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We provide an explicit structure of the charged-lepton mass matrix which is 2-3 symmetric except for a

single breaking of this symmetry by the muon mass. We identify a flavor symmetric limit for the mass

matrices where the first generation is decoupled from the other two in the charged-lepton sector while in

the neutrino sector the third generation is decoupled from the first two generations. The leptonic mixing in

the symmetric limit can be, among other structures, the bimaximal or the tri-bimaximal mixing. Symmetry

breaking effects are included both in the charged-lepton and the neutrino sector to produce corrections to

the leptonic mixing and explain the recent �13 measurements. A model that extends the standard model by

three right-handed neutrinos, an extra Higgs doublet, and two singlet scalars is introduced to generate the

leptonic mixing.
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I. INTRODUCTION

We now know that neutrinos have masses and just like
the quark mixing matrix there is a leptonic mixing matrix.
This fact has been firmly established through a variety of

solar, atmospheric, and terrestrial neutrino oscillation ex-
periments [1]. The Pontecorvo-Maki-Nakagawa-Sakata
lepton-mixing matrix, UPMNS, is parametrized as follows
[2]:

UPMNS ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
BB@

1
CCAK; (1)

where s13 � sin�13, c13 � cos�13 with �13 being the reac-
tor angle, s12 � sin�12, c12 � cos�12 with �12 being the
solar angle, s23 � sin�23, c23 � cos�23 with �23 being the
atmospheric angle, � is the Dirac CP-violating phase, and
K ¼ diagð1; ei�1 ; ei�2Þ contains additional (Majorana)
CP-violating phases �1, �2. We ignore the Majorana
CP-violating phases in this work.

Unlike the Cabibbo-Kobayashi-Maskawa quark-mixing
matrix that can be thought of as a perturbation about the
identity matrix, the leading term in the leptonic mixing
contains large mixing angles. Some examples of the
leading-order mixing matrix are the bimaximal mixing
[3] and the tri-bimaximal mixing [4]. However, current
experiments indicate deviations from these standard
zeroth-order forms.

For instance, recent results from the T2K [5] and
MINOS [6,7] experiments have indicated a large reactor
angle �13 for neutrino mixing. At the 90% C.L., T2K gives
0:03ð0:04Þ< sin22�13 < 0:28ð0:34Þ, with zero Dirac CP
phase, �D, for normal (inverted) hierarchy. The MINOS
group gives 0:01ð0:026Þ< sin22�13 < 0:088ð0:150Þ. There
are already several papers that have attempted to explain
the recent �13 results [8,9].

The leptonic mixing arises from the overlap of matrices
that diagonalize the charged-lepton and the neutrino mass
matrices. Many approaches to studying the leptonic mixing
start in the basis where the charged-lepton mass is diago-
nal. Our approach to obtaining the leading-order leptonic
mixing as well as deviations from it starts from the
charged-lepton sector. A recent attempt to understand �13
from the charged-lepton sector can be found in Ref. [8] and
in the past corrections to the leptonic mixing from the
charged-lepton sector were considered in Ref. [10]. An
approach to suppress flavor-changing neutral current ef-
fects in the quark sector, based on shared flavor symmetry,
was proposed in Ref. [11]. As an example of this shared
symmetry, the decoupled 2-3 symmetry was used for the
down-quark sector to suppress flavor-changing neutral cur-
rent effects and explain anomalies [12] observed in the B
meson system. In the decoupled limit, the first generation is
decoupled from the other two generations. We extend this
decoupled 2-3 symmetry to the charged-lepton sector. This
is a reasonable extension given the fact that the down quark
and charged leptons exhibit similar hierarchical structure
and they may be combined in representations of grand
unified theory groups.
One of the central ideas of this approach is the require-

ment that the mass matrices, in a symmetric limit, be
diagonalized by unitary matrices composed of pure
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numbers independent of the parameters of the mass matri-
ces. This is similar to the idea of form diagonalizable
matrices discussed in Ref. [13]. If one starts with a
2-3-symmetric mass matrix for the charged-lepton sector
and requires it to be diagonalized by unitary matrices of
pure numbers, one recovers the decoupled 2-3 symmetry.
In the neutrino sector, we assume the third generation to be
decoupled from the first two generations. With real entries
in the neutrino mass matrix, it is diagonalized by a rotation
matrix and the resulting leptonic mixing has a �-� sym-
metry. Requiring the mass matrix to be diagonalized by
pure numbers can lead to, among other structures, the
bimaximal (BM) and the tri-bimaximal (TBM) leptonic
mixing.

To generate the mixing matrices in the charged-lepton
and the neutrino sector, we present a Lagrangian that
extends the standard model (SM) by three right-handed
neutrinos, an additional Higgs doublet, and two singlet
scalar fields.1 The Lagrangian uses the same class of Z2

symmetries as has been used in Ref. [15]. However, the
structure as well as the phenomenology of our model is
very different from the above-mentioned papers. The
Lagrangian is constructed to have a 2-3 symmetry, Z23

2 ,

along with two additional Z2 symmetries Ze
2 and ZD

2 . The

neutrino masses and mixing are generated through the
usual seesaw mechanism. The presence of the Z23

2 � Ze
2

symmetries leads to the decoupled 2-3 symmetry in the
charged-lepton sector and fixes the interactions of the
right-handed neutrinos with the singlet scalar fields. The
presence of the ZD

2 symmetry forces the neutrinos to ac-

quire Dirac masses by coupling to a second Higgs doublet
which has a different ZD

2 transformation than the usual SM

Higgs doublet that give masses to the charged leptons. The
full Lagrangian is symmetric under the product of the Z2

symmetries, Z23
2 � Ze

2 � ZD
2 .

The neutrino masses and mixing arise when the Higgs
doublets and the singlet scalars acquire vacuum expecta-
tion values (VEVs) and break the symmetries of the
Lagrangian. The leptonic mixing is predicted to be of the
bimaximal type when both the singlet scalars acquire the
same VEV. If the VEVof the second Higgs doublet is small
enough�MeV, then the seesaw scale as well as the masses
of the singlet scalars can be in the TeV range. To obtain the
TBM mixing, one has to use different flavor symmetries.

Symmetry breaking is introduced in the charged-lepton
sector by higher-dimensional operators that break the de-
coupled 2-3 symmetry but generate a 2-3-symmetric mass
matrix except for a single breaking generated by the muon
mass. In the neutrino sector, symmetry breaking is intro-
duced by breaking the alignment of the VEVs of the singlet
scalars by terms in the effective potential. The corrections

to leptonic mixing go as� v2

!2 where v is the VEVof the SM

Higgs and ! the scale of the singlet scalar VEVs. If
!� TeV, then the corrections to the leptonic mixing are
enough to explain the experimental observations.
The paper is organized in the following manner: We

begin in Sec. II with a discussion of the flavor symmetric
limit that leads to among other structures the BM and TBM
mixing. In Sec. III, we present the Lagrangian to generate
the mixing matrices in the symmetric limit. In Sec. IV, we
study the effect of symmetry breaking in the charged-
lepton and neutrino sector to generate the realistic leptonic
mixing matrix. In Sec. V, we show the numerical results
due to the symmetry breaking, and, finally, in Sec. VI we
conclude with a summary of the results reported in this
work.

II. THE LEPTONIC MIXING IN THE
SYMMETRIC LIMIT

We start with the charged-lepton sector, and assume that
the Yukawa matrix is 2-3 symmetric [16]. The Yukawa
couplings of the charged leptons are given by

YL ¼
l11 l12 �l12
l12 l22 l23
�l12 l23 l22

0
@

1
A: (2)

The above Yukawa matrix can be diagonalized as

UyYLU ¼ YL
diag;

U ¼
1 0 0

0 1ffiffi
2

p 1ffiffi
2

p

0 � 1ffiffi
2

p 1ffiffi
2

p

0
BBB@

1
CCCA:

cos� sin� 0

� sin� cos� 0

0 0 1

0
BB@

1
CCA; (3)

where the mixing angle � is determined by the positive
solution to

tan� ¼ 2
ffiffiffi
2

p
l12

l22 � l23 � l11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl22 � l23 � l11Þ2 þ 8l212

q : (4)

The eigenvalues of YL are 1
2 ½l11 þ l22 � l23 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl11 � l22 þ l23Þ2 þ 8l212

q
� and l22 þ l23. According to

our assumption, the elements of the matrix that diagonal-
izes YL must be pure numbers in the symmetric limit. It is
clear that we can achieve that by setting l12 ¼ 0 (� ¼ 0) in
Eq. (4). This generates the decoupled 2-3 symmetry [11],
as the flavor symmetry in the charged-lepton sector in
which the first generation is decoupled from the second
and third generations.
One can represent the Yukawa matrix with the de-

coupled 2-3 symmetry by YL
23 as

1Recent motivations for considering two Higgs doublet models
can be found in Ref. [14].
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YL
23 ¼

l11 0 0

0 1
2l22

1
2l23

0 1
2l23

1
2l22

0
BB@

1
CCA: (5)

This Yukawa matrix YL
23 is diagonalized by the unitary

matrix Wl
23 given by

Wl
23 ¼

1 0 0

0 � 1ffiffi
2

p 1ffiffi
2

p

0 1ffiffi
2

p 1ffiffi
2

p

0
BBB@

1
CCCA: (6)

Note that this matrix differs from the one in Eq. (3) in the
limit � ¼ 0 by an irrelevant diagonal phase matrix. Writing
the diagonalized Yukawa matrix as YL

23d, we have

YL
23d ¼ Wly

23Y
L
23W

l
23 ¼

l11 0 0

0 1
2ðl22 � l23Þ 0

0 0 1
2ðl22 þ l23Þ

0
BB@

1
CCA:
(7)

The charged-lepton masses are given by

me ¼ � v1ffiffiffi
2

p l11;

m� ¼ � v1ffiffiffi
2

p ðl22 � l23Þ
2

;

m� ¼ � v1ffiffiffi
2

p ðl22 þ l23Þ
2

:

(8)

Since m� � m�, there has to be a fine-tuned cancellation

between l22 and l23 to produce the muon mass. Hence, it is
more natural to consider the symmetry limit l22 ¼ l23
which leads to m� ¼ 0. The Yukawa matrix which leads

to the zero muon mass within the decoupled 2-3
symmetry is

YL
23 ¼

l11 0 0

0 1
2lT

1
2lT

0 1
2lT

1
2lT

0
BB@

1
CCA: (9)

In the neutrino sector, we assume that, in the symmetric
limit, M� has the general structure

M� ¼
a d 0

d b 0

0 0 c

0
BB@

1
CCA; (10)

where all the parameters are real. This can be diagonalized
by the matrix

W�
12 ¼

c12 s12 0

s12 �c12 0

0 0 1

0
BB@

1
CCA; s12 � sin�12; c12 � cos�12;

(11)

where

tan2�12 ¼ 2d

ða� bÞ : (12)

We can then calculate Us
PMNS as

Us
PMNS ¼ Uy

‘U�; (13)

with

U‘ ¼ Wl
23; U� ¼ W�

12; (14)

where Wl
23 and W�

23 are given in Eq. (6) and in Eq. (11).

This gives

Us
PMNS ¼

c12 s12 0

� 1ffiffi
2

p s12
1ffiffi
2

p c12
1ffiffi
2

p

1ffiffi
2

p s12 � 1ffiffi
2

p c12
1ffiffi
2

p

0
BBB@

1
CCCA; (15)

which is just the �-�-symmetric leptonic mixing. If we
require �12 in Eq. (12) to be independent of the parameters
a, b, and d, then we either have a ¼ b which leads to
�12 ¼ �=4 and generates the BM mixing or d ¼ kða� bÞ
and, in particular, we obtain the tri-bimaximal mixing with

k ¼ ffiffiffi
2

p
. Hence, by choosing a ¼ b, the neutrino mass

matrix is given as

M� ¼
a d 0

d a 0

0 0 c

0
BB@

1
CCA: (16)

III. THE LAGRANGIAN IN THE
SYMMETRIC LIMIT

In this section, we present a simple Lagrangian that
generates the mixing matrices considered in the previous
section. We find that the model naturally generates the BM
mixing though the TBM mixing can also be obtained but
with introducing different flavor symmetries. Our phe-
nomenology will be done in the scenario in which the
leptonic mixing is BM in the symmetric limit.
Wewill use the seesawmechanism to obtain the neutrino

masses. Our model extends the SM by an additional Higgs
doublet and two singlet scalars. The particle content of the
model is given as
(i) three left-handed lepton doublets D�L

, where � de-

notes e, �, and �,
(ii) three right-handed charged-lepton singlets �R, and
(iii) three right-handed neutrino singlets ��R.

In the scalar sector, we employ
(i) two Higgs doublets �j with VEVs h0j�0

j j0i ¼ vjffiffi
2

p
and

(ii) two real singlet scalar fields 	1 and 	2, with VEVs
h0j	0kj0i ¼ wk.

CHARGED-LEPTON MASS MATRIX AND NONZERO . . . PHYSICAL REVIEW D 85, 035019 (2012)

035019-3



The symmetries of the Lagrangian are introduced as

Z23
2 : D�L

$ �D�L; �R $ ��R; ��R $ ���R;

DeL ! DeL; eR ! eR; �eR ! �eR;

	1 ! �	1; 	2 ! 	2; �1 ! �1; �2 ! �2;

Ze
2: �eR; eR; DeL; 	1; 	2; ðChange sign, and the rest of the fields remain sameÞ

ZD
2 : �eR; ��R; ��R; �2; ðChange sign, and the rest of the fields remain sameÞ: (17)

The most general Lagrangian consistent with the symme-
tries is

LY ¼ ½y1 �DeLeR þ y2ð �D�L
�R þ �D�L�RÞ

þ y3ð �D�L
�R þ �D�L�RÞ��1

þ ½y4 �DeL�eR þ y5ð �D�L
��R þ �D�L��RÞ� ~�2 þ H:c:;

(18)

LM¼1

2
½M�T

eRC
�1�eRþMP�

T
�RC

�1��RþMP�
T
�RC

�1��R�

�1

2
y�T

eRC
�1

�
��R

ða	1þb	2Þffiffiffi
2

p þ��R

ða	1�b	2Þffiffiffi
2

p
�

þH:c: (19)

Here, ~�i � i
2�
�
i is the conjugate Higgs doublet and we

have chosen to work in a basis where the Dirac mass matrix
for the neutrinos is diagonal. We can simplify the
Lagrangian in several ways. First, we can redefine
a	1 ! 	1 and b	2 ! 	2. Second, to reduce the number
of parameters we can impose an approximate symmetry of
the Lagrangian. A SUð3Þ symmetry where the right-handed
singlet fields and the left-handed doublet fields transform
as the SUð3Þ triplets leads to y4 ¼ y5 ¼ yD. The SUð3Þ
symmetry is only satisfied by the Dirac mass term for the
neutrinos and is broken by the other terms in the
Lagrangian. Third, we will require the Lagrangian to be
invariant under the transformation of the right-handed
charged leptons ð�R $ ��R; eR ! �eR;�1 ! ��1Þ,
with all other fields remaining unchanged. This symmetry
requires y2 ¼ y3 leading to vanishing �mass. The �mass
is introduced later as a symmetry breaking term. Finally,
we will set the Majorana mass terms M ¼ MP. We can
then rewrite the Lagrangian as

LY ¼½y1 �DeLeRþy2ð �D�L
�Rþ �D�L�RÞ

þy2ð �D�L
�Rþ �D�L�RÞ��1

þyD½ �DeL�eRþ �D�L
��Rþ �D�L��R� ~�2þH:c:; (20)

LM¼1

2
M½�T

eRC
�1�eRþ�T

�RC
�1��Rþ�T

�RC
�1��R�

�1

2
y�T

eRC
�1

�
��R

ð	1þ	2Þffiffiffi
2

p þ��R

ð	1�	2Þffiffiffi
2

p
�
þH:c:

(21)

The most general scalar potential V that is invariant
under Z23

2 � Ze
2 � ZD

2 is given by

V ¼ ��2
1	

2
1 ��2

2	
2
2 þ �1	

4
1 þ �2	

4
2 þ �0

1	
2
1	

2
2

þ 
1	
2
1j�1j2 þ 
2	

2
1j�2j2 þ 
3	

2
2j�1j2

þ 
4	
2
2j�2j2 þ V2HDð�1; �2Þ; (22)

where V2HDð�1; �2Þ is the potential of the two Higgs
doublets,

V2HDð�1;�2Þ¼��2
�1
�y

1�1��2
�2
�y

2�2

þ��1
ð�y

1�1Þ2þ��2
ð�y

2�2Þ2
þ��12

ð�y
1�1þ�y

2�2Þ2
þ�0

�12
ð�y

1�1��y
2�2Þ2

þ��21
ðð�y

1�1Þð�y
2�2Þ�ð�y

1�2Þð�y
2�1ÞÞ

þ�0
�21

ðð�y
1�1Þð�y

2�2Þþð�y
1�2Þð�y

2�1ÞÞ:
(23)

If we impose an additional symmetry to the above potential
such as 	1 $ 	2, then the potential takes the form

V ¼ ��2ð	21 þ 	22Þ þ ð	21 þ 	22Þ
X2
i¼1


i�
y
i �i

þ �ð	21 þ 	22Þ2 þ �0ð	21 � 	22Þ2 þ V2HDð�1; �2Þ: (24)
We can parametrize the VEVs of the singlet scalars as
follows:

h0j	1j0i ¼ w cos� and h0j	2j0i ¼ w sin�: (25)

Thus, the only term that depends on � is

fð�Þ � �0w4cos22�: (26)

By minimizing fð�Þ, one gets
cos2� ¼ 0: (27)
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Thus,

h0j	1j0i ¼ h0j	2j0i ¼ wffiffiffi
2

p : (28)

By minimizing the above potential, one can find the pa-
rameter w and the VEVs of the two Higgs doublets which
are nonzero and different in the symmetric limit

v1 ¼
ffiffiffiffiffiffiffiffiffi
�1

21

s
; v2 ¼

ffiffiffiffiffiffiffiffiffi
�2

22

s
; (29)

where

�1 ¼ 4�ð��12
�2

�1
þ ��2

�2
�1

� �0
�21

�2
�2

� ��12
�2

�2

þ �0
�12

ð�2
�1

þ�2
�2
ÞÞ � 2��12

�2
1 � 2��2
�2
1

þ 2�0
�21

�2
2 þ 2��12
�2
2 þ�2

�2

1
2

��2
�1

2

2 � 2�0
�12

�2ð
1 þ 
2Þ;
1 ¼ 4�ð��02

�21
� 2�0

�21
��12

þ ��1
��12

þ ��1
��2

þ ��12
��2

þ �0
�12

ð2�0
�21

þ ��1
þ 4��12

þ ��2
ÞÞ

� ��12

2

1 � ��2

2

1 þ 2�0
�21


1
2 þ 2��12

1
2

� ��1

2

2 � ��12

2

2 � �0
�12

ð
1 þ 
2Þ2;
�2 ¼ 4�ð��12

�2
�2

þ ��1
�2

�2
� �0

�21
�2

�1
� ��12

�2
�1

þ �0
�12

ð�2
�2

þ�2
�1
ÞÞ � 2��12

�2
2 � 2��1
�2
2

þ 2�0
�21

�2
1 þ 2��12
�2
1 þ�2

�1

2
1

��2
�2

2

1 � 2�0
�12

�2ð
2 þ 
1Þ;
2 ¼ 4�ð��02

�21
� 2�0

�21
��12

þ ��2
��12

þ ��2
��1

þ ��12
��1

þ �0
�12

ð2�0
�21

þ ��2
þ 4��12

þ ��1
ÞÞ

� ��12

2

2 � ��1

2

2 þ 2�0
�21


2
1 þ 2��12

2
1

� ��2

2

1 � ��12

2

1 � �0
�12

ð
2 þ 
1Þ2: (30)

Also, the parameter w can simply be written as follows:

w2 ¼ �2 � ð
1jv1j2 þ 
2jv2j2Þ
2�

; (31)

which shows that the VEV of the singlet scalars is inde-
pendent of ðv1; v2Þ when 
1 ¼ 
2 ¼ 0.

The explicit form of the Yukawa matrix, YL
23, and the

Dirac neutrino mass matrix can be written from the
Lagrangian (18) as follows:

YL
23 ¼

v1ffiffiffi
2

p
y1 0 0
0 y2 y2
0 y2 y2

0
@

1
A; (32)

MD ¼ diagðA; A; AÞ; with A ¼ y
v2ffiffiffi
2

p : (33)

Also, the Majorana mass matrix can be obtained from
Eq. (19) as follows:

MR ¼
M �vw 0

�vw M 0
0 0 M

0
@

1
A; (34)

with vw ¼ yw. Using the seesaw formula [17], the neutrino
mass matrix is given as

M � ¼ �MT
DM

�1
R MD: (35)

Then, M� has the structure

M � ¼
X G 0
G X 0
0 0 Z

0
@

1
A; (36)

where

X ¼ � A2M

M2 � v2
w

; G ¼ � A2vw

M2 � v2
w

; Z ¼ �A2

M
:

(37)

By diagonalizing Eq. (36), we obtain the neutrino masses
as

m1 ¼ � A2

Mþ vw

;

m2 ¼ � A2

M� vw

;

m3 ¼ �A2

M
:

(38)

Note that from the above equations one can estimate the
scale of the VEV, v2, of the second Higgs doublet �2. As
the absolute neutrino masses are in the eV scale, therefore,
v2 has to be in the MeV scale if the seesaw scale ðMÞ is in
the TeV range. The mass relations satisfy the relation

1

m1

þ 1

m2

¼ 2

m3

: (39)

Similar relations among the masses are discussed in
Ref. [18]. We can use the above sum rule to obtain an

upper limit for the heaviest mass, jm3j 	 2jm1jjm2j
jjm1jþjm2jj for the

normal hierarchy or jm2j 	 jm1jjm3j
j2jm1j�jm3jj for the inverted

hierarchy.

IV. SYMMETRY BREAKING

The breaking of the flavor symmetries in the charged-
lepton and the neutrino sectors will cause deviation from
the BM form, and we study these deviations in this section.

A. Charged-lepton sector

In the charged-lepton sector, we break the decoupled
2-3 symmetry by adding the following higher-dimensional
terms:
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O1 ¼ cy2 �D�L
�R�1

�y
1�1

�2
; (40)

and

O2 ¼ y0ð �DeL�R � �DeL�R þ �D�L
eR � �D�LeRÞ�1

�y
1�1

�2
:

(41)

The operator O2 breaks the decoupled 2-3 symmetry,
Z23
2 � Ze

2, but is still 2-3 symmetric. The operator O1

explicitly breaks the 2-3 symmetry, Z23
2 , and generates

the muon mass. To generate explicit 2-3 breaking, we
have introduced the higher-dimensional operator in the
position of the muon field, 2-2 element, in the Yukawa
matrix which is the most straightforward way to generate
the muon mass. Introducing this operator in the 3-3 posi-
tion generates the same numerical solutions for the correc-
tion angles. But, introducing it in the 2-3 or 3-2 positions
does not generate physical values for the mixing angles.
Even introducing 2-3 symmetric terms in (2-2, 3-3) or (2-3,
3-2) generates either unphysical mixing angles or gives
very large correction mixing angles that do not lead to
successful phenomenology.

In the presence of the higher-dimensional terms, the
charged-lepton Yukawa matrix has the following form:

YL ¼
l11 l12 �l12

l12
1
2lTð1þ 2�lÞ 1

2lT

�l12
1
2lT

1
2lT

0
BB@

1
CCA; (42)

with �l ¼ cv2
1=2�

2 and l12 ¼ y0v3
1=2

ffiffiffi
2

p
�2 after the Higgs

field gets its VEV. Three relations can be obtained among
the YL matrix elements,

YL
12 ¼ �YL

13; YL
23 ¼ YL

33; YL
22 ¼ ð1þ 2�lÞYL

23:

(43)

We can solve for the unitary matrix, Ul, that diagonal-
izes YL in Eq. (42). We write,

Ul ¼ Wl
23R

l
23R

l
13R

l
12; (44)

where

Rl
12 ¼

c12l s12l 0

�s12l c12l 0

0 0 1

0
BB@

1
CCA;

c12l ¼ cos�12l; s12l ¼ sin�12l; (45)

Rl
13¼

c13l 0 s13le
�i�

0 1 0

�s13le
i� 0 c13l

0
BB@

1
CCA;

c13l¼ cos�13l; s13l¼ sin�13l; (46)

Rl
23 ¼

1 0 0

0 c23l s23l

0 �s23l c23l

0
BB@

1
CCA;

c23l ¼ cos�23l; s23l ¼ sin�23l: (47)

The Yukawa matrix, YL, can be written as

YL ¼ UlY
L
dU

y
l ; (48)

with

YL
d ¼

le 0 0

0 l� 0

0 0 l�

0
BB@

1
CCA: (49)

Applying the relations in Eq. (43) to the YL matrix ele-
ments in Eq. (48) using Eq. (44), one can solve for the
corrections of the mixing angles. Two ways can be used to
find the angles, analytically or numerically. Solving for the
mixing angles analytically, see details in the Appendix, can
determine the size of the Yukawa matrix parameters in
Eq. (42),

z� � m�

m�

;

�l ¼ zz�;

l12 

ffiffiffiffiffiffi
z�
2

r
ðle � l�Þ;

lT 
 ðl� � l�Þ
�
1� 1

2ðzz�Þ2
�
:

(50)

with z� 2. It is interesting to note that

� ¼ cv2
1

2�2
¼ zz� (51)

which fixes �� TeV. We assume that the charged-lepton
corrections are ‘‘Cabibbo–Kobayashi–Maskawa-quark-
mixing-matrix-like,’’ i.e.

sin�12l 
 �; sin�23l 
 A�2; sin�13l 
 B�3;

(52)

where A and B are real and of order one and � is the sine of
the Cabibbo angle, � ¼ sin�C ’ 0:227. We present nu-
merical solutions to the relations in Eq. (43) for various z
values that produce the pattern in Eq. (52). In our calcu-
lations, we assume � ¼ �,
(i) For z ¼ 2:0: s12l 
 �0:34, s13l 
 �0:0011, s23l 


�0:059,
(ii) For z ¼ 2:06: s12l 
 �0:3, s13l 
 �0:001, s23l 


�0:061,
(iii) For z ¼ 2:2: s12l 
 �0:2, s13l 
 �0:000 75,

s23l 
 �0:065.
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We expand the angles in Eq. (1) as

s13 ¼ rffiffiffi
2

p ; s12 ¼ 1ffiffiffi
2

p ð1þ sÞ; s23 ¼ 1ffiffiffi
2

p ð1þ aÞ;
(53)

where the three real parameters r, s, a describe the devia-
tions of the reactor, solar, and atmospheric angles from
their bimaximal values. We use global fits of the conven-
tional mixing parameters ðs; aÞ [19] that can be translated

into 3
 ranges and the mixing parameter r with 2:5

significance (90% C.L.) [5]

0:12<r<0:39; �0:29<s<�0:14; �0:15<a<0:16:

(54)

To first order in r, s, a, the lepton mixing matrix can be
written as

U 


1ffiffi
2

p ð1� sÞ 1ffiffi
2

p ð1þ sÞ 1ffiffi
2

p re�i�

� 1
2

�
1þ s� aþ rffiffi

2
p ei�

�
1
2

�
1� s� a� rffiffi

2
p ei�

�
1ffiffi
2

p ð1þ aÞ
1
2

�
1þ sþ a� rffiffi

2
p ei�

�
� 1

2

�
1� sþ aþ rffiffi

2
p ei�

�
1ffiffi
2

p ð1� aÞ

0
BBBBB@

1
CCCCCA; (55)

which is similar to the parametrization in Ref. [20] with the
TBM mixing. We have assumed that � ¼ � where the
present data prefers a negative value for s [20] and r is
positive, in our discussion we do not considerCP violation.
Now, we can write the parameters ðr; s; aÞ in terms of the
elements of the mixing matrix

s ¼ �1þ ffiffiffi
2

p
U12;

r ¼ ffiffiffi
2

p ð1þ s� aþ 2U21Þ;
a ¼ �1þ ffiffiffi

2
p

U23:

(56)

From the details in the Appendix, one obtains

s 
 � 1ffiffiffi
2

p ðs12l þ s13lÞ;

r 
 s12l � s13l;

a 
 �s23l:

(57)

From the above equations, one can get the deviation
parameters as follows:

(i) For z ¼ 2:0: s 
 �0:24, r 
 0:34, a 
 0:059,
(ii) For z ¼ 2:06: s 
 �0:21, r 
 0:30, a 
 0:061,
(iii) For z ¼ 2:2: s 
 �0:14, r 
 0:20, a 
 0:065.

The above results demonstrate that the contributions from
the charged-lepton sector can accommodate the T2K data
of �13 as well as the other mixing angles.

B. Neutrino sector

In this section, we consider deviations of the BMmixing
from the neutrino sector. We maintain the invariance of
the Majorana Lagrangian under the symmetry group in
Eq. (17) and generate the deviation from the BM matrix
by breaking the 	1 $ 	2 symmetry in Eq. (24) by introduc-
ing the most general dimension-four symmetry breaking
terms in the potential

ð	21 � 	22Þ
X2
i¼1


0
i�

y
i �i þ %ð	21 � 	22Þð	21 þ 	22Þ: (58)

2We require that all terms in the symmetry breaking po-

tential are of the same size which results in �� v2

w2 

0
i

where v is the electroweak VEV with v2 ¼ v2
1 þ v2

2 and
! is the scale of the VEVs of the singlet scalars. Thus, the
potential is

V ¼ ��2ð	21 þ 	22Þ þ ð	21 þ 	22Þ
X2
i¼1


i�
y
i �i

þ �ð	21 þ 	22Þ2 þ �0ð	21 � 	22Þ2

þ ð	21 � 	22Þ
X2
i¼1


0
i�

y
i �i þ %ð	21 � 	22Þð	21 þ 	22Þ

þ V2HDð�1; �2Þ: (59)

Now, parameterizing the VEVs as in Eq. (25) and mini-
mizing the potential leads to

cos2�¼�%w2þð
0
1jv1j2þ
0

2jv2j2Þ
2�0w2

;

w2¼2�0ð�2�ð
1jv1j2þ
2jv2j2ÞÞþ%ð
0
1jv1j2þ
0

2jv2j2Þ
4��0�%2

:

(60)

Keeping in mind the size of the various coefficients in the
symmetry breaking potential discussed above, we find that

cos2� 
 0 up to corrections of order v2

!2 . We assume thatw

is in the TeV scale and with v in the electroweak scale the
symmetry breaking corrections are of the right size to
explain the experimental numbers.

2The most general symmetry breaking terms can be expressed
in terms of the form in Eq. (58) and symmetry conserving terms
that can be absorbed in the symmetric potential.
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We shift the VEVs of the two singlet scalars (w1 � w2)
up to the first order of the symmetry breaking parameter.
Then, the Majorana neutrino mass matrix in Eq. (34) takes
the form

MR ¼
M �vwp �vwn

�vwp M 0
�vwn 0 M

0
@

1
A; (61)

where

vwp ¼ yffiffiffi
2

p ðw1 þ w2Þ; vwn ¼ yffiffiffi
2

p ðw1 � w2Þ: (62)

We write the VEVs of the singlet scalars after symmetry
breaking as

w1 ¼ wþ �1ffiffiffi
2

p ; w2 ¼ wþ �2ffiffiffi
2

p ; (63)

where �1 and �2 are small quantities and

�1 ¼ ��2 ¼ w�

2
: (64)

Up to the first order of the symmetry breaking parameter �,

� � �%w2 þ ð
0
1jv1j2 þ 
0

2jv2j2Þ
2�0w2

; (65)

one gets

vwp ¼ vw; vwn ¼ �

2
vw: (66)

It turns out that breaking the 	1 $ 	2 symmetry to generate
different VEVs for the singlet scalars is not sufficient to
break the almost degeneracy of ðm1; m2Þ to satisfy the
squared-mass-difference measurements. Therefore, we in-
troduce an additional term in the Lagrangian which is
consistent with the symmetries of the Lagrangian,

M1½�T
�RC

�1��R þ �T
�RC

�1��R�: (67)

Thus,

MR ¼
M �vw � �

2vw

�vw M0 0
� �

2vw 0 M0

0
B@

1
CA; (68)

where M0 ¼ MþM1.
The neutrino mass matrix in Eq. (36) changes to be

M � ¼
X0 G0 P0
G0 Y0 W 0
P0 W 0 Z0

0
@

1
A; (69)

where

X0 ¼ � 4A2M0

4MM0 � v2
wð4þ �2Þ ;

Y0 ¼ � A2ð4MM0 � v2
w�

2Þ
M0ð4MM0 � v2

wð4þ �2ÞÞ ;

Z0 ¼ � 4A2ðMM0 � v2
wÞ

M0ð4MM0 � v2
wð4þ �2ÞÞ ;

G0 ¼ � 4A2vw

4MM0 � v2
wð4þ �2Þ ;

P0 ¼ � 2A2vw�

4MM0 � v2
wð4þ �2Þ ;

W 0 ¼ � 2A2v2
w�

M0ð4MM0 � v2
wð4þ �2ÞÞ :

(70)

By diagonalizing Eq. (69), one gets the mass eigenvalues

m1¼�2A2ððMþM0Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�2MM0þM02þv2

wð4þ�2Þp Þ
4MM0�v2

wð4þ�2Þ ;

m2¼�2A2ððMþM0Þþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�2MM0þM02þv2

wð4þ�2Þp Þ
4MM0�v2

wð4þ�2Þ ;

m3¼�A2

M0 : (71)

Now, we can diagonalize the mass matrix in Eq. (69)
using the unitary matrix U� ¼ W�

12R
�
23R

�
12 with

R�
12 ¼

c12� s12� 0
�s12� c12� 0
0 0 1

0
@

1
A;

c12� ¼ cos�12�; s12� ¼ sin�12�;

R�
23 ¼

1 0 0
0 c23� s23�
0 �s23� c23�

0
@

1
A;

c23� ¼ cos�23�; s23� ¼ sin�23�:

(72)

The mass matrix elements in Eq. (70) satisfy the two
relations

X0ðZ0 � Y0Þ ¼ P02 �G02;

G0P0ðZ0 � Y0Þ ¼ W 0ðP02 �G02Þ:
(73)

By applying the above relations to the matrix elements of

M � ¼ U�Md
�U

y
� ; (74)

one can obtain the mixing angles

s23� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1ðm2 �m3Þ
m2ðm1 �m3Þ

s
;

s12� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m1m2 þ 2m1m3 �m2m3

2m3ðm1 �m2Þ

s
:

(75)
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Eventually, we obtain the elements of the lepton mixing

matrix UPMNS ¼ Uy
l U� with U‘ ¼ Wl

23R
l
23R

l
13R

l
12 and

U� ¼ W�
12R

�
23R

�
12. The deviation parameters ðs; r; aÞ can

be obtained from Eq. (56) as follows:

s 
 � 1ffiffiffi
2

p ðs12l þ s13lÞ þ s12�;

r 
 s12l � s13l � s23�;

a 
 �s23l þ 1ffiffiffi
2

p s23�:

(76)

V. NUMERICAL RESULTS

From the neutrino mass matrix (16), one observes that in
the degenerate case, when m1 
 m2 
 m3, a 
 c, d 
 0
which means that the neutrino mass matrix is already
diagonalized as M� 
 diagða; a; aÞ. That means the lep-
ton mixing matrix does not include a contribution from the
neutrino sector, and the resultant leptonic mixing is incon-
sistent with the experimental data. Thus, in the symmetric
limit our model excludes the case of the degenerate neu-
trino masses. Even, after symmetry breaking, the degener-
ate case in Eq. (71) leads to vanishing the VEVs of the
singlet scalar fields which does not lead to successful
phenomenology.

The numerics goes as follows: we choose masses
ðm1; m2; m3Þ which satisfy the experimental values of the
squared-mass differences

�m2
21 ¼ m2

2 �m2
1 ¼ ð7:59� 0:20Þ � 10�5 eV2;

�m2
32 ¼ jm2

3 �m2
2j ¼ ð2:43� 0:13Þ � 10�3 eV2:

(77)

We substitute those mass values in ðr; s; aÞ in Eq. (56),
using ðs12�; s23�Þ given in Eq. (75) and ðs12l; s23l; s13lÞ in
Sec. IVA. If the results satisfy the experimental constraints
in Eq. (54), we plot the possible values of the absolute
masses and the mixing angles. By using Eq. (71), we
calculate values for the Lagrangian parameters
ðvw; A;M;M0Þ which generate the values of the absolute
masses obtained from the graphs. From the graphs, one
finds that ðvw;M;M0Þ are obtained in the TeV scale and A
in the MeV range.

Three mass-dependent neutrino observables are probed
in different types of experiments. The sum of absolute
neutrino masses mcosm � �mi is probed in cosmology,
the kinetic electron neutrino mass in beta decay ðMÞ is
probed in direct search for neutrino masses, and the effec-
tive mass ðMeeÞ is probed in neutrinoless double-beta
decay experiments with the decay rate for the process
� / M2

ee. In terms of the ‘‘bare’’ physical parameters mi

and U�i, the observables are given by [18]

�mi ¼ jm1j þ jm2j þ jm3j;
Mee ¼ jjm1jjUe1j2 þ jm2jjUe2j2ei�1 þ jm3jjUe3j2ei�2 j;
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm1j2jUe1j2 þ jm2j2jUe2j2 þ jm3j2jUe3j2

q
: (78)

In our analysis, we ignore the Majorana phases ð�1; �2Þ
and plotM versus�mi andMee versusmlight, wheremlight

is the lightest neutrino mass.
In Figs. 1–3, we assume specific values of z with the

corresponding correction mixing angles ðs13l; s12l; s23lÞ and
plot the absolute masses and the mixing angles which
satisfy the neutrino mixing constraints. By choosing a
value for the symmetry breaking term �, we plot the
parameters ðvw; A;M;M0Þ that satisfy the squared-mass-
difference measurements. This model supports the normal
mass hierarchy as shown in the graphs with the scale of the
neutrino masses in the few meV to �50 meV range. The
results agree with the recent T2K data which find a rela-
tively large �13. The graphs show that the seesaw scale
ðM;M0Þ are in the TeV range, and the second Higgs that
couples to the right-handed neutrinos has VEV v2, in-
cluded in A, in the MeV scale. Also, they indicate that
the VEVof the singlet scalar fields vw is in the TeV scale.
The graphs show that �mi 
 0:06 eV and Mee <M and

Mee < 0:35 eV [21]. Various other mechanisms to gener-
ate the neutrino masses with TeV scale new physics are
mentioned in Ref. [22].

VI. CONCLUSION

In this paper, we presented a model for leptonic mixing
which accommodates the sizable neutrino mixing angle
�13, recently measured by the T2K and MINOS experi-
ments. We worked in a basis where the charged-lepton
mass matrix is not diagonal and proposed an explicit
structure for the charged-lepton mass matrix which is 2-3
symmetric except for a single breaking of this symmetry by
the muon mass. We identified a flavor symmetric limit for
the mass matrices where the first generation is decoupled
from the other two in the charged-lepton sector while in the
neutrino sector the third generation is decoupled from the
first two generations. The leptonic mixing in the symmetric
limit was shown to have, among other structures, the BM
and the TBM mixing.
A model that extended the SM by three right-handed

neutrinos, an extra Higgs doublet, and two singlet scalars
was introduced to generate the leptonic mixing. In the
symmetric limit, the model had two Z2 symmetries in
addition to the �-� symmetry and the BM leptonic mixing
was obtained when the two singlet scalars got equal VEVs.
Symmetry breaking effects were included in the

charged-lepton sector via higher-dimensional operators
that generated a �-� symmetric mass matrix except for a
single breaking due to the finite muon mass. In the neutrino
sector, symmetry breaking was included via slightly differ-
ent VEVs for the two singlet scalars. To explain the �m2

data, two different Majorana mass terms, one for �e and
one for �� and ��, were used keeping in mind that the �-�

symmetry fixes the Majorana mass terms for the �� and ��

to be the same.
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A fit to the experimental measurements showed that our
model predicted normal hierarchy for the neutrino masses
with the masses being in the few meV to �50 meV range.
The Majorana mass terms as well as the VEVs of the
singlet scalar fields were predicted to be in the TeV scale
and consequently the VEVof the second Higgs doublet was
shown to be in the MeV range. We calculated predictions
for the mass-dependent observables ð�miÞ, ðMÞ, and

ðMeeÞ. We found that �mi 
 0:06 eV, Mee <M, and

Mee < 0:35 eV.
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APPENDIX A: CHARGED-LEPTON SECTOR

We analytically calculate the deviation of the leptonic
mixing from the symmetric limit due to corrections from
the charged-lepton sector. We, here, are going to determine
the sizes for the Yukawa matrix elements in YL in Eq. (42).
We first consider the breaking of the 2-3 symmetry in the
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FIG. 1 (color online). Scatter plots for z ¼ 2:0 with s12l 
 �0:34, s13l 
 �0:0011, and s23l 
 �0:059. In the neutrino sector, we
assume that � ¼ 0:1 (meV � 10�3 eV).
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charged-lepton sector via the introduction of a higher-
dimensional operator that generates the muon mass

O1 ¼ cy2 �D�L
�R�1

�1�
y
1

�2
: (A1)

Thus, we consider the Yukawa matrix,

YL
23 ¼

le 0 0
0 1

2lTð1þ 2�lÞ 1
2lT

0 1
2lT

1
2lT

0
B@

1
CA: (A2)

The structure above breaks the 2-3 symmetry because of
the correction to the 22 element. Note that we do not break
the 2-3 symmetry in the 23 element so that the Yukawa
matrix remains symmetric. The matrix YL

23 is now diago-

nalized by the unitary matrix, Ul ¼ Wl
23R

l
23. Applying the

relation ðYL
23Þ23 ¼ ðYL

23Þ33 in Eq. (A2) to YL
23 ¼ UlY

L
diagU

y
l

leads to

t23l ¼ 1
2½z� � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2� � 6z� þ 1

q
�; (A3)

where t23l � tan�23l and we have chosen the solution that
leads to small angle �23l and to small flavor symmetry
breaking. Keeping terms up to first order in z�, we get

t23l 
 �z�: (A4)

We further obtain for �l and lT in Eq. (A2),
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FIG. 2 (color online). Scatter plots for z ¼ 2:06 with s12l 
 �0:3, s13l 
 �0:001, and s23l 
 �0:061. In the neutrino sector, we
assume that � ¼ 0:05 (meV � 10�3 eV).
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�l ¼ � tan2�23l 
 2z�; lT ¼ ðl� � l�Þ cos2�23l:
(A5)

Comparing the above equation with Eq. (A1), the size of
the higher-dimensional operator can be estimated as

cv2
1

2�2

 2z�: (A6)

Since v1 
 250 GeV, the scale of � is in the TeV range.
To obtain a realistic charged-lepton matrix, we take into

account the mixing involving the second and the third
generations in the full Yukawa matrix

O2 ¼ y0ð �DeL�R � �DeL�R þ �D�L
eR � �D�LeRÞ�1

�1�
y
1

�2
:

(A7)

Thus, the full mixing matrix will be given by

YL ¼
l11 l12 �l12
l12

1
2lTð1þ 2�lÞ 1

2lT�l12
1
2lT

1
2lT

0
B@

1
CA: (A8)

We will assume that the Yukawa matrix YL is now diago-
nalized by the unitary matrix Ul given by

Ul ¼ Wl
23R

l
23R

l
13R

l
12: (A9)
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FIG. 3 (color online). Scatter plots for z ¼ 2:2 with s12l 
 �0:2, s13l 
 �0:000 75, and s23l 
 �0:065. In the neutrino sector, we
assume that � ¼ 0:1 (meV � 10�3 eV).
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From the Yukawa matrix (A8), one can find the two relations

Y12 ¼ �Y13; Y22 ¼ 1
2ðY23 þ Y33Þð1þ 2�lÞ: (A10)

Applying the above two relations to

YL ¼ UlY
L
diagU

y
l (A11)

using Eq. (A9), one can obtain the solutions

s12l 
 �c23l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� � 2�l þ ð�3þ 3z� � 2�lÞc23ls23l þ 2z��lc23ls23l

z� � z2�ð3þ 2�lÞc23ls23l

vuut ;

s13l 
 � ffiffiffiffiffiffi
z�

p
c12ls23l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� � 2�l þ ð�3þ 3z� � 2�lÞc23ls23l þ 2z��lc23ls23l

1� z�ð3þ 2�lÞc23ls23l

vuut :

(A12)

By comparing Eqs. (A8) and (A11), one can get the matrix element l12 after substituting Eqs. (A4), (A5), and (A12) up to
the first order in z�,

l12 

ffiffiffiffiffiffi
z�

2

r
ðle � l�Þ: (A13)

The leptonic mixing matrix is now given by

UPMNS ¼ Uy
‘U�; (A14)

where U‘ ¼ Wl
23R

l
23R

l
13R

l
12 and U� ¼ W�

12.
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