averaged
over the polarization and position of the source as func-
tions of the frequency. To compute the rms responses
we perform the Monte Carlo averaging of HM;sl, HM;st,

HM;v and HM;t over the sky location assuming uniform
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FIG. 6. Frequency response jHMð!Þj of the equal-arm Michelson interferometer as the function of the azimuthal angle�, fixed polar
angle � and c ¼ 0 for scalar longitudinal (� ¼ �=2) (a), scalar transversal (� ¼ �=2) (b), vectorial x (� ¼ �=2) (c), vectorial y
(� ¼ �=4) (d), tensorialþ (� ¼ �=2) (e) and tensorial� (� ¼ �=4) (f) polarization. Dotted, dashed, thick and thin curves correspond
to the normalize angular frequencies x equal 0.1, 2, 5 and 10, respectively. The frequency response has units [L].
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distribution of sources; we take 104 points for each value of
the frequency. The low-frequency level of the sensitivities
is determined by the angular pattern functions F�ðn1Þ �
F�ðn2Þ; approximately for frequencies !L> 5 the re-
sponses jHMjð!Þ fall as 1=ð!LÞ for all modes except the

scalar longitudinal mode in which case it falls as 1=
ffiffiffiffiffiffiffiffi
!L

p
.

C. Triangular configurations. Correlation analysis

To exemplify the results obtained in the previous sec-
tions we apply the exact formulas in the numerical analysis
of the antenna pattern functions for the stochastic
gravitational-wave signal.

Most planned space interferometers (LISA, BBO,
DECIGO) consist of one or more spacecraft constellations
forming almost equilateral triangles, Fig. 8. The exact
configurations and orbital parameters of spacecraft are still
debated and presumably detectors will have different in-
terferometric designs. LISA, BBO and ultimate-DECIGO
(an ultimate version of DECIGO whose sensitivity is lim-
ited only by the quantum noise) will be transponder-like

interferometers and will use the so called time delay inter-
ferometry [48] while the recently proposed DECIGO
interferometer will be equipped with Fabry-Perot cavities
[10]. Among the principal targets of the space interferome-
ters are the stochastic signals produced by the unresolved
population of the Galactic and extragalactic binaries and
the primordial gravitational-wave background. The astro-
physical foreground is expected to form an inhomogeneous
signal whose spatial fluctuations shall trace the density
distribution of sources. Thus to make a sky-maps of the
background one should explore its anisotropic compo-
nents. For this reason the sensitivity of detectors for differ-
ent multipole moments was studied in [49–51]. On the
other hand the primordial gravitational-wave background
has originated in a high-energy regime so one can
speculate that the additional polarization components
may contribute in a significant way. Thus the detection
and discrimination of various polarization components
would give an insight in the physics of the early Universe
[31]. Here we give the angular and frequency characteristic
of the triangular detector for the stochastic signals in differ-
ent polarization states. We use the spherical harmonics
analysis to compute the lowest multipole moments (up to
l ¼ 6) of the antenna pattern function in the static space-
craft configuration for the self and cross-correlated signals
which are free from the noise correlations.
We consider the detector configuration from Fig. 8. For

the equal-arm Michelson interferometer receiving a signal
at the spacecraft 1 the detector tensor is given by

DM1
ð!;�Þ ¼ L

2
fn1;3 � n1;3½T ð!;Ln3;1;�Þ

þT ð!;Ln1;3;�Þe�i!Lð1þ��n1;3Þ�
� n1;2 � n1;2½T ð!;Ln2;1;�Þ
þT ð!;Ln1;2;�Þe�i!Lð1þ��n1;2Þ�g

¼ Ln1;3 � n1;3T 1ð!;Ln1;3;�Þ
� Ln1;2 � n1;2T 1ð!;Ln1;2;�Þ (5.13)

and we have

DM1
ð!;�Þ: ��ð�Þ ¼ 2LT 1ð!;Ln1;3;�ÞF�ðn1;3Þ

� 2LT 1ð!;Ln1;2;�ÞF�ðn1;2Þ;
(5.14)

signals M2 and M3 are defined similarly. The unequal-arm
Michelson combinations X, Y, Z are given by XðtÞ ¼
M1ðtÞ �M1ðt� 2LÞ, etc. According to Eq. (4.7) the de-
tector tensors define the antenna pattern functions FMIMJ

.

Given FMIMJ
one obtains the antenna pattern functions of

the Fabry-Perot-Michelson interferometer, F FPMIFPMJ
¼

ð1þ
Þ2
ð1�
Þ2þ4
sin2!L

FMIMJ
, and of the unequal-arm Michelson

interferometer, F XIXJ
¼ 4sin2ð!LÞFMIMJ

.
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FIG. 7 (color online). The frequency responses jHMj of the
equal-arm Michelson interferometer averaged over the polar-
izations and sky location of sources as a function of !L:
(a) scalar longitudinal, (b) scalar transversal, (c) vectorial and
(d) tensorial polarization. The frequency response has units [L].
To obtain plots of HDLM and HFPM one should multiply jHMð!Þj
by j sinN!L

sin!L j and j 1þ

1�
e�2i!L j respectively.

FIG. 8. Triangular configuration of spacecraft.
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In the cross-correlation analysis of two weak signals the
covariance matrix of noises should be diagonal. To illus-
trate the properties of the angular patterns we restrict in this
section to the two noise-orthogonal combinations con-
structed from MI,

AM ¼ 1ffiffiffi
2

p ð�M1 þM3Þ; EM ¼ 1ffiffiffi
6

p ðM1 � 2M2 þM3Þ:

(5.15)

The optimal A, E observables are analogous com-
binations of X, Y, Z so that their antenna pattern functions
are given by F AA ¼ 4sin2ð!LÞF AMAM

and F AE ¼
4sin2ð!LÞF AMEM

. We decompose the antenna patterns

with respect to the spherical harmonics

almð!LÞ ¼
Z
S2
Y�
lmð�ÞF ð!L;�Þ d�

4�
(5.16)

and define the rotation-invariant quantity that characterizes
the contribution of the l-th multipole mode to the angular
power of the antenna pattern function

�2
l ð!LÞ ¼ 1

2lþ 1

Xl
m¼�l

jalmð!LÞj2: (5.17)

Figures 9 and 10 show the dependence of the angular
powers on the frequency for all polarization modes for
the self-correlated AM and cross-correlated AM, EM opti-
mal observables. The angular power for the optimal A and

E responses can be obtained by multiplying �AMAM

l and

�AMEM

l by 4sin2!L.
Since the spherical harmonics satisfy Ylmð��Þ ¼

ð�1ÞlYlmð�Þ and the antenna patterns of the self-
correlated signals MIMI, AMAM, EMEM, AA, EE are
even functions, F ð!L;��Þ ¼ F ð!L;�Þ, the odd multi-
pole moments vanish for all polarizations. Furthermore,
following arguments given in [50] which make use of some
geometric relations between optimal combinations and
transformation properties of the antenna pattern functions

one can show that �EMEM

l ¼ �AMAM

l (�EE
l ¼ �AA

l ) for all l
and that angular powers of cross-correlated optimal signals
AM, EM (A, E) for l ¼ 0 and l ¼ 1 vanish for all polariza-
tion modes.
Plots in Figs. 9 and 10 show the same frequency depen-

dence for all polarizations in the low frequency domain.
The results are summarized in Tables I and II which give
the leading terms in the LW limits for all considered
angular powers. We observe that the main contributions
to the angular powers for the self-correlated signals in low
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FIG. 9. Self-correlations of the optimal AM observable as a function of the frequency for l ¼ 0, 2, 4 and 6 for the tensorial (thick
black curve), vectorial (thick gray curve), scalar longitudinal (thin curve) and scalar transversal (thin dotted curve) polarization. The
angular power has units [L2].
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FIG. 10. Cross-correlations of the optimal AM and EM observables as a function of the frequency for l ¼ 2, 3, 4 5 and 6. Different
polarization modes are marked as in Fig. 9.

TABLE I. The leading terms in the long-wavelength limits of
the angular power �l for the self-correlated optimal AM observ-
able.

�l scalar l scalar t vector tensor

�0
1
6

1
6 1 1 � 18

ffiffiffi
�

p
5

�2
1
6

1
6

1
2 1 � 36

ffiffiffi
�

p
35

�4 1 1 4 1 � 6
ffiffiffi
�

p
35

�6 1 1 4 1 �
ffiffiffi
�

p
8008

ffiffiffiffiffiffiffiffi
1829
15

q
ð!LÞ2

TABLE II. The leading terms in the long-wavelength limits of
the angular power �l for the cross-correlated optimal AM and EM

observables.

�l scalar l scalar t vector tensor

�2
1
10

13
10

2
5 1 � 1

14

ffiffiffi
�
3

p ð!LÞ2
�3

2
7 1 10

7 1 � ffiffiffiffi
�
30

p
!L

�4 1 1 4 1 � ffiffiffiffi
�
35

p
�5 1 1 4 1 � 1

11

ffiffiffiffiffiffi
�
210

p
!L

�6 1 1 4 1 � 1
52

ffiffiffiffiffiffi
�
210

p ð!LÞ2
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frequencies comes from the l ¼ 0, 2 and 4 multipole
moments and for the cross-correlated signals from l ¼ 4
moment. We also observe that the tensor mode has the
highest angular power for the monopole (l ¼ 0) moment
while starting from l � 2 the angular power of the vector
mode dominates. For higher frequencies we notice f�2

decay of the transversal polarizations and slower decay
of both longitudinal polarizations, the behavior analogous
to the sky-averaged frequency response depicted in the
Fig. 7.

D. More arms

In this section we analyze detector’s transfer functions
for some multi-arm configurations. They are interesting
since various geometrical transfer functions differently
affect gravitational waves having different polarizations
and also give an opportunity to distinguish between the
gravitational wave signals and instrumental noise.
Particular importance have configurations with the null
signal transfer function. For example in the case of LISA
space interferometer various combinations of laser signals
exchanged between spacecraft were proposed which have
null transfer function for gravitational wave signals in the
long wavelength limit. They were successfully used in
[52–54] in the data analysis of the simulated stochastic
signals of Galactic and cosmological origins. We remark
here that this property is generally valid for waves having
arbitrary polarization so one could utilize it to compare and
complement the correlation analysis proposed by
Nishizawa et al. [30,31] in the study of interferometric
detection of various polarization modes in the cosmologi-
cal stochastic background.

In a recent paper [32] it was noticed that in LISA
detector scalar transversal polarization mode has vanishing
sensitivity for the frequencies equal to integer multiples of
the inverse of the one-way-light-time for the Sagnac � and
symmetrized Sagnac 
 combinations in the approximation
of equal arm lengths. We show here that this property holds
even in more general configurations, namely, when the
response is formed as a difference of two round-trip signals
taken in the opposite directions in a multi-arm interfer-
ometer. It is assumed that the trajectory of photons forms a
closed loop but otherwise the geometry of paths and the
numberN of links is arbitrary; the time delay in each link is
an arbitrary multiple of L. That is, we show the vanishing
sensitivity of the response

y1;2ðtþm1LÞþy2;3ðtþm2LÞþ���þyN�1;NðtþmN�1LÞ
þyN;1ðtþmNLÞ�½y1;Nðtþm0

NLÞþyN;N�1ðtþm0
N�1LÞ

þ���y3;2ðtþm0
2LÞþy2;1ðtþm0

1LÞ� (5.18)

to a plain monochromatic wave hðt�� � xÞ�st ¼
ei!ðt���xÞ�st with the frequency ! ¼ 2�n=L, for a round

trip marked by points 1; 2; . . . ; N � 1; N; 1 and with arbi-
trary integers mk, m

0
k, k ¼ 1; 2; . . .N. To see this we note

that according to Eqs. (4.4) and (B5) the contribution to the
response (5.18) coming from the k-th link oriented along
the unit vector nk;kþ1 is given by

yk;kþ1ðtþmkLÞ ¼ 1

2
½hðt�� � xkÞ � hðt�� � xkþ1Þ�

� ð1þ� � nk;kþ1Þ: (5.19)

In the sum over one loop successive terms in square
brackets of (5.19) cancel; terms in (5.19) proportional to
� � nk;kþ1 cancel with the similar terms coming from the

(N � k)-th link for the journey in the opposite direction.

VI. SUMMARY

The paper investigated the response of gravitational
wave detectors to different polarization modes. The ex-
plicit expressions for the detector responses in different
static configurations were given together with their angu-
lar and frequency characteristics. We note that the explicit
expressions for the one-way response can immediately be
rewritten in a form which accounts for the orbital and
rotational motion of the interferometers around the Sun
and they enable to construct various time-delay combina-
tions which are valid for any frequency in the detector’s
band. The time dependent position xðtÞ and orientation
nðtÞ of the detector’s arm that enter to the response would
give rise to the amplitude and phase modulation.
Following e. g. [55] one can then construct the optimal
filters which differ in the amplitude modulation functions
(cf. Eqs. (B4)–(B9)) and study the separate detectability
of the polarized signals of the quasi-continuous sources
via matched filtering. In the case of the stochastic signals
the responses define the overlap reduction function and
allow to go beyond the LW approximation which may
prove necessary for the proper detection and estimation of
the polarization modes of the stochastic gravitational-
wave background (e.g. in cases when the lower band is
restricted by the foreground of compact binaries [31]). We
also presented the frequency characteristics of the angular
power of the lowest multipole moments of the antenna
pattern function for the stochastic background in the
triangular configuration of the detector. The correlation
analysis shows that for the low frequencies the angular
power resides in the lowest even multipole moments,
l ¼ 0, 2, 4, for the self-correlated signals and in l ¼ 4
moment for the cross-correlated signals. Interestingly the
angular power for both longitudinal modes decrease
slowly with the frequency showing better directional
sensitivity of the interferometer for those modes in the
high-frequency regime which may influence the detect-
ability of the putative anisotropy in the stochastic
gravitational-wave background.
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APPENDIX A: RESPONSE OF THE DELAY-LINE
INTERFEROMETER

We derive here the frequency response for the plain
monochromatic wave moving in the direction � for the
Delay-Line interferometer in the arrangement shown in
Fig. 1. To this end we consider the frequency fluctuation
in the case when the laser beam is emitted from the point
xa at the time ta, reaches the point xb at the time tb and is
detected at the point xc ¼ 0 at the time t. Then the
response ya;b;cðtÞ is given by

ya;b;cðtÞ ¼ yb;cðtÞ þ ya;bðt� Lb;cÞ
¼ �i½!Lb;cT ð!;xb;c;�ÞF�ðnb;cÞ

þ!La;bT ð!;xa;b;�ÞF�ðna;bÞe�i���ei!t;

(A1)

where the phase shift �� :¼ !Lb;cð1�� � nb;cÞ ac-

counts for the time, Lb;c, and space, �� � xb;c, shifts for

the journey from xa to xb.
Using the formula (A1) for the composition of two

subsequent responses we can write the response corre-
sponding to the single round trip from the front mirror to
the end mirror and back as �2i!LT 1 where the normal-
ized transfer function T 1 is given by

T 1ð!;x;�Þ :¼1

2
½T ð!;�x;�ÞþT ð!;x;�Þ;e�i!Lð1þcÞ�

¼1

2
e�i!L

�
sinc

�
!L

2
ð1þcÞ

�
e�ði!LÞ=2ð�1þcÞ

þsinc

�
!L

2
ð1�cÞ

�
e�ði!LÞ=2ð1þcÞ

�
; (A2)

here 1
2 is the normalization factor and c � � � x=L. The

normalized transfer function for the multiple round trip
reads

T Nð!;x;�Þ :¼ T 1ð!;x;�Þ sinN!L

N sin!L
e�i!LðN�1Þ: (A3)

Finally we consider a Fabry-Perot cavity in the reflection
mode with the reflection coefficient 
 of the front mirror
inside the cavity. The normalized transfer function T FP

reads

T FPð!;x;�Þ :¼ T 1ð!;x;�Þ 1� 


1� 
e�2i!L
: (A4)

Eqs. (A2)–(A4) agree with the result derived by Schilling
[47] for the case of the tensorial polarization for a single
arm interferometer.
Using repeatedly the formula (A1) and assuming that the

measurement of the frequency fluctuation is performed at
the beam splitter at the origin of the reference frame the
response yNðtÞ defined in (2.1) can be written as:

yNðtÞ ¼ �i

�
!Lbs;fT ð!;xf;bs;�Þ þ!LT ð!;xe;f;�Þe�i!Lbs;fð1þcÞ 1� e�2iN!L

1� e�2i!L

þ!LT ð!;xf;e;�Þe�i!ðLþLbs;fÞð1þcÞ 1� e�2iN!L

1� e�2i!L
þ!Lf;bsT ð!;xbs;f;�Þe�i!Lbs;fð1þcÞe�2iN!L

�
F�ðnÞei!t

� i!Lem;bsT ð!;xem;bs;�Þe�2i!Lbs;f e�2iN!LF�ðnem;bsÞei!t: (A5)

The terms multiplying the transfer functions in the formula
(A5) arise from the corresponding phase shifts for the basic
responses (4.4) taken at different times and space points.
For a monochromatic plain wave detected at the point x ¼
0 the definition (4.9) gives yðtÞ ¼ !Hð!Þei!t, thus using
the formula (A5) together with Eqs. (A2)–(A4) we get the
frequency responses (5.1) and (5.3) for DL and FP single-
arm detectors.

APPENDIX B: ANGULAR PATTERN
FUNCTIONS IN THE LW LIMIT

In this appendix we give explicit forms of the functions
u and v that define angular antenna pattern functions (3.5)
in the LW limit for each polarization mode �. We first
express the source’s basis as

e x0 ¼ fx cosc þ fy sinc (B1)

e y0 ¼ �fx sinc þ fy cosc ez0 ¼ fz (B2)

where the three unit vectors ffx; fy; fz � �g are defined by
fx ¼ ex sin�� ey cos�

fy ¼ �ex cos� cos�� ey sin� cos�þ ez sin�

fz ¼ �ex cos� sin�� ey sin� sin�� ez cos�: (B3)

For the arm oriented along na;b the functions u and v then

read

scalar longitudinal : usl ¼ 1=2ðna;b � fzÞ2 (B4)
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scalar transversal : ust ¼ 1=2½ðna;b � fxÞ2 þ ðna;b � fyÞ2�
(B5)

vectorial x: uvx ¼ ðna;b � fxÞðna;b � fzÞ
vvx ¼ ðna;b � fyÞðna;b � fzÞ (B6)

vectorial y: uvy ¼ ðna;b � fyÞðna;b � fzÞ
vvy ¼ �ðna;b � fxÞðna;b � fzÞ (B7)

tensorial þ : utp ¼ 1=2½ðna;b � fxÞ2 � ðna;b � fyÞ2�
vtp ¼ ðna;b � fxÞðna;b � fyÞ (B8)

tensorial � : utc ¼ ðna;b � fxÞðna;b � fyÞ
vtc ¼ 1=2½ðna;b � fyÞ2 � ðna;b � fxÞ2� (B9)

APPENDIX C: M, DLM AND FPM
INTERFEROMETERS

In this appendix we present the responses for the
Michelson Delay-Line and Michelson Fabry-Perot inter-
ferometers. We assume that the emitter, beam splitter, front
and end mirrors of the first arm are aligned along a unit
vector n1; the second arm lies along a unit vector n2. The
response for the DLM detector then reads

yDLMðtÞ ¼
�
� e�i!½L1ð2Nþc1Þþð1þc1ÞLbs;f1�

ð1� c21Þð1� e2i!L1Þ ½ð1� c1Þei!ð2þc1ÞL1 þ 2c1e
i!L1 � ð1þ c1Þei!L1c1� � ð1� e2iN!L1Þ

þ 1

1� c1
ðe�2i!ðNL1þLbs;f1Þ � e�i!½ð1þc1ÞLbs;f1þ2NL1�Þ þ 1

1þ c1
ðe�i!ð1þc1ÞLbs;f1 � 1Þ

�
F�ðn1Þei!t � ð1 $ 2Þ

þ ð1� e�i!ð1�c1ÞLe;bsÞ
1� c1

e�2i!½NðL1þL2ÞþLbs;f1þLbs;f2�ðe2i!ðNL1þLbs;f1Þ � e2i!ðNL2þLbs;f2ÞÞF�ðn1Þei!t (C1)

For the FPM detector we have

yFPMðtÞ ¼
�
� ð1þ 
Þ

ð1� c21Þð
� e2i!L1Þ ½c1ðe
i!ð1þc1ÞL1 þ ei!ð3þc1ÞL1 � 2e2i!L1Þ þ ei!ð1þc1ÞL1 � ei!ð3þc1ÞL1�e�i!ð1þc1ÞðL1þLbs;f1Þ

þ �1þ e�i!ð1þc1ÞLbs;f1

1þ c1
� e�2i!Lbs;f1ð1� ei!ð1�c1ÞLbs;f1Þð1� e2i!L1
Þ

ð1� c1Þð
� e2i!L1Þ
�
F�ðn1Þei!t � ð1 $ 2Þ

þ ð1� eiðc1�1Þxem;bsÞ
1� c1

�
e�2ixbs;f1ð1� e2ix1
Þ


� e2ix1
� e�2ixbs;f2ð1� e2ix2
Þ


� e2ix2

�
F�ðn1Þei!t (C2)

In Eqs. (C1) and (C2) L1 and L2 denote the lengths between two mirrors in arm1 and arm2, respectively, c1 � � � n1,
c2 � � � n2.
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