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We study the kinematics of deep inelastic scattering corresponding to the rotationally symmetric

distribution of quark momenta in the nucleon rest frame. It is shown that rotational-symmetry together

with Lorentz invariance can in leading order impose constraints on the quark intrinsic momenta. Obtained

constraints are discussed and compared with the available experimental data.
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I. INTRODUCTION

The motion of quarks inside the nucleons plays an
important role in some effects, which are at present inten-
sively investigated both experimentally and theoretically.
The actual goal of this effort is to obtain a more consistent
three-dimensional (3D) picture of the quark-gluon struc-
ture of nucleons. For example, the quark transversal mo-
mentum creates the asymmetries in particle production in
semi-inclusive polarized or unpolarized (Cahn effect) ex-
periments on deep inelastic scattering (DIS). A relevant
tool for the study of these effects is the set of the transverse
momentum dependent distributions (TMDs). Apparently, a
better understanding of the quark intrinsic motion is also a
necessary condition to clarify the role of quark orbital
angular momenta in generating nucleon spin.

We have paid attention to these topics in our recent
studies, see [1–5] and citations therein. In particular, we
have shown that the requirements of Lorentz invariance
(LI) and the nucleon rotational-symmetry in its rest frame
(RS), if applied in the framework of the 3D covariant
quark-parton model (QPM), generate a set of relations
between parton distribution functions. Recently, we ob-
tained within this approach relations between usual
parton distribution functions and the TMDs. The
Wanzura-Wilczek approximate relation and some other
known relations between the g1 and g2 structure functions
were similarly obtained in the same model before [6]. Let
us remark that the Wanzura-Wilczek relation also has been
obtained independently in other approaches [7,8] in which
the LI represents a basic input.

The aim of the present report is to consistently apply the
assumption LI and RS to the kinematics of DIS, and to
obtain the constraints on related kinematical variables.
That is a complementary task to the study of above men-
tioned relations between distribution functions, which de-
pend on these variables. So, the report can be considered as
an Addendum to our former papers related to the covariant
QPM [1–6,9–11].

Since the present discussion is motivated and based on
our earlier study of a covariant version of QPM, obtained

results correspond only to the leading order of a more
consistent QCD treatment. In this sense, it would be inter-
esting to compare our results with the leading order of a
real QCD approach, e.g. the recent study of perturbative
QCD evolution of TMDs [12,13]. However, such a task
would go beyond the scope of this short report. In general,
a comparison between the experimental data and the lead-
ing order predictions can be important and instructive.

II. KINEMATIC VARIABLES

A. The Bjorken variable and light-cone coordinates

First, let us briefly review the properties of the Bjorken
variable

xB ¼ Q2

2Pq
; (1)

which plays a crucial role in phenomenology of lepton—
nucleon scattering. Regardless of mechanism of the
process, this invariant parameter satisfies

0 � xB � 1: (2)

This is a very well-known textbook result. A possible
proof is also suggested in [14]. Now let us consider a
QPM approach, where the process of lepton–nucleon scat-
tering is initiated by the lepton interaction with a quark
(see Fig. 1), which obeys
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FIG. 1. Diagram describing DIS as a one photon exchange
between the charged lepton and quark. Lepton and quark mo-
menta are denoted by k, p (k0, p0) in initial (final) state, P is
initial nucleon momentum.*zavada@fzu.cz
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p0 ¼pþq; p02¼p2þ2pq�Q2; Q2¼�q2: (3)

The second equality implies

Q2 ¼ 2pq� �m2; �m2 ¼ p02 � p2; (4)

which with the use of relation (1) gives

pq

Pq
¼ xB

�
1þ �m2

Q2

�
: (5)

The basic input for the construction of QPM is the
assumption

Q2 � �m2; (6)

which allows us to identify

xB ¼ Q2

2Pq
¼ pq

Pq
; (7)

and to directly relate the quark momentum to the parame-
ters of scattered lepton. Moreover, if one assumes

Q2 � 4M2x2B; (8)

where M is the nucleon mass, then one can identify

xB ¼ x � p0 � p1

P0 � P1

(9)

in any reference frame in which the first axis orientation is
defined by the vector q. This relation can be proved as
follows. Let us consider Eq. (7) in the same frame,

xB ¼ p0q
0 � p1jqj

P0q
0 � P1jqj

: (10)

In the nucleon rest frame we denote the photon momentum
components by the subscript R, and using the usual symbol
� ¼ q0R we have

jqRj2 ¼ �2 þQ2; (11)

which with the use of Eq. (1) gives

jqRj2
�2

¼ 1þ 4M2x2B
Q2

: (12)

It means that for Q2 � 4M2x2B we obtain

jqRj
�

¼ 1þO

�
4M2x2B
Q2

�
: (13)

(Since for Q2 ! 1 we also have jqRj, � ! 1, the ratio
jqRj=� ! 1 does not contradict Eq. (11).) In a reference
frame connected with the rest frame by the Lorentz boost
in the direction opposite to qR, we have the corresponding
ratio

q1

q0
¼ jqRj þ ��

�þ �jqRj : (14)

Now one can easily check that Eq. (7) with the use of this
ratio and Eq. (13) imply

xB ¼ p0q
0 � p1q

1

P0q
0 � P1q

1
¼ p0 � p1

P0 � P1

�
1þO

�
4M2x2B
Q2

��
: (15)

In this way, we have proved that the replacement of
Bjorken variable by the invariant light-cone ratio in
Eq. (9) is valid provided the inequality (8) is satisfied.

The relation (9) expressed in the nucleon rest frame
reads

x ¼ p0 � p1

M
; (16)

which after inserting into (2) gives

0 � p0 � p1

M
� 1: (17)

However the most important reason why we require
large Q2 is in physics. If we accept a scenario where a
probing photon interacts with a quark, we need sufficiently
large momentum transfer Q2 at which the quarks can be
considered as effectively free due to asymptotic freedom.
At small Q2 the picture of quarks (with their momenta and
other quantum numbers) inside the nucleon disappear.

B. Rotational-symmetry

The RS means that the probability distribution of the
quark momenta p ¼ ðp1; p2; p3Þ in the nucleon rest frame
depends, apart from Q2, on jpj. It also follows that �p is
allowed, so together with the inequality (17) we have

0 � p0 þ p1

M
� 1: (18)

The combinations of (17) and (18) imply

0 � jp1j � p0 � M; jp1j � M

2
: (19)

And if we again refer to RS, then further inequalities are
obtained,

0�jpj�p0�M; jpj�M

2
; 0�pT �p0�M; (20)

and

pT � M

2
; (21)

where

jpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2 þ p2
3

q
; pT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þ p2

3

q
:

Obviously, inequality (21) is also satisfied in any reference
frame boosted in the directions �q. Further, the above
inequalities are apparently also valid for average values
hp0i, hp1i, hjpji, and hpTi. In addition, if one assumes that
pT� distribution is a decreasing function, then necessarily

hpTi � M

4
: (22)

The above relations are valid for sufficiently high Q2

suggested by Eqs. (6) and (8). Let us note that the on-
mass-shell assumption has not been applied for obtaining
these relations.
These inequalities can be compared with relations

obtained in [11], where the additional on-mass-shell
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condition m2 ¼ p2 ¼ p2
0 � p2 had been applied.

Corresponding relations are more strict,

m2

M2
�x�1; p0�M2þm2

2M
; jpj�M2�m2

2M
; (23)

and

p2
T � M2

�
x� m2

M2

�
ð1� xÞ: (24)

However, it is clear that in general the on-mass-shell
assumption is not realistic. In the next section we will
assume only the off-mass-shell approach.

III. DISCUSSION

First, let us summarize more accurately what we have
done in the previous section. We assumed these conditions:

(a) Lorentz invariance: It means that the theoretical
description in terms of the standard kinematical
variables P; p; q; xB; x (see Fig. 1) can be boosted
also to the nucleon rest frame.

(b) Inequality 0 � x � 1: It means that the light-cone
ratio x satisfies the same bound (2) as the Bjorken
variable xB.

(c) Rotational-symmetry: The kinematical regionR3 of
the quark intrinsic momenta p ¼ ðp1; p2; p3Þ in the
nucleon rest frame has rotational-symmetry (i.e.
p2R3 ) p0 ¼ Rp 2 R3, where R is any rotation
inR3). For example, in terms of the covariant QPM
means that probabilistic distribution of the quark
momenta is controlled by some function
GðpP=M;Q2Þ

We proved these assumptions imply bounds (17)–(21).
Now we will briefly comment on the obtained results.

(i) The ratio x of light-cone variables (9) has a simple
interpretation in a frame, where the proton momen-
tum is large: x is the fraction of this momentum
carried by the quark. However, an interpretation of
the same variable in the nucleon rest frame is more
complicated. In this frame the quark transversal
momentum cannot be neglected and x depends on
both the longitudinal and transversal quark momenta
components. In the limit of massless quarks, the
connection between the variable x in (16) and the
quark momenta components is given by the relations

x¼p0�p1

M
; p0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þp2

T

q
;

p1¼�Mx

2

�
1� p2

T

M2x2

�
; p0¼Mx

2

�
1þ p2

T

M2x2

�
:

(25)

These variables were used in our recent papers on
TMDs [1,2]. Simply, the value of invariant variable x
does not depend on the reference frame, but its

interpretation e.g. in the rest frame differs from
that in the infinite momentum frame.

(ii) The relations (20) and (21), which follow from RS,
can be confronted with the experimental data on
hpTi or hjpji. We have discussed the available data
in [1,2], and apparently relation (21) is compatible
with the set of lower values hpTi corresponding to
the ’leptonic data’. On the other hand, the second set
giving substantially greater hpTi and denoted as the
’hadronic data’ seems to contradict this relation.
Actually, the conflict with the relation (21) would
mean either a conflict with some of the assumptions
(a)–(c) or, simply, an absence of the higher order
QCD corrections. However, for possible compari-
son with the perturbative QCD approach [12] let us
remark the following. This approach generate
evolved TMDs, using as input the existing phe-
nomenological parametrizations extracted from the
experimental data. For example, one of the inputs is
the scale-independent Gaussian fit [15]

Ff=Pðx; pTÞ ¼ ff=PðxÞ exp½�p2
T=hp2

Ti�
�hp2

Ti
; (26)

where hp2
Ti ¼ ð0:38� 0:06Þ GeV2. Obviously our

concept RS, defined above, is hardly compatible
with this distribution. In fact, in the rest frame this
distribution gives much greater hp2

Ti than the corre-
sponding longitudinal term hp2

1i. However, RS
requires hp2

Ti ¼ 2hp2
1i only. Let us remark that this

imbalance is of the same order as a difference
between the two data sets mentioned above.

(iii) The first relation (20) apparently contradicts an
intuitive, Lorentz invariant condition

jpj2 > p2
0 (27)

corresponding to bound, spacelike quarks. Such
conflict does not take place for the leading order
with quarks on-mass-shell. However, for off-shell
quarks the condition (27) is incompatible with the
assumptions (a)–(c), which imply (20). For ex-
ample, it means that any approach, which is based
primarily on the assumption (27) in some starting
reference frame (including the infinite momentum
frame) cannot simultaneously satisfy the conditions
(a)–(c).

(iv) In [2] we explained why the RS, if applied on the
level of QPM, follows from the covariant descrip-
tion. In fact, it means the assumptions (a)–(c) are
common for our QPM and for the approaches like
[7,8], where only Lorentz invariance is explicitly
required. The predictions of all these models are
compatible with the bound (21). This is just a con-
sequence of the fact that general conditions (a)–(c)
are satisfied in these approaches. Other theoretical
reasons for RS have been suggested in [10]. Let us
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remark that the rotational-symmetry properties of
the nucleon state in its rest frame play an important
role also in the recent studies [16].

(v) The relation (24) is obtained for the quarks on-
mass-shell. In a more general case, where only
inequalities (20) and (21) hold, this relation is
replaced by

p2
T �M2

�
x��2

M2

�
ð1�xÞ; �2�p2

0�p2; (28)

where the term �2 is not a parameter corresponding
to the fixed mass, but it is only a number varying in
the limits defined by (20). The last relation implies
for any �2

p2
T � M2xð1� xÞ; (29)

which is equivalent to the on-mass-shell relation
(24) for m ¼ 0. This general upper limit for p2

T

depending on x is displayed in Fig. 2. Let us remark
that results on hp2

TðxÞi obtained in [7,8] are compat-
ible also with the bound (29). An equivalent form of
this inequality was probably presented for the first
time in [17].

IV. SUMMARY

In the present report we studied the kinematic
constraints due to the rotational-symmetry of the quark
momenta distribution inside the nucleon in the leading
order approach. In particular, we have shown that the
light-cone formalism combined with the assumption on
the rotational-symmetry in the nucleon rest frame imply
pT � M=2. Only part of existing experimental data on
hpTi satisfies this bound whereas the other part does not.
In general, the existing methods for reconstruction of hpTi
from the DIS data are rather model-dependent. These are
the reasons why more studies are needed to clarify these
inconsistencies, since the phenomenological distributions
in the x� pT plane at present serve also as an input for a
more fundamental calculation of the QCD evolution and
other effects.
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FIG. 2. Upper limit of the quark transversal momentum as a
function of x for � ¼ 0 (solid line), 0.1 (dashed line), 0.2 (dotted
line) and 0.3 (dash-dotted line).
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