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1Departamento de Matemática e Estatı́stica, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR, Brazil
2Departamento de Fı́sica, Universidade Federal Maranhão, Campus Universitário do Bacanga, 65085-580 São Luı́s-MA, Brazil

(Received 4 December 2011; published 23 February 2012)

We examine the bound state and scattering problem of a spin-one-half particle undergone to an

Aharonov-Bohm potential in a conical space in the nonrelativistic limit. The crucial problem of the

�-function singularity coming from the Zeeman spin interaction with the magnetic flux tube is solved

through the self-adjoint extension method. Using two different approaches already known in the literature,

both based on the self-adjoint extension method, we obtain the self-adjoint extension parameter to the

bound state and scattering scenarios in terms of the physics of the problem. It is shown that such a

parameter is the same for both situations. The method is general and is suitable for any quantum system

with a singular Hamiltonian that has bound and scattering states.
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Singularities are very common in quantum mechanics
and already have a long history [1]. The first work with
�-like singularities was in the Kronig-Penny model [2] for
the description of the band energy in solid-state physics. In
addition, point interactions [3–5] have been of great inter-
est in various branches of physics for their relevance as
solvable models [6]. In the Aharonov-Bohm (AB) effect
[7] of spin-1=2 particles [8–10] a two-dimensional � func-
tion appears as the mathematical description of the Zeeman
interaction between the spin and the magnetic flux tube
[11,12]. Hagen [9] argued that a �-function contribution to
the potential cannot be neglected when the system has spin,
having shown that changes in the amplitude and scattering
cross section arise when the spin of the particle is consid-
ered. Point interactions usually appear in quantum systems
in the presence of topological defects. A simple but non-
trivial example is the case of a cone rising from an effective
geometry immersed in several physical systems, such as
cosmic strings [13], defects in elastic media [14], defects in
liquid crystals [15], and so on. In such systems, although
the particle does not have access to the core (defect) region,
its wave function and energy spectrum are truly influenced
by it.

Recently, a device was proposed that would detect
microstresses in graphene [16] based on a scanning-
tunneling-microscopy setup able to measure AB interfer-
ences at the nanometer scale. In this setup a �-function
scattering potential was considered in the continuum limit
[17]. In Ref. [18] it was considered a topological insulator
nanowire with a magnetic field applied along its length,
focusing on the AB conductance oscillations arising from
the surface states. The Dirac Hamiltonian of this model
takes into account the spinorial connection that allows us to
incorporate topological defects (arising from a nontrivial

conical geometry) through the metric. From these studies,
such materials could be analyzed through theoretical mod-
els allowing to include point interactions able to reproduce
AB-like effects.
In quantum mechanics, singularities and pathological

potentials, in general, are dealt with some kind of regulari-
zation procedure. A common approach to ensure that the
wave function in the presence of a singularity is square
integrable (and therefore might be associated to a bound
state) is to force it to vanish on the singularity. More
appropriately, an analysis based on the self-adjoint exten-
sion method [19], broadens the boundary condition possi-
bilities that still give bound states. The physics of the
problem determines which of these possibilities is the right
one, leaving no ambiguities [8,20]. This method has been
applied by many authors, in particular, for AB-like systems
[8,12,21–24]. However, the results obtained in these works
present the most important results (e.g., energy spectrum,
phase shift, S matrix) in terms of an arbitrary real parame-
ter, the so called self-adjoint extension parameter.
In this article, we describe a general regularization

procedure to obtain the self-adjoint extension parameter,
based on the physics of the spin-1=2AB system in (1þ 2)-
dimensional conical space for both bound and scattering
scenarios. We take as a starting point the works of Kay-
Studer (KS) [25] and Bulla-Gesztezy (BG) [26], both based
on the self-adjoint extension method.
The topological defect considered here is a linear quan-

tity that appears embedded in the metric system ds2 ¼
dr2 þ �2r2d’2, where r � 0, 0 � ’< 2�, and � is the
parameter which effectively introduces an angular excess
or deficit, identified by 2�ð1� �Þ. The above metric has a
conelike singularity at r ¼ 0. In other words, the curvature
tensor of this metric, considered as a distribution, is given
by R12

12 ¼ R1
1 ¼ R2

2 ¼ 2�ð�� 1Þ�ðrÞ=�, where �ðrÞ is the
two-dimensional � function in flat space [27]. This implies
a two-dimensional conical singularity symmetrical in the z
axis, which characterizes it as a linear defect.

*fmandrade@uepg.br
†edilbertoo@gmail.com
‡marciano@uepg.br

PHYSICAL REVIEW D 85, 041701(R) (2012)

RAPID COMMUNICATIONS

1550-7998=2012=85(4)=041701(5) 041701-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.041701


In order to study the dynamics of the particle in a nonflat
spacetime, we should include the spin connection in the
differential operator and define the respective Dirac matri-
ces in this manifold. This system is governed by the
modified Dirac equation in curved space ½i��ð@� þ ��Þ �
q��A� �M�c ðxÞ ¼ 0, where q is the charge, M is mass

of the particle, c ðxÞ is a four-component spinorial wave
function, and �� is the spin connection. The only non-

vanishing spin connection in this case is �’ ¼
ið1� �Þ�z=2, while the Dirac matrices are conveniently
defined as �i ¼ �0�i, � ¼ �0 [28,29].

The magnetic flux tube in the background space de-
scribed by the metric above considered is related [29] to

the magnetic field sB ¼ sðr �AÞ ¼ s ��
�

�ðrÞ
r ẑ (where �� ¼

�=2� is the flux parameter), while the vector potential in

the Coulomb gauge is A’ ¼ ��
�r ’̂, with s ¼ �1 being

twice the spin projection parameter. The parameter s im-
plies that the Dirac equation describes the planar motion
(in the absence of the z coordinate) of the particle having
only one projection of three-dimensional spin vector. To
examine the physical implications of these equations, we
consider their nonrelativistic limit. In this context, writing
c ¼ ð�; XÞTe�iMt the Schrödinger-Pauli equation is
H� ¼ i@t�, with

H ¼ 1

2M

�
1

i
r� � q ��

�r
þ 1� �

2�r
�z

�
2 � qs ��

2M�

�ðrÞ
r

; (1)

where r2
� ¼ @2

@r2
þ 1

r
@
@r þ 1

�2r2
@2

@’2 is the Laplacian operator

in the conical space, and �i ¼ ð�r; �’; �zÞ are the Pauli

matrices in cylindrical coordinates.
For this system the total angular momentum operator,

Ĵ ¼ �ir’ þ �z=2, commutes with the effective

Hamiltonian. So, the solution to the Schrödinger-Pauli
equation can be written in the form

�ðt; r; ’Þ ¼ e�iEt f1ðrÞeiðm�s=2Þ’
f2ðrÞeiðmþs=2Þ’

 !
(2)

with m ¼ nþ 1=2, n 2 Z. At the same time, the radial
equation for f1ðrÞ becomes

H f1ðrÞ ¼ Ef1ðrÞ; (3)

where

H ¼ H 0 þUshort; (4)

H 0 ¼ � 1

2M

�
d2

dr2
þ 1

r

d

dr
� j2

r2

�
; (5)

U short ¼ qs ��

2M�

�ðrÞ
r

; (6)

with j ¼ 1
� ðm� s

2 � q ��þ 1��
2 Þ. The Hamiltonian in

Eq. (4) governs the quantum dynamics of a spin-1=2
charged particle in the conical spacetime, with a magnetic

field B along the z axis, i.e., a spin-1=2 AB problem in the
conical space. Let us consider a conical defect with a
nucleus with radius r0, so it is suitable to write UshortðrÞ
as [9,11]

�U shortðrÞ ¼ qs ��

2M�

�ðr� r0Þ
r0

; (7)

and, at the end, the limit r0 ! 0 is taken. Although the

functional structure ofUshort and
�Ushort are quite different,

as discussed in [9], we are free to use any form of potential,
provided that only the contribution of the form (6) is
excluded.
The operator H 0, with domain DðH 0Þ, is self-adjoint

if DðH y
0 Þ ¼ DðH 0Þ and H y

0 ¼ H 0. For smooth

functions, g 2 C1
0 ðR2Þ with gð0Þ ¼ 0, we should have

Hg ¼ H 0g, and hence it is reasonable to interpret
the Hamiltonian (4) as a self-adjoint extension of
H 0jC1

0
ðR2nf0gÞ [30–32]. In order to proceed to the self-

adjoint extensions of (5), we decompose the Hilbert space
H ¼ L2ðR2Þ with respect to the angular momentum H ¼
Hr �H’, where Hr ¼ L2ðRþ; rdrÞ, and H’ ¼
L2ðS1; d’Þ, with S1 denoting the unit sphere in R2. The

operator� @2

@’2 is essentially self-adjoint in L
2ðS1; d’Þ [19]

and we obtain the operatorH 0 in each angular momentum
sector. Now, using the unitary operator V: L2ðRþ; rdrÞ !
L2ðRþ; drÞ, given by ðVgÞðrÞ ¼ r1=2gðrÞ, the operatorH 0

becomes

h0 ¼ VH 0V
�1 ¼ � 1

2M

�
d2

dr2
þ
�
j2 � 1

4

�
1

r2

�
; (8)

which is essentially self-adjoint for jjj � 1, while for
jjj< 1 it admits a one-parameter family of self-adjoint
extensions [19], H 0;	j

, where 	j is the self-adjoint exten-

sion parameter. To characterize this family, we will use the
KS [25] and the BG [26] approaches, both based in bound-
ary conditions.
In the KS approach, the boundary condition is a match of

the logarithmic derivatives of the zero-energy solutions for
Eq. (3) and the solutions for the problem H 0 plus self-
adjoint extension. In the BG approach, the boundary con-
dition is a mathematical limit allowing divergent solutions
of the Hamiltonian (5) at isolated points, provided they
remain square integrable.
Now, the goal is to find the bound states for the

Hamiltonian (4). Following [25], we temporarily forget
the �-function potential and find the boundary conditions
allowed for H 0. But the self-adjoint extension provides
infinite possible boundary conditions, so that it cannot give
us the true physics of the problem. Nevertheless, once the
physics at r ¼ 0 is known [8,33,34], it is possible to
determine any arbitrary parameter coming from the self-
adjoint extension, so that it is possible to obtain a complete
description of the problem. Since we have a singular point,
we must guarantee that the Hamiltonian is self-adjoint in
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the region of motion. Note that even if H y
0 ¼ H 0, their

domains could be different.
We must find the deficiency subspaces, N �, with di-

mensions nþ and n�, respectively, which are called defi-
ciency indices of H 0 [19]. A necessary and sufficient
condition for H 0 being essentially self-adjoint is that
nþ ¼ n� ¼ 0. On the other hand, if nþ ¼ n� � 1, then
H 0 has an infinite number of self-adjoint extensions pa-
rametrized by unitary operators U: N þ ! N �.

Next, we substitute the problem in Eq. (3) by H 0f% ¼
Ef%, with f% labeled by a parameter %, which is related to

the behavior of the wave function in the limit r ! r0. But
we cannot impose any boundary condition (e.g. f ¼ 0 at
r ¼ 0) without discovering which boundary conditions are
allowed to H 0. Then, from Eq. (5) we achieve the modi-
fied Bessel equation (
2 ¼ �2ME, E < 0)�

d2

dr2
þ 1

r

d

dr
�
�
j2

r2
þ 
2

��
f%ðrÞ ¼ 0: (9)

Now, in order to find the full domain of H 0 in
L2ðRþ; rdrÞ, we have to find its deficiency subspace. To
do this, we solve the eigenvalue equation

H y
0f

�
% ¼ �if�% ; (10)

where H 0 is given by Eq. (5). The only square-integrable
functions that are solutions of Eq. (10) are the modified

Bessel functions Kjjjðr
ffiffiffiffiffiffiffi�"

p Þ, with " ¼ 2iM. These func-

tions are square integrable only in the range jjj< 1, for
which H 0 is not self-adjoint. The dimension of such
deficiency subspace is ðnþ; n�Þ ¼ ð1; 1Þ. Thus, DðH 0Þ
in L2ðRþ; rdrÞ is given by the set of functions [19]

f%ðrÞ ¼ f1;jðrÞ þ C½Kjjjðr
ffiffiffiffiffiffiffi�"

p Þ þ ei%Kjjjðr
ffiffiffi
"

p Þ�; (11)

where f1;jðrÞ, with f1;jðr0Þ ¼ _f1;jðr0Þ ¼ 0 ( _f 	 df=dr), is

the regular wave function when we do not have �UshortðrÞ.
The last term in Eq. (11) gives the correct behavior for the
wave function when r ¼ r0. The parameter %ðmod2�Þ
represents a choice for the boundary condition. As we shall
see below, the physics of the problem determines such a
parameter without ambiguity. In fact, % describes the cou-

pling between �UshortðrÞ and the wave function. Thus, it
must be expressed in terms of �, the defect core radius r0
and the effective angular momentum j. The next step is to

find a fitting for % compatible with �UshortðrÞ. In this sense,
we write Eq. (3) for E ¼ 0, implying the zero-energy
solution, H f0 ¼ 0. Now, we require the continuity for
the logarithmic derivative

_f0
f0

��������r¼r0

¼
_f%
f%

��������r¼r0

; (12)

where f%ðrÞ comes from Eq. (11). However, since r0 
 0,

the right-hand side of the Hamiltonian (12) is calculated
using the asymptotic representation for Eq. (11) in the limit

r ! 0. The left-hand side of Eq. (12) is achieved integrat-
ing the equation H f0 ¼ 0, from 0 to r0, which yields the
parameter % in terms of the physics of the problem, i.e., the
correct behavior of the wave functions for r ! r0. By
solving Eq. (12) for E, we find the energy spectrum

E ¼ � 2

Mr20

�
�ð1þ jjjÞ
�ð1� jjjÞ

�1þ ��
�jjj þ jjj

2

1� ��
�jjj � jjj

2

��
1=jjj

: (13)

Notice that there is no arbitrary parameters in the above
equation.
The above approach has the advantage of yielding the

self-adjoint extension parameter in terms of the physics of
the problem, but it is not appropriate for dealing with
scattering problems. On the other hand, the BG method
[26] is suitable to address both bound and scattering sce-
narios, with the disadvantage of allowing arbitrary
self-adjoint extension parameters. Now, we apply the BG
approach to solve bound and scattering problems. By
comparing the results of these two approaches for
bound states, the self-adjoint extension parameter can be
determined in terms of the physics of the problem. Here,
all self-adjoint extensions of H 0;	j

are parametrized

by the boundary condition at the origin [26] (g0ðrÞ ¼
limr!0þr

jjjgðrÞ)

g0ðrÞ ¼ 	j lim
r!0þ

1

rjjj

�
gðrÞ � g0ðr0Þ 1

rjjj

�
: (14)

The solutions for H 0f1;j ¼ k2f1;j (k
2 ¼ 2ME) for r � 0,

can be written as (� ¼ 2ikr)

f1;jðrÞ ¼ Aje
�ð�=2Þ�jjj

1F1

�
1

2
þ jjj; 1þ 2jjj; �

�

þ Bje
�ð�=2Þ��jjj

1F1

�
1

2
� jjj; 1� 2jjj; �

�
; (15)

where 1F1ða; b; zÞ represents the confluent hypergeometric
function, and Aj, Bj are the coefficients of the regular and

irregular solutions, respectively. By implementing Eq. (15)
into the boundary condition (14), we derive the following
relation between the coefficients Aj and Bj:

	jAj ¼ ð2ikÞ�2jjjBj

�
1þ 	jk

2

4ð1� jjjÞ limr!0þ
r2�2jjj

�
: (16)

In the above equation, the coefficient of Bj diverges as

limr!0þr
2�2jjj, if jjj> 1. Thus, Bj must be zero for jjj> 1,

and the condition for the occurrence of a singular solution
is jjj< 1. So, the presence of an irregular solution stems
from the fact the operator is not self-adjoint for jjj< 1, and
this irregular solution is associated with a self-adjoint
extension of the operator H 0 [35,36]. In other words,
the self-adjoint extension essentially consists in including
irregular solutions inDðH 0Þ, which allows us to select an
appropriate boundary condition for the problem.
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In the present system the energy of a bound state has to
be negative, so that k is a pure imaginary, k ¼ i
. Thus,
with the substitution k ! i
, we have (�0 ¼ �2
r)

fB1;jðrÞ ¼ Aje
�ð�0Þ=ð2Þ�0jjj

1F1

�
1

2
þ jjj; 1þ 2jjj; �0

�

þ Bje
�ð�0Þ=ð2Þ�0�jjj

1F1

�
1

2
� jjj; 1� 2jjj; �0

�
:

(17)

For Eq. (17) representing a bound state, the solution fB1;jðrÞ
must vanish for r ! 1, i.e., it must be normalizable. By
using the asymptotic representation of 1F1ða; b; zÞ for
r ! 1, the normalizability condition yields the relation

Bj ¼ �16jjj
�ð1þ jjjÞ
�ð1� jjjÞAj: (18)

From Eq. (16), for jjj< 1 we have Bj ¼ 	jð�2
Þ2jjjAj;

and by using Eq. (18), the bound state energy is

E ¼ � 2

M

�
� 1

	j

�ð1þ jjjÞ
�ð1� jjjÞ

�
1=jjj

: (19)

This coincides with Eq. (3.13) of Ref. [22] for � ¼ 1, i.e.,
the spin-1=2 AB problem in Euclidean space with the
spinorial connection. By comparing Eq. (19) with
Eq. (13), we find

1

	j
¼ � 1

r2jjj0

0
@1þ ��

�jjj þ jjj
2

1� ��
�jjj � jjj

2

1
A: (20)

We have thus attained a relation between the self-adjoint
extension parameter and the physical parameters of the
problem, j and r0. It should be mentioned that some
relations involving the self-adjoint extension parameter
and the �-function coupling constant were previously ob-
tained by using Green’s function in Ref. [23] and the
renormalization technique in Ref. [21], being both, how-
ever, deprived from a clear physical interpretation.

Once the bound energy problem has been examined, let
us now analyze the AB scattering scenario. In this case, the
boundary condition is again given by Eq. (14) but now with
the replacement 	j ! 	s

j, where 	s
j is the self-adjoint

extension parameter for the scattering problem. In the
scattering analysis it is more convenient to use the solution
of the equation H 0f1;j ¼ k2f1;j, in terms of Bessel

functions

f1;jðrÞ ¼ CjJðjjj; krÞ þDjYðjjj; krÞ; (21)

with Cj and Dj being constants. Upon replacing f1;jðrÞ in
the boundary condition (14), we obtain 	s

jCj�k
jjj ¼

Dj½
k�jjj � 	s
jð�kjjj þ 
�k�jjjlimr!0þr

2�2jjjÞ�, where

� ¼ 1
2jjj�ð1þjjjÞ , 
 ¼ � 2jjj�ðjjjÞ

� , � ¼ � cosð�jjjÞ�ð�jjjÞ
�2jjj and

� ¼ k2

4ð1�jjjÞ . As in the bound state calculation, whenever

jjj< 1, we have Dj � 0; this means that there arises again

the contribution of the irregular solution Y at the origin
when the operator is not self-adjoint. Thus, for jjj< 1, we

obtain 	s
jCj�k

jjj ¼ Djð
k�jjj � 	s
j�k

jjjÞ, and by substitut-

ing the values of �, 
 and � into above expression we find

Dj ¼ ��
	s
j

j Cj, where

�
	s
j

j ¼ 	s
jk

2jjj�ð1� jjjÞ sinðjjj�Þ
	s
jk

2jjj�ð1� jjjÞ cosð�jjjÞ þ 4jjj�ð1þ jjjÞ : (22)

Since the � is a short range potential, it follows that the
behavior of f1;j for r ! 1 is given by

f1;jðrÞ �
ffiffiffiffiffiffiffiffiffi
2

�kr

s
cos

�
kr� 1

2
jmj�� �

4
þ �

	s
j

j ðk; ��Þ
�
;

(23)

where �
	s
j

j ðk; ��Þ is a scattering phase shift. The phase shift

is a measure of the argument difference to the asymptotic
behavior of the solution Jðjmj; krÞ of the radial-free equa-
tion that is regular at the origin. By using the asymptotic
behavior of Jðjjj; krÞ and Yðjjj; krÞ for r ! 1 in Eq. (21),
and comparing it with Eq. (23), similarly as done in [37],

we found that �
	s
j

j ðk; ��Þ ¼ �mð ��Þ þ �	s
j
, where �mð ��Þ ¼

�
2 ðjmj � jmþ ��jÞ, and �	s

j
¼ arctanð�	s

j

j Þ. Therefore, the
expression for the S matrix is

S ¼ e2i�mð�Þ
� 	s

jk
2jjj�ð1� jjjÞeijjj� þ 4jjj�ð1þ jjjÞ

	s
jk

2jjj�ð1� jjjÞe�ijjj� þ 4jjj�ð1þ jjjÞ
�
:

(24)

In accordance with the general theory of scattering, the
poles of the Smatrix in the upper half of the complex plane
[38] [these poles occur in the denominator of (24) with the
replacement k ! i
] determines the positions of the bound
states in the energy scale, Eq. (19). From this, we have
	s
j ¼ 	j, with 	j given by Eq. (20), and the self-adjoint

extension parameter for the scattering scenario being the
same as that for the bound state problem. This is a very
interesting result that has not been described in the litera-
ture yet, as far as we know. Thus, we also obtain the phase
shift and the scattering matrix in terms of the physics of the
problem. If 	s

j ¼ 0, we achieve the corresponding result

for the pure AB problem with the Dirichlet boundary
condition; in this case, we recover the expression for the

scattering matrix found in Ref. [39], S ¼ e2i�mð ��Þ. If we
make 	s

j ¼ 1, we get S ¼ e2i�mð ��Þþ2i�jjj.
In this article, we have presented a general regulariza-

tion method to address a system endowed with a singular
Hamiltonian (due to localized fields sources or quantum
confinement). Using the KS approach, the bound states
were determined in terms of the physics of the problem,
in a very consistent way and without any arbitrary
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parameter. In sequel, we employed the BG approach; by
comparing the results of these approaches, we have deter-
mined the value of the self-adjoint extension parameter for
the bound state problem, which coincides with the one for
scattering problem. We thus obtain the Smatrix in terms of
the physics of the problem, as well. A natural extension of
the problem studied here, amongst many possible options,
is the inclusion of the Coulomb potential, which naturally
appears in two-dimensional systems, such as graphene [40]

and anyonic systems [41,42]. Results in this respect will be
reported elsewhere.
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