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Astrophysical black hole candidates are thought to be the Kerr black holes predicted by General
Relativity, as these objects cannot be explained otherwise without introducing new physics. However,
there is no observational evidence that the space-time around them is really described by the Kerr solution.
The Kerr black hole hypothesis can be tested with the already available X-ray data by extending the
continuum-fitting method, a technique currently used by astronomers to estimate the spins of stellar-mass
black hole candidates. In general, we cannot put a constraint on possible deviations from the Kerr
geometry, but only on some combination between these deviations and the spin. The measurement
of the radio power of transient jets in black hole binaries can potentially break this degeneracy, thus

allowing for testing the Kerr-nature of these objects.
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I. INTRODUCTION

The 5-20M, compact objects in X-ray binary systems
and the 10°-10° M, dark bodies at the center of every normal
galaxy are thought to be the Kerr black holes (BHs) pre-
dicted by General Relativity [1]. There is no evidence that
the space-time around these objects is really described by the
Kerr metric, but, at the same time, there is no other expla-
nation in the framework of conventional physics. A Kerr BH
is completely specified by two parameters: its mass, M, and
its spin angular momentum, J. A fundamental limit fora BH
in 4-dimensional General Relativity is the bound |a.| = 1,
where a, = J/M? is the dimensionless spin parameter.'
This is just the condition for the existence of the event
horizon: For |a.| > 1, there is no horizon and the Kerr metric
describes a naked singularity, which is forbidden by the
weak cosmic censorship conjecture [2].

In the case of the stellar-mass BH candidates in X-ray
binary systems, the mass M can be deduced by studying the
orbital motion of the stellar companion. This measurement
is reliable, because the system can be described in the
framework of Newtonian mechanics, with no assumptions
about the nature of the compact object. The situation
changes when we want to get an estimate of the spin
parameter a.. The most reliable approach is currently the
continuum-fitting method [3-8]. Basically, one fits the
X-ray continuum spectrum of the BH candidate using
the standard accretion disk model of Novikov and Thorne
[9]. Under the assumption that the background geometry is
described by the Kerr metric, it is possible to infer the
spin parameter, a., and the mass accretion rate, M, if
the mass of the BH candidate, its distance from us, and
the inclination angle of the disk are known independently.
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The possibility of testing the Kerr nature of astrophysical
BH candidates with present and near future experiments is
becoming an active research field [10-16]. In particular,
one can extend the continuum-fitting method to constrain
possible deviations from the Kerr geometry [12]. That can
be achieved by considering a more general background,
which includes the Kerr solution as special case. The com-
pact object will be thus characterized by M, a.., and at least
one ‘‘deformation parameter,” measuring deviations from
the Kerr geometry. If observational data require a vanishing
deformation parameter, the Kerr BH hypothesis is verified.
However, the fit of the X-ray spectrum cannot be used to
measure a, and the deformation parameter at the same
time, but it is only possible to constrain a combination of
them. This is not a problem of the continuum-fitting
method, but of any approach (see e.g. Ref. [13] for the
case of the analysis of the Ka iron line).

In what follows, I will apply the recent finding of
Ref. [17] to show that one can potentially break the degen-
eracy between a, and the deformation parameter by com-
bining the continuum-fitting method with the power
estimate of transient ballistic jets.

II. TRANSIENT BALLISTIC JETS

Observationally, BH binaries can emit two kinds of jets
[18]. Steady jets occur in the hard spectral state, over a
wide range of luminosity of the source, and they seem to be
not very relativistic. Transient ballistic jets are instead
launched when a BH binary with a low-mass companion
undergoes a transient outburst: The jet appears when the
source switches from the hard to soft state and its lumi-
nosity is close to the Eddington limit. Transient jets are
observed as blobs of plasma moving ballistically outward
at relativistic velocities. The common interpretation is that
steady jets are produced relatively far from the compact
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The four stellar-mass BH candidates of which the spin parameter a., has been estimated with the continuum-fitting method

and we have radio data of their outbursts. The accretion efficiency 7 in the third column has been deduced from the corresponding a.
for a Kerr background. The mass-normalized jet power Pj in the fourth column has been inferred from the data reported in Ref. [17],

using Eq. (1).
BH Binary a, Py, (kpc* GHz Jy/M) Reference
GRS 1915 + 105 0.975, a. > 0.95 0.224, 7 > 0.190 39.4 [5]
GRO J1655-40 0.7 = 0.1 0.10475918 19.7 (6]
XTE J1550-564 0.34 = 0.24 0.072*5:011 2.79 (7]
A0620-00 0.12 £ 0.19 0.06175:9% 0.173 (8]

object, say at about 10 to 100 gravitational radii [19], while
transient jets are launched within a few gravitational radii
[20]. As discussed in Ref. [17], it is therefore plausible that
transient jets are powered by the rotational energy of the
BH and, since they occur at a well defined luminosity, they
may be used as “‘standard candles.”

In Ref. [17], the authors show there is a correlation
between the spin parameter a., as inferred by the
continuum-fitting method, and the radio power of transient
ballistic jets. Moreover, the behavior is close to what
should be expected if these jets were powered by the BH
spin via the Blandford-Znajek mechanism [21].

So far, the continuum-fitting method has provided the
estimate of the spin parameter of nine stellar-mass BH
candidates [4]. Five of these objects have a low-mass
companion and undergo mass transfer via Roche lobe
outflow: During their outbursts, they produce ballistic
jets. For three of them (GRS 1915 + 105, GRO J1655-
40, and XTE J1550-564), we have good radio data during
at least one of their outbursts. For A0620-00, the data are
not so good. 4U 1543-47 has never been monitored well at
radio wavelength during any of its outbursts. For GRS
1915 + 105, GRO 1J1655-40, XTE J1550-564, and
A0620-00, the authors of Ref. [17] compute the mass-
normalized jet radio power:

_ DZ(VSV)max,S GHz

P jet — Ty
where D is the distance of the binary system from us and
(7S ,)max5 G 18 the estimate of the maximum of the radio
power at 5 GHz (see Table I). Then, they plot the jet power
P, against the BH spin parameter a., as inferred from the
continuum-fitting method, and against the corresponding
BH angular frequency

D

_ _ 8w __a
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where ry is the radius of the BH outer event horizon
and a = a.M. The scaling Pj, ~ a? was derived in
Ref. [21], under the assumption |a.| < 1. Py, ~ O3, was
instead obtained in Ref. [22] and works even for spin pa-
rameters quite close to 1. The top left panel of Fig. 1 shows
the plot Pje vs. {1y, which is basically the plot in Fig. 3 of
Ref. [17]. The dashed line has a slope of 2, as expected from

the theoretical scaling. The uncertainty in Pj is the somehow
arbitrary uncertainty of 0.3 in the log adopted in Ref. [17].
Despite there being only four objects, there is evidence for a
correlation between jet power and )y, and one finds
the behavior expected in the case of a jet powered by the
rotational energy of the BH. For more details about the
systematics, the interpretation of the finding, and the com-
parison with previous results, see Ref. [17]. The conclusions
of the authors are therefore that: i) they have provided the
first evidence that some jets may be powered by the BH spin
energy, and ii) the observed correlation also provides an
additional confirmation of the continuum-fitting method.

III. NON-KERR SPACE-TIMES

I this section, I will show that the jet power of a BH
candidate can provide additional information about the
nature of the compact object and potentially can be used
to break the degeneracy between the spin and the deforma-
tion parameter. [ will outline the basic idea without follow-
ing a rigorous study: The latter would require a complete
reanalysis of the X-ray continuum spectrum of the four
objects and new general relativistic magnetohydrodynamic
simulations in a particular non-Kerr background, both
beyond the purpose of this work, as well as more observa-
tional data, which we do not have yet . I will consider two
specific non-Kerr space-times: the braneworld-inspired
BHs of Ref. [23] and the Johannsen-Psaltis (JP) BHs of
Ref. [24]. These space-times can be seen as the two pro-
totypes of non-Kerr background, or at least of the ones
proposed in the literature [25].

A. Example 1: braneworld black holes

A braneworld-inspired BH solution was found in
Ref. [23]. In Boyer-Lindquist coordinates, the nonzero
components of the induced 4D metric are
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Braneworld-inspired black holes of Eq. (3). Plots of the jet power Pj against the BH angular frequency (.

The top left panel shows the data in the case of the familiar Kerr background and the dotted line corresponds to P ~ 0%, the

theoretical scaling derived in Ref. [22].

where

p* = r* + a*cos?0, A=r>—2Mr+ad*+ B 4
and B is the tidal charge parameter, encoding the
imprints of the nonlocal effects from the extra
dimension. The metric looks like the usual Kerr-Newman
solution of General Relativity, which describes a rotating
BH with electric charge Q, with 8 = Q. However,
here B can be either positive or negative. The event
horizon is defined by A = 0; the radius of the outer event
horizon is

ry =M+ M? —a’ - B. &)

The event horizon exists only for M = /a’> — 8. When

M < +Ja’> — 3, there is no horizon and the space-time
has a naked singularity.” For the metric in Eq. (3) it is

’Let us notice that these braneworld BHs may violate the
familiar bound |a.| = 1, without violating the weak cosmic
censorship conjecture. It is also possible to check that there exist
astrophysical processes capable of producing such fast-rotating
objects [26].
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FIG. 2 (color online).

PHYSICAL REVIEW D 85, 043002 (2012)

] pMo=05
B[%ﬂ,\% =0.0
o5l BMZ=-10
B/M
B/M
g o
-0.5

15 1 05 0 05 1 15
ax

Braneworld-inspired black holes of Eq. (3). Accretion efficiency n = 1 — Ejgco (left panel) and BH angular

frequency () (right panel) as a function of the spin parameter a, for different values of 8/M>.
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FIG. 3 (color online).
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Braneworld-inspired black holes of Eq. (3). Allowed regions in the parameter space (a,, 8/M?) for the BH

candidates GRS 1915+105 and XTE J1550-564 (left panel) and GRO J1655-40 and A0620-00 (right panel). The solid curve separates

BHs from naked singularities. See text for details.

straightforward to repeat the analytical derivation of the jet
power (see Ref. [27] and Appendix A of [22]) and one still
finds Pj, ~ Q3. as in Kerr.

The analysis of the X-ray continuum spectra of the four
objects in Table I would provide a constraint on a, and
B/M?.? The correct procedure would be to reanalyze the
X-ray data of these objects in the background (3); how-
ever, that would take a long time and is beyond the
purpose of the present paper. A simple estimate can be
obtained from the following consideration. In the standard
case of Kerr background, the continuum-fitting method
provides the BH spin parameter a. and its mass accretion
rate M, when the BH mass, its distance from us, and the
inclination angle of the disk are known. Actually, the low
frequency region of the spectrum constrains M [28],

*If the Birkhoff’s Theorem holds, Solar System experiments
would require | 8/M?| < 4.6 X 10~*. While it is not clear if this
is the case in braneworld models, the aim of this paper is not to
constrain these theories, but to show how two independent
measurements can break the degeneracy between the spin and
the deformation parameter.

while the position of the peak constrains the accretion
efficiency n = 1 — Ejgco [12], where Ejgcq is the specific
energy of the gas at the innermost stable circular orbit
(ISCO), which is supposed to be the inner edge of the
accretion disk. The common statement in the literature
that the continuum-fitting method measures the inner ra-
dius of the disk, ry,, is correct because in the Kerr metric
there is a one-to-one correspondence between 7 and ry,.
However, in a non-Kerr background one can see that the
actual key-parameter is . We can then write the present
estimates of a.. of the four objects in terms of the accretion
efficiency 7 (see the third column in Table I), and then get
the allowed regions in the space (a., 8/M?) for every BH
candidate (see the Appendix for more details). The accre-
tion efficiency and the BH angular frequency as a function
of the spin parameter are shown in Fig. 2. The final results
are reported in Fig. 3, where the solid curve separates BHs
from naked singularities. The region with naked singular-
ities can be excluded for at least two reasons: These space-
times have equatorial stable circular orbits with negative
energy, which would imply n > 1, and they are presum-
ably unstable due to the ergoregion instability [29]. As we
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FIG. 4 (color online). JP black holes of Eq. (6) with deforma-
tion parameter €3 and €; = 0 for i # 3. Accretion efficiency
n = 1 — Esco as a function of the spin parameter a.. for differ-
ent values of €5.

can see in Fig. 3, we cannot estimate a, and B/M?
independently, but we can only constrain a combination
of the these two parameters. This is the usual situation we
find when we want to test the Kerr BH hypothesis.

For braneworld BHs, () is still given by Eq. (2). It is
also important to notice that Pj, is proportional to the
second power of {)y; that is, Pj, does not depend on
the sense of BH rotation with respect to the one of the
disk. In Fig. 1, T plot the power jet against (), for
some values of 8/M?. Here I assume that all the BH
candidates have the same value of 8/M?. This assumption
can be relaxed and tested when more data will be
available.

B. Example 2: JP black holes

The JP BHs have been proposed in [24] explicitly
to be used to test the Kerr BH hypothesis. The nonvanish-
ing metric coefficients in Boyer-Lindquist coordinates
are:

20|  XTEJ1550:564
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-
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FIG. 5 (color online).
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The metric has an infinite number of free parameters €; and
the Kerr solution is recovered when all these parameters
are set to zero. However, in order to recover the correct
Newtonian limit we have to impose €, = €; = 0, while €,
is constrained at the level of 10™* from current tests in the
Solar System [24]. For the sake of simplicity, in what
follows I will consider only the case with the deformation
parameter €3 and €; = 0 for i # 3.

For some values of the deformation parameters, the JP
BHs have a few properties common to other non-Kerr
metrics, but absent in the Kerr solution (existence of
vertically unstable circular orbits on the equatorial plane,
topologically nontrivial event horizons, etc.). In particu-
lar, here we cannot define the BH angular frequency, at
least in the usual way, as from Eq. (2) we would obtain
something that depends on the polar angle 8. Anyway, if
we want to check the Kerr-nature of astrophysical BH
candidates, we can still plot Pj, against the spin parame-
ter a, and see if the correlation if the one expected for
Kerr BHs.

The accretion efficiency n = 1 — Ejgco as a function of
the spin parameter a. for some values of the deformation
parameter €5 is shown in Fig. 4. To get the constraints on a.
and €5 for the four objects in Table I, we can still apply the

*. GRO J1655-40

A0620-00

-0.5 0 0.5 1 1.5

ax

-1.5 -1

JP black holes of Eq. (6) with deformation parameter €3 and €; = 0 for i # 3. Allowed regions in the

parameter space (a., €3) for the BH candidates GRS 1915+105 and XTE J1550-564 (left panel) and GRO J1655-40 and A0620-00

(right panel). See text for details.
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JP black holes of Eq. (6) with deformation parameter €3 and €; = 0 for i # 3. Plots of the jet power Pj

against the BH spin parameter a... The top left panel shows the data in the case of the familiar Kerr background and the dotted curve
corresponds to Pj ~ 0%, the theoretical scaling derived in Ref. [22].

simplified analysis of the previous subsection. The results
are shown in Fig. 5. Fig. 6 shows the plots Pj vs. a. in the
JP space-time with e€;. The dotted curve in the top left
panel is the theoretical scaling Pje ~ Q% in Kerr back-
ground. Let us notice that the cases with e; = 10 and 15
are allowed with the sole use of the continuum-fitting
method, while they seem to be at least strongly disfavored
when we add the information coming from the jet
power. Indeed, when €3 = 10 and 15, the continuum-fitting
method would predict a counter-rotating disk (i.e. a, <0)
for some sources, while the jet power should be indepen-
dent of the sense of BH rotation with respect to the
accreting matter.

IV. CONCLUSIONS

Astrophysical BH candidates are thought to be the Kerr
BHs predicted in General Relativity, but direct observatio-
nal evidence for this identification is still lacking. In order
to test and verify the Kerr BH hypothesis, we have to probe
the geometry of the space-time around these objects. The
current most robust approach to do that with already avail-
able data seems to be the continuum-fitting method, a
technique used by astronomers to measure the spin of the
stellar-mass BH candidates. The physics involved are rela-
tively simple and there are both astrophysical observations
and numerical calculations supporting the crucial ingre-
dients of this approach. However, the continuum-fitting
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method cannot provide at the same time an estimate of the
spin and of some deformation parameter measuring the
deviations from the Kerr geometry. The problem is that
there is a degeneracy between these two parameters and
therefore it is only possible to get a constraint on some
combination of them. The reason is that the continuum-
fitting method is sensitive to the accretion efficiency, which
depends on the spin and on the deformation parameter.

In this paper, I explored a way to break this degeneracy
and get an estimate of the spin and on the deformation
parameter separately. If transient ballistic jets in BH binaries
are powered by the BH spin via the Blandford-Znajek
mechanism, the jet power and the BH spin should be
correlated in a specific way. In Ref. [17], the authors showed
for the first time evidence for such a correlation. Here, I
showed that, if this interpretation is correct, the estimate of
jet power provides an additional information about the
nature of the stellar-mass BH candidates and, when com-
bined with the continuum-fitting method, it can potentially
be used to constrain the deformation parameter. As it is
particularly clear in Fig. 6, where €3 is the deformation
parameter and €3 = O corresponds to the Kerr metric, the
expected correlation (the dotted curve in the top left panel of
Fig. 6) is not consistent with observations when the space-
time has large deviations from the Kerr solution (the cases
€3 = 10 and 15 in Fig. 6). The interpretation of the authors
of Ref. [17] needs to be confirmed and the study of a larger
number of objects is compulsory. However, as shown in
this work through a simplified analysis, the combination of
the continuum-fitting method and the estimate of jet power
may be able to test the Kerr-nature of stellar-mass BH
candidates in the near future.
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APPENDIX: ACCRETION EFFICIENCY IN THE
NOVIKOV-THORNE MODEL

The Novikov-Thorne model is the standard model for
accretion disks [9]. It describes geometrically thin and
optically thick disks and it is the relativistic generalization
of the Shakura-Sunyaev model [30]. Accretion is possible
because viscous magnetic/turbulent stresses and radiation
transport energy and angular momentum outwards. The
model assumes that the disk is on the equatorial plane
and that the disk’s gas moves on nearly geodesic circular

PHYSICAL REVIEW D 85, 043002 (2012)

orbits. The model can be applied for a generic stationary,
axisymmetric, and asymptotically space-time. Here, the
line element can always be written as

ds? = g,di* + 2g,4dtdp + g,,dr* + gpgd6* + g 44dd>.

(A)
Since the metric is independent of the 7 and ¢ coordinates,
we have the conserved specific energy at infinity, FE, and

the conserved axial-component of the specific angular
momentum at infinity, L. From the conservation of the

rest-mass, g,,u*u” = —1, we can write
8rri? + 8490° = Ve (1, 6), (A2)
where the effective potential V4 is given by
v 0= E2g¢¢ + 2ELgt¢ + ngtt 1 (A3)
o .

gzzqs — 8u8po

Circular orbits in the equatorial plane are located at the
zeros and the turning points of the effective potential: 7 =
6 = 0, which implies V. = 0, and # = § = 0, requiring
respectively 9,V =0 and 94V = 0. From these
conditions, one can obtain the angular velocity, E, and L:

_argth + \/(argth)Z - (argtt)(arg¢¢)

Q= ,  (Ad)
9,84
+ 2,40}
E—— 8u T 8ig , (AS)
‘\/_gtt - 2g,¢Q - gq,’nﬁﬂz
+ Q
L= Sio T 804 (A6)

J_gtt - Zgngﬂ - g¢¢02

The orbits are stable under small perturbations if 02V =
0 and 8§,Veﬁc = 0. In Kerr space-time, the second condition
is always satisfied, so one can deduce the radius of the
ISCO from 92V, = 0. In general, however, that may not
be true. For instance, in the JP space-times, the ISCO
radius may be determined by the orbital stability along
the vertical direction. When we know the ISCO radius, we
can compute the corresponding specific energy Eigco and
then the accretion efficiency:

n = 1— Eco- (AT)
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