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Gaussianity of temperature fluctuations in the Cosmic Microwave Background (CMB) implies that the

statistical properties of the temperature field can be completely characterized by its two-point correlation

function. The two-point correlation function can be expanded in full generality in the Bipolar Spherical

Harmonic (BipoSH) basis. Looking for significant deviations from zero for BipoSH coefficients derived

from observed CMB maps forms the basis of the strategy used to detect isotropy violation. In order to

quantify ‘‘significant deviation’’ we need to understand the distributions of these coefficients. We

analytically evaluate the moments and the distribution of the coefficients of expansion (ALM
l1l2

), using

the characteristic function approach. We show that for BipoSH coefficients withM ¼ 0 an analytical form

for the moments up to any arbitrary order can be derived. For the remaining BipoSH coefficients with

M � 0, the moments derived using the characteristic function approach need to be supplemented with a

correction term. The correction term is found to be important particularly at low multipoles. We provide a

general prescription for calculating these corrections, however we restrict the explicit calculations only up

to kurtosis. We confirm our results with measurements of BipoSH coefficients on numerically simulated

statistically isotropic CMB maps.

DOI: 10.1103/PhysRevD.85.043004 PACS numbers: 98.70.Vc, 98.80.Es

I. INTRODUCTION

Cosmological model building has been usually pursued
under the assumption that the Universe is homogeneous
and isotropic. Statistical isotropy of CMB implies that the
n-point correlation functions of the temperature and polar-
ization fluctuations are preserved under rotations of the
sky. The CMB data is one of the cleanest observations and
it is only reasonable to search for weak violations of
statistical isotropy in the CMB maps.

The fluctuations of the CMB temperature are believed to
be Gaussian to a sufficient degree of approximation that
they can be completely characterized by specifying their
two-point correlation function. The two-point correlation
function is most generally expanded in the bipolar spheri-
cal harmonic (BipoSH) basis to test the violations of iso-
tropy in the CMB temperature and polarization maps. This
formalism was developed by Hajian and Souradeep [1–6]
and is such that for an isotropic sky all BipoSH coeffi-
cients, ALM

l1l2
except A00

ll vanish on an average. These ex-

pansion coefficients have been used to parametrize several
kind of statistical isotropy violations [7–11] and was
adopted by the WMAP team [12] to search for violations
of isotropy in theWMAP data. Although, these coefficients
were primarily introduced to study statistical isotropy vio-
lation, they have found various other applications [13–15].
Since these BipoSH coefficients are being widely used, it
will be important to understand their statistical properties.

Specifying all the moments of a distribution completely
characterizes the distribution. In this paper, we derive
analytical expressions for the moments of the distribution
of the BipoSH coefficients using the characteristic function
approach. BipoSH coefficients are linear combinations of
elements of the harmonic space covariance matrix. The
independence of the terms in the linear combination for the
BipoSH coefficients with M ¼ 0 ensures that the charac-
teristic function encodes complete statistical information.
For the remaining BipoSH coefficients with M � 0, the
characteristic function method partially works due to
the presence of nonlinear correlations among terms in the
linear combination. To account for these nonlinear corre-
lations we supply a correction term to the moments derived
using the characteristic function method. We test these
analytical results against simulations. We simulate the
CMB maps using the widely used HEALPix [16] package.
This paper is organized as follows. In Sec. II, we briefly

discuss the BipoSH formalism introduced by Hajian and
Souradeep. In Sec. III, we discuss the characteristic func-
tion approach which is extensively used to derive the mo-
ments of the distribution of the BipoSH coefficients. In
Sec. IV, we present the analytical expressions derived for
the various BipoSH coefficients. The details of these cal-
culations and a detailed discussion on the characteristic
function approach can be found in the Appendixes. We
conclude with a discussion of our results in Sec. V.

II. BIPOSH FORMALISM

The isotropic CMB sky is fully characterized by specify-
ing the four-parity conserved angular power spectra CTT

l ,
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CEE
l , CBB

l , and CTE
l , where T corresponds to the scalar

temperature anisotropies and E and B correspond to the
gradient and curl components of the polarization field,
respectively. These are the Legendre polynomial coeffi-
cients of the corresponding two-point correlation function
defined in the following manner,

CXX0 ðn̂1;n̂2Þ ¼ CXX0 ðn̂1 � n̂2Þ ¼
X
l

2lþ 1

4�
CXX0
l Plðn̂1 � n̂2Þ:

(1)

In what follows we drop the ’XX0’ label for notational
brevity. If the CMB sky is not assumed to be isotropic
then two-point correlation function in general will depend
on the directions n̂1 and n̂2. Hence, the bipolar spherical
harmonic basis forms a very natural basis in which the
CMB two-point correlation function can be expanded,

Cðn̂1; n̂2Þ ¼
X

l1;l2;L;M

ALM
l1l2

fYl1ðn̂1Þ � Yl2ðn̂2ÞgLM; (2)

where ALM
l1l2

are BipoSH coefficients and fYl1ðn̂1Þ �
Yl2ðn̂2ÞgLM are bipolar spherical harmonics [17]. BipoSH

functions are irreducible tensor products of two spherical
harmonics with different arguments, they form an ortho-
normal basis on S2 � S2 for different sets of l1, l2, L, M.
Their transformation properties under rotations are similar
to spherical harmonics and can be expressed as,

fYl1ðn̂1Þ � Yl2ðn̂2ÞgLM ¼ X
m1m2

CLM
l1m1l2m2

Yl1
m1
ðn̂1ÞYl2

m2
ðn̂2Þ; (3)

where CLM
l1m1l2m2

are Clebsch-Gordon coefficients. The in-

dices of these coefficients satisfy the triangularity condi-
tions jl1 � l2j � L � l1 þ l2 and m1 þm2 ¼ M.

The BipoSH coefficients can be shown to be linear
combinations of off-diagonal elements of the harmonic
space covariance matrix [1],

ALM
l1l2

¼ X
m1m2

hal1m1
a�l2m2

ið�1Þm2CLM
l1m1l2�m2

; (4)

where alm’s are the spherical harmonic coefficients of the
CMB maps. In the case of an isotropic CMB sky it can
be shown that all the BipoSH coefficients vanish except the
coefficients of the form A00

ll . These nonvanishing coeffi-

cients can be expressed in terms of the CMB angular power

spectra, A00
ll ¼ ð�1ÞlCl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
[1,10].

An unbiased estimator of BipoSH coefficients can be
defined in terms of the spherical harmonic coefficients of
the CMB maps,

Â LM
l1l2

¼ X
m1m2

al1m1
al2m2

CLM
l1m1l2m2

: (5)

Every term in the linear combination leading to BipoSH
coefficients with M ¼ 0, is found to be independent
of every other term in summation unlike for BipoSH co-
efficients with M � 0 where terms can have nonlinear

correlations. This difference in the two sets of BipoSH
coefficients will be crucial while deriving the moments
of distribution of these coefficients. The notion of inde-
pendent random variables will be briefly explained in the
following section.

III. CHARACTERISTIC FUNCTION METHOD

We investigate the statistical properties of the real and
imaginary parts of complex coefficients obtained in the
BipoSH representation of the CMB two-point correlation
function. To arrive at the moments of BipoSH coefficients,
which are linear combinations of covariance matrix
elements [see Eq. (C2)], we adopt the characteristic func-
tion approach which is particularly useful in statistical
analysis of linear combination of independent random
variables [18].
Before we plunge into discussing the details of the

techniques used in this article, we make a small diversion
to discuss the idea of independent random variables which
is extensively used throughout our analysis. Correlation
between random variables is a measure of statistical linear
dependence hXi � Xji, of the random variables. Statistical

independence of two random variables necessarily requires
any form of correlations between them to vanish.

hFðXiÞ � FðXjÞi ¼ 0 8 i � j; (6)

where FðXÞ is any function of the random variable X. It is
important to note that independent random variables are
always uncorrelated but not all uncorrelated random vari-
ables are independent.
Now we return to the discussion on the characteristic

function method. The characteristic function of any ran-
dom variable completely defines its probability distribution
[19]. It is defined in the following manner,

’XðtÞ ¼ E½eitX� t 2 <: (7)

Consider a random variable defined in the following
manner,

Zn ¼
Xn
i¼1

aiXi; (8)

where ai’s are constants and Xi’s are independent random
variables which are not necessarily identically distributed.
The characteristic function of Zn will be the product of the
characteristic function of the individual terms contributing
to the linear sum,

’Zn
ðtÞ ¼ ’X1

ða1tÞ’X2
ða2tÞ . . .’Xn

ðantÞ: (9)

Given the cumulants of the distribution of a random vari-
able, it is easy to derive the moments of its probability
distribution. To arrive at the cumulants of the distribution
of the random variable Zn, we introduce the cumulant
generating function, defined as the logarithm of the
characteristic function,
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gZðtÞ ¼ log½’ZðtÞ�: (10)

The cumulant generating function for the random variable
Zn will be the sum of the cumulant generating functions of
the individual independent terms contributing to the linear
sum. Finally, the cumulants of the random variable Z can
be obtained by taking the derivative of the cumulant gen-
erating function and evaluating them at zero,

Kn ¼ ingnZðtÞjt¼0: (11)

The explicit relationships between cumulants and cen-
tral moments until the fifth central moments are given
below,

�1 ¼ K1 ½Mean�;
�2 ¼ K2 ½Variance�;
�3 ¼ K3 ½ Skewness�;
�4 ¼ K4 þ 3K2

2 ½Kurtosis�;
�5 ¼ K5 þ 10K3K2 ½5th moment�:

(12)

Each term in the expansion for moments in terms of the
cumulants is of the form KA

a � KB
b � KC

c � . . . , such that

aAþbBþcCþ...¼n. Also note that,A;B;C...�1 and 2 �
a; b; c; . . . � n, where n is the moment that one is interested
in. The coefficient of any general term in the expansion
of the moment in terms of the cumulant is given by,

n!

A! � a!A � B! � b!B � C! � c!C . . . :

Note that in the figures that appear in the rest of the articlewe
plot the normalized moments defined by,

~�n ¼ �n

�n ; (13)

except for the standard deviation (�) which is used to nor-
malize all the other moments.

IV. STATISTICS OF BIPOLAR SPHERICAL
HARMONIC COEFFICIENTS

We classify BipoSH coefficients into four different cases
depending upon the form of their characteristic function.

Case A: l1 ¼ l2, M ¼ 0,
Case B: l1 � l2, M ¼ 0,
Case C: l1 ¼ l2, M � 0,
Case D: l1 � l2, M � 0.

To arrive at the distribution of a given BipoSH coeffi-
cient, we begin with finding out the characteristic function
of individual terms involved in the linear combination. The
characteristic function of the BipoSH coefficient can then
be written as the product of the characteristic functions of
each of the individual terms present in summation.

This simple scheme works really well for cases A and B,
as in these cases terms present in the summation are
independent of each other. However it only partially works
in the cases C and D as there appear terms in the summa-
tion which are linearly uncorrelated but not statistically
independent of each other. For these cases, we calculate the
moments using the method of characteristic function and
then present a general prescription for calculating the
correction to these moments.

A. Case A: Bipolar coefficient with l1 ¼ l2 ¼ l, M ¼ 0

These BipoSH coefficients are only real, as their imagi-
nary parts do not exist. Refer to Appendix C for details. In
this case, all the terms in summation are independent of
each other. In the linear combination there appear terms
with two distinct distribution functions. Terms with
fm1 � 0; m1 ¼ �m2g are �2 distributed with two degrees
of freedom and terms with fm1 ¼ m2 ¼ 0g are �2 distrib-
uted with one degree of freedom. For the details of the
characteristic function of these BipoSH coefficients, refer
to Appendix C 1.
The nth order cumulant for AL0

ll can be derived to have

the following analytical form,

~Kn ¼ 2n�1ðClÞnðn� 1Þ!
�

�
ðCL0

l0l0Þn þ 2
X
m1fm1>0g

ðð�1Þm1CL0
lm1l�m1

Þn
�
:

Moments for these coefficients can be derived given this
form of the cumulants [Eq. (13)]. We have shown that the
odd moments for these coefficients oscillate between posi-
tive and negative values for even and odd multipoles (l),
respectively. An example of this behavior can be seen in
Figs. 1 and 2. For coefficients with L � 0, the mean turns
out to be zero but the rest of the odd moments are nonzero,
implying that these coefficients have an asymmetric distri-
bution, as seen in Fig. 1.
A subset of these coefficients are the coefficients of the

form A00
ll . Under statistical isotropy, these are the only

nonvanishing coefficients and are related to the CMB
angular power spectrum through the following relation,

A00
ll ¼ ð�1Þl ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

Cl: (14)

It is already a well-known fact that Cl are �2 distributed.
Here, we derive this known result as an illustration of
the characteristic function method used in this work.
The characteristic function for these coefficients has the
following form,

’A00
ll
ðtÞ ¼

�
1�

�
2ið�1ÞlCltffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

���ð2lþ1Þ=2
: (15)

The Fourier transform of this characteristic function yields
the probability distribution function (PDF). For even values
of multipole (l) the PDF is found to have the form,
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fðx; kÞ ¼
(

1
2k=2ak=2�ðk=2Þ x

ðk=2Þ�1 exp
�
�x
2a

�
x � 0

0; otherwise
(16)

and for odd values of multipole (l), it is has the form

f�ð�x; kÞ. Here, a ¼ Cl=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
is the related to the

isotropic power at multipole l and k ¼ 2lþ 1 is number
of degrees of freedom of the �2 distribution. As one would
have expected, these coefficients are found to have a �2

distribution. The results are depicted in Fig. 2. Note that the
mean for these BipoSH coefficients (A00

ll ) does not vanish

as these are the only nonvanishing coefficients under sta-
tistical isotropy.

B. Case B: Bipolar coefficient with l1 � l2, M ¼ 0

Even in this case, all the terms in summation are inde-
pendent of each other. Terms with fm1 � 0; m1 ¼ �m2g
are Laplace distributed and terms with fm1 ¼ m2 ¼ 0g
are modified Bessel of second kind distributed. The details
of the characteristic function of the real and imaginary
parts of these BipoSH coefficients can be found in

Appendix C 2. Only even-ordered cumulants exist for these
coefficients,

~K ðn¼evenÞ ¼ ðn� 1Þ!ðCl1Cl2Þn=2

�
� X

m1�0;m2�0
m1¼�m2

21�nðCLM
l1m1l2m2

Þn þ ðCLM
l10l20

Þn
�
:

Note that imaginary part of these coefficients will not have
any contribution from the second term in the above ex-
pression for cumulants. Refer to Appendix C 2 for details.
The moments of distribution of these coefficients can be
obtained given the above form for the cumulants [Eq. (13)].
These coefficients have symmetric PDF, as evident from
Fig. 3.

C. Case C: Bipolar coefficient with l1 ¼ l2 ¼ l, M � 0

We first calculate the moments of distribution for these
coefficients using the characteristic function method
assuming that all terms in the linear combination
are independent. In the linear combination for these
coefficients there appear terms like fm1 � 0; m2 � 0g
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FIG. 1 (color online). Standard deviation (�), skewness ( ~�3), kurtosis ( ~�4) and 5th moment ( ~�5) of real part of A
20
ll , from 15 000

simulations. WMAP7 has detected a signal of isotropy violation in these coefficients around the multipole of 200. Hence we calculate
the statistics of these coefficients up to higher multipoles.
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which are Laplace distributed and terms like fm1 ¼ 0;
m2 ¼ Mg, fm1 ¼ M;m2 ¼ 0g and fm1 ¼ m2g which are
distributed as modified Bessel function of the second
kind of zeroth-order. The details of the characteristic func-
tion for these coefficients can be found in Appendix C 3. It
is observed that only even-ordered cumulants exist imply-
ing that the distribution of these coefficients is symmetric,

~K ðn¼evenÞ ¼ ðn� 1Þ!Cn
l �

� X
m1�0;m2�0

m1>m2

2ðCLM
lm1lm2

Þn

þ ðCLM
lm1lm2

Þn�m1m2
þ X

m1_m2¼0

ð ffiffiffi
2

p
CLM
lm1lm2

Þn
�
:

Note that the imaginary part of these coefficients will not
have any contribution from the last term in above expres-
sion for cumulants. Refer to Appendix C 3 for details. The
moments of distribution of these coefficients can be ob-
tained given the above form for the cumulants [Eq. (13)],
see Fig. 4 for an illustration. The mismatch in simulations
and analytically derived moments at low multipoles (l) is
due to the assumed underlying independence of the terms

contributing to the linear combination. We reiterate that by
independence we mean that all order correlations [see
Eq. (6)] among the random variables vanish. For the case
of these BipoSH coefficients it is found that even though
there are no linear correlations, the terms appearing in the
linear combination can have nonlinear correlations among
them. Hence the characteristic function approach used
does not fully describe the statistics of these coefficients.
The moments calculated using the characteristic function
method need to be supplemented with correction terms,
which account for the higher order correlations. Refer to
Appendix C 6 for details. However, it is found that for
certain coefficients the terms involved in the linear combi-
nation are all independent and the correction term goes to
zero. �� are moments calculated using the characteristic
function method and ~� are the corrected moments.

~�n ¼ ��n þ correction: (17)

We find that variance does not have any corrections due the
fact that the terms are linearly uncorrelated. However,
kurtosis does have a correction term as seen in Fig. 4.
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FIG. 2 (color online). This figure depicts the PDF of some of the coefficients of the form A00
ll derived from 15 000 simulations.

Coefficients with even multipoles (l) are left-skewed and those with odd multipoles (l) are right-skewed.

STATISTICS OF BIPOLAR REPRESENTATION OF CMB MAPS PHYSICAL REVIEW D 85, 043004 (2012)

043004-5



 0.1

 1

 10

 100

 20  40  60  80  100  120  140  160  180  200

l

σ

Simulations
Analytical

 3

 4

 5

 6

 7

 8

 0  20  40  60  80  100

l

µ~ 4

Simulations
uncorrected

corrected

FIG. 4 (color online). Standard deviation (�) and kurtosis ( ~�4) of real part of A
43
ll derived from 15 000 simulations. The difference

between corrected and uncorrected analytical moments is prominent at low values of multipole (l). The corrected kurtosis can be seen
to be in good agreement with the simulation results.
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20
llþ2, from 15 000

simulations. These coefficients have a symmetric PDF. The kurtosis of these coefficients approach that of a Gaussian for high
multipoles.
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D. Case D: Bipolar coefficient with l1 � l2, M � 0

Similar to the previous case, we begin by finding the
moments of distribution for these coefficients using the
characteristic function method assuming that all terms in
the linear combination are independent. In the linear com-
bination for these coefficients there appear terms with
fm1 � 0; m2 � 0g which are Laplace distributed and terms
with fm1 ¼ 0; m2 ¼ Mg, fm1 ¼ M;m2 ¼ 0g which have
modified Bessel function of second kind distribution. The
details of the characteristic function for these coefficients
can be found in Appendix C 4. Even for these coefficients it
is found that only even-ordered cumulants exist implying
that their PDF is symmetric.

~Kðn¼evenÞ ¼ ðn�1Þ!ðCl1Cl2Þn=2�
� X
m1�0;m2�0

21�nðCLM
l1m1l2m2

Þn

þ X
m1_m2¼0

ð ffiffiffi
2

p Þ�nðCLM
l1m1l2m2

Þn
�
: (18)

Note that imaginary part of these coefficients will not have
any contribution from the last term in above expression for
cumulants. Refer to Appendix C 4 for details. Just like in
the previous case, the moments calculated using the char-
acteristic function method are supplemented with correc-
tion terms which account for the nonlinear correlations, see
Fig. 5 for an illustration.

To quantify the agreement between simulations and the
analytically derived results we calculate the mean square
difference. The closeness of fit is seen (Fig. 6) to be
inversely proportional to the number of simulations. We
observe that beyond 10 000 simulations good convergence
is achieved hence we go up to 15 000 simulations to derive
all our results.

E. Covariance of bipolar coefficients

Under statistical isotropy, we show [using Eq. (A6)] that
the covariance takes up the following form,

hALM
l1l2

A�L0M0
l01l

0
2

i ¼ Cl1Cl2�l1l
0
1
�l2l

0
2
�LL0�MM0

þ ð�1Þl1þl2þLCl1Cl2�l1l
0
2
�l2l

0
1
�LL0�MM0

þ ðCl1Cl0
1
ð�1Þl1þl0

1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l01 þ 1Þ

q
�l1l2�l01l

0
2

� �L0�M0�L00�M00Þ:
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FIG. 5 (color online). Standard deviation (�) and kurtosis ( ~�3) of real part of A
106
llþ4 derived from 15 000 simulations. The difference

between corrected and uncorrected analytical moments is prominent at low values of multipole (l). The corrected kurtosis can be seen
to be in agreement with the simulation results.
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For the coefficients to be independent of each other any
form of correlation, linear or nonlinear, should vanish. We
find that the bipolar coefficients have no linear correlations
which is not a sufficient condition for the coefficients to be
independent of each other.

V. DISCUSSION AND CONCLUSIONS

Statistical isotropy which implies rotational invariance
of two-point correlation function is an assumption in cos-
mology and needs to be rigorously tested. Specific estima-
tors can be constructed which target various kinds of
statistical isotropy violation [20]. Knowing the PDF of
these estimators gives a much better handle on assessing
the significance of any statistical isotropy violation detec-
tion. The two-point correlation function is used as a mea-
sure of statistics of a Gaussian random field and is most
generally expanded in the BipoSH basis. The coefficients
of expansion in this basis encode all the symmetries of the
correlation function. In this paper we derive the statistical
properties of these coefficients. A quantitative understand-
ing of the statistics of these coefficients is important, as
signals of isotropy violation are being searched for in CMB
data using these coefficients. Similar analysis has also been
performed to derive the PDF of the non-Gaussianity esti-
mator fNL [21].

The strategy has been to calculate the characteristic
function for these coefficients and then arrive at the cumu-
lants. These cumulants can be easily translated to yield the
moments of distribution of the coefficients of expansion.
This strategy works perfectly well when the terms involved
in the expansion of the BipoSH coefficients are indepen-
dent of each other. However, we notice that for a certain set
of BipoSH coefficients the characteristic function ap-
proach works only partially. In this paper we restrict the
calculation of the correction to the moments only up to
kurtosis, as for higher-order moments it becomes increas-
ingly tedious, however the general prescription would
work.

The BipoSH coefficients of the form A00
ll are directly

related to the CMB angular power spectrum. As expected,
these coefficients are shown to have a �2 distribution with
(2lþ 1) degrees of freedom using the characteristic func-
tion method. For the rest of the BipoSH coefficients we
provide analytical expressions for moments up to any
arbitrary order. We find that BipoSH coefficients of the
form AL0

ll have an asymmetric distribution. The remaining

BipoSH coefficients are shown to have a symmetric distri-
bution. The BipoSH coefficients of the form ALM

l1l2
(M � 0)

comprise of terms with nonlinear correlations among them,
due to which the analytical moments derived from charac-
teristic function method need to be supplemented with a
correction term. In these cases we give a prescription to
account for the contribution of these nonlinear correlations
to the moments of the distribution. All these results are
tested against extensive simulations.

Isotropy violation signals are being cast in the BipoSH
representation of CMBmaps. A thorough understanding of
the statistics of these coefficients is extremely crucial to
assess the significance of any statistical isotropy violation
measurement. In the recent past, WMAP7 team claimed
detection of isotropy violation in V-Band and W-Band
maps. These detections were suspected not to be of cos-
mological origin owing to the difference in significance of
detection in the two frequency bands and its alignment
with the ecliptic. However, more recent work has at-
tempted at explaining these observations by accounting
for gravitational lensing modifications to the BipoSH co-
efficients [22].
This signal was detected in the BipoSH coefficients

A20
ll and A20

llþ2. Our study has revealed that the PDF of

these coefficients significantly deviate from being
Gaussian, particularly, at low spherical harmonic multi-
poles. Interestingly, in our study we find that the BipoSH
coefficients A20

ll have an asymmetric PDF, with even

multipoles (l) being positively skewed and the odd multi-
poles (l) being negatively skewed. The BipoSH coeffi-
cients A20

llþ2 are found to have a symmetric PDF. We find

that for full sky and isotropic CMB maps, band power
averaging results in reduced skewness for these coeffi-
cients. The WMAP team uses band power averaged
BipoSH coefficients with the large bin sizes (bin-width ¼
50) to reduce noise, however with experiments like
PLANCK it might be possible to achieve similar signal
to noise ratio for smaller bin sizes. With smaller bin sizes
the skewness of these coefficients might become consid-
erable and it will then become important to account
for the non-Gaussian PDF of the BipoSH coefficients.
We are currently assessing the implications of these
statistics explicitly for the upcoming data sets. We are
further trying to characterize the distribution of
the BipoSH coefficients around a specific nonzero statis-
tical isotropy violation signal which is a work under
progress.
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APPENDIX A: STATISTICS OF SPHERICAL
HARMONIC COEFFICIENTS

The temperature fluctuations in the CMB sky maps can
be decomposed in the following manner,

�Tðn̂Þ ¼ X1
l¼1

Xm¼þl

m¼�l

almYlmðn̂Þ; (A1)

where n̂ ¼ ð�;�Þ, Ylmðn̂Þ are the spherical harmonics and
alm are the spherical harmonic coefficients. The expansion
coefficients can be obtained by taking the inverse trans-
form of the above equation and can be expressed as,

alm ¼
Z

d�n̂Y
�
lmðn̂Þ�Tðn̂Þ: (A2)

The spherical harmonics can be expressed in terms of the
Legendre polynomials,

Ylmð�;�Þ ¼ ð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl�mÞ!

4�ðlþmÞ!

s
Pm
l ðcos�Þeim�:

(A3)

Spherical harmonic coefficients, alm’s, are complex coef-
ficients,

alm ¼ xlm þ iylm; (A4)

where xlm and ylm are real and imaginary parts of the
coefficients and are statistically independent of each other.

The reality condition for temperature fluctuations (A1)
guarantees the following relations,

alm ¼ ð�1Þma�l�m;

xlm ¼ ð�1Þmxl�m;

ylm ¼ ð�1Þmþ1yl�m:

(A5)

It is easy to see from the above expressions that when
m ¼ 0, the imaginary part of the expansion coefficient
vanishes.

CMB temperature fluctuations resulting from the sim-
plest versions of the inflationary paradigm are Gaussian
and statistically isotropic. The statistical isotropy (SI) takes
the form of a diagonal covariance matrix in harmonic
space,

hal1m1
a�l2m2

i ¼ Cl1�l1l2�m1m2
; (A6)

where Cl is the angular power spectrum. Under the as-
sumption of statistical isotropy, the angular power spec-
trum carries all the information about the Gaussian
temperature fluctuations.

The real and imaginary parts of the coefficient alm, with
m � 0, are independent Gaussian random variates with
mean zero and variances given by,

�2ðxlmÞ ¼ �2ðylmÞ ¼ 1

2
Cl: (A7)

However, for the coefficients with m ¼ 0, the imaginary
part vanishes and the real parts are Gaussian random
variables with mean zero and variance given by,

�2ðxl0Þ ¼ Cl: (A8)

APPENDIX B: CHARACTERISTIC FUNCTION
APPROACH AND APPLICATIONS

The characteristic function of any random variable is
defined as the Fourier transform of its probability distribu-
tion function [see Eq. (7)]. The characteristic function
approach is particularly useful in statistical analysis of
linear combinations of independent random variables, as
explained in Sec. III. Hence this technique can be used to
find out the characteristic function of the BipoSH coeffi-
cients which can also be expressed as linear combination of
some random variables [see Eq. (5)]. The recipe is to find
out the characteristic function of each of the term present in
the linear sum and then taking the product of all those
characteristic functions. We discuss a few applications of
this technique, which have been extensively used in our
calculations.
Let X1 and X2 be two independent normal variates with

zero means and variances �2
1 and �2

2. The distribution of
the product of these random variables (Z ¼ X1X2) is given
by [18,23],

fZðzÞ ¼
K0ð jzj

�1�2
Þ

��1�2

; (B1)

where K0 is the zeroth-order modified Bessel function
(normal product distribution function). The characteristic
function corresponding to the above distribution function is
given by [24],

’ZðtÞ ¼ ð1=�1�2Þ
ðt2 þ 1

�2
1�

2
2

Þ1=2 : (B2)

Consider the case of linear combination of two normal
product distributed random variates. If X1, Y1, X2, Y2 are
independent Gaussian variates with zero means and var-
iances �2

1 for X1, Y1 and �
2
2 for X2, Y2. Then the character-

istic function of the random variable Z ¼ X1X2 þ Y1Y2 is
given by,

’ZðtÞ ¼ 1

ð1þ t2�2Þ ; (B3)

where � ¼ 1=�1�2. The above characteristic function
corresponds to that of a Laplace distribution
(Laplaceð0; 2�2Þ).
Another application of our interest is that of the differ-

ence of squares of two Gaussian random variates with zero
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mean and same variance. It is well known that the sum of
squares of two Gaussian random variates is �2 distributed.
The difference however is not �2 distributed, instead is
modified Bessel function of second kind distributed. This
can be demonstrated using the characteristic function ap-
proach, If X and Y are two random variables having normal
distribution Nð0; �Þ, then X2 and Y2 are �2 distributed and
their characteristic function is given by,

’ðtÞ ¼ 1

ð1� 2i�2tÞ1=2 : (B4)

Using Eq. (9), we obtain the characteristic function for the
random variable defined as Z ¼ X2 � Y2,

’ZðtÞ ¼ 1

½1þ ð2�2tÞ2�1=2 : (B5)

Notice that this characteristic function is that of the modi-
fied Bessel function of second kind distribution with zero
order. The above illustrated examples are of our particular
interest, as they will be used to study the statistics of
bipolar spherical harmonic coefficients.

APPENDIX C: BIPOLAR STATISTICS

In order to delve the rich source of information which
will be provided by future CMB maps, it is important to
devise methods to detect, isolate, and diagnose various
possible causes of departure from statistical isotropy. In
particular, our approach is to look at the statistical behavior
of the complex coefficients that arise in bipolar spherical
analysis of the CMB two-point correlation function [see
Eq. (5)]. Owing to the reality of the correlation function,
the following relation holds for BipoSH coefficients,

A�LM
l1l2

¼ ð�1Þl1þl2�LþMAL�M
l1l2

(C1)

Since BipoSH coefficients are complex, their real and
imaginary parts can be expressed as,

ALMðRÞ
l1l2

¼ X
m1m2

ðxl1m1
xl2m2

� yl1m1
yl2m2

ÞCLM
l1m1l2m2

;

ALMðIÞ
l1l2

¼ X
m1m2

ðyl1m1
xl2m2

þ xl1m1
yl2m2

ÞCLM
l1m1l2m2

:

(C2)

The indices in the above expression satisfy the following
relations: jl1 � l2j � L � l1 þ l2 and m1 þm2 ¼ M, ow-
ing to the presence of the Clebsch-Gordon coefficients.

The BipoSH coefficients can be classified on the basis of
the form of their characteristic function,

Case A: l1 ¼ l2, M ¼ 0,
Case B: l1 � l2, M ¼ 0,
Case C: l1 ¼ l2, M � 0,
Case D: l1 � l2, M � 0.

1. Case A: l1 ¼ l2, M ¼ 0

BipoSH coefficients for this case can be expanded as,

AL0
l1l1

¼ X
m1m2fðm1�0;m2�0Þ;m1¼�m2g

al1m1
al1m2

CL0
l1m1l1m2

þ X
m1m2fm1¼m2¼0g

al1m1
al1m2

CL0
l1m1l1m2

: (C3)

The above expansion has two types of terms depending on
their characteristic function. Terms with fðm1 � 0;
m2 � 0Þ; m1 ¼ �m2g and the terms where both m1 and
m2 are zero fm1 ¼ m2 ¼ 0g. The imaginary parts of these
coefficients vanish owing to the reality of the correlation
function. The real part of these coefficients is given by
[Eq. (C2)],

AL0ðRÞ
l1l1

¼ X
m1ðm1>0Þ

ð�1Þm12ðx2l1m1
þ y2l1m1

ÞCL0
l1m1l1�m1

þ x2l10C
L0
l10l10

: (C4)

To arrive at the moments of these BipoSH coefficients, one
needs the characteristic function of each term in the sum-
mation. The first term in the above expression has a �2

distribution with two degrees of freedom. Its characteristic
function has the following form (refer to Appendix B),

’ZðtÞ ¼ 1

½1� ð2ið�1Þm1CL0
l1m1l1�m1

Cl1 tÞ�
: (C5)

The second term is �2 distributed with one degree of
freedom and its characteristic function has the following
form (refer to Appendix B),

’ZðtÞ ¼ 1

½1� ð2iCL0
l10l10

Cl1 tÞ�1=2
: (C6)

Hence, the characteristic function of these BipoSH coef-
ficients is given by [see Eq. (7)],

’
AL0ðRÞ
l1l1

ðtÞ ¼
2
4Y

m1fm1�0g

1

½1� ð2ið�1Þm1CL0
l1m1l1�m1

Cl1 tÞ�

3
5

�
2
4 1

½1� ð2iCL0
l10l10

Cl1tÞ�1=2
3
5: (C7)

2. Case B: l1 � l2, M ¼ 0

The difference in the expansion in this case and the case
above is that here l1 � l2.

AL0
l1l2

¼ X
m1m2fðm1�0;m2�0Þ;m1¼�m2g

al1m1
al2m2

CL0
l1m1l2m2

þ X
m1m2fm1¼m2¼0g

al1m1
al2m2

CL0
l1m1l2m2

: (C8)
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The real and imaginary part of these coefficients are
given by the following expressions [Eq. (C2)],

AL0ðRÞ
l1l2

¼ X
m1m2fðm1�0;m2�0Þ;m1¼�m2g

ðxl1m1
xl2m2

� yl1m1
yl2m2

ÞCL0
l1m1l2m2

þ xl10xl20C
L0
l10l20

;

AL0ðIÞ
l1l2

¼ X
m1m2fðm1�0;m2�0Þ;m1¼�m2g

ðyl1m1
xl2m2

þ xl1m1
yl2m2

ÞCL0
l1m1l2m2

:

(C9)

Note that the imaginary part of the coefficients in this case

does not vanish. The first term in the expansion for AL0ðRÞ
l1l2

and AL0ðIÞ
l1l2

is Laplace distributed with characteristic func-

tion given by (refer to Appendix B),

’ZðtÞ ¼ 2

�ð4þ ðCL0
l1m1l2m2

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2Þ (C10)

and the second term in the expansion for AL0ðRÞ
l1l2

has modi-

fied Bessel function of second kind distribution with the
following characteristic function (refer to Appendix B),

’ZðtÞ ¼ 1ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðCL0

l1m1l2m2
t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2
q : (C11)

Hence, the characteristic function for the real part of these
BipoSH coefficients is given by,

’
AL0ðRÞ
l1l2

ðtÞ ¼
2
4 Y

m1m2fðm1�0;m2�0Þ;m1¼�m2g

2

�ð4þ ðCL0
l1m1l2m2

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2Þ

3
5

�
2
4 Y

m1m2fðm1¼0;m2¼0Þg

1ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðCL0

l1m1l2m2
t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2
q

3
5

(C12)

and the characteristic function for the imaginary part of
these BipoSH coefficients is given by,

’
AL0ðIÞ
l1l2

ðtÞ ¼
2
4 Y

m1m2fðm1�0;m2�0Þ;m1¼�m2g

2

�ð4þ ðCL0
l1m1l2m2

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2Þ

3
5:

(C13)

3. Case C: l1 ¼ l2, M � 0

The expansion of these BipoSH coefficients is split into
three parts depending upon the form of the characteristic
function of each of the terms,

ALM
l1l1

¼ X
m1m2fðm1�0;m2�0Þ;m1>m2g

2al1m1
al1m2

CLM
l1m1l1m2

þ X
m1m2fðm1_m2Þ¼0;m1>m2g

2al1m1
al1m2

CLM
l1m1l1m2

þ X
m1m2fm1¼m2g

al1m1
al1m2

CLM
l1m1l1m2

: (C14)

The real and imaginary parts of these bipolar coefficients
are given by,

ALMðRÞ
l1l1

¼ X
m1m2fðm1�0;m2�0Þ;m1>m2g

2ðxl1m1
xl1m2

� yl1m1
yl1m2

ÞCLM
l1m1l1m2

þ X
m1m2fðm1_m2Þ¼0;m1>m2g

2xl1m1
xl1m2

CLM
l1m1l1m2

þ X
m1m2fm1¼m2g

ðxl1m1
xl1m2

� yl1m1
yl1m2

ÞCLM
l1m1l1m2

;ALMðIÞ
l1l1

¼ X
m1m2fðm1�0;m2�0Þ;m1>m2g

2ðyl1m1
xl1m2

þ xl1m1
yl1m2

ÞCLM
l1m1l1m2

þ X
m1m2fm1¼m2g

ðyl1m1
xl1m2

þ xl1m1
yl1m2

ÞCLM
l1m1l1m2

: (C15)

The first term in the expansion for ALMðRÞ
l1l2

and ALMðIÞ
l1l2

is

Laplace distributed with characteristic function given by
(refer to Appendix B),

’ZðtÞ ¼ 2

�ð4þ ð2CLM
l1m1l1m2

Cl1 tÞ2Þ
: (C16)

The second term in the expansion for ALMðRÞ
l1l2

has a modified

Bessel function of second kind distribution. It has the
following characteristic function (refer to Appendix B),

’ZðtÞ ¼ 1ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ð2CLM

l1m1l1m2
Cl1 tÞ2

q : (C17)

The last terms in the expansion for ALMðRÞ
l1l2

and ALMðIÞ
l1l2

have a

modified Bessel function of second kind distribution and
the corresponding characteristic function is given by (refer
to Appendix B),

’ZðtÞ ¼ 1ffiffiffiffiffiffiffi
2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðCLM

l1m1l1m2
Cl1 tÞ2

q : (C18)

Assuming independence of the terms present in summa-
tion, the characteristic function for the real part of BipoSH
coefficients is of the form [see Eq. (7)],
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’
ALMðRÞ
l1l1

ðtÞ¼
2
4 Y

m1m2fðm1�0;m2�0Þ;m1>m2g

2

�ð4þð2CLM
l1m1l1m2

Cl1 tÞ2Þ

3
5

�
2
4 Y

m1m2fðm1_m2Þ¼0;m1>m2g

1ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þð2CLM

l1m1l1m2
Cl1tÞ2

q
3
5

�
2
4 Y

m1m2fm1¼m2g

1ffiffiffiffiffiffiffi
2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðCLM

l1m1l1m2
Cl1 tÞ2

q
3
5: (C19)

and the imaginary part of the BipoSH coefficients can be
derived to have the following form,

’
ALMðIÞ
l1l1

ðtÞ ¼
2
4 Y

m1m2fm1�0;m2�0g
fm1>m2g

2

�ð4þ ð2CLM
l1m1l1m2

Cl1 tÞ2Þ

3
5

�
2
4Y

m1m2

�m1m2ffiffiffiffiffiffiffi
2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðCLM

l1m1l1m2
Cl1tÞ2

q
3
5:

(C20)

4. Case D: l1 � l2, M � 0

The BipoSH coefficients in this case will have the
following expansion,

ALM
l1l2

¼ X
m1m2fm1�0;m2�0g

al1m1
al2m2

CLM
l1m1l2m2

þ X
m1m2fðm1_m2Þ¼0g

al1m1
al2m2

CLM
l1m1l2m2

: (C21)

The real and imaginary parts of these coefficients can be
expressed as [see Eq. (C2)],

ALMðRÞ
l1l2

¼ X
m1m2fm1�0;m2�0g

ðxl1m1
xl2m2

� yl1m1
yl2m2

ÞCLM
l1m1l2m2

þ X
m1m2fðm1_m2Þ¼0g

xl1m1
xl2m2

CLM
l1m1l2m2

; ALMðIÞ
l1l2

¼ X
m1m2fm1�0;m2�0g

ðyl1m1
xl2m2

þ xl1m1
yl2m2

ÞCLM
l1m1l2m2

: (C22)

The first term in the expansion for ALMðRÞ
l1l2

and ALMðIÞ
l1l2

is

Laplace distributed and its characteristic function given by
(refer to Appendix B),

’ZðtÞ ¼ 2

�ð4þ ðCLM
l1m1l2m2

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2Þ : (C23)

The second term in the expansion for ALMðRÞ
l1l2

has a modified

Bessel function of second kind distribution. It has the
following characteristic function (refer to Appendix B),

’ZðtÞ ¼ 1ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðCLM

l10l2m2
t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2
q : (C24)

Assuming each term in the expansion to be independent of
every other term, the characteristic function for the real
part of BipoSH coefficients has the following form,

’
ALMðRÞ
l1l2

ðtÞ ¼
2
4 Y

m1 ;m2fm1�0;m2�0g

2

�ð4þ ðCLM
l1m1l2m2

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2Þ

3
5

�
2
4 Y

m1m2fðm1_m2Þ¼0g

1ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðCLM

l1m1l2m2
t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2
q

3
5:

(C25)

and the characteristic function for the imaginary part of the
BipoSH coefficients is given by,

’
ALMðIÞ
l1l2

ðtÞ ¼
2
4 Y

m1 ;m2fm1�0;m2�0g

2

�ð4þ ðCLM
l1m1l2m2

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2

p Þ2Þ

3
5:

(C26)

5. Covariance of BipoSH coefficients

The unbiased estimator of the BipoSH coefficients is
given by,

ALM
l1l2

¼ X
m1m2

ð�1Þm2al1m1
a�l2m2

CLM
l1m1l2�m2

: (C27)

The covariance of these coefficients is defined in the
following manner,

hALM
l1l2

A�L0M0
l0
1
l0
2

i

¼
� X
m1m2

X
m0

1m
0
2

ð�1Þm2þm0
2hal1m1

a�l2m2
a�l0

1
m0

1
al0

2
m0

2
i

� CLM
l1m1l2�m2

CL0M0
l0
1
m0

1
l0
2
�m0

2

�
: (C28)

The spherical harmonic coefficients (alm’s) are Gaussian
random variables, hence the four-point correlation function
can be expressed in terms of two-point correlation
function,

hal1m1
a�l2m2

a�l01m0
1
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2
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1
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1
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al0
2
m0

2
i

þ hal1m1
al0

2
m0

2
iha�l0

1
m0

1
a�l2m2

i:
(C29)

Under the assumption of statistical isotropy, the covariance
of the BipoSH coefficients can be derived to have the
following form [Eq. (A6)],
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6. Correction to moments due nonlinear correlations.

Consider a random variable defined as,

Z ¼ XN
i

Xi; (C31)

where Xi’s are random variables with arbitrary distribu-
tions, not necessarily independent and N is total number of
terms.

Any arbitrary moment of the distribution of the random
variable Z can be expressed as,

hZni ¼
��XN

i

Xi

�
n
	
: (C32)

In the case where the random variables are all indepen-
dent of each other, the above expression will acquire this
simple form,

hZni ¼ XN
i

hðXiÞni: (C33)

However, in the case where the random variables present in
the summation are not all independent of each other, the
expression for any arbitrary moment does not take up
the simple form given above. One needs to account for
the presence of higher-order correlations among the ran-
dom variables. This fact needs to be accounted for while
evaluating each of the moments.
Specifically while calculating the moments of the

BipoSH coefficients, we find that the terms appearing in
the linear combination have nonlinear correlations. We
evaluate the correction to the moments due to these non-
linear correlations. We find that there is no correction to the
variance as the terms involved in the linear combination
turn out to be linearly uncorrelated. The corrected kurtosis
is derived to have the following form,

�� 4 ¼ ~�4 þ
3½PN

i ðKi
2Þ2 þ 2

P
i�j

E½X2
i X

2
j ��

ðPN
i Ki

2Þ2
; (C34)

where the second term is the correction term. In the above
expression Ki is the cumulant of the ith term and Xi and Xj

are the ith and jth terms in the summation.
The calculation for correction for higher-order moments

becomes very tedious, hence we restrict ourselves to cal-
culating corrections for moments only up to kurtosis.
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