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The experimental data on the processes �� ! ��, K �K, ��, ��0 in the IGJPC ¼ 0þ0þþ channel have

been jointly analyzed to study the status and nature of the f0. The method of analysis is based on

analyticity and unitarity and uses an uniformization procedure. Some spectroscopic implications from

results of the analysis are discussed.
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I. INTRODUCTION

The problem of interpretation of scalar mesons is tightly
related to the most profound topics in particle physics
which concern the QCD vacuum (see, e.g., the review
‘‘Note on scalar mesons’’ in [1]). These mesons are ex-
pected to be composed of the q �q or the lightest four-quark
states, meson-meson molecules, or gluonium states. It is
disconcerting that up to now a description of this mesonic
sector is far from being complete despite the big effort
devoted to studying various aspects of the problem (for
recent reviews see, e.g., [2–5]). Parameters of the scalar
mesons, their nature and status of some of them is still not
settled [1]. Especially, this concerns the f0ð600Þ=� meson
and K�

0ð900Þ=�ð800Þ meson. For example, the mass of the

former obtained in the Breit-Wigner or K-matrix ap-
proaches ranges in various analyses in the interval of about
400–1200 MeV [1]. According to the prediction by
Weinberg [6], based on the mended symmetry, the mass
of the � should be near the mass of the �-meson. A recent
refined analysis using the large-Nc consistency conditions
between the unitarization and resonance saturation sug-
gests the analogous result [7]. As to the mass of the lowest
scalar glueball, various nonperturbative QCDmethods give
also very different results. From the QCD sum rules [8] one
has found a scalar-isoscalar meson of the gluonium nature
with a mass about 1000 MeVand with the ��-decay width
about 500 MeV. This is in agreement with the recent
unquenched-lattice simulation using dynamical fermions
[9] but it diverges from recent calculations on the quenched
anisotropic lattices of the glueball spectrum where the
mass of the lowest glueball is about 1710 MeV [10].

The width of the f0ð600Þ (in various experiments and
analyses) also has a large spread, 600–1000 MeV accord-
ing to an estimate of the Particle Data Group team [1]. Note
also the works in which one obtained a very small value of

35� 12 MeV [11] and the very large one of about
3200 MeV [12]. The prediction for the �-meson width
on the basis of saturating the superconvergence dispersive
sum rules is larger than about 670 MeV [13]. The theoreti-
cal conclusions about widths of glueballs, especially about
the lightest one, are also very different in various ap-
proaches. In Ref. [14] the authors used an effective QCD
Lagrangian with the broken scale and chiral symmetry,
where a glueball is introduced to theory as a dilaton and
its existence is related to breaking of scale symmetry in
QCD. Then the �� decay width of the glueball, estimated
using low-energy theorems, is �ðG ! ��Þ � 0:6 GeV�
ðmG=1 GeVÞ5, where mG is the glueball mass. I.e., for the
glueball with the mass about 1 GeV (if it exists), the width
is near 600 MeV. Though a use of the above formula is
doubtful above 1 GeV, a tendency for the glueball to be
wide is apparently seen. This is supported by arguments
given in [15] that the glueball width is larger than those of
the surrounding q �q states. On the other hand, in Ref. [16],
where the two pseudoscalar and two-photon decays of the
scalars between 1–2 GeV were analyzed in the framework
of a chiral Lagrangian and the glueball was included as a
flavor-blind composite mesonic field, the glueball was
found to be rather narrow in accordance with the former
findings of Ref. [17].
Up to now the nature of the f0ð980Þ is not clearly

resolved. Besides a q �q [18–21], subject to serious criti-
cism, there are recent arguments for a four-quark state (as
the a0ð980Þ) [22], a K �K molecule [23–25] and a �� bound
state [26–28].
Existence of the f0ð1370Þ meson is still not obvious. In

some works, e.g., in [29,30] one did not find any evidence
for the existence of the f0ð1370Þ. In Ref. [31] also the best
description of �� ! ��, K �K was obtained without the
f0ð1370Þ, and it was shown that theK �K scattering length is
very sensitive to whether this state exists or not. On the
other hand, in Ref. [32] a number of data apparently
requiring the existence of the f0ð1370Þ is indicated: the
Crystal Barrel data on �pp ! ���0 [33] and on �pp ! 3�0
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[34], the BES data on J=c ! ��þ�� [35]; the f0ð1370Þ
appears also in the GAMS data for�þ�� ! �0�0 at large
jtj [36]. For example, in [37] it was shown within the so-
called ‘‘hidden gauge formalism’’ that the f0ð1370Þ might
be dynamically generated from the �� interaction.

Especially it is worthwhile to discuss the situation with
scalar states in the 1500MeV region. First, a state observed
in this region could be a real candidate for the lightest
glueball (see, e.g., Ref. [17]). In the model-independent
analyses of data on the processes �� ! ��K �K, ��, ��0
using different uniformizing variables [26–28,31,38–41], a
wide-state f0ð1500Þ was obtained, whereas in many other
works, which analyzed mainly the production and decay of
mesons, as cited in the PDG tables [1], the rather narrow
f0ð1500Þ is obtained. Therefore, we have supposed [31,39]
that the wide f0ð1500Þ, observed in the multichannel ��
scattering, indeed, is a superposition of two states, narrow
(q �q) and broad (glueball). The former is just observed in the
processes of decay and production ofmesons. An indication
about nature of the latter follows from the fact that the
f0ð1500Þ is coupled with approximately equal strength
with the ��, K �K and �� systems [26,27,31,38–40] and
from the arguments of Ref. [15] on the glueball width.
These suppositions are in some accordance with the results
of the combined K-matrix analysis [42] of the GAMS data
on ��p ! �0�0n, ��n, ��0n [43], BNL data on ��p !
K �Kn [44] and Crystal Barrel data on p �pðat restÞ !
�0�0�0, �0�0�, �0�� [45,46], which say that in the
1500 MeV region there are the narrow f0ð1500Þ and very
wide f0ð1530þ90

�250Þ.
The f0ð1710Þ has most likely the dominant s�s compo-

nent (see, e.g., Refs. [31,47] and the review ‘‘Note on
scalar mesons’’ in [1]). Note, however, that the QCD sum
rules [48] and the K-matrix method [49] showed that both
f0ð1500Þ and f0ð1710Þ are mixed states with a large ad-
mixture of the glueball component. There are also schemes
[29,50] in which the coupling of two gluons (of a scalar
glueball) with n �n (n is nonstrange u or d quark) appears to
be suppressed by chiral symmetry [51] increasing the
relative contribution of the s�s component. When assuming
this consideration to be valid up to energies of the
f0ð1710Þ, one concludes that this state could be an un-
mixed glueball [52].

In the scalar-isodoublet sector (except for the well-
established state K�

0ð1430Þ) the possible existence of a

very broad meson in the 700–950 MeV region is discussed
in recent years (see the review ‘‘Note on scalar mesons’’ in
[1]). E.g., in some recent analyses the authors have found a
pole which corresponds to this state K�

0ð900Þ [53–59],

while no such state was seen in the experiment performed
by the BABAR Collaboration [60] and in the earlier analy-
ses [61–63].

In view of all above circumstances, the problems con-
nected with determining the nature of the observed mes-
onic states and their assignment to the quark-model

configurations are still open in spite of a large amount of
work devoted to these problems (see, e.g., Refs. [64–68]).
It is clear that resonance parameters should be obtained, if
possible, in a model-independent way. Here, we present
results of the combined three-channel analysis of data on
the processes�� ! ��,K �K,��,��0 in the channel with
the quantum numbers IGJPC ¼ 0þ0þþ. Study of the K�
scattering in the channel with IðJPÞ ¼ 1

2 ð0þÞ and the

role of the strange scalar meson K�
0ð900Þ (�ð800Þ) goes

beyond the scope of this paper and will be discussed in
Ref. [69]. We have used a ‘‘model-independent’’ method
[28,31,38,40,41] based on the first principles (analyticity
and unitarity) directly applied to the analysis of experi-
mental data. This approach permits us to omit a theoretical
prejudice in extracting the resonance parameters. It is
important that a uniformizing-variable method allows us
to avoid a model dependence when considering resonance
contributions. This is possible since a main model-
independent contribution of the resonance can be given
by poles and corresponding zeros on a uniformization
plane, whereas the possible remaining corrected and
model-dependent contribution of the resonance is sup-
posed to be taken into account in the background. This
distinguishes substantially our model-independent method
from the standard dispersion relation approach based also
on analyticity and unitarity where, however, the model
dependence arises inevitably when saturating dispersive
integrals by the contributions of resonances. Then in our
method, considering the obtained disposition of resonance
poles on the Riemann surface, bearing witness to a relative
strength of coupling with corresponding channels, and
resonance masses, we draw conclusions about nature of
the investigated states.
Unlike in the previous three-channel analysis of the

above processes [26–28,40], in this work we used a new
uniformizing variable in which we took into account the
left-hand branch point at s ¼ 0 related to the thresholds of
the �� scattering in crossed channels, in addition to the
right-hand branch points related to the thresholds of the
analyzed processes. This should diminish considerably
dependence of the extracted parameters of resonances on
the background because the elastic part of the �� back-
ground is stipulated mainly by the contribution of the left-
hand cuts.
The layout of the paper is as follows. In Sec. II we

outline the two- and three-coupled channel formalisms,
where pole clusters on the Riemann surface are determined
as characteristics of multichannel states and a classification
of two- and three-channel resonances according to the
types of the possible pole clusters is given. We introduce
also the new uniformizing variable for the three-channel
case and show the disposition of resonance poles and
zeroes related to various pole clusters on the uniformiza-
tion plane for the ��-scattering S-matrix element. In
Sec. III we carry out the combined three-channel analyses
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of data on the processes �� ! ��, K �K, �� (variant I)
and �� ! ��, K �K, ��0 (variant II). In Sec. IV we
summarize our conclusions, propose an assignment of the
scalar mesons lying below 1.9 GeV to lower nonets and
discuss the obtained results.

II. THE COUPLED-CHANNEL FORMALISM IN
MODEL-INDEPENDENTAPPROACH

Our model-independent approach, in which we utilize
an uniformizing variable but in which we do not construct
any model for the scattering amplitude, can be used only
for the two-channel case and under some conditions for the
three-channel one. Only in these cases we can easily
classify resonances looking at locations of poles and zeros
of the S-matrix on the uniformization plane.

The matrix elements S�� of the S-matrix, where �, � ¼
1, 2, 3 denote the channels, have the right-hand cuts along
the real axis of the complex s plane (s is the invariant total
energy squared), starting with the channel thresholds si
(i ¼ 1, 2, 3), and the left-hand cuts related to crossed
channels. Sheets of the Riemann surface on which the
S-matrix is defined are numbered according to the signs
of the analytic continuations of the quantities

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s�

p
as

follows: in the two-channel case

signs ðIm ffiffiffiffiffiffiffiffiffiffiffiffi
s�s1

p
;Im

ffiffiffiffiffiffiffiffiffiffiffiffi
s�s2

p Þ¼þþ;�þ;��;þ� (1)

correspond to sheets I, II, III, IV; in the three-channel case

signsðIm ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s1

p
; Im

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s2

p
; Im

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s3

p Þ
¼ þþþ;�þþ;��þ;þ�þ;þ��;

���;�þ�;þþ� (2)

correspond to sheets I, II, . . . , VIII, respectively.
Using formulas for the analytic continuation of the

S-matrix elements to the unphysical sheets of the Rieman
surface [41] (see also the Appendix), we have obtained
representation of resonances on this surface. To this end,
the S�� elements on the unphysical sheets were expressed

in terms of those on the physical sheet I, which possess
only isolated zeros corresponding the resonances, at least
around the physical region. Then, assuming various pos-
sible choices for a presence of the resonance zeros in S��
on sheet I and using the formulas from the Appendix, one
can obtain an arrangement of poles and zeros on the whole
Riemann surface which we denote a cluster and which
characterizes a resonance of a specific type.

In the two-channel case, three different types of reso-
nances are obtained, assuming a pair of conjugate zeros
on sheet I only in S11-the type (a), only in S22-(b), and
simultaneously in S11 and S22-(c). Symmetry of the
resonance zeros with respect to the real axis is required
by a real analyticity condition. Then the formulas of
the analytic continuation [41] give immediately the rep-
resentation of resonances by poles and zeros on the

four-sheeted Riemann surface: the resonances of types
(a) and (b) are described with a pair of complex con-
jugate poles on sheet III shifted relative to a pair of poles
on sheet II and IV, respectively. For the states of type (c)
one must consider the corresponding two pairs of con-
jugate poles on sheet III.
In the three-channel case, seven types of resonances are

possible, which correspond to the choices when resonance
zeros on sheet I are present only in S11 - (a); S22 - (b);
S33 - (c); S11 and S22 - (d); S22 and S33 - (e); S11 and
S33 - (f); S11, S22, and S33 - (g). Examples for the dispo-
sition of poles and zeros on the uniformization plane,
which correspond to these types of the three-channel reso-
nances, will be given below.
A necessary and sufficient condition for existence of the

multichannel resonance is its representation by one of
the types of pole clusters. The cluster type is related to
the nature of the state. For example, if we consider the ��,
K �K and �� channels, a resonance coupled relatively more
strongly to the �� channel than to the K �K and �� ones is
described by the cluster of type (a). In the opposite case,
the resonance is represented by the cluster of type (e) (the
state with a dominant s�s component). In the ideal case,
when the state lies above the thresholds of the considered
channels, the glueball must be represented by the cluster of
type (g) [of type (c) in the two-channel consideration] as a
necessary condition. Note that whereas the cases (a), (b)
and (c) can be related to the representation of resonances
by multichannel Breit-Wigner forms, the cases (d), (e), (f)
and (g) do not have their counterparts in the Breit-Wigner
description.
One can formulate a model-independent test as a neces-

sary condition to distinguish a bound state of colorless
particles (e.g., a K �K molecule) and a q �q bound state
[38,41,70]. In the one-channel case, the existence of the
particle bound state corresponds to the presence of a pole
on the real axis under the threshold on the physical sheet.
In the two-channel case, the existence of the bound state in
channel 2 (K �K molecule), which can decay into channel 1
(�� decay), would imply the presence of a pair of complex
conjugate poles on sheet II under the second-channel
threshold without the corresponding shifted pair of poles
on sheet III. In the three-channel case, the bound state in
channel 3 (��) which can decay into channels 1 (��
decay) and 2 (K �K decay) is represented by the pair of
complex conjugate poles on sheet II and by the pair of
shifted poles on sheet III under the �� threshold without
the corresponding poles on sheets VI and VII. According to
this test, an interpretation of the f0ð980Þ as the K �K mole-
cule was rejected earlier [41]. The reason is that this state is
represented by the cluster of type (a) in the two-channel
analysis of processes �� ! ��, K �K and, therefore, does
not satisfy the necessary condition to be the K �K molecule.
A further discussion of this topic will be given in the last
section.
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An important merit of the model-independent method,
in comparison with the standard dispersion relation ap-
proach, is that we can fully utilize the fact that the ampli-
tude is a one-valued function on the Riemann surface. To
this end, an uniformizing variable is applied, which maps
the Riemann surface onto a complex plane. This allows us
to use the representation of resonances by the pole-zero
clusters on the uniformization plane, which is very impor-
tant for the broad multichannel resonances. This is not
possible in the standard dispersion relation, K-matrix,
and the Breit–Wigner frameworks.

In the combined analysis of coupled processes it is
convenient to use the Le Couteur-Newton relations [71].
They express the S-matrix elements of all coupled
processes in terms of the Jost matrix determinant
dð ffiffiffiffiffiffiffiffiffiffiffiffiffi

s� s1
p

; � � � ; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� sN

p Þ that is a real analytic function

with the only square-root branch points at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s�

p ¼ 0.
The important branch points, corresponding to the thresh-
olds of the coupled channels and to the crossing ones, are
taken into account in the proper uniformizing variable. In
the two-channel case, the S-matrix can be uniformized
using, e.g., the inverse Zhukovsky transformation [41] in
which the thresholds of two channels are taken into
account:

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � s1

p : (3)

It is obvious that the main model-independent contribu-
tion of resonances factorizes in the S-matrix elements from
the background. Other possible model-dependent contri-
butions of resonances are supposed to be included in the
background which is realized in a natural way: in the
background, the corresponding elastic and inelastic phase
shifts increase when some channel is opened. These are our
reasons we denote the approach ‘‘model-independent.’’

A. Three-channel description

The three-channel S-matrix is determined on the eight-
sheeted Riemann surface. Unfortunately, that function can
be uniformized exactly only on a torus, which is not suited
for a further analysis. Therefore, in this case we neglect an
influence of the lowest (��) threshold branch point at s1
keeping unitarity on the ��-cut. This approximation
means that we take into account only the semisheets of
the Riemann surface which are nearest to the physical
region. In fact, we construct a four-sheeted model of
the initial eight-sheeted Riemann surface in which we
consider consistently the nearest singularities on all the
relevant sheets. In fact, neglecting the influence of the
��-threshold branch point means that we do not describe
some small region near the threshold.

Furthermore, as it was indicated many times (see, e.g.,
Ref. [12]) some analyses can be criticized (especially the
proof of the resonance existence) because in their
approaches the wide-resonance parameters are strongly

controlled by the nonresonant background; this is particu-
larly related to low-lying states. Considering the left-hand
branch point at s ¼ 0, related to the crossed �� channels,
can partially solve this problem. For example, in Ref. [31]
a combined analysis of the processes �� ! ��, K �K in
the isoscalar-scalar sector was performed using the method
of uniformizing variable which included two threshold
branch points and the left-hand one at s ¼ 0. The inclusion
of the left-hand branch point resulted in a parameterless
description of the �� background. It was also shown that
the large background, obtained in the previous analyses of
the S-wave �� scattering [41] which did not take into
account the left-hand branch point in the uniformizing
variable, hides in reality the �-meson lying below 1 GeV.
In the analysis presented here, we will, therefore, include
the left-hand branch point in the uniformizing variable,
expecting that a dependence of our results on the back-
ground will be smaller.
In the three-channel case we use the new uniformizing

variable

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� s2Þs3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� s3Þs2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs3 � s2Þ

p ; (4)

where we neglect the lowest ��-threshold branch point
and take into account the threshold branch points related to
two remaining channels and the left-hand branch point at
s ¼ 0. This variable maps our model of the eight-sheeted
Riemann surface onto the w-plane divided into two parts
by a unit circle centered at the origin. The semisheets I
(III), II (IV), V (VII) and VI (VIII) are mapped onto the
exterior (interior) of the unit disk in the first, second, third
and fourth quadrants, respectively. The physical region
extends from the point �� on the imaginary axis (the first
�� threshold corresponding to s1) along this axis down to
the point i on the unit circle (the second threshold corre-
sponding to s2). Then it extends further along the unit
circle clockwise in the first quadrant to point 1 on the
real axis (the third threshold corresponding to s3) and
then along the real axis to the point b ¼ ð ffiffiffiffiffi

s2
p þffiffiffiffiffi

s3
p Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s3 � s2
p

into which s ¼ 1 is mapped on the

w-plane. The intervals ð�1;�b�, ½�b�1; b�1�, ½b;1Þ on
the real axis are the images of the corresponding edges
of the left-hand cut of the ��-scattering amplitude. In
Figs. 1 and 2, the three-channel resonances of all the
standard types in S11ðwÞ are represented by the poles (*)
and zeroes (�) symmetric to these poles with respect to the
imaginary axis giving corresponding pole clusters. The
‘‘pole–zero’’ symmetry guarantees the elastic unitarity of
�� scattering in the (��, i) interval.
For the analyzed data we use the results of phase-shift

analyses for the phase shifts of the amplitudes 	�� and for

the modules of the S-matrix elements ��� ¼ jS��j (�,
� ¼ 1, 2, 3):

S�� ¼ ���e
2i	�� ; S�� ¼ ���e

i���: (5)
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The two-channel unitarity below the threshold of the third
channel results in the relations fulfilled in this energy
region

�11¼�22; �12¼ð1��2
11Þ1=2; �12¼	11þ	22: (6)

Masses and total widths of the assumed resonances can
be calculated using the denominator of the formula for the
resonance part of the amplitude

Tres ¼
ffiffiffi
s

p
�el

m2
res � s� i

ffiffiffi
s

p
�tot

(7)

taking the pole positions on sheets II, IVand VIII because,
as one can see in the Appendix, only on these sheets the
analytic continuations of the corresponding S-matrix ele-
ments have the forms

/ 1=SI11; / 1=SI22 and / 1=SI33;

respectively. This means that the pole positions of
resonances only on these sheets are at the same points in
the complex-energy plane as the resonance zeros on the
physical sheet and are not shifted due to the coupling of
channels. Note that the poles on indicated sheets are not
always nearest to the physical region. Then, if the pole
position on the corresponding sheet is

ffiffiffiffi
sr

p ¼ Er � i�r=2,
then

mres ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
r þ

�
�r

2

�
2

s
and �tot ¼ �r: (8)

FIG. 1. Uniformization w-plane for the three-channel-��-scattering amplitude. Representation of resonances of types (a), (b), (c),
and (d) is shown.
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III. ANALYSIS OF THE
ISOSCALAR-SCALAR SECTOR

We analyzed the isoscalar S-waves of the processes

�� ! ��; K �K; ��; ��0:

The experimental data on the �� scattering from
0.575 GeV to 1.89 GeV are taken from Ref. [72] and
below 1 GeV from the works [73–75]. For �� ! K �K
the data [76] from threshold to about 1.6 GeV are used.
The data for �� ! �� up to 1.72 GeV are taken from
Ref. [77] and for �� ! ��0 from threshold to 1.81 GeV
from Ref. [78].

A. Two variants of the three-channel analysis

In the model-independent approach we have performed
two variants of the three-channel analysis: variant I—the
combined analysis of processes �� ! ��, K �K, ��; vari-
ant II—analysis of �� ! ��, K �K, ��0. The influence of
the ��0-channel in the variant I and of �� in the variant II
are taken into account via the background. The analysis
has been carried out with the new uniformizing variable
(4) (s3 is 4m

2
� in variant I and ðm� þm�0 Þ2 in variant II; in

the following the quantities related to variant II are
primed).
On the w-plane the Le Couteur-Newton relations have

the form [41]:

FIG. 2. Uniformization w-plane for the three-channel scattering amplitude. Representation of resonances of types (e), (f), and (g) is
shown.
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S11 ¼ d�ð�w�Þ
dðwÞ ; S22 ¼ dð�w�1Þ

dðwÞ ;

S33 ¼ dðw�1Þ
dðwÞ ; S11S22 � S212 ¼

d�ðw��1Þ
dðwÞ ;

S11S33 � S213 ¼
d�ð�w��1Þ

dðwÞ ; S22S33 � S223 ¼
dð�wÞ
dðwÞ :

(9)

In this case the subscripts in the matrix elements S��
denote �, � ¼ 1� ��, 2� K �K, 3� �� or ��0.

The S-matrix elements in relations (9) are taken as the
products S ¼ SBSres where SB describes the background
and Sres the resonance contributions. The d-function is also
the product dresdB where the resonance part is

dresðwÞ ¼ w�ðM=2Þ YM
r¼1

ðwþ w�
rÞ (10)

with M is the number of resonance zeros. For the back-
ground part SB the dB-function has the following form:

dB ¼ exp

�
�i

�
aþ X3

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� sn

p
2mn

ð�n þ i�nÞ
��

(11)

�n ¼ an1 þ an�
s� s�
s�


ðs� s�Þ þ anv
s� sv
sv


ðs� svÞ;
(12)

�n ¼ bn1 þ bn�
s� s�
s�


ðs� s�Þ þ bnv
s� sv
sv


ðs� svÞ;
(13)

where s� is the �� threshold, sv the combined threshold
of many opened channels in the range of 	1:5 GeV (��0,
��, !!). These thresholds are determined in the analysis.

In variant II, the terms

a0n�
s� 4m2

�

4m2
�


ðs� 4m2
�Þ and b0n�

s� 4m2
�

4m2
�


ðs� 4m2
�Þ

were added to �0
n and �0

n, respectively, to account for an
influence of the ��-channel.

In the analysis, we included all the five resonances dis-
cussed below 1.9 GeV in the PDG issue [1]. In variant I, for

the ��-scattering and �� ! K �K, we considered
the data for phase shifts and modules of the S-matrix
elements in the energy regions from about 0.4 to
1.89 GeVand from the threshold to about 1.6 GeV, respec-
tively; for �� ! ��, the data for the squared module of
the S-matrix element from the threshold to 1.72 GeV. We
obtained a satisfactory description. Furthermore we have
found that the data on the�� scattering below 1 GeVadmit
two solutions—‘‘A’’ and ‘‘B’’; the ��-scattering phase
shift goes a bit higher in the former than in the latter
case. In variant I, for the A solution, we considered the
representation of resonances by different pole clusters that
are admitted by the data. For the B solution, we show the
formally best case. In all cases, the f0ð600Þ is represented
by the pole cluster of type (a), the f0ð980Þ is represented
only by the pole on sheet II and shifted pole on sheet III; the
resonances f0ð1370Þ and f0ð1710Þ can be described by the
pole clusters of type (b) or (c); f0ð1500Þ, of type (g).

B. Results for Variant I

In Table I, we show a quality of description in variant I
for each separate process assuming the best combined
descriptions of all three processes (the smallest total �2)
for various acceptable variants of representation of the
considered states. We use abbreviations ‘‘dof’’—number
of degrees of freedom and ‘‘ndp’’—number of data
points.
Generally, a definite pole-cluster structure of corre-

sponding resonances should be a result of the data analysis.
However, a minimization of the �2 is related with a search
of a relevant physical minimum on a rather complicated
hypersurface in a many-dimensional space. From Table I
one can conclude that data on the processes considered
here are insufficient: several scenarios of representation of
resonances by various pole clusters are possible. A prior
knowledge of the possible pole clusters would allow to
avoid the inadequate description. It is clear that one should
try to achieve the best description of the separate process;
however, then the combined description of all three pro-
cesses would be worse.
In Tables II and III, there are given the masses and total

widths of states for the indicated cases, calculated from the
pole positions on sheets II, IV and VIII for resonances of
types (a), (b) and (c), respectively, using the formulas (8).

TABLE I. Variant I: the quality of description of the data for the best variants of representation of considered states obtained in the
analysis. The letters in the second column denote the pole clusters describing, respectively, resonances f0ð1370Þ, f0ð1500Þ and
f0ð1710Þ.
Solution �� scattering �2=dof �� ! K �K �2=dof �� ! �� �2=ndp The total �2=dof

bgb 155:219=ð168� 35Þ � 1:17 146:101=ð120� 33Þ � 1:68 1.02 317:604=ð304� 42Þ � 1:21
A cgb 149:521=ð168� 35Þ � 1:12 151:479=ð120� 33Þ � 1:74 0.91 315:646=ð304� 42Þ � 1:20

bgc 148:107=ð168� 35Þ � 1:11 149:713=ð120� 33Þ � 1:72 0.99 313:625=ð304� 42Þ � 1:20
cgc 145:094=ð168� 35Þ � 1:09 151:934=ð120� 33Þ � 1:75 0.91 311:656=ð304� 42Þ � 1:19

B cgc 158:615=ð168� 35Þ � 1:19 141:922=ð120� 33Þ � 1:63 0.73 312:169=ð304� 42Þ � 1:19
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For the resonance f0ð1500Þ of type (g), the poles can be
used on all indicated sheets.

It is impossible to select any of the above-indicated
solutions as the best one only on the basis of analyzing
jointly the three considered processes. An extension of the
combined analysis, adding also relevant processes of the
decay, is required. We selected the A solution mainly
because its parameters of the f0ð600Þ remarkably accord
with prediction (m� � m� and �tot � 680 MeV) by

Weinberg [6]; however, for now we should consider both
solutions. Furthermore, we take a scenario in which the
f0ð1370Þ, f0ð1500Þ and f0ð1710Þ are described by the pole
clusters of type (c), (g) and (b), respectively. The point is
that the parameters of the f0ð1500Þ can be calculated from
the pole positions on sheets II, IV and VIII. Therefore, an

additional criterion for self-consistency of results is a
mutual closeness of values of the obtained parameters of
this important state on the indicated sheets. According to
this criterion the selected scenario is the most relevant.
In Tables IV and V, we show the obtained pole clusters

for resonances in the complex-energy plane
ffiffiffi
s

p
, corre-

sponding to the cases when the f0ð1370Þ, f0ð1500Þ and
f0ð1710Þ are described by the pole clusters of the type (c),
(g) and (b) for the A and of type (c), (g) and (c) for B
solutions, respectively. The poles corresponding to the
f0ð1500Þ on sheets IV, VI, and VIII are of the 2nd order
and those on the sheet V of the 3rd order in our
approximation.
The background parameters are: A solution—a¼

0:4704�0:0364, a11¼�0:2376�0:0132, a1� ¼ 0:186�
0:0335, a1v ¼ �0:0788� 0:0535, b11 ¼ b1� ¼ 0, b1v ¼
0:0305� 0:0112, a21¼�1:7768�0:0461, a2�¼0:5204�
0:0254, a2v ¼ �9:22� 0:649, b21 ¼ 0:0132� 0:0131,
b2� ¼ 0, b2v ¼ 7:385� 1:354, b31 ¼ 0:5494� 0:0458,
b3� ¼ 0:8995� 0:0997, b3v ¼ 0; s� ¼ 1:638 GeV2,
sv ¼ 2:085 GeV2; B solution—a ¼ 0:2431� 0:0322,
a11 ¼ �0:0553� 0:0113, a1� ¼ 0:0914� 0:0103, a1v¼
�0:0478�0:0098, b11¼b1�¼0, b1v¼0:0469�0:0104,
a21 ¼ �1:6811� 0:0426, a2� ¼ �0:247� 0:1987, a2v¼
�7:2�0:5858, b21 ¼ 0:0329� 0:0131, b2� ¼ 0, b2v ¼
7:765� 1:4301, b31 ¼ 0:6135� 0:0495, b3� ¼ 0:6617�
0:1099, b2v ¼ 0.

TABLE III. The B solution: the masses and total widths (in
MeV) of the f0 resonances, obtained at analyzing for the case
when the resonances f0ð1370Þ, f0ð1500Þ and f0ð1710Þ are de-
scribed by the pole clusters of type (c), (g) and (c), respectively.

State mres �tot

f0ð600Þ 769:0� 10:0 1036:9� 11:8
f0ð980Þ 1007:2� 3:1 64:6� 3:0
f0ð1370Þ 1396:4� 24:7 355:2� 79:6
f0ð1500Þ 1534:1� 9:2 636:6� 25:8
f0ð1710Þ 1731:0� 43:6 203:4� 34:8

TABLE II. The A solution: the masses and total widths (in MeV) of the f0 resonances, obtained at analyzing for acceptable variants
of representation of considered states. The letters in the upper row denote the pole clusters describing, respectively, resonances
f0ð1370Þ, f0ð1500Þ and f0ð1710Þ.

bgb cgb bgc cgc

State mres �tot mres �tot mres �tot mres �tot

f0ð600Þ 713:7� 5:4 627:0� 7:2 735:0� 6:1 686:0� 7:0 627:0� 7:3 665:8� 11:0 604:5� 5:7 567:0� 5:4
f0ð980Þ 1007:6� 2:2 45:2� 2:8 1007:1� 2:6 50:6� 2:8 1007:3� 1:9 50:8� 2:8 1004:7� 2:3 54:2� 2:8

f0ð1370Þ 1404:0� 7:0 279:1� 22:0 1390:5� 14:3 223:4� 42:8 1325:6� 11:1 344:6� 24:4 1374:5� 16:7 322:0� 60:8
f0ð1500Þ 1532:6� 15:9 648:2� 26:6 1544:9� 12:2 646:2� 26:0 1556:6� 13:5 690:4� 28:6 1535:4� 12:3 671:4� 26:8
f0ð1710Þ 1750:9� 35:6 118:2� 30:2 1751:0� 23:8 118:0� 50:8 1759:2� 755:7 207:0� 420:3 1759:2� 716:4 201:8� 385:8

TABLE IV. The pole clusters for the f0-resonances for the A solution (cgb) in variant I.
ffiffiffiffiffi
sr

p ¼ Er � i�r=2 in MeV is given.

Sheet II III IV V VI VII VIII

f0ð600Þ Er 650:1� 6:6 703:8� 10:9 655:9� 27:6 602:2� 22:0
�r=2 343:0� 3:5 343:0� 3:5 343:0� 3:5 343:0� 3:5

f0ð980Þ Er 1006:8� 2:6 980:8� 3:8
�r=2 25:3� 1:4 37:2� 2:2

f0ð1370Þ Er 1386:0� 14:2 1386:0� 14:2 1386:0� 14:2 1386:0� 14:2
�r=2 182:9� 34:2 179:5� 33:6 108:3� 18:0 111:7� 21:4

f0ð1500Þ Er 1510:7� 12:2 1530:0� 12:7 1510:7� 12:2 1510:6� 8:5 1513:� 5:8 1486:4� 14:6 1510:7� 12:2
�r=2 323:1� 13:0 164:7� 11:0 290:5� 46:2 156:9� 9:0 193:2� 6:4 134:4� 21:6 332:9� 73:7

f0ð1710Þ Er 1750:0� 23:8 1750:0� 23:8 1750:0� 23:8 1750:0� 23:8
�r=2 65:2� 26:6 59:0� 25:4 63:0� 23:6 69:2� 24:0
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The obtained zero positions of the resonances on the w-plane are:
A solution—

for f0ð600Þ: w1 ¼ 3:8539� 0:0956þ ð4:1546� 0:0959Þi;
w2 ¼ �0:1321� 0:0073þ ð0:1400� 0:0142Þi;
w3 ¼ �3:8193� 0:3058� ð4:1137� 0:3143Þi;
w4 ¼ 0:1109� 0:0148� ð0:1194� 0:0244Þi;

for f0ð980Þ: w5 ¼ 0:6671� 0:0230þ ð1:1471� 0:0260Þi;
w6 ¼ �0:2290� 0:0157þ ð0:5613� 0:0117Þi;

for f0ð1370Þ: w7 ¼ �3:0341� 0:0800� ð0:4551� 0:0757Þi;
w8 ¼ 3:0385� 0:0892� ð0:4624� 0:0772Þi;
w9 ¼ �0:3346� 0:0055� ð0:0336� 0:0047Þi;
w10 ¼ 0:3351� 0:0051� ð0:0327� 0:0047Þi;

for f0ð1500Þ: w11 ¼ 3:4148� 0:0223þ ð0:5292� 0:0255Þi;
w12 ¼ 0:2900� 0:0060þ ð0:0420� 0:0054Þi;
w13 ¼ �0:2848� 0:0073� ð0:0449� 0:0092Þi;
w14 ¼ w15 ¼ �0:3017� 0:0024þ ð0:0265� 0:0023Þi;
w16 ¼ w17 ¼ w18 ¼ �3:2843� 0:0158� ð0:3473� 0:0175Þi;
w19 ¼ w20 ¼ 3:2518� 0:0230� ð0:2894� 0:0251Þi;
w21 ¼ w22 ¼ 0:3110� 0:0024� ð0:0260� 0:0035Þi;

for f0ð1710Þ: w23 ¼ 0:2819� 0:0113þ ð0:0052� 0:0026Þi;
w24 ¼ �0:2818� 0:0095þ ð0:0057� 0:0027Þi:
w25 ¼ �3:5480� 0:0940� ð0:0764� 0:0777Þi;
w26 ¼ 3:5471� 0:0826� ð0:0697� 0:0801Þi;

B solution—

TABLE V. The pole clusters for the f0-resonances for the B solution in variant I.
ffiffiffiffiffi
sr

p ¼ Er � i�r=2 in MeV is given.

Sheet II III IV V VI VII VIII

f0ð600Þ Er 567:9� 12:4 642:0� 17:7 647:7� 29:1 573:6� 25:5
�r=2 518:5� 5:9 518:5� 5:9 518:5� 5:9 518:5� 5:9

f0ð980Þ Er 1006:7� 3:1 970:1� 5:8
�r=2 32:3� 1:5 55:4� 2:6

f0ð1370Þ Er 1385:1� 24:4 1385:1� 24:4 1385:1� 24:4 1385:1� 24:4
�r=2 287:0� 73:7 267:4� 83:1 158:0� 41:8 177:6� 39:8

f0ð1500Þ Er 1500:7� 4:9 1495:0� 9:0 1500:7� 4:9 1496:7� 7:2 1510:2� 4:6 1501:2� 9:8 1500:7� 4:9
�r=2 318:3� 12:9 133:6� 10:6 231:9� 17:6 141:� 6:3 185:2� 4:0 99:� 18:0 345:9� 14:5

f0ð1710Þ Er 1728:0� 43:7 1728:0� 43:7 1728:0� 43:7 1728:0� 43:7
�r=2 139:9� 69:0 138:7� 8:9 100:5� 48:4 101:7� 17:4
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for f0ð600Þ: w1 ¼ 5:2483� 0:1500þ ð3:3618� 0:2010Þi;
w2 ¼ �0:1460� 0:0102þ ð0:0960� 0:0125Þi;
w3 ¼ �4:7511� 0:3914� ð3:1267� 0:1870Þi;
w4 ¼ 0:1359� 0:0168� ð0:0873� 0:0241Þi;

for f0ð980Þ w5 ¼ 0:7367� 0:0272þ ð1:2022� 0:0292Þi;
w6 ¼ �0:2172� 0:0167þ ð0:4780� 0:0111Þi;

for f0ð1370Þ: w7 ¼ �3:1627� 0:1498� ð0:6250� 0:1004Þi;
w8 ¼ 3:1950� 0:1599� ð0:6566� 0:1088Þi;
w9 ¼ �0:3229� 0:0097� ð0:0482� 0:0081Þi;
w10 ¼ 0:3267� 0:0088� ð0:0444� 0:0080Þi;

for f0ð1500Þ: w11 ¼ 3:3973� 0:0230þ ð0:5354� 0:0263Þi;
w12 ¼ 0:2981� 0:0067þ ð0:0378� 0:0061Þi;
w13 ¼ �0:2837� 0:0105� ð0:0469� 0:0113Þi;
w14 ¼ w15 ¼ �0:3097� 0:0027þ ð0:0250� 0:0022Þi;
w16 ¼ w17 ¼ w18 ¼ �3:2731� 0:0201� ð0:3368� 0:0228Þi;
w19 ¼ w20 ¼ 3:2162� 0:0288� ð0:2715� 0:0305Þi;
w21 ¼ w22 ¼ 0:3114� 0:0033� ð0:0187� 0:0047Þi;

for f0ð1710Þ: w23 ¼ �3:5404� 0:0745� ð0:1580� 0:0967Þi;
w24 ¼ 3:5408� 0:0671� ð0:1593� 0:1082Þi:
w25 ¼ �0:2823� 0:0051� ð0:0094� 0:0073Þi;
w26 ¼ 0:2830� 0:0059� ð0:0093� 0:0070Þi:

Finally, let us discuss coupling constants of the considered
states (in the selected scenarios) with the isoscalar compo-
nents of ��, K �K, and �� systems calculated through the
residues of amplitudes at the resonance poles on the cor-
responding sheets of the Riemann surface, taking into
account representation of resonances by the definite type
of pole clusters. I.e., for resonances of type (a) and (g) we
took the poles on sheet II, of type (b) on sheet IV, of type
(c) on sheet VIII. To this end, we use the T-matrix elements
for the scattering defined via the S-matrix as S�� ¼ 1þ
2i��T�� where �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s�=s
p

and

T�� ¼ e2i	BTres
�� þ e2i	B � 1

2i��

(14)

with

Tres
�� ¼ X

r

g2�r
16�

D�1
r ðsÞ (15)

and DrðsÞ being an inverse propagator: DrðsÞ / s� sr.
Then using the relation

s� sr ¼
4s2s3ðs3 � s2Þðw2 � w2

r� Þðw2 � w�2
r� Þ

w2½2ðs2 þ s3Þ � ðw2
r� þ w�2

r� Þðs3 � s2Þ�½2ðs2 þ s3Þ � ðw2 þ w�2Þðs3 � s2Þ�
;

one can calculate the corresponding residues of the
T-matrix elements. Results for the coupling constants are
shown in Table VI.

Note that the results presented in Table VI are still only
preliminary. To draw firm conclusions from a comparison
with experimental data on the branching ratios, it is neces-
sary to calculate the coupling constants for all possible

scenarios. Moreover, to avoid misunderstandings one
should also carefully consider methods of obtaining the
experimental information because, usually, in the methods
the structure of the Riemann surface is not assumed prop-
erly and in calculating the resonance parameters the poles
must be used only on the specific sheets. E.g., in
our analysis the f0ð980Þ is situated a bit above the K �K
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threshold but the pole on sheet III (from its pole cluster)
lies below the K �K threshold due to the coupling of chan-
nels. This pole more strongly influences energy behavior of
the amplitude than the pole on sheet II since above the K �K
threshold the physical region (an upper edge of the right-
hand cut) is joined directly with sheet III. Namely, the pole
on sheet III one finds in inadequate analyses.

C. Results for Variant II

For variant II we got the following description: for ��
scattering �2=dof ¼ 143:176=ð168� 33Þ � 1:06; for
�� ! K �K �2=dof ¼ 147:416=ð120� 28Þ � 1:60; for
�� ! ��0 �2=ndp � 0:50. The total �2=dof is
294:574=ð296� 39Þ � 1:15. In this case the f0ð600Þ is
described by the cluster of type (a0); f0ð1370Þ, type (b0);
f0ð1500Þ, type (d0); f0ð1710Þ, type (c0). In Table VII we

indicate the obtained pole clusters for resonances on the
eight sheets in the complex-energy plane

ffiffiffi
s

p
. The poles on

sheets IV and V, corresponding to the f0ð1500Þ, are of the
2nd order (this is an approximation).
The background parameters are: a0 ¼ 0:2929� 0:0426,

a011 ¼ �0:0897� 0:0159, a01�¼�0:1356�0:0433, a01�¼
0:456�0:1046, a01v ¼ �0:294� 0:077, b011¼b01�¼
0, b01� ¼ �0:0326� 0:0083, b01v ¼ 0:1411� 0:0247,

a021 ¼ �3:123� 0:1102,a02� ¼ a02� ¼ 0,a02v ¼ �4:802�
0:786, b021 ¼ b02� ¼ 0, b02� ¼ 0:7021� 0:127, b02v ¼
3:28� 1:887, b031 ¼ 0:7655� 0:1612, b03v ¼ 0:2771�
0:483, s� ¼ 1:638 GeV2, sv ¼ 2:126 GeV2.
The obtained zero positions of the resonances on the

w0-plane are:

for f0ð600Þ:w0
1¼2:5315�0:0721þð2:4764�0:1094Þi; w0

2¼�0:2139�0:0264þð0:2145�0:0322Þi;
w0

3¼�2:4346�0:3174�ð2:4129�0:2336Þi; w0
4¼0:1961�0:0224�ð0:1883�0:0841Þi;

for f0ð980Þ:w0
5¼0:3304�0:0104þð1:1166�0:0120Þi; w0

6¼�0:1965�0:0095þð0:7137�0:0121Þi;
for f0ð1370Þ:w0

7¼0:6975�0:0082þð0:3035�0:0097Þi; w0
8¼�0:5579�0:0104þð0:2388�0:0138Þi;

w0
9¼�1:4821�0:0635�ð0:8664�0:1227Þi; w0

10¼1:0913�0:0750�ð0:7712�0:0815Þi;
for f0ð1500Þ:w0

11¼1:4227�0:0114þð0:3933�0:0156Þi; w0
12¼0:6653�0:0113þð0:1791�0:0130Þi;

w0
13¼1:4205�0:0656�ð0:3916�0:0379Þi; w0

14¼0:6653�0:0096�ð0:1791�0:0116Þi;
w0

15¼w0
16¼�0:6658�0:0049þð0:2206�0:0065Þi; w0

17¼w0
18¼�1:4216�0:0301�ð0:3639�0:0191Þi;

for f0ð1710Þ:w0
19¼�1:5515�0:0142�ð0:0992�0:0407Þi; w0

20¼1:5430�0:0108�ð0:0638�0:0191Þi;
w0

21¼�0:6393�0:0078�ð0:0465�0:0078Þi; w0
22¼0:6320�0:0054�ð0:0588�0:0073Þi:

Masses and total widths of the states, calculated from the
pole positions on sheets II, IV and VIII for resonances of
types (a), (b) and (c), respectively, and on sheets II or IV
for resonance of type (d), are presented in Table VIII.

The coupling constants, obtained in variant II, are shown
in Table IX.

D. Discussion of results

A comparison of Tables VI and IX and also II, III, and
IV suggests that the joint analysis of the considered pro-

cesses presented in this paper is not sufficient to select a
definite solution for the resonance parameters. However, in
spite of the very preliminary character of the results on the
coupling constants, one can draw some conclusions. E.g.,
the f0ð600Þ and f0ð980Þ turn out to have large coupling
constants with the K �K and especially �� systems which
reveals that in studying these states we deal with a multi-
channel problem. Even if these states cannot decay into the
�� channel, their large coupling with the �� system
should manifest itself in exchanges in the �� scattering.

TABLE VI. Variant I: the coupling constants g� (� ¼ 1, 2, 3) of the f0-resonances with the isoscalar components of ��� 1,
K �K � 2 and ��� 3 systems.

Solution jg�j GeV f0ð600Þ f0ð980Þ f0ð1370Þ f0ð1500Þ f0ð1710Þ
jg1j 5:52� 0:08 1:96� 0:04 0:24� 0:23 8:94� 0:40 0:49� 0:09

A jg2j 1:30� 0:05 0:55� 0:01 1:06� 0:12 4:56� 0:82 0:023� 0:10
jg3j 1:81� 0:30 2:22� 0:03 3:41� 0:46 1:84� 0:04 0:08� 0:01
jg1j 6:49� 0:18 2:20� 0:06 0:78� 0:02 9:02� 0:80 0:24� 0:99

B jg2j 0:70� 0:15 0:64� 0:01 4:00� 0:78 45:9� 60:4 0:03� 0:21
jg3j 0:63� 0:54 2:03� 0:13 6:49� 1:96 1:17� 0:41 1:64� 0:76
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Therefore, certain assertions of some works, e.g., [79,80],
about the parameters of the scalar states determined in the
analysis of only�� scattering, seem to be rather premature
because the multichannel problem cannot be reduced to the
one-channel problem. In any case, one can conclude that in
the one-channel consideration an influence of the K �K and
�� channels must be explicitly taken into account.

In Figs. 3–5, we show results of fitting to the experi-
mental data in both variants.

Note that the A solution is not revealed in variant II
when in the analysis the data both below and above the
K �K-threshold are used. This suggests that the
��-threshold branch point must be taken into account
explicitly. It is not sufficient to consider influence of the
�� channel only via the background.

To learn more about the existence of the f0ð1370Þ (see
the discussion in Introduction), we considered a possibility
of description in the above selected cases without this state,
i.e., when the resonances f0ð600Þ, f0ð1500Þ, and f0ð1710Þ
are represented, respectively, by the pole clusters of type
(a), (g) and (b) in variant I (the A solution) and of type (a0),

(d0) and (c0) in variant II. The f0ð980Þ is represented by the
poles on sheets II and III in both variants. In Table X we
show a quality of description of each separate process for
these cases in the frame of the best combined description of
all three processes.

TABLE VII. The pole clusters for the f0-resonances in variant II.
ffiffiffiffiffi
s0r

p ¼ E0
r � i�0

r=2 in MeV is given.

Sheet II III IV V VI VII VIII

f0ð600Þ E0
r 590:3� 9:3 639:4� 10:3 613:1� 52:1 564:0� 25:2

�0
r=2 406:8� 9:9 406:8� 9:9 406:8� 9:9 406:8� 9:9

f0ð980Þ E0
r 1004:3� 4:0 981:8� 7:6

�0
r=2 24:9� 1:6 45:3� 2:9

f0ð1370Þ E0
r 1375:7� 5:9 1375:7� 5:9 1238:5� 15:7 1238:5� 15:7

�0
r=2 374:3� 10:8 167:5� 6:1 167:5� 6:1 374:3� 10:8

f0ð1500Þ E0
r 1518:9� 8:0 1461:5� 4:0 1518:9� 8:0 1518:9� 8:0 1535:2� 3:4 1518:9� 8:0

�0
r=2 235:0� 7:7 219:1� 5:3 218:2� 8:1 235:0� 7:7 223:4� 5:7 218:2� 8:1

f0ð1710Þ E0
r 1749:3� 9:8 1749:3� 9:8 1749:3� 9:8 1749:3� 9:8

�0
r=2 63:6� 38:1 100:3� 54:4 152:0� 61:0 115:3� 86:1

TABLE VIII. Variant II: the masses and total widths of the f0
resonances.

State m0
res [MeV] �0

tot [MeV]

f0ð600Þ 716:9� 9:5 813:6� 19:8
f0ð980Þ 1004:6� 4:0 49:8� 3:2
f0ð1370Þ 1385:8� 5:9 335:0� 12:2
f0ð1500Þ 1537:0� 8:0 470:0� 15:4
f0ð1710Þ 1753:1� 11:3 230:6� 172:2

TABLE IX. Variant II: the coupling constants g0�, (� ¼ 1, 2,
3) of the f0-resonances with the isoscalar components of ���
1, K �K � 2 and ��0 � 3 systems.

jg0�j GeV f0ð600Þ f0ð980Þ f0ð1370Þ f0ð1500Þ f0ð1710Þ
jg01j 5:26� 0:13 1:88� 0:06 1:42� 0:02 8:78� 0:36 1:16� 0:45

jg02j 0:78� 0:13 0:50� 0:01 9:94� 1:50 0:84� 0:56 0:06� 0:43

jg03j 2:11� 0:71 6:14� 0:41 3:14� 0:10 0:86� 0:15 1:77� 1:02

FIG. 3. The phase shift and modulus of the S-matrix element in
the S-wave ��-scattering. The solid and short-dashed curves
correspond to variant I, the A and B solutions, respectively;
dash-dotted to variant II. The data are from Refs. [72–75].
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When calculating �2 in all cases, the following experi-
mental points have been omitted as obviously strongly
falling out from the energy dependence: from the ��
scattering data the points at 990 MeV for the phase shift
	11 and for �11 ¼ jS11j, and for �11 the point at 1650 MeV
as strongly violating the unitarity condition. From the
�� ! K �K data there were omitted the points at 1002,
1208.9 and 1235.7 MeV for the �12 ¼ jS12j and the points
at 1073, 1082 and 1387MeVas giving the anomalously big
contribution to �2.

One can see that the description of the �� scattering
without the f0ð1370Þ is a bit improved whereas the one of
the �� ! K �K process is made slightly worse, especially
as to the phase shift. Generally, an existence of the
f0ð1370Þ is for now a standard point of view. One ought
to take into account also arguments to its favor in Ref. [32]
(see Introduction). In any case, the existence of the
f0ð1370Þ does not contradict the considered data.

Let us make some more remarks. First, the fact that in
variant II we obtain a better description than in variant I

points to the importance of taking into account the ��0
threshold explicitly. However in variant II, we encounter
elements of some pseudobackground: these are the negative
values of the a01� and b01� coefficients related to elastic and

inelastic parts of the �� background, respectively.
Generally the pseudobackground implies a necessity to
consider explicitly some physical phenomenon, e.g., addi-
tional resonances or representation of resonances by other
pole clusters or the consideration in the uniformizing vari-
able of other channel thresholds. The latter situation is the
case here: the negative sign of the quantities a01� ¼
�0:1356� 0:0433 and b01� ¼ �0:0326� 0:0083, implies

the necessity of an explicit consideration of the
��-threshold branch point. The negative signs of the quan-
tities a11 (variant I) and a011 (variant II) are clear: this is a
result of neglecting the �� threshold.
It turns out that the state f0ð980Þ lies slightly above the

K �K threshold. It is described by the pole on sheet II and by
the shifted pole on sheet III under the�� threshold without
the corresponding poles on sheets VI and VII, as it was

FIG. 5. The squared modules of the �� ! �� (upper figure)
and �� ! ��0 (lower figure) S-wave matrix elements. The data
are from Ref. [77] (upper figure) and from Ref. [78] (lower
figure).

FIG. 4. The phase shift and modulus of the S-matrix element in
S-wave of �� ! K �K. The solid and short-dashed curves cor-
respond to variant I, the A and B solutions, respectively; dash-
dotted to variant II. The data are from Ref. [76].
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expected for standard clusters. This may suggest that the
f0ð980Þ is not the q �q state and can be interpreted, e.g., as a
�� bound state in accordance with the test discussed in
Sec. II: the necessary condition for this is fulfilled. To the
point, the obtained large coupling constant of this state
with the �� system indicates also to that interpretation of
the f0ð980Þ. See, however, the further discussion of this
matter in the last section.

As to a representation of the f0ð600Þ and f0ð980Þ states,
both variants completely agree. The f0ð1370Þ is described
by the clusters of type (b) or (c) in various scenarios of
variant I and of type (b0) in variant II; this is reasonable
taking into account the quark contents of the K �K and ��
systems and the nearness of corresponding thresholds.
From this we, therefore, deduce that a s�s component of
the f0ð1370Þ is dominant. This interpretation quite explains
why one did not find evidence for the existence of the
f0ð1370Þ [30] considering only the �� scattering.

The f0ð1500Þ is described by the cluster of type (g) in
variant I and of type (d0) in variant II. The former indicates
approximately equal coupling constants of this state to the
��, K �K and �� systems, which apparently could point to
its glueball nature. The latter tells on the approximately
equal coupling of this state with the �� and K �K channels,
whereas the coupling with the ��0 channel is suppressed;
these facts also point to its glueball nature [17]. Of course,
these conclusions concern a glueball component of the
f0ð1500Þ which is supposed to consist of the large (glue-
ball) and narrow (q �q) components. This will be considered
in more detail in our next work [69].

Finally, the f0ð1710Þ is described by the clusters of type
(b) or (c) in various scenarios of variant I and of type (c0) in
variant II. Taking also into account the quark contents of
the ��0 system, this could point to the dominant s�s com-
ponent of this state.

All these conclusions agree quite well with the previous
model-independent two- and three-channel analyses
[26–28,31,38–41] where other uniformizing variables
were used.

IV. SUMMARYAND CONCLUSIONS

The combined analysis of data on the �� ! ��, K �K,
��, ��0 processes in the channel with IGJPC ¼ 0þ0þþ is
carried out in the framework of the model-independent
approach that is based on analyticity and unitarity and
uses an uniformization procedure. A new uniformizing
variable was used in which, in addition to the right-hand
branch points related with the thresholds of the analyzed

channels, the left-hand branch point at s ¼ 0 related to the
�� scattering in the crossed channels is taken into account.
In the analysis of processes �� ! ��, K �K, �� it is

shown that the data admit two possibilities for parameters
of the f0ð600Þ with mass, relatively near to the �-meson
mass, and with total width about 640 and 1000 MeV. These
two possibilities are related to two found solutions, admis-
sible by the data below 1 GeV for the phase shift of the
��-scattering amplitude: A and B. As to the combined
description of the considered processes, it is impossible to
prefer any of these solutions. However, the A solution
remarkably accords with prediction by Weinberg [6] with
respect to the mass and the width, the B one to the mass.
Note also that there is an agreement of a rather refined
analysis using the large-Nc consistency conditions between
the unitarization and resonance saturation suggesting
m� �m� ¼ OðN�1

c Þ [7]. The values of mass and width,

calculated with help of formula (7) from the pole position
on sheet II, correspond to most of the Breit–Wigner values
of Refs. [81] (analysis of several processes with pseudo-
scalar mesons) and [82] (GAMS Collaboration, analysis of
the reaction pp ! pp�0�0).
Furthermore, we have considered all relevant possibil-

ities of representation of resonances by pole clusters (the
three-channel resonances are represented by seven types of
the pole clusters). It is shown that for the A solution there
are four scenarios of representation of resonances
f0ð1370Þ, f0ð1500Þ (as the superposition of two states,
broad and narrow) and f0ð1710Þ (f0ð600Þ and f0ð980Þ are
given by the pole clusters of the same types in all cases)
giving about the similar description of the above processes
and, however, the quite different parameters of some
resonances. For the f0ð600Þ, f0ð1370Þ and f0ð1710Þ a
spread of values is obtained for the masses and widths
605–735 and 567–686 MeV, 1326–1404 and 223–
345 MeV, and 1751–1759 and 118–207 MeV, respectively.
On the other hand, the results for the f0ð980Þ and f0ð1500Þ
are more stable and confirm conclusions of our previous
analyses [26–28,31,38–40].
Note a quite stable result for the mass and width with

rather small errors for the f0ð980Þ: mres �
1005–1008 MeV, �tot � 45–54 MeV. Arrangement of
the poles and zeroes on the Riemann surface, which de-
scribe this state, may suggest that the f0ð980Þ is not the q �q
state and can be interpreted, e.g., as a �� bound state; in
any case the necessary condition for this is fulfilled. The
large coupling constant of this state with the �� system
(Tables VI and IX) tells also in favor of this suggestion.
However, following the PDG listings [1], the mass of this

TABLE X. The quality of description of the data without the f0ð1370Þ.
Variant �� scattering �2=dof �� ! K �K �2=dof �� ! ��, ��0 �2=ndp The total �2=dof

I 150:165=ð168� 31Þ � 1:10 152:430=ð120� 29Þ � 1:67 1.04 319:264=ð304� 38Þ � 1:20
II 149:571=ð168� 26Þ � 1:05 158:396=ð120� 26Þ � 1:68 0.38 310:991=ð304� 34Þ � 1:19
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state is obtained above the K �K threshold in analyses of ��
scattering, of multichannel �� scattering (�� ! ��,
K �K, ��, ��0) and of processes �ppðnÞ ! M1M2M3,
whereas below the K �K threshold in analyses of the decays
of Dþ � , Bþ � , J=c � , and Z-bosons, of processes
eþe� ! M1M2�, �M1M2�, eþe�M1M2, M1M2X, and
of pp ! ppM1M2. Since the mass value below the K �K
threshold is important for a dynamical interpretation of the
f0ð980Þ as a K �K molecule [23–25] it seems that the nature
of this state is more complicated than a simple �� bound
state or K �K molecule. From the point of view of the
quark structure these two possibilities are the four-quark
states. It seems this is consistent somehow with arguments
in favor of the four-quark nature of f0ð980Þ in the work
of [22].

The results on coupling constants of the f0 mesons with
the considered channels are very preliminary. Rather they
support the above conclusion that the combined analysis of
the considered processes is insufficient in order to obtain
the definite parameters of resonances (including the cou-
pling constant with channels). However, as to the f0ð600Þ
and f0ð980Þ one can conclude that these states should be
studied in the multichannel consideration, and the asser-
tions of some works, e.g., [79,80], about the parameters of
the scalar states, which were determined in the analysis of
only �� scattering, look at least as premature.

In view of prolonging discussions of a question, whether
the f0ð1370Þ exists or not (see the discussion of this matter
in the Introduction), we considered a description of the
multichannel �� scattering without this state. We con-
cluded that an existence of the f0ð1370Þ does not contradict
the considered data. The description of the�� scattering is
a bit improved whereas the one of the�� ! K �K process is
made worse, especially as to the phase shift.

The f0ð1370Þ (if it exists) and f0ð1710Þ have a dominant
s�s component according to the arrangement of the corre-
sponding poles and zeroes on the Riemann surface.
Conclusion about the f0ð1370Þ agrees quite well with the
conclusion drawn by the Crystal Barrel Collaboration [83]
where the f0ð1370Þ is identified as �� resonance in the
�0�� final state of the �pp annihilation at rest.
Interpretation of the f0ð1370Þ as dominated by the s�s
component explains also quite well why one did not find
this state considering only the �� scattering. Conclusion
about the f0ð1710Þ is quite consistent with the experimen-

tal facts that this state is observed in �� ! KS
�KS [84] but

not observed in �� ! �þ�� [85].
As to the f0ð1500Þ (mres ¼ 1540 MeV, �tot ¼

470 MeV) we suppose that it is the eighth component of
octet mixed with the glueball being dominant in this state.
Its largest width among the enclosing states points also to
its glueball nature [66]. Note that in the PDG tables on the
f0ð1500Þ listing, an average value for the width of 109�
7 MeV is cited. However, there one indicates only the
results of analyses of meson production processes, and in
the few cases where the results of combined analyses of
coupled processes are cited, the authors did not use the
representations of the multichannel resonances by pole
clusters (this is especially important in the case of wide
resonances), i.e., they did not apply all aspects of the
multichannel analysis. On the other hand, one can see
from the data on scattering processes, analyzed here [72],
that the energy dependence of observed quantities do not
demonstrate a pronounced structure in the 1500 MeV re-
gion, which is needed for the narrow resonance. Therefore,
it is reasonable to suggest that in this region there is a
superposition of two states, a wide and a narrow one.
It is worthwhile to discuss an agreement of the obtained

spectrum of the scalar-isoscalar states to the radial trajecto-
ries in the large-Nc Regge approach discussed now, e.g.,
[86,87]. The obtained masses of the f0 states in the bgc
scenario (Table II) lie well down on the radial trajectory
with half the standard slope, found in Ref. [87]. An excep-
tion from this is the f0ð600Þwhich is situated slightly above.
In other scenarios, the resonances are placed better on two
parallel trajectories on the (n, m2

res) plane (n is radial quan-
tum number) with the standard Regge slope [86].
It is known that there are a number of properties of the

scalar mesons which do not allow for a satisfactory setup
the lowest nonet [2–5]. If the states f0ð980Þ and a0ð980Þ are
in the same nonet, then the f0ð980Þ must be heavier than
a0ð980Þ by about 250–300 MeV due to the mass difference
of s- and u-quark. Exclusion of the f0ð980Þ as a non-q �q
state and discovery of the K�

0-doublet (if it will be con-

firmed) at 800–900 MeV moves off a number of these
problems.
One can propose the following assignment of scalar

mesons lying below 1.9 GeV to lower nonets [28]. The
lowest nonet: the isovector a0ð980Þ, the isodoublet
K�

0ð900Þ, and f0ð600Þ and f0ð1370Þ as mixtures of the

TABLE XI. Analytic continuations of the three-channel S-matrix elements to unphysical sheets.

Process I II III IV V VI VII VIII

1 ! 1 S11 1=S11 S22=D33 D33=S22 detS=D11 D11= detS S33=D22 D22=S33
1 ! 2 S12 iS12=S11 �S12=D33 iS12=S22 iD12=D11 �D12= detS iD12=D22 D12=S33
2 ! 2 S22 D33=S11 S11=D33 1=S22 S33=D11 D22= detS detS=D22 D11=S33
1 ! 3 S13 iS13=S11 �iD13=D33 �D13=S22 �iD13=D11 D13= detS �S13=D22 iS13=S33
2 ! 3 S23 D23=S11 iD23=D33 iS23=S22 �S23=D11 �D23= detS iD23=D22 iS23=S33
3 ! 3 S33 D22=S11 detS=D33 D11=S22 S22=D11 D33= detS S11=D22 1=S33
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8th component of octet and the SU(3) singlet. Then the
Gell-Mann-Okubo formula of

3m2
f8
¼ 4m2

K�
0
�m2

a0 (16)

gives mf8 ¼ 910 MeV. For this nonet it seems to be im-

portant to test the nature of strange scalar meson K�
0ð900Þ

in a model-independent way. This will be the subject of the
forthcoming paper [69].

In the relation for the masses of the nonet

m� þmf0ð1370Þ ¼ 2mK�
0

(17)

the left-hand side is about 18% larger than the right-hand
one.

For the next nonet of the radial excitations we find:
a0ð1450Þ, K�

0ð1450Þ, and f0ð1500Þ and f0ð1710Þ, the

f0ð1500Þ being mixed with a glueball which is dominant
in this state. From the Gell-Mann-Okubo formula we set
mf8 � 1453 MeV. In the formula

mf0ð1500Þ þmf0ð1710Þ ¼ 2mK�
0ð1450Þ (18)

the left-hand side is about 13.5% larger than the right-hand
one.

This assignment removes a number of prior questions
and does not rise new ones. The mass formulas indicate a
nontrivial mixing scheme. Breaking of the relations (17)
and (18) tells us that the �� f0ð1370Þ and f0ð1500Þ �
f0ð1710Þ systems get additional contributions absent in the
K�

0ð900Þ and K�
0ð1450Þ, respectively. A search of the ade-

quate mixing scheme is complicated by the circumstance
that here there is also a remainder of chiral symmetry,
though, on the other hand, this permits one to predict
correctly, e.g., the �-meson mass.

ACKNOWLEDGMENTS

The authors thank Thomas Gutsche and Mikhail Ivanov
for useful discussions. This work was supported in part by
the Heisenberg-Landau Program, the RFBR Grant No. 10-
02-00368-a, the Votruba-Blokhintsev Program for
Cooperation of the Czech Republic with JINR (Dubna),
the Grant Agency of the Czech Republic (Grant No. 202/
08/0984) and by Federal Targeted Program ‘‘Scientific and
scientific-pedagogical personnel of innovative Russia’’
Contract No. 02.740.11.0238.

APPENDIX A: ANALYTIC CONTINUATION OF
THE THREE-CHANNEL S-MATRIX ELEMENTS

TO UNPHYSICAL SHEETS

Here we show, for convenience, formulas of the analytic
continuations of the three-channel S-matrix elements to
unphysical sheets of the Riemann surface in terms of those
on sheet I (the physical sheet)—SI�� that have only zeros

(beyond the real axis) corresponding to resonances, at
least, around the physical region. In Ref. [41] the general
formula was given for the case of N channels and as
example for three channels. The direct derivation of these
formulas requires rather bulky algebra. It can be simplified
if we use a circumstance that the K-matrix has the same
value in all sheets of the Riemann surface of the S-matrix.
This fact follows from Hermiticity of the K-matrix K ¼
Kþ, which means that the K-matrix does not try disconti-
nuity when going across unitarity cuts. Then, after some
algebra, one can obtain formulas under interest shown
below in the table. In Table XI, the superscript I is omitted
to simplify the notation, detS is the determinant of the 3�
3 S-matrix on sheet I,D�� is the minor of the element S��,

that is, D11 ¼ S22S33 � S223, D22 ¼ S11S33 � S213, D33 ¼
S11S22 � S212, D12 ¼ S12S33 � S13S23, D23 ¼ S11S23 �
S12S13, etc.
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