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Charged-lepton mass matrix and nonzero 6,3 with TeV scale new physics
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We provide an explicit structure of the charged-lepton mass matrix which is 2-3 symmetric except for a
single breaking of this symmetry by the muon mass. We identify a flavor symmetric limit for the mass
matrices where the first generation is decoupled from the other two in the charged-lepton sector while in
the neutrino sector the third generation is decoupled from the first two generations. The leptonic mixing in

the symmetric limit can be, among other structures, the bimaximal or the tri-bimaximal mixing. Symmetry
breaking effects are included both in the charged-lepton and the neutrino sector to produce corrections to
the leptonic mixing and explain the recent §,; measurements. A model that extends the standard model by
three right-handed neutrinos, an extra Higgs doublet, and two singlet scalars is introduced to generate the

leptonic mixing.
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I. INTRODUCTION

We now know that neutrinos have masses and just like
the quark mixing matrix there is a leptonic mixing matrix.
This fact has been firmly established through a variety of
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where 13 = sinf3, ¢;3 = cosf 3 with 653 being the reac-
tor angle, s;, = sinf,, ¢, = cosf, with 0, being the
solar angle, 5,3 = sinfl,3, cy3 = cosf,3 with 0,3 being the
atmospheric angle, ¢ is the Dirac CP-violating phase, and
K = diag(1, ¢'?!, ¢’®2) contains additional (Majorana)
CP-violating phases ¢, ¢,. We ignore the Majorana
CP-violating phases in this work.

Unlike the Cabibbo-Kobayashi-Maskawa quark-mixing
matrix that can be thought of as a perturbation about the
identity matrix, the leading term in the leptonic mixing
contains large mixing angles. Some examples of the
leading-order mixing matrix are the bimaximal mixing
[3] and the tri-bimaximal mixing [4]. However, current
experiments indicate deviations from these standard
zeroth-order forms.

For instance, recent results from the T2K [5] and
MINOS [6,7] experiments have indicated a large reactor
angle 63 for neutrino mixing. At the 90% C.L., T2K gives
0.03(0.04) < sin*26,5 < 0.28(0.34), with zero Dirac CP
phase, 6p, for normal (inverted) hierarchy. The MINOS
group gives 0.01(0.026) < sin*260,5 < 0.088(0.150). There
are already several papers that have attempted to explain
the recent 6,5 results [8,9].
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solar, atmospheric, and terrestrial neutrino oscillation ex-
periments [1]. The Pontecorvo-Maki-Nakagawa-Sakata
lepton-mixing matrix, Upyns, 18 parametrized as follows

[2]:
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The leptonic mixing arises from the overlap of matrices
that diagonalize the charged-lepton and the neutrino mass
matrices. Many approaches to studying the leptonic mixing
start in the basis where the charged-lepton mass is diago-
nal. Our approach to obtaining the leading-order leptonic
mixing as well as deviations from it starts from the
charged-lepton sector. A recent attempt to understand 63
from the charged-lepton sector can be found in Ref. [8] and
in the past corrections to the leptonic mixing from the
charged-lepton sector were considered in Ref. [10]. An
approach to suppress flavor-changing neutral current ef-
fects in the quark sector, based on shared flavor symmetry,
was proposed in Ref. [11]. As an example of this shared
symmetry, the decoupled 2-3 symmetry was used for the
down-quark sector to suppress flavor-changing neutral cur-
rent effects and explain anomalies [12] observed in the B
meson system. In the decoupled limit, the first generation is
decoupled from the other two generations. We extend this
decoupled 2-3 symmetry to the charged-lepton sector. This
is a reasonable extension given the fact that the down quark
and charged leptons exhibit similar hierarchical structure
and they may be combined in representations of grand
unified theory groups.

One of the central ideas of this approach is the require-
ment that the mass matrices, in a symmetric limit, be
diagonalized by unitary matrices composed of pure
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numbers independent of the parameters of the mass matri-
ces. This is similar to the idea of form diagonalizable
matrices discussed in Ref. [13]. If one starts with a
2-3-symmetric mass matrix for the charged-lepton sector
and requires it to be diagonalized by unitary matrices of
pure numbers, one recovers the decoupled 2-3 symmetry.
In the neutrino sector, we assume the third generation to be
decoupled from the first two generations. With real entries
in the neutrino mass matrix, it is diagonalized by a rotation
matrix and the resulting leptonic mixing has a w-7 sym-
metry. Requiring the mass matrix to be diagonalized by
pure numbers can lead to, among other structures, the
bimaximal (BM) and the tri-bimaximal (TBM) leptonic
mixing.

To generate the mixing matrices in the charged-lepton
and the neutrino sector, we present a Lagrangian that
extends the standard model (SM) by three right-handed
neutrinos, an additional Higgs doublet, and two singlet
scalar fields.! The Lagrangian uses the same class of Z,
symmetries as has been used in Ref. [15]. However, the
structure as well as the phenomenology of our model is
very different from the above-mentioned papers. The
Lagrangian is constructed to have a 2-3 symmetry, Z5°,
along with two additional Z, symmetries Z5 and Z2. The
neutrino masses and mixing are generated through the
usual seesaw mechanism. The presence of the Z3° X Z§
symmetries leads to the decoupled 2-3 symmetry in the
charged-lepton sector and fixes the interactions of the
right-handed neutrinos with the singlet scalar fields. The
presence of the Z2 symmetry forces the neutrinos to ac-
quire Dirac masses by coupling to a second Higgs doublet
which has a different Z2 transformation than the usual SM
Higgs doublet that give masses to the charged leptons. The
full Lagrangian is symmetric under the product of the Z,
symmetries, Z5° X Z§ X Z2.

The neutrino masses and mixing arise when the Higgs
doublets and the singlet scalars acquire vacuum expecta-
tion values (VEVs) and break the symmetries of the
Lagrangian. The leptonic mixing is predicted to be of the
bimaximal type when both the singlet scalars acquire the
same VEV. If the VEV of the second Higgs doublet is small
enough ~MeV, then the seesaw scale as well as the masses
of the singlet scalars can be in the TeV range. To obtain the
TBM mixing, one has to use different flavor symmetries.

Symmetry breaking is introduced in the charged-lepton
sector by higher-dimensional operators that break the de-
coupled 2-3 symmetry but generate a 2-3-symmetric mass
matrix except for a single breaking generated by the muon
mass. In the neutrino sector, symmetry breaking is intro-
duced by breaking the alignment of the VEVs of the singlet
scalars by terms in the effective potential. The corrections
to leptonic mixing go as ~ Z—z, where v is the VEV of the SM

"Recent motivations for considering two Higgs doublet models
can be found in Ref. [14].
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Higgs and w the scale of the singlet scalar VEVs. If
w ~ TeV, then the corrections to the leptonic mixing are
enough to explain the experimental observations.

The paper is organized in the following manner: We
begin in Sec. II with a discussion of the flavor symmetric
limit that leads to among other structures the BM and TBM
mixing. In Sec. III, we present the Lagrangian to generate
the mixing matrices in the symmetric limit. In Sec. IV, we
study the effect of symmetry breaking in the charged-
lepton and neutrino sector to generate the realistic leptonic
mixing matrix. In Sec. V, we show the numerical results
due to the symmetry breaking, and, finally, in Sec. VI we
conclude with a summary of the results reported in this
work.

II. THE LEPTONIC MIXING IN THE
SYMMETRIC LIMIT

We start with the charged-lepton sector, and assume that
the Yukawa matrix is 2-3 symmetric [16]. The Yukawa
couplings of the charged leptons are given by

il —lp

Yh=| Ly, by by | (2)
—lnp by In

The above Yukawa matrix can be diagonalized as

Utytu = vk,

1 0 0 cosf sinfd O
v=|0 5 H|]|-sin6 cost 0| @3
_ 1 1
0 - & 0 0 1

where the mixing angle 6 is determined by the positive
solution to

2421,

tanf = .
lp = by — Iy * \/(122 — bz — 1) + 85,

“)

The eigenvalues of Y& are [l + 1 — I3 =+

\/(111 — Iy + 13)* +82,] and Iy, + 3. According to

our assumption, the elements of the matrix that diagonal-
izes Y© must be pure numbers in the symmetric limit. It is
clear that we can achieve that by setting /1, = 0 (§ = 0) in
Eq. (4). This generates the decoupled 2-3 symmetry [11],
as the flavor symmetry in the charged-lepton sector in
which the first generation is decoupled from the second
and third generations.

One can represent the Yukawa matrix with the de-
coupled 2-3 symmetry by YZ; as
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L, 0 0
Yh=1 0 3 3bs | )
0 b 3ln

This Yukawa matrix YZ; is diagonalized by the unitary
matrix W, given by

1 0 O
_ 1 1

=0 "% A (©)
0 € €
V22

Note that this matrix differs from the one in Eq. (3) in the
limit # = 0 by an irrelevant diagonal phase matrix. Writing
the diagonalized Yukawa matrix as Y% ,, we have

I 0 0
Yhy=WIYEWL = [ 0 3(n — Ix) 0
0 0 5l + b3)
(7
The charged-lepton masses are given by
(!
m,=*—=I,
>
m, =+ v (I — 123)’ (8)
V22
m, = L U+ 123).

* 5

Since m,, < m,, there has to be a fine-tuned cancellation
between /5, and /,3 to produce the muon mass. Hence, it is
more natural to consider the symmetry limit l,, = [53
which leads to m, = 0. The Yukawa matrix which leads
to the zero muon mass within the decoupled 2-3
symmetry is

I, 0 0
Yh=10 3 jir | ©)
0 L Ly

In the neutrino sector, we assume that, in the symmetric
limit, M, has the general structure

a d 0
M,=1d b 0], (10)
0 0 ¢

where all the parameters are real. This can be diagonalized
by the matrix

c, s 0
Wh =1 s
0 0 1

—C12 0 , S1p = Sin012, Cip = 008912,

(In

PHYSICAL REVIEW D 85, 035019 (2012)

where
2d
tan2012 = m (12)
We can then calculate Upyng aS
Upnins = UL Us, (13)
with
Ug = W, U, =W, (14)

where W4, and W}, are given in Eq. (6) and in Eq. (11).
This gives

C12 S12 0

1 1 |
s | s L
Upmns S22

;RS B (15)
7155 [P 7150 12 715

which is just the p-7-symmetric leptonic mixing. If we
require 6, in Eq. (12) to be independent of the parameters
a, b, and d, then we either have a = b which leads to
0,, = /4 and generates the BM mixing or d = k(a — b)
and, in particular, we obtain the tri-bimaximal mixing with

k = +/2. Hence, by choosing a = b, the neutrino mass
matrix is given as

oS O

M, = (16)

S U R
S Q8

III. THE LAGRANGIAN IN THE
SYMMETRIC LIMIT

In this section, we present a simple Lagrangian that
generates the mixing matrices considered in the previous
section. We find that the model naturally generates the BM
mixing though the TBM mixing can also be obtained but
with introducing different flavor symmetries. Our phe-
nomenology will be done in the scenario in which the
leptonic mixing is BM in the symmetric limit.

We will use the seesaw mechanism to obtain the neutrino
masses. Our model extends the SM by an additional Higgs
doublet and two singlet scalars. The particle content of the
model is given as

(i) three left-handed lepton doublets D, , where a de-

notes e, u, and 7,
(i1) three right-handed charged-lepton singlets a, and
(iii) three right-handed neutrino singlets v ,p.

In the scalar sector, we employ
(i) two Higgs doublets ¢; with VEVs (0]¢%10) = %

and
(i1) two real singlet scalar fields €; and €,, with VEVs
(01€210) = wy.
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The symmetries of the Lagrangian are introduced as
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z3: D, < —D,, MR < T TR Vur <> ~ ViR
DeL - DeL’ €R — €R, Ver = Vers
€ T€p € — € b1 — ¢y, by — b,
Z5: Vg, €R, D,, €], €, (Change sign, and the rest of the fields remain same)
Zg D Vors Vs ViRs b», (Change sign, and the rest of the fields remain same). (17)
I
;l;?ees IiI;OSt general Lagrangian consistent with the symme- L= %M[VZRC_I o V;];RC_I bar+ VT C 1]
1 _ (€1 + &) (€, — &)
Ly = [leeLeR + yz(l_)ML,uR + DTLTR) _EyyeTRC 1<VMRT+ VTRT) e
+y3(D,,, 7k + D, nr)lpy @D

+ [y4De, ver + ys(D,, vur + D, v,x), + He,
(18)

1 _ _ _
£M=§[MVeTRC 1V9R+MPV£RC R T MpripClvg]

—lyVT Cil(y R(ael + bEz) y R(lel - b€2)
2 eR 1 \/-2' T \/Z
+H.c. (19)

Here, ¢; = io ¢7 is the conjugate Higgs doublet and we
have chosen to work in a basis where the Dirac mass matrix
for the neutrinos is diagonal. We can simplify the
Lagrangian in several ways. First, we can redefine
ae; — €; and be, — €,. Second, to reduce the number
of parameters we can impose an approximate symmetry of
the Lagrangian. A SU(3) symmetry where the right-handed
singlet fields and the left-handed doublet fields transform
as the SU(3) triplets leads to y, = y5 = yp. The SU(3)
symmetry is only satisfied by the Dirac mass term for the
neutrinos and is broken by the other terms in the
Lagrangian. Third, we will require the Lagrangian to be
invariant under the transformation of the right-handed
charged leptons (uz <« —7g, eg — —¢€g, ¢ — —P,),
with all other fields remaining unchanged. This symmetry
requires y, = ys3 leading to vanishing p mass. The u mass
is introduced later as a symmetry breaking term. Finally,
we will set the Majorana mass terms M = Mp. We can
then rewrite the Lagrangian as

Ly=[y,D, ex+y:,(D,, pur+D, 7r)
+y2(D,, TR+ Dy, )]

+yplD,, ver + D, Vg + D, vorldy +He,  (20)

The most general scalar potential V' that is invariant
under Z3% X Z5 X Z9 is given by

V= —,u%e% — ,u,%e% + /\16‘1‘ + /\26‘21 + A e%e%
+ o165l 1> + oy€l|py|? + o365 py |
+ o4&l s> + Vaup(dy, b)),

where V,yp(é), ¢,) is the potential of the two Higgs
doublets,

Voup(br, )=~ bl — u2 pl o,
+ Ay, (d’;r(/’l)z + A@(d’;(f’z)z
+ Ay, (Bl by + bl ehy)?
AL (1) — ¢l p2)?
+ A4, (D D) (DS b2) — (d] o) (D) 1))

+ AL (T ) (@S ho) +(d] ho) (@) b)),

(23)

(22)

If we impose an additional symmetry to the above potential
such as €; < €,, then the potential takes the form

2
V=—pe + &) + (e1 + €) Zgiﬁf);rﬁbi

i=1

+ )‘(5% + 6% 2+ /\/(G% - G% 2+ Voup(dy, ¢2). (24)

We can parametrize the VEVs of the singlet scalars as
follows:

(0]€,10) = wcosy and (0|e|0) = wsiny.  (25)
Thus, the only term that depends on 7y is
f(y) = Nwtcos*2y. (26)
By minimizing f(y), one gets
cos2y = 0. 27)
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Thus,

w
\/_5

By minimizing the above potential, one can find the pa-
rameter w and the VEVs of the two Higgs doublets which
are nonzero and different in the symmetric limit

_ [ar _ /&
U T ) 9

— 2 2 _ 2 _ 2
o _4A(/\¢12M¢1 + /\¢2M¢l Al‘f’zﬂu’ﬁbz /\¢12M¢2

(0l€,10) = (Ole,|0) = (28)

where

+ Ay (ng + p3) = 20 pwPo — 20 w0
+ 2)1’¢2],u,20'2 +2M4, pr0n + ,u(zf)za'lo'z
— wy o5 = 2X woy + o),

B = 4)\(—)\;%21 - 2)\;521)1,2312 + A, Ao, T A Ay,
tAg A, T A QAL+ Ay 4Ny, + Ag)
— A, 07 — Ag, 07 + 2)(1,2]0'10'2 + 214,010,
— A, 03 = Ay, 05 — Ay, (o + 0,)%,

ar = ANy, gy, + Ay, = N G, — At
+ A (ng, + p3)) = 20 wroy = 20 w0y
+ 20 wroy + 24,000+ py 0p0,
— wy,01 — 2N oy + o),

B = 4)1(-)1%21 - 2)\%21)\% + Ag,Ag, T Ag,Ag,
+ Ag g, T A QA Ay, +4dg, T Ag)
= Ao, 03 — Ag, 03 + 20 0201 + 22Xy, 050,
— A4, 07 — Ay, 07 — Xy (o3 + o). (30)

Also, the parameter w can simply be written as follows:

2 w? = (o1l > + os v, )
2A ’
which shows that the VEV of the singlet scalars is inde-
pendent of (v, v,) when o, = g, = 0.
The explicit form of the Yukawa matrix, Y2L3, and the
Dirac neutrino mass matrix can be written from the
Lagrangian (18) as follows:

v V1 0 0
Yo=—710 »m »n| (32)

0 y» »

3D

with A=y 2  (33)

V2

Also, the Majorana mass matrix can be obtained from
Eq. (19) as follows:

Mp = diag(A, A, A),
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M  -v, O

Mg=|-v, M 0| (34)
0 0 M

with v, = yw. Using the seesaw formula [17], the neutrino
mass matrix is given as

M, =—-MMZ'M,, (35)

Then, M, has the structure

X G O
M,=|G X 0), (36)
0O 0 Z
where
¥ = AM G—— A%v, Z__A_2
M? — 2’ M?* — v’ M’
37

By diagonalizing Eq. (36), we obtain the neutrino masses
as

AZ
m; = — ,
M+ v,
A2
(R (38)
AZ
ms = _M

Note that from the above equations one can estimate the
scale of the VEV, v,, of the second Higgs doublet ¢,. As
the absolute neutrino masses are in the eV scale, therefore,
v, has to be in the MeV scale if the seesaw scale (M) is in
the TeV range. The mass relations satisfy the relation

112
— = (39)

ny mp  ms

Similar relations among the masses are discussed in
Ref. [18]. We can use the above sum rule to obtain an

.. . 2|y ||ms|
<< 1 2
upper limit for the heaviest mass, |m;| < IENESEA] for the

normal hierarchy or |m,| = bnllmsl— gor the inverted

= 120m [=Ims]l
hierarchy.

IV. SYMMETRY BREAKING

The breaking of the flavor symmetries in the charged-
lepton and the neutrino sectors will cause deviation from
the BM form, and we study these deviations in this section.

A. Charged-lepton sector

In the charged-lepton sector, we break the decoupled
2-3 symmetry by adding the following higher-dimensional
terms:

035019-5



AHMED RASHED AND ALAKABHA DATTA

- Pl
01 = cyaDy, prdr 7 (40)
and
_i,
0, =y'(D,,ug = D, 7 + D, ex — D;, eg) ¢, qb/léﬁl-
(41)

The operator O, breaks the decoupled 2-3 symmetry,
733 X Z5, but is still 2-3 symmetric. The operator O,
explicitly breaks the 2-3 symmetry, Z3°, and generates
the muon mass. To generate explicit 2-3 breaking, we
have introduced the higher-dimensional operator in the
position of the muon field, 2-2 element, in the Yukawa
matrix which is the most straightforward way to generate
the muon mass. Introducing this operator in the 3-3 posi-
tion generates the same numerical solutions for the correc-
tion angles. But, introducing it in the 2-3 or 3-2 positions
does not generate physical values for the mixing angles.
Even introducing 2-3 symmetric terms in (2-2, 3-3) or (2-3,
3-2) generates either unphysical mixing angles or gives
very large correction mixing angles that do not lead to
successful phenomenology.

In the presence of the higher-dimensional terms, the
charged-lepton Yukawa matrix has the following form:

Uy P —l
Y=\ L (1 +2k) S |, (42)
—l, W g
with k; = cv?/2A% and [}, = y'v}/2+/2A? after the Higgs
field gets its VEV. Three relations can be obtained among
the Y matrix elements,

Y1Lz = _Y1L3’ Y2L3 = Y3L3r Ysz =1+ 2K1)Y2L3-
(43)

We can solve for the unitary matrix, U, that diagonal-
izes Y in Eq. (42). We write,

U, = WiR5RIR),, (44)
where

¢y sy O

| —
Ry, = si0 ¢y 0,
0 0 1
Cro = €086y Sy = sinfyy;, (45)
cizr 0 sy3e7
Rl = o 1 0 |
_ is
5130 0 ey
Ci33=0c0803;; 513 =sinf 3, (46)

PHYSICAL REVIEW D 85, 035019 (2012)
1 0 0
Ry=10 c 503 |
0 =53 co3

€31 = €08b3; §731 = sinfy3;. (47)

The Yukawa matrix, YZ, can be written as

Yt = U, ytuf, (48)
with
I, 0 0
vh=10 1, 0] (49)
0 0 I

T

Applying the relations in Eq. (43) to the YL matrix ele-
ments in Eq. (48) using Eq. (44), one can solve for the
corrections of the mixing angles. Two ways can be used to
find the angles, analytically or numerically. Solving for the
mixing angles analytically, see details in the Appendix, can
determine the size of the Yukawa matrix parameters in
Eq. (42),

m
G="2,
K| = 22y, 50)
lyp = \/%(le - lﬂ)’
Iy =~ 1= 1,01 Yez?)
with z ~ 2. It is interesting to note that
K= 26—11;%2 =22, (5D

which fixes A ~ TeV. We assume that the charged-lepton
corrections are ‘‘Cabibbo—Kobayashi—-Maskawa-quark-
mixing-matrix-like,” i.e.

Sin023[ =~ A/\Z’ Sin913[ =~ B)\3,

(52)

Sinﬂm =~ )\,

where A and B are real and of order one and A is the sine of
the Cabibbo angle, A = sinf. = (0.227. We present nu-
merical solutions to the relations in Eq. (43) for various z
values that produce the pattern in Eq. (52). In our calcu-
lations, we assume 6 = 7,

(1) For z =2.0: 515 = £0.34, 513, = *£0.0011, 5053, =

—0.059,

(11) For = 2.06: S = i03, S131 =~ iOOOl, So3; =~
—0.061,

(iii) For z=22 s;~ 0.2, s33 ~ =0.00075,
8§31 =~ —0.065.
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We expand the angles in Eq. (1) as

1
553 = —=(1+a),

V2

r 1
s13=ﬁ, 51223(1"‘5),
(53)

where the three real parameters r, s, a describe the devia-
tions of the reactor, solar, and atmospheric angles from
their bimaximal values. We use global fits of the conven-
tional mixing parameters (s, @) [19] that can be translated

5=

U =

which is similar to the parametrization in Ref. [20] with the
TBM mixing. We have assumed that 6 = 7 where the
present data prefers a negative value for s [20] and r is
positive, in our discussion we do not consider CP violation.
Now, we can write the parameters (r, s, a) in terms of the
elements of the mixing matrix

S = _1 +\/§U12,
r=~2(1+s—a+2Uy), (56)
a = _l + \/§U23.

From the details in the Appendix, one obtains

1
§ = —75(5121 + 5131,
TS T S13) (57)
a = —8y3;.

From the above equations, one can get the deviation
parameters as follows:

(i) For z =2.0: s = —0.24, r = 0.34, a = 0.059,

(i1) For z =2.06: s = —0.21, r = 0.30, a = 0.061,

(iii) For z =2.2: s = —0.14, r = 0.20, a = 0.065.

The above results demonstrate that the contributions from
the charged-lepton sector can accommodate the T2K data
of 65 as well as the other mixing angles.

B. Neutrino sector

In this section, we consider deviations of the BM mixing
from the neutrino sector. We maintain the invariance of
the Majorana Lagrangian under the symmetry group in
Eq. (17) and generate the deviation from the BM matrix
by breaking the €, < €, symmetry in Eq. (24) by introduc-
ing the most general dimension-four symmetry breaking
terms in the potential

—%(l—i-s—a-i-ﬁem) %(l—s—a—ﬁei‘s)

%(1+s+a—ﬁei5) —%<l—s+a+\/L§ei5)

PHYSICAL REVIEW D 85, 035019 (2012)

into 30 ranges and the mixing parameter r with 2.50
significance (90% C.L.) [5]

0.12<r<0.39, —-0.29<s<-0.14, —-0.15<a<0.16.

(54)

To first order in r, s, a, the lepton mixing matrix can be
written as

715(1 +5) 71§re_i5
50-a

[
2

(8 —e)D olplp; + o€l — &)+ €d). (58
i=1

*We require that all terms in the symmetry breaking po-
tential are of the same size which results in p ~ %af
where v is the electroweak VEV with v* = v} + v} and
w is the scale of the VEVs of the singlet scalars. Thus, the
potential is

2
V=—pX e+ &) +(+e)D ool
i=1

+ M€ + €2)* + N(el — &)
2

+(e— )Y alple + (e — (e + &)
=

+ Vaup(b1, ¢2). (59)

Now, parameterizing the VEVs as in Eq. (25) and mini-
mizing the potential leads to

_ow+ (ol v [P+ oh v, ?)

2 - b
COS ’)/ 2/\/w2
w2 _ 2V (p? = (aylv, > + oslv,]?) + oo [vy P + o, ?)
4AN —0? '

(60)

Keeping in mind the size of the various coefficients in the
symmetry breaking potential discussed above, we find that
cos2y = 0 up to corrections of order :)—22 . We assume that w
is in the TeV scale and with v in the electroweak scale the
symmetry breaking corrections are of the right size to
explain the experimental numbers.

>The most general symmetry breaking terms can be expressed
in terms of the form in Eq. (58) and symmetry conserving terms
that can be absorbed in the symmetric potential.
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We shift the VEVs of the two singlet scalars (w; # w,)
up to the first order of the symmetry breaking parameter.
Then, the Majorana neutrino mass matrix in Eq. (34) takes

the form
M “Uywp T Upn
My = <_va M 0 ): (61)
—Vyun 0 M
where
_ Y _ Y
Uyp = ﬁ(wl + WZ)’ Uyn = ﬁ(wl - W2)- (62)

We write the VEVs of the singlet scalars after symmetry
breaking as

w + w +
T w6
where p; and p, are small quantities and
wr
PL="P2= 5 (64)

Up to the first order of the symmetry breaking parameter 7,

_ el Pralul)
T= 2A/W2 ’ ( )

one gets

v =v UWH =

v,,. (66)

N3

wp ws
It turns out that breaking the €; < €, symmetry to generate
different VEVs for the singlet scalars is not sufficient to
break the almost degeneracy of (m;, m,) to satisfy the
squared-mass-difference measurements. Therefore, we in-
troduce an additional term in the Lagrangian which is
consistent with the symmetries of the Lagrangian,

Ml[V,LTLRcile,R + vIRC 7w gl. (67)
Thus,
M Uy 3 VUw
Mp=1| —v, M’ 0 , (68)

where M' = M + M.
The neutrino mass matrix in Eq. (36) changes to be

X/ G/ Pl
M, =G Y W| (69)
P Wz

where

PHYSICAL REVIEW D 85, 035019 (2012)

1 —

Y =

4A2M’
AMM' — v (4 + 72)°
A2(4MM' — v 7?)

| —

- M@MM = 24 + )

4A2 (MM’ — v2)

/

P =

MMM = 4+ )

4A%0,,
4AMM' — vi(4 + 77)’
2A%v,,T

W/:_

CAMM = 4+ 1)

24702 T
M'(4MM' = v2 (4 + 7))

(70)

By diagonalizing Eq. (69), one gets the mass eigenvalues

20N (M +M') = M* = 2MM' + M + v (4 + 77))

e AMM' —v2,(4+ 72)
20%(M + M) +M> —2MM'+ M” + 02, (4+ 7))
o = —
’ AMM — 24+ 1)
AZ
M= (71)

Now, we can diagonalize the mass matrix in Eq. (69)

using the unitary matrix U, = W{,R};R7, with

v
Rl2_

Cizv  Si2p O
—S12p € 0,
0 0 1

Clay = €CO8012,; S12, = Sinbyy,,

-
R23_

1 0 0
0 ¢y s23 )
0 —s23, 023

€3y, = COSHy3,; 523, = Sinbs,.

(72)

The mass matrix elements in Eq. (70) satisfy the two

relations
X'(7'
G'P'(Z'

_ Y/) — PIZ _ G/Z
_ Y/) — W/(PIZ _ GIZ)'

(73)

By applying the above relations to the matrix elements of

M, =U,MU],

one can obtain the mixing angles

$23y =

2m1(m2 - m3)
my(my — ms)’

—mymy + 2myms — myms

S120 = \/

035019-8
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Eventually, we obtain the elements of the lepton mixing
matrix Upyns = UJU, with Uy = WL,RL,RL,RY, and
U, = W{,R%;RY,. The deviation parameters (s, 7, a) can
be obtained from Eq. (56) as follows:

1
§ = _ﬁ(snl + 5131) + S120
FA S0 T 8130 T S3 (76)
a= —S$y3t+—7

8§23,
\/E 23
V. NUMERICAL RESULTS

From the neutrino mass matrix (16), one observes that in
the degenerate case, when m; = m, = m3, a=c,d =0
which means that the neutrino mass matrix is already
diagonalized as M, =~ diag(a, a, a). That means the lep-
ton mixing matrix does not include a contribution from the
neutrino sector, and the resultant leptonic mixing is incon-
sistent with the experimental data. Thus, in the symmetric
limit our model excludes the case of the degenerate neu-
trino masses. Even, after symmetry breaking, the degener-
ate case in Eq. (71) leads to vanishing the VEVs of the
singlet scalar fields which does not lead to successful
phenomenology.

The numerics goes as follows: we choose masses
(my, my, m3) which satisfy the experimental values of the
squared-mass differences

Am2, = m3 —m? = (7.59 * 0.20) X 1075 eV?, -
Am3, = |m3 — m3| = (2.43 £ 0.13) X 1073 eV2.

We substitute those mass values in (r, s, a) in Eq. (56),
using (s12,, 523,) given in Eq. (75) and (s, $23;, 513/) in
Sec. IV A. If the results satisty the experimental constraints
in Eq. (54), we plot the possible values of the absolute
masses and the mixing angles. By using Eq. (71), we
calculate values for the Lagrangian parameters
(v, A, M, M") which generate the values of the absolute
masses obtained from the graphs. From the graphs, one
finds that (v,,, M, M') are obtained in the TeV scale and A
in the MeV range.

Three mass-dependent neutrino observables are probed
in different types of experiments. The sum of absolute
neutrino masses Mgy, = 2m; is probed in cosmology,
the kinetic electron neutrino mass in beta decay (M B) is
probed in direct search for neutrino masses, and the effec-
tive mass (M,,) is probed in neutrinoless double-beta
decay experiments with the decay rate for the process
I « M?,. In terms of the “bare” physical parameters m;
and U,,;, the observables are given by [18]

2m; = |my| + |my| + |ms),

Mee = ||m1||U61|2 + |m2||Ue2|2€i¢‘ + |m3||Ue3|2€i¢2|,

Mg = Iy PIUA R + ImyPlU o + ImsPIUSI2. (78)
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In our analysis, we ignore the Majorana phases (¢, ¢»,)
and plot M g versus Sm; and M,, versus Mijghi, Where mijign
is the lightest neutrino mass.

In Figs. 1-3, we assume specific values of z with the
corresponding correction mixing angles (5,3, $12;, $»3;) and
plot the absolute masses and the mixing angles which
satisfy the neutrino mixing constraints. By choosing a
value for the symmetry breaking term 7, we plot the
parameters (v,, A, M, M') that satisfy the squared-mass-
difference measurements. This model supports the normal
mass hierarchy as shown in the graphs with the scale of the
neutrino masses in the few meV to ~50 meV range. The
results agree with the recent T2K data which find a rela-
tively large 6;5. The graphs show that the seesaw scale
(M, M') are in the TeV range, and the second Higgs that
couples to the right-handed neutrinos has VEV wv,, in-
cluded in A, in the MeV scale. Also, they indicate that
the VEV of the singlet scalar fields v,, is in the TeV scale.
The graphs show that 3m; = 0.06 eV and M,, < M p and
M,, <0.35 eV [21]. Various other mechanisms to gener-
ate the neutrino masses with TeV scale new physics are
mentioned in Ref. [22].

VI. CONCLUSION

In this paper, we presented a model for leptonic mixing
which accommodates the sizable neutrino mixing angle
6,3, recently measured by the T2K and MINOS experi-
ments. We worked in a basis where the charged-lepton
mass matrix is not diagonal and proposed an explicit
structure for the charged-lepton mass matrix which is 2-3
symmetric except for a single breaking of this symmetry by
the muon mass. We identified a flavor symmetric limit for
the mass matrices where the first generation is decoupled
from the other two in the charged-lepton sector while in the
neutrino sector the third generation is decoupled from the
first two generations. The leptonic mixing in the symmetric
limit was shown to have, among other structures, the BM
and the TBM mixing.

A model that extended the SM by three right-handed
neutrinos, an extra Higgs doublet, and two singlet scalars
was introduced to generate the leptonic mixing. In the
symmetric limit, the model had two Z, symmetries in
addition to the p-7 symmetry and the BM leptonic mixing
was obtained when the two singlet scalars got equal VEVs.

Symmetry breaking effects were included in the
charged-lepton sector via higher-dimensional operators
that generated a w-7 symmetric mass matrix except for a
single breaking due to the finite muon mass. In the neutrino
sector, symmetry breaking was included via slightly differ-
ent VEVs for the two singlet scalars. To explain the Am?
data, two different Majorana mass terms, one for v, and
one for v, and v, were used keeping in mind that the u-7
symmetry fixes the Majorana mass terms for the v, and v,
to be the same.

o
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FIG. 1 (color online).
assume that 7 = 0.1 (meV = 1073 eV).

A fit to the experimental measurements showed that our
model predicted normal hierarchy for the neutrino masses
with the masses being in the few meV to ~50 meV range.
The Majorana mass terms as well as the VEVs of the
singlet scalar fields were predicted to be in the TeV scale
and consequently the VEV of the second Higgs doublet was
shown to be in the MeV range. We calculated predictions
for the mass-dependent observables (Zm;), (Mg), and
(M,,). We found that 2m; =~ 0.06 eV, M,, < Mg, and
M,, <0.35eV.
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APPENDIX A: CHARGED-LEPTON SECTOR

We analytically calculate the deviation of the leptonic
mixing from the symmetric limit due to corrections from
the charged-lepton sector. We, here, are going to determine
the sizes for the Yukawa matrix elements in Y~ in Eq. (42).
We first consider the breaking of the 2-3 symmetry in the
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FIG. 2 (color online). Scatter plots for z = 2.06 with s15; = —0.3, s13; = —0.001, and s,3; = —0.061. In the neutrino sector, we

assume that 7 = 0.05 (meV = 1073 eV).

charged-lepton sector via the introduction of a higher-
dimensional operator that generates the muon mass

- ¢16]
01 = 2Dy, prb1 — 5+ (A1)
Thus, we consider the Yukawa matrix,
l, 0 0
Yh =10 3:(0+2«) 37| (A2)
0 1y Slr

The structure above breaks the 2-3 symmetry because of
the correction to the 22 element. Note that we do not break
the 2-3 symmetry in the 23 element so that the Yukawa
matrix remains symmetric. The matrix Y%, is now diago-

nalized by the unitary matrix, U; = W1, R};. Applying the
relation (Y13)y; = (Y4)33 in Eq. (A2) to Y&, = U,YgiagUl1L
leads to

tyy =Nz, — 1+ 425 — 6z, +1] (A3)

where 1,3, = tanf,3; and we have chosen the solution that
leads to small angle 6,3, and to small flavor symmetry
breaking. Keeping terms up to first order in z,,, we get

I3 = _Z,u' (A4)

We further obtain for «; and /7 in Eq. (A2),
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FIG. 3 (color online). Scatter plots for z = 2.2 with s;,; = —0.2, 513, = —0.000 75, and s,3; = —0.065. In the neutrino sector, we

assume that 7 = 0.1 (meV = 1073 eV).

K, = — tan20231 =~ 2ZM’ lT = (ZT - lﬂ) C052023l.
(AS)

Comparing the above equation with Eq. (A1), the size of
the higher-dimensional operator can be estimated as

2

— 1 =2z, (A6)

2A? .

Since v = 250 GeV, the scale of A is in the TeV range.
To obtain a realistic charged-lepton matrix, we take into

account the mixing involving the second and the third

generations in the full Yukawa matrix

B un—F 5 . 5 ¢ o1
0, =y'(D,,ug = D, 7 + D, ex — D, eg) ¢, AT
(AT)
Thus, the full mixing matrix will be given by
I la —l
Yh=\{ Lo (1+2k) Yp | (A8)
—l ol olr

We will assume that the Yukawa matrix Y* is now diago-
nalized by the unitary matrix U; given by

U; = WisR5R 3Ry, (A9)
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From the Yukawa matrix (A8), one can find the two relations
Yip=—Yy3, Yy = 3(Yo3 + Y33)(1 + 2k)). (A10)
Applying the above two relations to
vt = uyk U} (A1)

using Eq. (A9), one can obtain the solutions

_ 2 — 26+ (=3 + 32, — 2K)) 03503 + 22,,K,C031523

S121 = Ty

5

2, — 253 + 2K))c31803
(A12)

2y — 26+ (=3 + 3z, — 2K)) 03503 + 22, K/C031523

S131 = £ Zuc1521
1 — 2,3+ 2K))c2353

By comparing Eqs. (A8) and (A11), one can get the matrix element [, after substituting Eqs. (A4), (AS), and (A12) up to

the first order in z,,
[
I, = 7“(16 —1,). (A13)

The leptonic mixing matrix is now given by
Upmns = U{Jger (A14)

where U, = WLRL.R!.R!, and U, = WY,.
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