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We derive general and explicit expressions for the unrenormalized and renormalized dressed propa-

gators of fermions in parity-nonconserving theories with intergeneration mixing. The mass eigenvalues,

the corresponding mass counterterms, and the effect of intergeneration mixing on their determination are

discussed. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta renormalization conditions and employing a

number of very useful relations from matrix algebra, we show explicitly that the renormalized dressed

propagators satisfy important physical properties.
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I. INTRODUCTION

The aim of this paper is to derive general and explicit
expressions for the unrenormalized and renormalized
dressed propagators of fermions in parity-nonconserving
theories with intergeneration mixing and to discuss their
important physical properties and implications.

The results presented here immediately apply to the
standard theory of elementary particle physics, usually
referred to as the standard model, as well as its extensions.
As has been known for a long time, the quark fields are
subject to intergeneration mixing, as implemented by the
Cabibbo-Kobayashi-Maskawa [1] quark mixing matrix.
Since neutrino oscillations have been observed experimen-
tally and lower mass bounds have been established, the
lepton fields are known to also undergo intergeneration
mixing. An early treatment of flavor-changing self-
energies, both for leptons and quarks in bound states,
which focuses instead on finite renormalization effects,
may be found in Ref. [2]. On the other hand, our treatment
is quite general and takes into account the full mixing
amplitudes. The renormalization of the Cabibbo-
Kobayashi-Maskawa matrix has been recently discussed
by several authors; see, for example, Ref. [3] and refer-
ences cited therein. Mixing renormalization has also been
worked out for theories involving Majorana neutrinos [4].

This paper is organized as follows. Section II discusses
the derivation of the unrenormalized dressed propagators.
The mass eigenvalues, the corresponding mass counter-
terms, and the effect of intergeneration mixing on their
determination are also analyzed. Section III discusses the
renormalization of the dressed propagators. Invoking
the Aoki-Hioki-Kawabe-Konuma-Muta (AHKKM) renor-
malization conditions and employing very useful relations
from matrix algebra, it is shown explicitly that the

renormalized dressed propagators satisfy important physi-
cal properties. Section IV contains our conclusions. The
Appendix explains how to derive the two-loop expression
for the mass eigenvalues presented in Sec. II and how to
express the mass counterterms in terms of the unrenormal-
ized self-energies.

II. UNRENORMALIZED DRESSED PROPAGATOR
OF MIXED FERMION SYSTEM

As is well-known, the unrenormalized mass matrix can
be brought to diagonal form with non-negative eigenvalues
by means of biunitary transformations on the left- and
right-handed fields. On this basis, the unrenormalized in-
verse propagator is �iIijð6pÞ, where

Iijð6pÞ ¼ ð6p�m0
i Þ�ij ��ijð6pÞ; (1)

i, j are flavor indices1 and the self-energies �ijð6pÞ are

given by

�ijð6pÞ ¼ ½6pðBþÞij þ ðAþÞij�aþ þ ½6pðB�Þij þ ðA�Þij�a�:
(2)

In Eq. (2), ðA�Þij, ðB�Þij are Lorentz-invariant functions of
p2, and a� ¼ ð1� �5Þ=2 are the chiral projectors.2

Equations (1) and (2) can be written in compact form, as

Ið6pÞ ¼ ð6pSþ � TþÞaþ þ ð6pS� � T�Þa�; (3)

where Sþ and Tþ are matrices defined by

ðS�Þij ¼ �ij � ðB�Þij; ðT�Þij ¼ m0
i �ij þ ðA�Þij:

(4)
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1In this paper, repeated indices are not summed, unless a
summation symbol is explicitly included.

2Throughout this paper, we adopt the notational conventions of
Bjorken and Drell [5].
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The unrenormalized dressed propagator is
iPð6pÞ ¼ iðIð6pÞÞ�1.3 Writing ðIð6pÞÞ�1¼ð6pUþ�VþÞaþþ
ð6pU��V�Þa�, we find the relations

SþVþ þ T�Uþ ¼ 0; (5)

S�V� þ TþU� ¼ 0; (6)

p2SþU� þ T�V� ¼ 1; (7)

p2S�Uþ þ TþVþ ¼ 1; (8)

where 1 stands for the unit matrix.
In order to express U� and V� in terms of S� and T�,

we first solve for V� in Eq. (6) and insert the result in
Eq. (7). This leads to

U� ¼ ½p2Sþ � T�ðS�Þ�1Tþ��1; (9)

V� ¼ �ðS�Þ�1TþU�: (10)

Next, we solve for Vþ in Eq. (5) and insert the result in
Eq. (8), which leads to

Uþ ¼ ½p2S� � TþðSþÞ�1T���1; (11)

Vþ ¼ �ðSþÞ�1T�Uþ: (12)

More convenient forms for U� are obtained by writing

U� ¼ ½ðp2 � T�ðS�Þ�1TþðSþÞ�1ÞSþ��1

¼ ðSþÞ�1ðp2 �DCÞ�1; (13)

Uþ ¼ ½ðp2 � TþðSþÞ�1T�ðS�Þ�1ÞS���1

¼ ðS�Þ�1ðp2 � CDÞ�1; (14)

where

C ¼ TþðSþÞ�1; D ¼ T�ðS�Þ�1: (15)

It is also convenient to introduce the matrices

E ¼ ðSþÞ�1T�; F ¼ ðS�Þ�1Tþ: (16)

Using Eqs. (9)–(16), the unrenormalized dressed propa-
gator is given by iP, where

P ¼ ð6pþ EÞðS�Þ�1ðp2 � CDÞ�1aþ
þ ð6pþ FÞðSþÞ�1ðp2 �DCÞ�1a�; (17)

which is fully expressed in terms of the self-energy
matrices S� and T�. The matrices ðp2 � CDÞ�1 and
ðp�DCÞ�1 are related by similarity transformations, as

ðp2 � CDÞ�1 ¼ Cðp2 �DCÞ�1C�1

¼ D�1ðp2 �DCÞ�1D: (18)

Writing

ðp2 � CDÞ�1 ¼ �þ
detðp2 � CDÞ ;

ðp2 �DCÞ�1 ¼ ��
detðp2 �DCÞ ;

(19)

where �þ and �� are the corresponding adjoint matri-
ces,4 we see that the determinants are equal and that �þ
and �� are related by the same similarity transforma-
tions as in Eq. (18).
Thus, the squared mass eigenvalues M2

i are the zeros of
detðp2 � CDÞ, namely, they satisfy

detðM2
i � YðM2

i ÞÞ ¼ 0; (20)

Yðp2Þ ¼ ðCDÞðp2Þ: (21)

The off-diagonal elements of Yðp2Þ arise from intergener-
ation mixing and are, therefore, of Oðg2Þ or higher, where
g is a generic weak-interaction gauge coupling. As a con-
sequence, if terms of Oðg4Þ are neglected, only the diago-
nal elements of p2 � Yðp2Þ contribute to the determinant,
and the eigenvalues are of the form

~M 2
i ¼ ~Yiið ~M2

i Þ þOðg4Þ; (22)

where ~Yiiðp2Þ denotes Yiiðp2Þ in the absence of Oðg4Þ
contributions. If, instead, terms of Oðg4Þ are retained, but
three-loop contributions and higher are neglected, there are
two additional effects: (i) there are now terms of Oðg4Þ in
Yiiðp2Þ, and (ii) the nondiagonal elements Yijðp2Þ (i � j)

contribute to the determinant. As a consequence, the mass
eigenvalues are now of the form

M2
i ¼ YiiðM2

i Þ þ
X
j�i

ðYijYjiÞðM2
i Þ

M2
i �M2

j

þOðg6; g4�sÞ: (23)

In the Appendix, we outline the derivation of Eq. (23) and
show how Eqs. (4), (15), (21), and (23) can be used to
express the mass counterterms in terms of the unrenormal-
ized self-energy functions A� and B� , in the approxi-
mation of neglecting three-loop contributions.

III. RENORMALIZED DRESSED PROPAGATOR
OF MIXED FERMION SYSTEM

In order to renormalize P [cf. Eq. (17)], we recall that
the unrenormalized propagator is the Fourier transform of

3Here and in the following, the matrix iPð6pÞ is referred to as
the unrenormalized propagator. The particle propagators are the
elements of this matrix, namely iPijð6pÞ. An analogous denomi-
nation is used in Sec. III for the renormalized propagator iP̂ð6pÞ
and the renormalized particle propagators iP̂ijð6pÞ.

4Given a square matrix M, in this paper, the adjoint matrix
AdjM means the transpose of the matrix whose elements are the
cofactors of M (see, for example, Ref. [6]). We recall that
the cofactor Cij of the element mij of M is ð�1Þiþj times the
determinant of the matrix obtained by deleting the i-th row and
the j-th column of M.
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h0jTð�0ðxÞ ��0ð0ÞÞj0i, where the zero superscripts denote
the unrenormalized fields. In our case, they are column and
row fields with components labeled by flavor indices. In
the following discussion, we assume for simplicity that the
fermions are stable. Decomposing the fields into right- and
left-handed components, as

�0 ¼ �0þ þ�0�; ��0 ¼ ��0þ þ ��0�; (24)

where �0� ¼ a��0 and ��0� ¼ ��0a�, and taking into
account the effect of the chiral projectors a�, it is easy to
see that the first, second, third, and fourth terms of P arise

from h0jTð�0� ��0�Þj0i, h0jTð�0þ ��0�Þj0i, h0jTð�0þ ��0þÞj0i,
and h0jTð�0� ��0þÞj0i, respectively.

Shifting the fields according to

�0þ ¼ Z1=2
þ �þ; ��0þ ¼ ��þðZ1=2

þ Þy; (25)

�0� ¼ Z1=2� ��; ��0� ¼ ���ðZ1=2� Þy; (26)

where �� are the renormalized fields, we see that the four
terms in P are multiplied on the left and right by various

combinations of Z1=2
� and ðZ1=2

� Þy factors. Since the time-
ordered products are now expressed in terms of renormal-
ized fields, in order to obtain the renormalized propagator

iP̂, we must divide out such factors. Specifically, the first

term in Pmust be multiplied on the left by Z�1=2� and on the

right by ðZ�1=2� Þy, the second term by Z�1=2
þ on the left and

ðZ�1=2� Þy on the right, the third term by Z�1=2
þ on the left

and ðZ�1=2
þ Þy on the right, and the fourth term by Z�1=2� on

the left and ðZ�1=2
þ Þy on the right.

Thus, the renormalized propagator is iP̂, where

P̂¼ ð6pZ�1=2� þZ�1=2
þ EÞðS�Þ�1ðp2�CDÞ�1ðZ�1=2� Þyaþ

þð6pZ�1=2
þ þZ�1=2� FÞðSþÞ�1ðp2�DCÞ�1ðZ�1=2

þ Þya�:
(27)

Recalling Eqs. (15) and (16), we see that the third and
fourth terms are related to the first and second ones,
respectively, by the exchange þ $ �.

We now note that the Z�1=2 factors in Eq. (27) can be
absorbed in a redefinition of the self-energy matrices S�
and T�, namely,

Ŝ� ¼ ðZ1=2
� ÞyS�Z1=2

� ; T̂� ¼ ðZ1=2
� ÞyT�Z

1=2
� : (28)

Using Eq. (28), P̂ can be written in the compact form

P̂ ¼ ð6pþ ÊÞðŜ�Þ�1ðp2 � Ĉ D̂Þ�1aþ
þ ð6pþ F̂ÞðŜþÞ�1ðp2 � D̂ ĈÞ�1a�; (29)

where

Ĉ ¼ T̂þŜ�1þ ; D̂ ¼ T̂�Ŝ�1� ;

Ê ¼ Ŝ�1þ T̂�; F̂ ¼ Ŝ�1� T̂þ:
(30)

In particular, Ĉ D̂ and CD are related by a similarity trans-
formation, as

Ĉ D̂ ¼ ðZ1=2� ÞyCDðZ1=2� Þy�1; (31)

so that detðp2 � Ĉ D̂Þ ¼ detðp2 � CDÞ and the mass ei-
genvalues are the zeros of either determinant. The matrices

Ŝ�, T̂�, Ĉ, D̂, Ê, and F̂ are the renormalized counterparts
of S�, T�, C, D, E, and F, respectively.
In analogy with Eq. (18), we have the relations

ðp2 � Ĉ D̂Þ�1 ¼ Ĉðp2 � D̂ ĈÞ�1Ĉ�1

¼ D̂�1ðp2 � D̂ ĈÞ�1D̂: (32)

We note that Ĉ D̂ and F̂ Ê are also related by a similarity

transformation, and so are ðp2 � Ĉ D̂Þ�1 and ðp2 � F̂ ÊÞ�1,
namely,

Ŝ�1� Ĉ D̂ Ŝ� ¼ F̂ Ê;

Ŝ�1� ðp2 � Ĉ D̂Þ�1Ŝ� ¼ ðp2 � F̂ ÊÞ�1:
(33)

Interchangingþ $ �, we obtain

Ŝ�1þ D̂ Ĉ Ŝþ ¼ Ê F̂;

Ŝ�1þ ðp2 � D̂ ĈÞ�1Ŝþ ¼ ðp2 � Ê F̂Þ�1:
(34)

Using Eqs. (30) and (32)–(34), Eq. (29) can be cast in the
alternative form

P̂ ¼ a�ðp2 � F̂ ÊÞ�1Ŝ�1� ð6pþ ĈÞ
þ aþðp2 � Ê F̂Þ�1Ŝ�1þ ð6pþ D̂Þ: (35)

It differs fromEq. (29) in that the chiral projectors a� are on
the left side of the expression. In both Eqs. (29) and (35), the
cofactors of a� and aþ are related by the exchangeþ $ �.
Writing

ðp2 � Ĉ D̂Þ�1 ¼ �̂þ
detðp2 � Ĉ D̂Þ ;

ðp2 � D̂ ĈÞ�1 ¼ �̂�
detðp2 � D̂ ĈÞ ;

(36)

ðp2 � F̂ ÊÞ�1 ¼ �̂þ
detðp2 � F̂ ÊÞ ;

ðp2 � Ê F̂Þ�1 ¼ �̂�
detðp2 � Ê F̂Þ ;

(37)

where �̂� and �̂� are the corresponding adjoint matrices
(cf. Footnote 4), the similarity relations in Eqs. (32)–(34)
tell us that

detðp2 � Ĉ D̂Þ ¼ detðp2 � D̂ ĈÞ ¼ detðp2 � F̂ ÊÞ
¼ detðp2 � Ê F̂Þ; (38)

and

RENORMALIZATION IN GENERAL THEORIES WITH . . . PHYSICAL REVIEW D 85, 036007 (2012)

036007-3



Ŝ�1� �̂� ¼ �̂�Ŝ�1� ; (39)

a relation that plays an important rôle in our discussion of
the propagator’s properties. We recall that in the previous

equations, Ŝ�, T̂�, Ĉ, D̂, Ê, F̂, �̂�, and �̂� are func-
tions of p2.

We now turn our attention to the renormalization con-
ditions. As emphasized in the seminal work of AHKKM
[7], a fundamental physical property of the renormalized

propagator iP̂ is that, as 6p ! mn, where mn is one of the
mass eigenvalues, the pole ð6p�mnÞ�1 should be present

only in the diagonal element iP̂nn of the renormalized
propagator matrix. In order to implement this property, as
well as the conventional requirement that the pole residue
equals the imaginary unit, AHKKM proposed suitable
conditions on the renormalized inverse propagators, which
were described both graphically and mathematically.

Recalling Eq. (3), in our general matrix notation, the

renormalized inverse propagator is �iÎð6pÞ, where
Îð6pÞ ¼ ð6pŜþ � T̂þÞaþ þ ð6pŜ� � T̂�Þa�: (40)

An alternative expression is

Îð6pÞ ¼ a�ð6pŜþ � T̂�Þ þ aþð6pŜ� � T̂þÞ; (41)

where the chiral projectors a� are placed on the left. The
homogeneous AHKKM renormalization conditions read

�u nð6pÞÎnlð6pÞ ¼ 0; (42)

Î lnð6pÞunð6pÞ ¼ 0; (43)

where unð6pÞ is a spinor that satisfies 6punð6pÞ ¼ mnunð6pÞ,
�unð6pÞ is its Hermitian adjoint, and n and l are flavor
indices.

Inserting Eq. (40) into Eq. (42), we have

½mnŜ�ðm2
nÞ � T̂�ðm2

nÞ�nl ¼ 0: (44)

Multiplying on the right by ðŜ�1� Þljðm2
nÞ, summing over l,

and remembering the definitions in Eq. (30), this becomes

Ĉ njðm2
nÞ ¼ D̂njðm2

nÞ ¼ mn�nj; (45)

which implies

ðĈ D̂Þnnðm2
nÞ ¼ m2

n; ðĈ D̂Þnjðm2
nÞ ¼ 0 ðj � nÞ;

(46)

with the analogous result for ðD̂ ĈÞðm2
nÞ.

Inserting Eq. (41) into Eq. (43), recalling the definitions
in Eq. (30), and carrying out the analogous analysis, we
obtain

Ê inðm2
nÞ ¼ F̂inðm2

nÞ ¼ mn�in; (47)

which leads to

ðÊ F̂Þnnðm2
nÞ ¼ m2

n; ðÊ F̂Þinðm2
nÞ ¼ 0 ði � nÞ;

(48)

and the analogous result for ðF̂ ÊÞðm2
nÞ.

Equation (46) tells us that, as p2 ! m2
n, all the elements

in the n-th row of p2 � Ĉ D̂ and p2 � D̂ Ĉ vanish.

Therefore, the only nonvanishing cofactors of (p2� ĈD̂

and p2 � D̂ Ĉ are those corresponding to the elements of
that row, namely, the cofactors Cnl. Since the adjoint
matrices are the transpose of the cofactor matrices
(cf. Footnote 4), we conclude that the only nonvanishing
elements of �̂�ðm2

nÞ are those in the n-th column, namely,
the elements ð�̂�Þinðm2

nÞ. Similarly, from Eq. (48), we see
that, as p2 ! m2

n, all the elements in the n-th column of

p2 � F̂ Ê and p2 � Ê F̂ vanish. Consequently, the only

nonvanishing elements of �̂�ðm2
nÞ are those in the n-th

row, namely, ð�̂�Þnjðm2
nÞ. In combination with Eq. (39),

these results imply that, as p2 ! m2
n, the only nonvanish-

ing elements of the matrices Ŝ�1� �̂� and �̂�Ŝ�1� are the

diagonal nn elements ðŜ�1� �̂�Þnnðm2
nÞ ¼ ð�̂�Ŝ�1� Þnnðm2

nÞ.
Thus,

ðŜ�1� �̂�Þijðm2
nÞ ¼ ð�̂�Ŝ�1� Þijðm2

nÞ ¼ 0 ði or j� nÞ:
(49)

To examine the effect of these results on the renormalized
propagators, we insert Eqs. (36) and (37) into Eqs. (29) and
(35), respectively. Recalling Eq. (38), we obtain

P̂ ¼ ð6pþ ÊÞðŜ�Þ�1�̂þaþ þ ð6pþ F̂ÞðŜþÞ�1�̂�a�
detðp2 � Ĉ D̂Þ

(50)

from Eq. (29) and

P̂ ¼ a��̂þðŜ�Þ�1ð6pþ ĈÞ þ aþ�̂�ðŜþÞ�1ð6pþ D̂Þ
detðp2 � F̂ ÊÞ

(51)

from Eq. (35).
Using Eqs. (45), (47), and (49), one readily verifies that,

as p2 ! m2
n, the only nonvanishing elements in the numer-

ators of Eqs. (50) and (51) are, in fact, the diagonal nn
elements. Thus, the explicit expressions of the renormal-

ized propagator iP̂, given in Eqs. (29), (35), (50), and (51),
indeed satisfy the fundamental physical property that the
ð6p�mnÞ�1 pole is present only in the diagonal element

iP̂nn of the propagator matrix.
The inhomogeneous AHKKM renormalization condi-

tions are

1

6p�mn

Înnð6pÞunð6pÞ ¼ unð6pÞ; (52)

�u nð6pÞÎnnð6pÞ 1

6p�mn

¼ �unð6pÞ: (53)
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Inserting Eq. (40) into Eq. (52), expanding the numerator
about 6p ¼ mn, and using Eq. (44), we find the renormal-
ization conditions

fŜ�ðm2
nÞ þmn½mnðŜþ þ Ŝ�Þ � T̂þ � T̂��0gnn ¼ 1;

ðŜ�Þnnðm2
nÞ ¼ ðŜþÞnnðm2

nÞ;
(54)

where the prime symbol stands for the derivative with
respect to p2, evaluated at p2 ¼ m2

n. Inserting Eq. (41)
into Eq. (53), we obtain the same result.

In order to analyze the effect of Eq. (54), we evaluate the

residue of the ð6p�mnÞ�1 pole in P̂, using Eq. (50), and

focus on the aþ term. We expand detðp2 � Ĉ D̂Þ about
p2 ¼ m2

n through Oðp2 �m2
nÞ. Since p2 ¼ m2

n is a zero of
the determinant, the first term vanishes, and we have

detðp2 � Ĉ D̂Þ ¼ ½detðp2 � Ĉ D̂Þ�0ðp2 �m2
nÞ þ . . . :

(55)

Using the well-known expression

ðdetMÞ0 ¼ TrðM0AdjMÞ; (56)

the right-hand side of Eq. (55) becomes Trf�̂þðm2
nÞ½1�

ðĈ D̂Þ0�gðp2 �m2
nÞ þ . . . . Multiplying by 6p�mn, taking

the limit 6p ! mn, and recalling Eqs. (47) and (49), we see
that the residue of the ð6p�mnÞ�1 pole in the aþ term of
Eq. (50) is

Resþ ¼ ðŜ�1� �̂þÞnn
Trf�̂þ½1� ðĈ D̂Þ0�g : (57)

Here and in the following, it is understood that all the
functions are evaluated at p2 ¼ m2

n. To simplify this ex-

pression, we insert Ŝ�Ŝ�1� ¼ 1 in the argument of the trace.
Recalling again Eq. (49), we find

TrfŜ�Ŝ�1� �̂þ½1�ðĈ D̂Þ0�g ¼ ðŜ�1� �̂þÞnnf½1�ðĈ D̂Þ0�Ŝ�gnn;
(58)

and the residue becomes

Resþ ¼ 1

f½1� ðĈ D̂Þ0�Ŝ�gnn
: (59)

Taking into account Eqs. (45)–(47), Eq. (59) becomes

Resþ ¼ 1

fŜ� þmn½mnðŜþ þ Ŝ�Þ � T̂þ � T̂��0gnn
:

(60)

Thus, the renormalization condition of Eq. (54) indeed
implies that

Resþ ¼ 1: (61)

Calling Res� the residue of the ð6p�mnÞ�1 pole in the a�
term of Eq. (50), an analogous analysis shows that

Res� ¼ 1: (62)

We conclude that, when the inhomogeneous renormaliza-
tion condition of Eq. (52) is imposed, the poles in our
explicit expressions for the renormalized propagator
[cf. Eqs. (29), (35), (50), and (51)] have residues i.

IV. CONCLUSIONS

We derived general and explicit expressions for the
unrenormalized and renormalized dressed propagators of
fermions in parity-nonconserving theories with intergener-
ation mixing [cf. Eqs. (17), (29), (35), (50), and (51)]. We
analyzed the determination of the mass eigenvalues and the
corresponding mass counterterms in the approximation
of neglecting three-loop contributions [cf. Eqs. (23) and
(A9)]. In particular, we discussed the effect of intergenera-
tion mixing on these determinations. Using the AHKKM
renormalization conditions and applying very useful rela-
tions from matrix algebra, we showed explicitly that our
renormalized dressed propagator [cf. Eqs. (29), (35), (50),
and (51)], which is valid to all orders in perturbation
theory, satisfies important physical properties. In turn,
this demonstrates in a clear manner that the AHKKM
renormalization conditions are also valid to any order of
perturbation theory.
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APPENDIX

In this appendix, we outline the derivation of Eq. (23) in
the approximation of neglecting three-loop contributions
and show how it can be applied to express the mass
counterterms in terms of the basic self-energy functions
ðA�Þij and ðB�Þij in Eq. (2). For simplicity, we consider the

three-generation case.
As explained in the paragraph containing Eqs. (20) and

(21), the mass eigenvalues are the zeros of detðp2�Yðp2ÞÞ,
where Yðp2Þ ¼ ðCDÞðp2Þ and the matrices C and D are
defined in Eq. (15). Using Eqs. (4), (15), and (21), we find

Y ¼ ðM0Þ2 þ Z; (A1)

where M0 is the diagonal bare mass matrix with elements
m0

i and

Z ¼ ðM0Þ2B�ð1þ B�Þ þM0ðA� þ A�B� þ BþA�Þ
þM0Bþð1þ BþÞM0 þ Aþð1þ BþÞM0

þ AþM0B� þM0BþM0B� þ AþA�: (A2)
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In Eq. (A1), we have separated out the squared bare
mass term ðM0Þ2 and the one- and two-loop contributions
contained inZ.We recall thatA�,B�,Y, and, consequently,
Z are functions of p2. It is further convenient to split

ðM0Þ2 ¼ M2 þ �M2; (A3)

where M is the renormalized mass matrix whose elements
are the mass eigenvalues and �M2 is the mass counterterm
matrix. Thus,

Y ¼ M2 þ X; (A4)

where

X ¼ �M2 þ Z: (A5)

We note that, in Eq. (A4), M2 contains the zeroth-order
terms, while X contains the one- and two-loop
contributions.

Neglecting three-loop contributions, in the three-
generation case, the eigenvalue equation
detðp2 � Yðp2ÞÞ ¼ 0 becomes

ðp2 � Y11Þðp2 � Y22Þðp2 � Y33Þ � ðp2 � Y11ÞY23Y32

� ðp2 � Y22ÞY13Y31 � ðp2 � Y33ÞY12Y21 ¼ 0: (A6)

Consider the neighborhood of p2 ¼ M2
1, where M1 is one

of the mass eigenvalues: dividing by ðp2 � Y22Þðp2 � Y33Þ,
we have

ðp2 � Y11Þ
�
1� Y23Y32

ðp2 � Y22Þðp2 � Y33Þ
�

¼ Y13Y31

p2 � Y33

þ Y12Y21

p2 � Y22

: (A7)

The factors Y23Y32, Y13Y31, and Y12Y21 are of two-loop
order or higher. As p2 ! M2

1, we see from Eq. (A4) that,
to leading order, we have p2 � Y22 ¼ M2

1 �M2
2 and

p2 � Y33 ¼ M2
1 �M2

3. Thus, neglecting three-loop contri-

butions, as p2 ! M2
1, Eq. (A7) reduces to

M2
1 ¼ Y11ðM2

1Þ þ
ðY12Y21ÞðM2

1Þ
M2

1 �M2
2

þ ðY13Y31ÞðM2
1Þ

M2
1 �M2

3

; (A8)

which is a particular case of Eq. (23).
Recalling Eqs. (23), (A1), and (A3), the mass counter-

terms are then

�M2
i ¼ ðm0

i Þ2 �M2
i

¼ ðm0
i Þ2 � YiiðM2

i Þ �
X
j�i

ðYijYjiÞðM2
i Þ

M2
i �M2

j

¼ �ZiiðM2
i Þ �

X
j�i

ðZijZjiÞðM2
i Þ

M2
i �M2

j

; (A9)

where Z is defined in Eq. (A2). In the last equality of
Eq. (A9), we have replaced Yij ! Zij, since both are

equal when i � j [cf. Eq. (A1)].
We note that, subject to our approximation, the ampli-

tudes involving linear powers of A� and B� in Eq. (A2)
contain both one- and two-loop contributions.
Using Eq. (A2), we find for the diagonal terms

Zii ¼ ðm0
i Þ2ðBþ þ B� þ B2þ þ B2�Þii

þm0
i ðAþ þ A� þ AþBþ þ A�B� þ BþA�Þii

þ ðAþA�Þii þ
X3
j¼1

½m0
j ðAþÞijðB�Þji

þm0
i m

0
j ðBþÞijðB�Þji�: (A10)

We note that Zii depends not only on the bare fermion
masses m0

i and m0
j displayed in Eq. (A10), but also on

additional ones present in the loop diagrams. We refer
generically to the latter as m0

l . Consistently with our ap-

proximation, in the contributions of two-loop order, we
replace the bare masses m0

i , m0
j , and m0

l by the mass

eigenvalues Mi, Mj, and Ml, respectively. In the contribu-

tions of one-loop order, we replace

m0
i ¼ ½M2

i � Zð1Þ
ii ðM2

i Þ�1=2; (A11)

and similarly for m0
l . In Eq. (A11), the superscript (1)

stands for the one-loop contribution, namely,

Zð1Þ
ii ¼M2

i ðBð1Þ
þ þBð1Þ� ÞðM2

i ÞþMiðAð1Þ
þ þAð1Þ� ÞðM2

i Þ; (A12)

with an analogous expression for Zð1Þ
ll .

The contributions involving ZijZji with j � i in

Eq. (A9) are already of two-loop order or higher, so that
in the off-diagonal amplitudes Zij with j � i, we simply

replace m0
i ; m

0
j ; m

0
l ! Mi;Mj;Ml. In this way, subject to

the approximation of neglecting three-loop contributions,
the mass counterterms �M2

i given in Eq. (A9) are fully
expressed in terms of the basic self-energies A�ðM2

i Þ and
B�ðM2

i Þ of Eq. (2) and the mass eigenvalues.
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