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We study the flavor structure of the three-site Higgsless model and evaluate the constraints on the model

arising from flavor physics. We find that current data constrain the model to exhibit only minimal flavor

violation at tree level. Moreover, at the one-loop level, by studying the leading chiral-logarithmic

corrections to chirality-preserving �F ¼ 1 and �F ¼ 2 processes from new physics in the model, we

show that the combination of minimal flavor violation and ideal delocalization ensures that these flavor-

changing effects are sufficiently small that the model remains phenomenologically viable.
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I. INTRODUCTION

Higgsless models [1] of electroweak symmetry breaking
provide effective low-energy theories of a strongly inter-
acting symmetry breaking sector [2,3]. If the fermions in
the model are delocalized (i.e., derive electroweak inter-
actions frommultiple gauge groups), Higgsless models can
be consistent with electroweak precision measurements
[4–10] even at the loop level [11,12]. The three-site model
[11] is the minimal low-energy realization of a Higgsless
theory.1 Its electroweak sector includes only one SUð2Þ
group beyond the usual SUð2Þ �Uð1Þ of the standard
model, so the gauge spectrum includes only one triplet of
the extra vector mesons typically present in such theories;
these are the mesons (denoted here byW 0� and Z0) that are
analogous to the � mesons of QCD. The three-site model
retains sufficient complexity, however, to incorporate in-
teresting physics issues related to fermion masses, electro-
weak observables, and flavor.

As discussed in [11] and reviewed here, the three-site
model generically exhibits nonminimal flavor violation
(i.e., more than the minimal flavor violation present in
the standard model [20,21]). However, if one assumes
that flavor-symmetry breaking enters the Lagrangian only
through the delocalization parameters of the right-handed
fermions (�Rf), the three-site model then possesses only

minimal flavor violation. Moreover, if one also assumes
that the (now flavor-universal) delocalization parameter �L
for the left-handed fermions is set to the ‘‘ideal’’ value [10]
that correlates the fermion wave function with the
W-boson wave function, then the tree-level electroweak

phenomenology of the three-site model agrees completely
with that of the standard model.
This situation is modified once loop effects are included.

The various parameters in the effective Lagrangian,
whether flavor-universal or not, will run, so the conditions
of ideal delocalization and minimal flavor violation are not
scale-independent. Rather, one may impose these condi-
tions at the scale of the cutoff of the effective three-site
theory—the scale of the underlying strong dynamics—and
then compute and evaluate corrections to electroweak and
flavor observables. In fact, the chiral-logarithmic correc-
tions to the flavor-universal electroweak parameters �S
and �T [22–25] in the three-site model were computed
in Refs. [26–28]; these are the one-loop contributions
that dominate in the limit where the masses of the new
vector mesons lie far below the cutoff of the effective
theory. Likewise, the flavor-dependent corrections to the
Z ! b �b branching ratio were studied in [12,29], and the
corrections to chirality-nonpreserving flavor-dependent
process b ! s� were computed in [30].
This paper completes the investigation of the flavor

phenomenology of the three-site model by studying the
chiral-logarithmic corrections to chirality-preserving
flavor-changing processes. We begin by reviewing the
essential features of the model and contrasting its flavor
structure with that of the standard model. In particular, we
establish the conditions under which the three-site model
exhibits minimal or nonminimal flavor violation. A brief
review (with details in the Appendix) of experimental
constraints on flavor-changing effects demonstrates that
the tree-level Lagrangian of the three-site model is con-
strained to a form that, to a good approximation, has
only minimal flavor violation; in the rest of the paper, we
therefore assume the model exhibits only minimal flavor
violation. In Sec. IV, we calculate the corrections to all
chirality-preserving �F ¼ 1 operators that arise from the
new physics present in the three-site model. We show that,
parametrically, the sizes of the new three-site corrections to

1This theory is in the same class as models of extended
electroweak gauge symmetries [13,14] motivated by models of
hidden local symmetry [15–19]. In particular, the three-site
model has the same gauge structure as the ‘‘BESS’’ model of
[13], but it is the fermion couplings and flavor structure unique to
the three-site model [11] that are of particular interest here.
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�F ¼ 1 processes are of the same order as those in the
standard model—but that the corrections numerically
amount to only a few percent of the standard model con-
tribution. Since no chirality-preserving �F ¼ 1 neutral
current standard model amplitudes are observable, we
conclude that, just as in the case of corrections to
Z ! b �b, the additional three-site model chiral-logarithmic
contributions are not forbidden, and the three-site model
remains viable. In Sec. V, we extend our analysis to
�F ¼ 2 (meson mixing) processes. We find that the
combination of ideal delocalization and minimal flavor
violation ensures that the new contributions to �F ¼ 2
box diagrams in the three-site model are smaller than or
of order two-loop corrections to these processes in the
standard model and hence are not phenomenologically
excluded. The final section of the paper summarizes our
conclusions.

II. THE THREE-SITE MODEL

The three-site SUð2Þ0 � SUð2Þ1 �Uð1Þ2 model [11] is
illustrated (using ‘‘moose’’ notation [31]) in Fig. 1 where,
as we will see, SUð2Þ0 �Uð1Þ2 is approximately the
SUð2ÞL �Uð1ÞY of the electroweak interactions, SUð2Þ1
is a new ‘‘hidden’’ gauge symmetry [13,15,16,18], and the
Uð1Þ2 is embedded as the �3 component of an SUð2Þ2
global symmetry. We will denote the gauge couplings of
the three groups by g0 � g, g1 � ~g, and g2 � g0, respec-
tively.2 The nonlinear sigma model and gauge-theory
kinetic-energy terms in this model are given by

L¼ X
i¼1;2

f2i
4
trðD��y

i D��iÞ�1

4
ð ~W��

0 Þ2�1

4
ð ~W��

1 Þ2�1

4
B2
��;

(1)

where �1 and �2 are SUð2Þ � SUð2Þ=SUð2Þ sigma-model
fields parametrized by

�1;2 ¼ exp

�
2i�1;2

f1;2

�
; (2)

where �1;2 � �a
1;2�

a=2, and where ~W��
0;1 and B�� are,

respectively, the field-strength tensors of the SUð2Þ0;1 and
Uð1Þ2 gauge groups with corresponding gauge fields W

�
0;1

and B�.
The sigma-model fields transform as

�1 ! U0�1U
y
1 ; �2 ! U1�2U

y
2 ; (3)

under the SUð2Þ0 � SUð2Þ1 � SUð2Þ2 global symmetries,
and hence the covariant derivatives above are given by

D��1 ¼ @��1 � igWa
0�

�a

2
�1 þ i~gWa

1��1

�a

2
; (4)

D��2 ¼ @��2 � i~gWa
1�

�a

2
�2 þ ig0B��2

�3

2
: (5)

Here f1;2 are the f constants, the analogs of F� in QCD,

associated with the two SUð2Þ � SUð2Þ=SUð2Þ nonlinear
sigma models, and they satisfy the relation

ffiffiffi
2

p
GF ¼ 1

v2
¼ 1

f21
þ 1

f22
� 1

ð250 GeVÞ2 : (6)

In [11], for simplicity and to maximize the range of validity

of this low-energy effective theory, we took f1 ¼ f2 ¼ffiffiffi
2

p
v; in this work, in order to identify the origin of various

one-loop effects, we will leave f1;2 arbitrary, subject to the
constraint in Eq. (6) above.
In unitary gauge, �1 ¼ �2 � I , and the nonlinear

sigma model, kinetic terms yield vector-boson mass ma-
trices. We will work in the limit g, g0 � ~g, or equivalently

x ¼ g=~g � 1: (7)

We will also define an angle 	,

g0

g
� sin	

cos	
; (8)

which will equal the usual weak mixing angle up to cor-
rections of order x2. In the small x limit, we find the
charged-boson masses

M2
W ¼ g2v2

4
þ . . . ; M2

W 0 ¼ ~g2ðf21 þ f22Þ
4

þ . . . ; (9)

where the mass eigenstates are of the form [13]

W�
� ¼ W�

0� þ xf21
f21 þ f22

W�
1� þOðx2Þ; (10)

FIG. 1 (color online). The three-site model [11], illustrated
using moose notation [31]. The solid circles represent SUð2Þ
gauge groups, with coupling strengths g0 and g1, and the dashed
circle is a Uð1Þ gauge group with coupling g2. The horizontal
lines represent SUð2Þ � SUð2Þ=SUð2Þ nonlinear sigma-model
fields, with decay constants f1;2, breaking the adjacent global

groups down to their diagonal sum. The left-handed fermions,
denoted by the lower vertical lines, are located at sites 0 and 1,
and the right-handed fermions, denoted by the upper vertical
lines, at sites 1 and 2. The diagonal dashed green lines corre-
spond to Yukawa couplings, as described in the text. We will
denote g0 � g, g1 � ~g, g2 � g0 and take g; g0 � ~g.

2Here g and g0 are chosen because, as we will see, these groups
are approximately the SUð2ÞW � Uð1ÞY of the standard model.
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W 0�
� ¼ � xf21

f21 þ f22
W�

0� þW�
1� þOðx2Þ: (11)

The neutral bosons include a massless photon (A�),
which corresponds to the eigenvector

A� ¼ e

g
W3

0� þ e

~g
W3

1� þ e

g0
B� (12)

¼ sin	W3
0� þ x sin	W3

1�

þ cos	B� þOðx2Þ; (13)

where e is the electromagnetic coupling

1

e2
¼ 1

g2
þ 1

~g2
þ 1

g02
: (14)

For small x we also have

g � e

sin	
; g0 � e

cos	
: (15)

The two other neutral gauge bosons have masses

M2
Z¼

e2v2

4sin2	cos2	
þ . . . ; M2

Z0 ¼ ~g2ðf21þf22Þ
4

þ . . . ; (16)

corresponding to the eigenvectors [13]

Z�¼ cos	W3
0�þ

xcos	ðf21�f22tan
2	Þ

f21þf22
W3

1�

�sin	B�þOðx2Þ; (17)

Z0
�¼� xf21

f21þf22
W3

0�þW3
1��

x tan	f22
f21þf22

B�þOðx2Þ: (18)

As described in [11], working in the limit of small
x (g, g0 � ~g), we get a phenomenologically acceptable
low-energy electroweak model if we identify the light W�

�

and Z� with the weak bosons, because the extra states W 0

and Z0 are much heavier than ordinary electroweak gauge
bosons (M2

W;Z � M2
W 0;Z0). In particular (after including

ideal fermion delocalization [10]) all tree-level standard
model predictions are reproduced up to corrections of
order x4. Note also that, in the limit f1 ! 1 for fixed v,
the gauge-boson mass eigenstates of the three-site model
reduce3 to those of the standard model with the identifica-
tion of SUð2Þ0 �Uð1Þ2 with SUð2ÞL �Uð1ÞY .

The three-site model also incorporates the ordinary
quarks and leptons, and requires the presence of additional
heavy vectorial SUð2Þ1 fermions that mirror the light fer-
mions. These heavy Dirac fermions are the analogs of the

lowest Kaluza-Klein (KK) fermion modes which would be
present in an extra-dimensional theory. The quark
‘‘Yukawa’’ sector of the three-site model illustrated in
Fig. 1 is

L mass ¼ � �qð0ÞL �1m� 1q
ð1Þ
R � �qð1ÞL M�q

ð1Þ
R

� �qð1ÞL �2

m� 2u 0

0 m� 2d

0
@

1
A uð2ÞR

dð2ÞR

 !
þ H:c:; (19)

where the quark fields qð0ÞL , qð1ÞL;R, u
ð2Þ
R , and dð2ÞR are three-

component vectors in flavor space, m� 1, M� , and m� 2u;2d are

3� 3 matrices in flavor space, and the summation over
flavor and gauge indices is implicit. The transformation
properties of the quarks under the global SUð2Þ0 �
SUð2Þ1 � SUð2Þ2 symmetries are given by

qð0ÞL ! U0q
ð0Þ
L ; (20)

qð1ÞR;L ! U1q
ð1Þ
R;L; (21)

uð2ÞR

dð2ÞR

 !
! U2

uð2ÞR

dð2ÞR

 !
: (22)

The SUð2Þ0 � SUð2Þ1 properties of the quarks follow from
the assignments above; the hypercharge properties are
fixed by ensuring the correct values of the electric charges,

and hence under Uð1Þ2 we require that the qð0ÞL and qð1ÞL;R

fields carry charge 1=6, while the uð2ÞR and dð2ÞR carry charges
þ2=3 and �1=3, respectively.
We will work in the limit where the eigenvalues4 of M�

are much greater than those form� 1 andm� 2u;d and where the

heavy fermions are essentially the qð1Þ doublets with mass
squareds given approximately by the eigenvalues of
M�M�

y. In this limit the matrix �L � m� 1 �M��1 controls

the ‘‘delocalization’’ of the left-handed fermions, i.e., the
degree to which the light left-handed mass eigenstate fields
are admixtures of fermions at the first two sites. In [11], it
was assumed that M� and m� 1 were flavor-diagonal, so that

�L was likewise proportional to the identity in flavor space.
Furthermore, it was shown that the proportionality constant
could be adjusted (a process called ‘‘ideal fermion deloc-
alization’’) to eliminate potentially dangerous tree-level
contributions to the electroweak parameter �S [4–10]. In
this work, we confirm that the precision electroweak and
flavor data directly constrain �L to be flavor-universal and
close to the ideal delocalization form. Therefore we will
take �L to be flavor-universal, at tree level in the three-site
model, so that all of the flavor breaking is encoded in the
values of Yukawa couplings to the right-handed fermions.
As we show below, in this limit the three-site model at tree

3While the particular expressions for the W and Z mass
eigenstates in Eqs. (10) and (17) were calculated perturbatively
for x � 1, the reduction of the extended electroweak gauge to its
standard model counterpart in the f1 ! 1 limit (with fixed v) is
a more general result that follows directly from the decoupling
theorem [32].

4More properly, the eigenvalues ofM�M�
y are much greater than

those of m� 1m�
y
1 or m� 2u;dm�

y
2u;d.
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level has precisely the same flavor structure as the standard
model: all of the tree-level couplings of the left-handed
fermions to the gauge bosons are flavor-diagonal and
equal, and flavor-changing neutral currents are suppressed
[11].

Limits on the WWZ coupling imply that the W 0 and Z0
bosons must be heavier than about 400 GeV, while limits
on the unitarity of WLWL scattering show they must be
lighter than about 1 TeV [10]. On the other hand, limits on
�T imply that the heavy fermions must have masses
greater than about 2 TeV [11].

III. FLAVOR SYMMETRIES AND STRUCTURE

In this section we consider the tree-level flavor structure
of the three-site model. We begin with a review of the
flavor symmetries of the standard model and generalize to
the three-site model. Then, we consider the effective
Lagrangian that results from ‘‘integrating out’’ the heavy
fermions and analyze the tree-level gauge couplings.

A. GIM flavor symmetries of the standard model

Before proceeding to discuss the flavor structure of the
three-site model in detail, we first briefly review the flavor
structure of the Yukawa sector of the standard model

L Yuk ¼ � �qLi

ij
d ’dRj � �qLi


ij
u ~’uRj þ H:c: (23)

Here the qLi, uRj, and dRj fields are the three flavors of left-

handed quarks, and right-handed up- and down-type

quarks, respectively, i and j are flavor indices, and 
ij
d;u

are the Yukawa-coupling matrices for down and up quarks.
In the standard model, these Yukawa terms are the only

interactions that distinguish among flavors. The gauge
interactions respect an SUð3ÞL � SUð3ÞuR � SUð3ÞdR
global symmetry. The Yukawa couplings 
u;d can then be

treated as ‘‘spurions,’’ and they can be classified by their
transformation properties under these symmetries [20]. In
particular, the standard model would be invariant under an
arbitrary global flavor-symmetry transformation if the
Yukawa couplings transformed as follows:


u ! L
uR
y
u ; 
d ! L
dR

y
d ; (24)

so that 
u;d transformed, respectively, as elements of

the (3, �3, 1) and (3, 1, �3) representations under SUð3ÞL �
SUð3ÞuR � SUð3ÞdR.

The SUð3ÞL � SUð3ÞuR � SUð3ÞdR symmetries are suf-
ficient to diagonalize either 
u or 
d. Therefore, there can
be no tree-level flavor-changing neutral currents: we can
always choose to work in a basis in which 
d (for example)
is diagonal, and in this basis the Z boson will not connect
quarks from different generations. In other words, the
SUð3ÞL � SUð3ÞuR � SUð3ÞdR global symmetry underlies
the Glashow-Iliopoulos-Maiani (GIM) mechanism [33].
The same, of course, is not true of the charged weak
currents: the mismatch in the L transformations required

to diagonalize the 
u and 
d couplings results in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [34,35]. In
addition, to the extent that the 
u;d are small parameters,

flavor-violating effects are suppressed by various powers
of these couplings. The flavor-transformation properties of
the amplitudes that give rise to these flavor-violating ef-
fects can be used to understand the structure and order of
magnitude of the leading standard model contributions.5

The same reasoning can be extended beyond the
standard model as well: by classifying the flavor-
transformation properties of the new interactions, one can
understand the structure and order of magnitude of flavor-
violating processes in these new theories. From a symme-
try point of view, the minimal amount of flavor violation in
any theory is that which exists in the standard model [20].
In particular, the quark sector of any theory must include
spurions that transform as (3, �3, 1) and (3, 1, �3) under
SUð3ÞL � SUð3ÞuR � SUð3ÞdR to account for the observed
quark masses. This idea has been termed ‘‘minimal flavor
violation’’ [21]. Any new interactions in the model should,
otherwise, be as flavor-symmetric as possible in order to
avoid generating large flavor-changing neutral currents.

B. Flavor structure of the three-site model at tree level

We now examine the flavor structure of the three-site
model. We begin by defining the global symmetry group
SUð3ÞL � SUð3ÞLD � SUð3ÞRD � SUð3ÞuR � SUð3ÞdR
under which the fields transform as

qð0ÞL ! L � qð0ÞL ; qð1ÞL ! LD � qð1ÞL ; qð1ÞR ! RD � qð1ÞR ;

uð2ÞR ! Ru � uð2ÞR ; dð2ÞR ! Rd � dð2ÞR ; (25)

where L, LD, RD, Ru, and Rd are arbitrary elements of
SUð3ÞL, SUð3ÞLD, SUð3ÞRD, SUð3ÞuR, and SUð3ÞdR, re-
spectively. These symmetries are broken by the interac-
tions in Eq. (19), and the various masses are spurions—in
particular, the theory would be invariant under SUð3ÞL �
SUð3ÞLD � SUð3ÞRD � SUð3ÞuR � SUð3ÞdR transforma-
tions if the mass parameters were simultaneously changed
as follows:

m�1 ! L �m� 1 � Ry
D; M� ! LD �M� � Ry

D;

m� 2u ! LD �m� 2u � Ry
u ; m� 2d ! LD �m� 2d � Ry

d :
(26)

5One subtlety in this type of reasoning is worth emphasizing:
sometimes, in cases that correspond to ‘‘long-distance’’ effects,
some of the dependence on the quark masses is nonanalytic. This
explains, for example, why the ‘‘box-diagram’’ contributions to
�S ¼ 2 processes in the standard model appear to be suppressed
by only two powers of quark masses instead of the four powers
one would expect on the basis of flavor symmetries—two powers
of quark mass appear in the denominator after loop integration,
canceling two in the numerator that are there due to the flavor
and chiral structure.
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Of course the mass matrices in Eq. (19) are fixed, and do
not transform—so their presence breaks the flavor symme-
tries. In general, without any further assumptions about the
structure of these masses, one could go to a basis wherem� 1

and either m� 2u or m� 2d are diagonal—but one would not

have freedom to diagonalize eitherm� 2 orM� . This shows, as
expected, that without further assumptions about the
masses the three-site model has nonminimal flavor
violation.

Combining the left- and right-handed quarks into
12-component vectors (suppressing flavor indices)

QL¼
qð0ÞL ¼ uð0ÞL

dð0ÞL

0
@

1
A

qð1ÞL ¼ uð1ÞL

dð1ÞL

0
@

1
A

0
BBBBBBB@

1
CCCCCCCA
; QR¼

qð2ÞR ¼ uð2ÞR

dð2ÞR

0
@

1
A

qð1ÞR ¼ uð1ÞR

dð1ÞR

0
@

1
A

0
BBBBBBB@

1
CCCCCCCA
; (27)

the 12� 12 mass matrix for the quark sector may be
written (each block is 6� 6)

M ¼
0 �1 	m� 1

�2 	
m� 2u 0

0 m� 2d

0
@

1
A I2�2 	M�

0
BBB@

1
CCCA; (28)

where we include the factors of �1;2 so as to maintain the

SUð2Þ0 � SUð2Þ1 � SUð2Þ2 global symmetry and, hence,
an SUð2Þ0 � SUð2Þ1 �Uð1Þ2 gauge invariance. In the
limit in which the eigenvalues of M� are larger than those

of m� 1, m� 2u, or m� 2d, this matrix has the usual ‘‘seesaw’’

form. It is convenient to define the 3� 3 flavor-space
matrices

�L ¼ m� 1 �M��1 ! L � �L � Ly
D; (29)

�Ru ¼ m�
y
2u � ðM�yÞ�1 ! Ru � �Ru � Ry

D; (30)

�Rd ¼ m�
y
2d � ðM�yÞ�1 ! Rd � �Rd � Ry

D; (31)

which, from Eq. (25), have the flavor-transformation prop-
erties indicated. The elements of these matrices are, in the
seesaw limit, small quantities. Diagonalizing MMy and
MyM, we find the light and heavy mass eigenstate fields
q and Q, whose components are approximately related to
the gauge-eigenstate fields by6

qð0ÞL ’ �qL þ�1�LQL; (32)

qð1ÞL ’ QL þ �yL�
y
1qL; (33)

and

qð2ÞR ’ qR þ �Ru 0
0 �Rd

� �
�y

2QR; (34)

qð1ÞR ’ QR ��2
�yRu 0

0 �yRd

 !
qR: (35)

Here, for convenience, we have chosen fields qL, qR, and
QL;R to transform under the SUð2Þ0, SUð2Þ2, and SUð2Þ1
global symmetry groups, respectively.
To investigate flavor phenomenology in the three-site

model we may ‘‘integrate out’’ the heavy Dirac fermionsQ
at tree level. Keeping terms with two factors of the small �
matrices, this corresponds to inserting Eqs. (32)–(35) into
the fermion three-site model Lagrangian, and setting the
heavy fields Q � 0. Doing so, we obtain

Leff ¼ �qLi 6DqL þ �uRi 6DuR þ �dRi 6DdR

�
�
�qL�L�1�2M�

�yRu 0

0 �yRd

0
@

1
A uR

dR

 !
þH:c:

�

þ �qL�L½���1ðiD��
y
1 Þ
�yLqL

þ �qR
�Ru 0

0 �Rd

 !
½���y

2 ðiD��2Þ

�yRu 0

0 �yRd

0
@

1
AqR:
(36)

Here we have neglected terms that result purely in wave
function renormalization of the fermion fields, and terms of
Oð�3Þ. An important check on this result is that all of the
terms in Eq. (36) are invariant under an arbitrary SUð3ÞL �
SUð3ÞLD � SUð3ÞRD � SUð3ÞuR � SUð3ÞdR transforma-
tion, Eq. (25), combined with the spurion parameter
change in Eq. (26). We emphasize that Eq. (36) is entirely
basis-independent—and therefore any results derived from
it are parametrization- and phase-independent as well.
The term on the second line of Eq. (36) yields the up-

and down-quark masses

M u ¼ �LM��
y
Ru ! L �Mu � Ry

u ; (37)

M d ¼ �LM��
y
Ru ! L �Mu � Ry

d ; (38)

which transform precisely as the Yukawa couplings in the
standard model, Eq. (24). Without loss of generality, we
may write the most general quark mass matrices as

Mu ¼ �u�uP
y
u ; (39)

for up quarks, and

Md ¼ �d�dP
y
d ; (40)

for down quarks. Here �u;d are the diagonal up- and down-

quark mass matrices, with all masses positive, and�u;d and

6The sign convention of the fields was chosen to agree with
[11].
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Pu;d are arbitrary unitary matrices.7 Just as in the standard

model the SUð3ÞL � SUð3ÞuR � SUð3ÞdR subgroup of the
three-site flavor-symmetry group is sufficient to diagonal-
ize the mass matrix of either the up- or down-type quarks,
but not both simultaneously. In a basis in which the down-
quark masses are diagonal, from Eq. (26), we have

M d ¼ �d; (41)

M u ¼ ð�y
d�uÞ�u � Vy

CKM�u; (42)

where VCKM is the usual quark-mixing matrix. Note also
that the field �1�2 in the term of the second line of
Eq. (36) contains precisely the unphysical Goldstone boson
�W corresponding to the light W gauge boson.

The presence of the additional terms in the third and
fourth lines of Eq. (36), involving �L, �Ru, and �Rd, implies
that the three-site model generically includes nonminimal
flavor violation. To minimize the amount of flavor viola-
tion in the model, as discussed in [11], wewill assume8 that
bothm� 1 andM� are flavor-universal, and proportional to the

identity matrix

M� � M � I3�3; (43)

m� 1 � m1 � I3�3; (44)

except where explicitly stated otherwise. Ifm� 1,M� / I3�3,

then, from Eqs. (29)–(31) and in the basis in which Md is
diagonal,

�L / I ; (45)

�Ru / Vy
CKM�u; (46)

�Rd / �d: (47)

Here we see explicitly that all flavor violation is precisely
of a form determined by the quark mass matrices, as
expected in a minimally flavor-violating theory. This

assumption is also directly supported by constraints from
precision electroweak data, and data on flavor violation in
the charged-lepton and quark sectors, as we will summa-
rize in Sec. III D and explain in the Appendix.

C. Gauge-boson couplings at tree-level

The light quark fields qL, uR, and dR in the effective
Lagrangian of Eq. (36) couple only to the SUð2Þ0 �Uð1Þ2
gauge-eigenstate fields

D�qL ¼
�
@� � igWa

0�

�a

2
� ig0

B�

6

�
qL; (48)

D�
uR
dR

� �
¼
�
@� � ig0B�

2
3 0
0 � 1

3

 !�
uR
dR

� �
: (49)

Using Eqs. (10), (11), (17), and (18), the fermion kinetic-
energy terms give the conventional couplings of the lightW
and Z bosons to the quarks. From Eqs. (41) and (42), we see
that these interactions have the same flavor structure as in
the standard model. The fermion kinetic-energy terms also
give rise to couplings of the light quarks to the heavy gauge
bosons:

� gffiffiffi
2

p xf21
f21 þ f22

W 0�
��

�

�
�

gxf21
f21 þ f22

�3

2
þ g0xf22

f21 þ f22
Y

�
Z0

� þOðx2Þ; (50)

where the ��;3 and Y encode the SUð2Þ �Uð1ÞY quantum
numbers of the quark. As expected for minimal flavor
violation, there are no tree-level flavor-changing neutral
currents and the charged-current flavor structure is deter-
mined by the CKM mixing matrix.
In addition, the terms on the second line of Eq. (36) give

rise to additional tree-level couplings to the gauge bosons.
In unitary gauge, we see that these terms give rise to terms
involving the neutral and charged gauge bosons:

�L�1ðiD��
y
1 Þ�yL ! ð�gWa

0� þ ~gWa
1�Þ

�a

2
�L�

y
L ¼

8>>><
>>>:

�
� gffiffi

2
p f2

2

f21þf22
W�

� þ ~gffiffi
2

p W 0�
�

�
���L�

y
L; a ¼ �

�
�g

f2
2

cos	ðf2
1
þf2

2
ÞZ� þ ~gZ0

�

�
�3

2 �L�
y
L; a ¼ 3;

(51)

�R�
y
2 ðiD��2Þ�yR ! �R

�
~gWa

1�

�a

2
� g0B�

�3

2

�
�yR ¼

8>>><
>>>:

�
gffiffi
2

p f2
1

f2
1
þf2

2

W�
� þ ~gffiffi

2
p W 0�

�

�
�R�

��yR; a ¼ ��
g

f2
1

cos	ðf2
1
þf2

2
ÞZ� þ ~gZ0

�

�
�R

�3

2 �yR; a ¼ 3;
(52)

7Here and throughout this note we assume the freedom to make arbitrary phase redefinitions of the quark fields. In principle, due to
the axial anomaly, these redefinitions will be accompanied by a change in the QCD �	 parameter.

8This situation is similar to the assumed flavor universality of soft supersymmetry breaking masses in supersymmetric extensions of
the standard model.
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where, for convenience, we have defined

�R � �Ru 0
0 �Rd

� �
: (53)

Using Eqs. (45)–(47) we again see that there are no
flavor-changing neutral currents at tree level, and that the
strengths of charged-current processes are proportional to
the CKM matrix. Comparing Eqs. (51) and (48), we see
that the light-fermion portions of the SUð2Þ currents to
which the W and Z bosons couple are

j
a�
L � �qL�

� �a

2

�
1� �L�

y
Lf

2
2

f21 þ f22

�
qL; (54)

consistent with Eq. (27) of [29].9

Combining the terms in Eq. (51) with those in Eq. (50),
we see that the W 0 couplings to light fermions are propor-
tional to

~g�L�
y
L � gxf21

f21 þ f22
: (55)

Hence, if �L is flavor-universal and satisfies

�L�
y
L ¼ x2f21

f21 þ f22
� I þOðx4Þ (56)

¼ f21
v2

M2
W

M2
W 0

� I þOðx4Þ; (57)

the couplings of the light fermions to theW 0
� vanish, along

with the T3 coupling of the Z0
�. Defining

ð"idealL Þ2 ¼ x2f21
f21 þ f22

¼ f21
v2

M2
W

M2
W0

; (58)

we see that �yL�L ¼ ð"idealL Þ2 � I is equivalent to the ‘‘ideal
fermion delocalization’’ condition of Ref. [10]. As we
demonstrate in the Appendix, this amount of delocalization
ensures the equality of the tree-level three-site model
couplings to those of the standard model, up to corrections
of order x4 [10] and the absence of large tree-level correc-
tions to precision electroweak measurements [4–11]. The
terms in Eq. (52) can, however, yield small, and potentially
flavor-dependent, right-handed [8,11]W couplings propor-
tional to the product of the masses of the quarks involved.

D. Experimental constraints on �L

As stated earlier, assuming �L is proportional to the
identity matrix minimizes the amount of flavor violation
in the model and assuming the proportionality constant
comes from Eq. (57) minimizes the size of precision
electroweak corrections. Here, we note that precision

electroweak measurements and bounds on flavor violation
in the charged-lepton and quark sectors specifically con-
strain �L to take this same ‘‘ideal delocalization’’ form.
Startingwith the quark sector, we adopt the basis inwhich

the down-quark mass matrix is diagonal. Then the elements

of ð�L�yLÞ � � potentially induce flavor-dependentZ andZ0
couplings to quarks. In other words, we are interested in the
degree towhich experiment allows thismatrix to depart from
the form in Eq. (57), where each diagonal element has the
value ð"idealL Þ2 ¼ ðf21=v2ÞðM2

W=M
2
W0 Þ and the off-diagonal

elements simply vanish. As detailed in the Appendix, data
on flavor-changing neutral currents in the B-meson, kaon,
andD-meson systems and Z-pole measurements of the rate
at which the Z decays to heavy quarks, as opposed to all
hadrons, require at 90%CL that (herewe bound the absolute
value of each matrix element)

j��ð"idealL Þ2 �I j& ð"idealL Þ2
�

MW 0

400GeV

�
2

�
0:30 0:0060

ffiffi
2

p
v

f1
0:0285

ffiffi
2

p
v

f1

0:0060
ffiffi
2

p
v

f1
0:30 0:202

ffiffi
2

p
v

f1

0:0285
ffiffi
2

p
v

f1
0:202

ffiffi
2

p
v

f1
0:09

0
BBBB@

1
CCCCA;

(59)

subject to the further constraint that the first two diagonal
elements must be nearly identical,

j�11 � �22j � 2:61� 10�3

�
f1ffiffiffi
2

p
v

�

¼ 0:0323ð"idealL Þ2
�

MW 0

400 GeV

�
2
� ffiffiffi

2
p

v

f1

�
: (60)

In other words, experiment essentially constrains � to be of
the form shown in (57).
Analogously, in the charged-lepton sector, we adopt the

basis in which the charged-lepton mass matrix is diagonal
and ignore neutrino masses. Then the elements of

ð�L�yLÞlepton � �‘ potentially induce flavor-dependent Z

and Z0 couplings to the charged leptons. Again, we are
interested in the degree to which experiment allows this
matrix to depart from the form in Eq. (57). LEP
Electroweak Working Group (LEPEWWG) bounds on
the Z boson’s decay rates into charged leptons and on
Z-pole leptonic charge asymmetries, as well as searches
for the flavor-violating decays � ! 3e, � ! e��, and
� ! �ee, combine to require at 90% CL that (again, we
bound the absolute value of each matrix element)

j�‘ � ð"idealL Þ2 � I j

& ð"idealL Þ2
�

MW0

400 GeV

�
2

0:036 0:000 13 0:034

0:000 13 0:075 0:036

0:034 0:036 0:12

0
BB@

1
CCA

(61)

9Note here, again, that in the limit f1 ! 1 and with v fixed
the three-site model reduces to the standard model—in this case
for the light-fermion couplings as well.
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so that the matrix must have the form of (57). Again,
details are given in the Appendix.

IV. �F ¼ 1 PROCESSES AT ONE LOOP

If m� 1 and M� are assumed to be flavor-diagonal and

the ratio �L is chosen to yield ideal delocalization, then
tree-level three-site model electroweak phenomenology
agrees with the standard model. The situation is modified
at the loop level, however. The effective Lagrangian pa-
rameters m� 1, M� , and m� 2u;2d run in the usual way, and

therefore the conditions of ideal delocalization and mini-
mal flavor violation are not scale-independent. Rather, we
may impose these conditions at the scale of the cutoff� of
the effective three-site theory and then compute the chiral-
logarithmic corrections to observables at accessible energy
scales.

In this section, we consider the three-site corrections to
all chirality-preserving �F ¼ 1 operators, and review the
results of [30] on the chirality nonpreserving process
b ! s�. We show that, parametrically, the sizes of the
new three-site corrections to �F ¼ 1 processes are of
the same order as those in the standard model—but that
the corrections numerically amount to only a few percent
of the standard model contribution. We conclude that, just
as in the case of corrections to Z ! b �b, the additional
three-site model chiral-logarithmic contributions are not
forbidden, and the three-site model is consistent with data.
In the next section we extend our analysis to �F ¼ 2
(meson mixing) processes.

A. Z ! �ff 0

We begin with the calculation of the new contributions
to the process Z ! �ff0 in the three-site model. All con-
tributions in the three-site model are shown in Fig. 2,
though those involving only light particles (i.e., those not
involving either the heavy W 0 or Z0 gauge bosons, or the
heavy quarks) just reproduce the standard model results. In
addition, one must properly account for the wave function
corrections illustrated in Fig. 3. We have performed these
calculations in ’t Hooft-Feynman gauge in the three-site
model (the appropriate Feynman rules can be extracted
from Refs. [27,30]), but the result is easily understood in
terms of the effective Lagrangian/renormalization group
calculation of the flavor nonuniversal contributions to the
Z ! b �b branching ratio discussed in [29].

Applying the results of [29], we see that the dominant
one-loop effect in Z ! �ff0 is the flavor-dependent running
of the effective Lagrangian parameterM� from the cutoff,�

(where ideal delocalization and minimal flavor violation
are imposed on the effective Lagrangian parameters), to
the scale of the heavy fermion masses. This effect is due to
wave function renormalization of the site 1 fermion fields

qð1ÞL (Fig. 4). Generalizing the calculations of [29], this

wave function renormalization results in the running of

the parameter �L�
y
L

�
d

d�
ð�L�yLÞ ¼ � 2

ð4�Þ2f22
½MuM

y
u þMdM

y
d 
; (62)

whereMu;d are the mass matrices of the light up and down

quarks. We see that the flavor-transformation properties
[Eq. (26)] of the left- and right-hand sides of this equation

FIG. 2. Vertex diagrams contributing to the processes Z ! di �dj
and Z0 ! di �dj. Each diagram is summed over the internal uk and

Uk flavors. Because of ideal delocalization, the vertices connect-
ing the heavy W0 boson to light u �d quark pairs are absent.

FIG. 3. Wave function renormalization diagrams which must
be included in the Z ! di �dj computation. The analogous Z0

contributions are suppressed, relative to the leading vertex con-
tributions.

FIG. 4. Wave function renormalization that results in the
flavor-dependent running of the parameter �L in the effective
theory valid in the energy range below the cutoff scale and above
the masses of the heavy fermions. This running yields the

renormalization group equation (62). Note that the qð1ÞL and

uð2ÞR , dð2ÞR are the site 1 and 2 gauge-eigenstate fermion fields of

Eq. (1). In ’t Hooft-Feynman gauge, the leading contribution
comes from �2, the unphysical Nambu-Goldstone boson in the
nonlinear sigma-model field �2 of Eq. (2).
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match. Note also that the (dominant) contribution illus-
trated in Fig. 4 arises from the unphysical Nambu-
Goldstone boson, �2, of Eq. (2), whose couplings are
proportional to the flavor-dependent parameters m� 2u;2d

and inversely proportional to f2.
Below the scale of the heavy-quark masses, this running

ceases. Furthermore, there is a cancellation between the
vertex and wave function diagrams of Figs. 2 and 3 because
the SUð2Þ0 global symmetry to which the Z is largely
coupled is conserved (up to corrections suppressed by
electroweak couplings). Denoting the scale of the heavy
fermion masses byM [c.f. Eq. (43)], we see that the chiral-

logarithmic correction to the parameter �L�
y
L is given by

�ð�L�yLÞ ¼
1

ð4�Þ2f22
½MuM

y
u þMdM

y
d 
 log

�2

M2
: (63)

As usual, from Eqs. (41) and (42), the first term gives rise
to flavor-changing down-quark couplings while the second
to flavor-changing up-quark couplings. In the case of s and
d quarks, for example, from Eq. (54) we see that the
running from the cutoff � to the scale M of the heavy-
quark masses yields the flavor-changing Z-boson coupling

ðgZ�dsÞ3-site¼
e

2ð4�Þ2 sin	W cos	W

f21f
2
2

ðf21þf22Þ2
ln

�
�2

M2

�

�X
u

V
udm

2
uVus

v2
; (64)

where we have used Eq. (6) to relate the result to v.
The formulas for the other quarks are similar, with the

appropriate replacements dictated by the form of �ð�L�yLÞ
and Mu;d.

By comparison, the corresponding standard model result
[36] is

ðgZ�dsÞSM ¼ e

ð4�Þ2 sin	W cos	W

X
u

V
udm

2
uAðmu;MWÞVus

v2
;

(65)

where

Aðmu;MWÞ ¼ M2
Wð2M2

W þ 3m2
uÞ

ðm2
u �M2

WÞ2
log

�
m2

u

M2
W

�

þm2
u � 6M2

W

m2
u �M2

W

; (66)

!
�1 mu�MW

2logm2
u

M2
W

þ6 mu�MW:
(67)

Comparing Eqs. (64) and (65), we see that the new three-
site model contributions are, at most, a small fraction of the
corresponding (electroweak penguin) standard model re-
sult. Since the standard model itself yields Z-penguin
amplitudes too small to be unambiguously observed to

date, either at the Z pole or in meson decays, these
chiral-logarithmic corrections arising from the three-site
model are consistent with experiment.

B. Z0 ! �ff 0

Next, for completeness, we consider flavor-changing
couplings of the heavy Z0 at one-loop. The form and size
of these couplings illustrate the principles of minimal
flavor violation and effective field theory we have dis-
cussed in the previous section. However, in practice, these
couplings are of little phenomenological consequence:
because of ideal delocalization, Eq. (56), the only cou-
plings to light fermions are the small hypercharge-related
terms in Eq. (50). Therefore, these couplings cannot ap-
preciably contribute to processes such as Bs;d ! �þ��.
Calculating the diagrams shown in Figs. 2 and 3, we find

the leading flavor-changing contributions

gZ
0

�sd¼� ~g

2ð4�Þ2
�X

u

V
usm

2
uVud

v2

��
v2

f22
log

�2

M2
þ log

M2

m2
u

�
; (68)

where, for illustration, we have considered the �sd coupling;
the generalization to other quark flavors is dictated by the
minimal flavor-violating structure. The origin of the two
terms in Eq. (68) is rather different. The first term [propor-
tional to logð�2=M2Þ] exhibits how the running of �L in
Eq. (63) affects the Z0 couplings shown in Eq. (51). The
second term, as indicated by the presence of logðM2=m2

uÞ,
arises in the effective theory between the scale of the heavy
fermions (M) and the quark mass (here we assume mu ¼
mt � MW) in the loop shown in Fig. 5.
In the end, we conclude that there are no phenomenolog-

ically significant flavor-changing effects in Z0 couplings at
this order. As noted above, ideal delocalization eliminates
any tree-level flavor-diagonal Z0 coupling to light fermions,
While the presence of the large coupling ~g in the one-loop
result of Eq. (68) is tantalizing, that enhancement is can-
celed in any low-energy process by the suppression from
inverse powers of the Z0 mass. Hence, there is no appre-
ciable Z0-exchange contribution to �F ¼ 1 processes. In
principle, Z0-exchange contributions to �F ¼ 2 processes
are possible—but these are two-loop effects which are
substantially smaller than the one-loop standard model
‘‘box-diagram’’ contributions, as we will discuss in Sec. V.

C. b ! s�

In the subsections above, we have focused on flavor-
changing couplings of the Z and Z0 bosons. Notably, we
saw that the minimal flavor violation of the three-site
model implies that the leading new-physics effects are
confined to the left-handed sector, just as in the standard
model. In contrast, gauge invariance and minimal coupling
ensure that the chirality-preserving couplings of the photon
are flavor-diagonal. Instead, the leading operator for the
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phenomenologically relevant radiative decay b ! s� has
the form [37]

H eff ¼ � 4GFAðmt;MWÞffiffiffi
2

p V
tsVtb

�
�

e

16�2
mbð �sL���bRÞF��

�
; (69)

where, to leading order in the standard model [36],

Aðmt;MWÞ ¼ 3x3 � 2x2

4ðx� 1Þ4 logxþ�x3 þ 5x2 þ 2x

8ðx� 1Þ3 ;

x ¼ m2
t

M2
W

:

(70)

New contributions to this process arise in the three-site
model from the presence of right-handed couplings of the
W to b quarks [see Eq. (52) and [11]], as well as from the
presence of new heavy particles in the loop. These contri-
butions have been studied in detail in [30], for the special

case f1 ¼ f2 ¼
ffiffiffi
2

p
v. Their results show that the new

contributions are only of order 10% of the standard model
contribution for the preferred range of �Rt < 0:3 [11], and
that including the contributions from the three-site model
tends to improve the consistency with the experimental
results. Varying away from the point f1 ¼ f2 will increase
the masses of the additional particles, decreasing the size
of the new three-site corrections. At the very least, the
three-site model’s prediction for the rate of b ! s� will
be as consistent with experimental data as that of the
standard model.

V. �F ¼ 2 PROCESSES AT ONE LOOP

In this section, we extend the analysis of the previous
section to study the chiral-logarithmically enhanced cor-
rections to �F ¼ 2 processes in the three-site model. We
show that the combination of minimal flavor violation and
ideal fermion delocalization ensures that both the one-loop
corrections from �F ¼ 2 box diagrams and the two-loop
corrections from �F ¼ 1 vertices are small compared to
similar corrections in the standard model.
The contributions to �F ¼ 2 processes in the three-site

model are shown in Fig. 6. The contribution from the first
diagram corresponds to those in the standard model. Since
the couplings of the W in the three-site model agree with
their standard model counterparts up to corrections
Oðx4Þ & 10�3, this diagram essentially reproduces the
standard model contribution. In particular, GIM cancella-
tions imply that all contributions involving light fermions
are suppressed by four powers of the light up-quark
masses. Furthermore, because of ideal delocalization, the
diagrams shown in Fig. 7 are absent. The absence of the
first (upper leftmost) diagram ensures that there are no new
‘‘long-distance’’ contributions in the three-site model, or
other new contributions depending on light quark masses
but not heavy KK quark masses.
Returning to Fig. 6, we recall that M� and m� 1

are flavor-

diagonal at tree level, and that the masses of the heavy KK
fermions are approximately degenerate—with deviations
proportional to the corresponding light-fermion masses
[11]. Hence GIM cancellation in the heavy fermion sector
implies that contributions from the last three diagrams in
Fig. 6 are suppressed bym2

q=M
2 & Oð10�3Þ, wheremq is a

mass of a light quark and M is the mass of the KK

FIG. 6. Diagrams that give dominant contributions to �F ¼ 2 processes. The single lines and the double lines represent the standard
model and KK fermions, respectively. Because of ideal delocalization, the W 0 boson does not couple to two light fermions—and
therefore only contributes in diagrams involving two heavy intermediate states. The first diagram, including only light standard model
states, receives nonstandard contributions in the three-site model only to the extent that the weak gauge couplings differ from their
standard model equivalents at Oðx4Þ.

FIG. 5. Z0 flavor-changing vertex renormalization arising in
the effective theory valid in the energy range below the scale
of the heavy fermionsM and above the weak boson scaleMW . In
’t Hooft-Feynman gauge the leading contribution comes from
the �W field, the unphysical Goldstone boson eaten by the mass
eigenstate W boson. The �W fields couple proportional to the
quark masses, as shown in the effective Lagrangian of Eq. (36)
and as required by the usual electroweak Ward identities.
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fermions. To summarize, the combination of ideal deloc-
alization and minimal flavor violation ensures that the new
contributions to �F ¼ 2 box diagrams in the three-site
model are smaller than or of order two-loop corrections
to the same �F ¼ 2 processes in the standard model—and
hence are not phenomenologically excluded.

These points can be illustrated in more detail by consid-
ering the leading, chiral-logarithmically enhanced, three-
site box-diagram contributions, which arise from the sec-
ond and third diagrams in Fig. 6. These contributions can
be described in effective field theory as follows. The
rotations defining the left-handed fermion mass eigenstate
fields, Eq. (32), are, to leading order, proportional to �L and
therefore flavor-diagonal. The largest flavor nondiagonal
contributions, which can be obtained by diagonalizing
MyM to higher order [with M defined in Eq. (28)],
correspond to modifying10 �L

�1�L ! �1�L � ðI �M�2"
y
R"R�

y
2M

�1Þ: (71)

Note that these corrections are consistent with the spurion
transformations of Eq. (26). Plugging this correction into
the left-handed couplings on the second line of Eq. (36)
yields, in ’t Hooft-Feynman gauge, flavor-changing cou-
plings between the left-handed mass eigenstate quarks and
the Goldstone bosons eaten by the W boson. These flavor-
changing couplings are proportional to ð�L�qRÞ2 ¼
ðmq=MÞ2, and the overall result (summing over all inter-

mediate heavy-quark flavors) must include the appropriate
CKM mixing matrix elements.

The chiral-logarithmically enhanced three-site box con-
tributions correspond, in the effective theory with heavy

KK quarks integrated out, to the diagrams illustrated in
Fig. 8 (here shown for �S ¼ 2 processes). Viewing these
diagrams as a contribution to the effective operator

H �S¼2
eff ¼ C1

Kð�sL��dLÞð�sL��dLÞ; (72)

we obtain the leading three-site contribution

ðC1
KÞthree-site ¼ �

ffiffiffi
2

p
GF

ð4�Þ2 � v
2

M2
�
�X

u

V
udm

2
uVus

v2

�
2 � logM

2

m2
W

:

(73)

Note that this expression exhibits the specific features
described above: (a) suppression by four powers of light-
fermion masses, (b) as consistent with flavor symmetry,
light-fermion masses appearing in combination with the
usual products of CKM angles, (c) suppression by the
heavy KK fermion massesM, and (d) logarithmic enhance-
ment corresponding to ‘‘running’’ from M to the W mass.

FIG. 8. Diagrams that yield the chiral-logarithmically en-
hanced three-site model corrections to �S ¼ 2 processes in
the effective theory [Eq. (36)] including the flavor nonuniversal
corrections to �L shown in Eq. (71). Here �W are the ’t Hooft-
Feynman gauge unphysical Goldstone bosons eaten by the W
boson. As discussed in the text, though enhanced by
logðM2=M2

WÞ, all new three-site contributions are even more

deeply suppressed by m2
q=M

2.

FIG. 7. Diagrams that are absent from the calculation of �F ¼ 2 processes in the three-site model, due to ideal delocalization. The
single and double lines represent standard model and KK fermions, respectively. As described in the text, the combination of ideal
delocalization and minimal flavor violation implies that all �F ¼ 2 effects are suppressed by ðm=MÞ2, where m andM are the masses
of the standard model and KK fermions, respectively.

10There is an analogous shift to "R proportional to �yL�L—
however, since �L is flavor-diagonal at tree level, these correc-
tions are flavor-universal.
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The generalization11 to other�F ¼ 2 processes is straight-
forward, as determined by flavor symmetry.

Finally, as shown in the previous section, there are no
anomalously large �F ¼ 1 corrections at the one-loop
level in the three-site model—hence, combinations of these
�F ¼ 1 contributions produce very small �F ¼ 2 ampli-
tudes. We conclude that, due to ideal delocalization and
minimal flavor violation, there are no large corrections to
�F ¼ 2 processes in the three-site model.

VI. CONCLUSIONS

In this paper we have explored the flavor structure of
the three-site model, and the size of new three-site model
contributions to chirality-preserving flavor-changing neu-
tral current processes. We established the conditions under
which the three-site model exhibits minimal or nonmini-
mal flavor violation, and showed that experimental
bounds on flavor-changing effects constrain the tree-level
Lagrangian of the three-site model to a form exhibiting
only minimal flavor violation.

Assuming minimal flavor violation at the scale of the
‘‘cutoff,’’ i.e., the scale of the physics underlying the
effective three-site model, we have computed the chiral-
logarithmic corrections to chirality-preserving flavor-
changing neutral current processes. We have shown that
the combination of ideal delocalization and minimal flavor
violation implies that all flavor-changing �F ¼ 1 neutral
current processes are parametrically the same size as in the
standard model, but numerically smaller. In the case of
�F ¼ 2 neutral current processes, the combination of ideal
delocalization and minimal flavor violation implies that the
three-site model contributions are smaller than or of order
the two-loop corrections to these processes in the standard
model. We conclude, therefore, that the three-site model
is phenomenologically consistent with experimental data
on (chirality-preserving) flavor-changing neutral current
processes.
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APPENDIX: EXPERIMENTAL CONSTRAINTS
ON THE FORM OF �L

In this Appendix, we establish the experimental con-
straints on the flavor structure of the charged-lepton and
quark sectors of the three-site model. We start by calculat-
ing the fermion couplings to the weak gauge bosons in a
general framework that does not assume ideal fermion
delocalization or lepton universality. We then determine
the bounds placed on the flavor structure by precision
electroweak data and studies of flavor-violating processes.
The results demonstrate that the matrices in the tree-level
three-site model Lagrangian that govern the delocalization
of left-handed quarks (�L) and left-handed leptons (�L‘)
must be flavor-universal and consistent with ideal fermion
delocalization.

1. Electroweak couplings in the three-site model

In order to compare the electroweak couplings of the
fermions in the three-site model with precision electro-
weak and flavor data, we must first compute the couplings
of the fermions to theW and Z bosons. Unlike the analysis
in [11], here we will not assume ideal delocalization:
instead, we will compute the couplings for arbitrary values
of the delocalization parameter for the left-handed fermi-
ons, "2L, and the ratio

x2 ¼ g2

~g2
�
�
f21 þ f22

v2

��
MW

MW0

�
2
: (A1)

In other words, rather than imposing the relation in

Eq. (56), we study the degree to which �L�
y
L can deviate

from that ideal delocalization value ð"idealL Þ2 � I .
To investigate the electroweak phenomenology of our

model, we display our results in terms of the charge of the
electron (14) and the ‘‘on-shell’’ definition of the weak
mixing angle [38]:

cos 2	W ¼ M2
W

M2
Z

: (A2)

Diagonalizing the vector-boson mass matrices, applying
the fermion wave functions in Eq. (32), and rewriting the
results in terms of e and sin	W , we find

12

gZ ¼ e

sin	W cos	W

��
1� f22

f21 þ f22

�
�yL�L � x2f21

f21 þ f22

��
Tf
3

�Qfsin2	W

�
; (A3)

11There are also other terms that are parametrically smaller
(e.g., of order x4) but numerically similar in size to those
discussed here; since they are also small compared to the
standard model contributions, including them would not alter
our conclusions.

12These expressions are consistent, to the appropriate order in
x2, with the form of the SUð2Þ currents shown in Eq. (54). The
form appears different because of the difference between sin	, as
defined in Eq. (8), and the on-shell definition of sin	W .
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gW ¼ e

sin	W

�
1� f22

f21 þ f22

�
�yL�L � x2f21

f21 þ f22

��
; (A4)

where Tf
3 and Qf are the isospin and charge of fermion

species, the couplings are understood to be matrices in
flavor space, and these expressions hold up to corrections

of Oðx4; x2�yL�LÞ. Note that, as advertised, if �yL�L ¼
ð"idealL Þ2 � I þOðx4Þ, the three-site and standard model
predictions agree at tree level up to this order.
Furthermore, the deviation of each coupling from its stan-
dard model value is proportional to

gW;Z / f22
f21 þ f22

�
�yL�L � x2f21

f21 þ f22

�

¼
�
MW

MW0

�
2 ð�yL�L � ð"idealL Þ2 � IÞ

ð"idealL Þ2

�
�
MW

MW0

�
2 ��yL�L
ð"idealL Þ2 ; (A5)

where we express the deviation in the delocalization from
ideal as a fraction of ð"idealL Þ2 and have used Eqs. (6) and (9)
to derive the last expression,

This form of the three-site couplings allows comparison
with the LEPEWWG [38] extraction of the (flavor-
diagonal) fermion couplings to the Z boson, which (in
our notation) assumes the form

g
�ff
Z � e

sin	W cos	W
� ffiffiffiffiffiffi

�f
p ðTf

3 �Qfsin2	effW Þ; (A6)

where the partial widths and asymmetries for any fermion

species are recast as measurements �f and sin2	feff . In the

three-site model at tree level, therefore, we find

ffiffiffiffiffiffiffiffiffiffiffiffi
�3-site
f

q
¼ 1�

�
MW

MW0

�
2 ½��yL�L
 �ff

ð"idealL Þ2 ; (A7)

sin 2	3-sitef ¼ sin2	W

�
1þ

�
MW

MW0

�
2 ½��yL�L
 �ff

ð"idealL Þ2
�
; (A8)

where ½��yL�L
 �ff denotes the appropriate diagonal element

of the matrix measuring the deviation of �yL�L from ideal.

Finally assuming, for the moment, that �yL�L is flavor-
universal (proportional to the identity), we may use the
techniques of [39] to compute the value of �S from the
Z-boson couplings to the T3 and Y currents:

g3Z � gYZ ¼ �e2
�
1þ �S

4sin2	cos2	

�
: (A9)

Applying this to the expression in Eq. (A3), we find

�S ¼ �4sin2	W

�
MW

MW0

�
2 ½��yL�L
 �ff

ð"idealL Þ2 : (A10)

When we study the flavor structure of the quark and
lepton sectors, we expect the left-handed delocalization
parameter for each flavor to have a value close to
ð"idealL Þ2, and we now investigate how large a deviation is
allowed by experimental data.

2. The lepton sector

We now consider specific experimental constraints on
the lepton flavor structure in the three-site model. By
analogy with the effective Lagrangian for the quark sector
(36), that for the lepton sector of the three-site model may
be written, defining ‘L � ð�; ‘�ÞL, as

Leff ¼ �‘Li 6D‘Lþ �‘Ri 6D‘R

�
�
�‘L�L‘�1�2M� ‘�R‘

0

‘R

 !
þH:c:

�

þ �‘L�L‘½���1ðiD��
y
1 Þ
�yL‘‘L

þ �‘R�R‘½���y
2 ðiD��2Þ
�yR‘‘R; (A11)

where �L‘ and �R‘ are defined in parallel with Eqs. (29) and
(31). We use a basis where the charged-lepton mass matrix

M ‘ ¼ �L‘M� ‘�
y
R‘ (A12)

in Eq. (A11) is diagonal, and we ignore neutrino masses.
We will focus on bounding the elements of the matrix

�‘ � �L‘�
y
L‘; (A13)

which can induce flavor-dependent Z and Z0 couplings to
the charged leptons. As discussed above and in [11], we
expect the diagonal elements of this matrix to have values
close to ð"idealL Þ2 so as to eliminate contributions to �S.

a. Bounds on the diagonal elements of �‘

The LEPEWWG analysis [38] of Z-boson couplings to
charged leptons constrains the diagonal elements of �‘.
First, under the assumption of lepton universality, we may
bound the amount by which the (presumed identical) di-
agonal elements �‘ii may differ from ð"idealL Þ2. As men-
tioned above, the LEPEWWG defines a factor �f to

accommodate the possibility that physics beyond the stan-
dard model shifts the magnitude of the Z boson’s coupling
to the T3 charge of fermion f [see Eq. (A6)]. Under the
assumption of charged-lepton universality, they obtain
the experimental limit �‘ ¼ 1:0050� 0:0010, and give
the standard model prediction as 1:005 09þ0:000 67

�0:000 81.

Because the deviation of �‘ii from the ideal delocalization
value is proportional to the departure of �‘ from its value in
the standard model (A7), the LEPEWWG bound on �‘

implies the following 90% CL bound:
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� 0:036ð"idealL Þ2
�

MW0

400 GeV

�
2
<�‘ii � ð"idealL Þ2

< 0:034ð"idealL Þ2
�

MW 0

400 GeV

�
2
: (A14)

Quantitatively similar results follow from the LEPEWWG
direct experimental limit on sin2	eff‘ and from measure-

ments of the leptonic asymmetryAe. We conclude that, in
the case of lepton universality, the diagonal elements of �‘

must be within a few percent of ð"idealL Þ2.
Second, we may bound the degree to which the different

�‘ii may differ from one another. The LEPEWWG
has obtained the following bounds on the relative
rates at which the Z decays to different flavors of charged
leptons [38],

�ðZ ! �þ��Þ
�ðZ ! eþe�Þ � ��

�e

¼ 1:0009� 0:0028;

�ðZ ! �þ��Þ
�ðZ ! eþe�Þ �

��

�e

¼ 1:0019� 0:0032;

(A15)

and notes that the expected standard model values of these
ratios are, respectively, 1.000 and 0.9977. We find that
these ratios are directly related to the differences between
the various diagonal elements of �‘; for muons we have
(defining s	 � sin	)

ð��=�eÞ
��=�e

¼��

��

��e

�e

¼
ð�1

2þs2	Þð f2
2

f2
1
þf2

2

Þ
ð�1

2þs2	Þ2þðs2	Þ2
ð�‘22��‘11Þ

(A16)

and a similar expression holds for taus. The LEPEWWG
limits on the ratios of partial widths thus yield (at 90% CL)

� 0:063ð"idealL Þ2
�

MW 0

400 GeV

�
2
<�‘22 � �‘11

< 0:043ð"idealL Þ2
�

MW0

400 GeV

�
2
; (A17)

� 0:11ð"idealL Þ2
�

MW 0

400 GeV

�
2
<�‘33 � �‘11

< 0:012ð"idealL Þ2
�

MW0

400 GeV

�
2
: (A18)

Using the bounds on the flavor-universal lepton results
as indicative of the allowed deviation in the electron cou-
plings and combining the uncertainties in Eqs. (A17) and
(A18) in quadrature with those in Eq. (A14), we find that
the bounds

� 0:075ð"idealL Þ2
�

MW 0

400 GeV

�
2
<�‘22 � ð"idealL Þ2

< 0:053ð"idealL Þ2
�

MW0

400 GeV

�
2
; (A19)

� 0:12ð"idealL Þ2
�

MW 0

400 GeV

�
2
<�‘33 � ð"idealL Þ2

< 0:020ð"idealL Þ2
�

MW0

400 GeV

�
2
: (A20)

Hence, even without an a priori assumption of lepton
universality, the diagonal elements of �‘ are constrained
by the data to nearly equal one another.

b. Bounds on the off-diagonal elements of �‘

We now consider the bounds on the off-diagonal ele-
ments �‘ij from lepton-flavor-violating processes. These

arise from flavor-changing left-handed neutral-boson cou-
plings contained in the third line of Eq. (A11). Having
diagonalized the charged-lepton mass matrix M‘, the
Hermitian flavor matrix �‘ in Eq. (A13) is fixed13 and, in
general, contains off-diagonal elements. In unitary gauge,
the gauge operator in Eq. (A11) becomes

�y
1 ðD��1Þ ! ðgWa

0� � ~gWa
1�Þ

�a

2
; (A21)

where g0;1 and W0;1 are the gauge-eigenstate SUð2Þ0 �
SUð2Þ1 fields in the three-site model in Fig. 1. We may
rewrite the combination of neutral gauge-eigenstate fields
into mass eigenstate fields using Eqs. (17) and (18), to find

gW3
0� � ~gW3

1� ¼ e

s	c	

�
f22

f21 þ f22

�
Z� � ~gZ0

�; (A22)

up to corrections of Oðx2Þ. Note that the combination
gW0 � ~gW1 is orthogonal to the photon; therefore, as
must be true by charge conservation, there are no flavor-
changing electromagnetic couplings.
The flavor-dependent left-handed neutral-boson cou-

plings of the leptons are, then, given by

L FCNC¼�1

2
�
�

e

s	c	

�
f22

f21þf22

�
Z�� ~gZ0

�

�
��‘ij

�‘0iL�
�‘0jL:

(A23)

Because of suppression proportional to lepton masses, the
right-handed flavor-dependent couplings are expected to
be small. In contrast to the case of meson mixing (consid-
ered below), in the lepton sector we are interested in low-
energy processes arising from only one insertion of the
flavor-dependent operators. Hence, only the Z� couplings
in Eq. (A23) contribute: the Z0 couplings to light fermions
are suppressed. At low energies, the flavor-dependent
Z-boson couplings give rise to the four-fermion operators

LFF ¼ � e2

2s2	c
2
	M

2
Z

�
�

f22
f21 þ f22

�
�‘ij

�‘0iL��‘
0
jL � J�Z þ H:c:

(A24)

13In particular, the matrix � does not change under SUð3ÞLD �
SUð3ÞRD transformations.
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¼ 2
ffiffiffi
2

p
GF � �‘ij

�
f22

f21 þ f22

�
�‘0iL��‘

0
jL � J�Z þ H:c:; (A25)

where J�Z ¼ J�3 �Q�sin2	 is the usual current to which

the Z boson couples.
We begin with limits arising from searches for the decay

� ! 3e, where BRð�� ! e�eþe�Þ< 1:0� 10�12 at
90% CL [40]. This is easy to scale from ordinary muon
decay, where the interaction

L � decay ¼ 2
ffiffiffi
2

p
GFð ��L�

��L�Þð ��Le�
�eLÞ (A26)

yields the width

�ð� ! e�� ��eÞ ¼
G2

Fm
5
�

192�3
: (A27)

Hence, since BRð� ! e�� ��eÞ ’ 100%, from Eq. (A25)

we find14

BRð� ! 3eÞ
BRð� ! e�� ��eÞ �

1

2
�
�
�‘12

�
f22

f21 þ f22

��
� 1

2
þ sin2	

��
2

< 1:0� 10�12: (A28)

This yields the bound

j�‘12j< 1:05� 10�5

�
f21 þ f22
2f22

�
ð90%CLÞ

’ 1:3� 10�4ð"idealL Þ2
�

MW0

400 GeV

�
2
: (A29)

A quantitatively similar bound on this matrix element is
found from data on � Pb ! e Pb conversion.

By similar means, starting from the bound
BRð� ! e��Þ< 2:3� 10�8 at 90% CL, we find

BRð� ! e��Þ
BRð� ! e�� ��eÞ ¼

�
�‘13

�
f22

f21 þ f22

��
� 1

2
þ sin2	

��
2

<
2:3� 10�8

BRð� ! e�� ��eÞ : (A30)

Using the fact that BRð� ! e�� ��eÞ ’ 18%, we then obtain

j�‘13j< 2:7� 10�3

�
f21 þ f22
2f22

�
ð90%CLÞ

’ 3:4� 10�2ð"idealL Þ2
�

MW0

400 GeV

�
2
: (A31)

And, mutatis, mutandis, the bound BRð�!�eeÞ<
2:7�10�8 at 90% CL yields

j�‘23j< 2:9� 10�3

�
f21 þ f22
2f22

�
ð90%CLÞ

’ 3:6� 10�2ð"idealL Þ2
�

MW 0

400 GeV

�
2
: (A32)

c. Lepton summary

Combining the 90% CL bounds on the lepton flavor
structure, therefore we find that the deviations in the ele-
ments of the matrix �‘ from ideal are bounded by

j�‘ � ð"idealL Þ2 � I j & ð"idealL Þ2
�

MW0

400 GeV

�
2

�
0:036 0:000 13 0:034

0:000 13 0:075 0:036
0:034 0:036 0:12

0
@

1
A

(A33)

and �‘ is therefore essentially constrained to be propor-
tional to the identity, with diagonal elements equal to
ð"idealL Þ2.

3. The quark sector

In this section we study the left-handed quark delocal-

ization matrix � ¼ ð�yL�LÞ, introduced in Eq. (59). Using
data on flavor-changing neutral currents and Z decays to
heavy quarks, we set bounds on the degree to which � can
deviate from ð"idealL Þ2 � I .

a. Flavor-changing neutral currents

We begin with the most severely constrained interac-
tions: the flavor-changing left-handed neutral-boson cou-
plings contained in the second line of Eq. (36). Retracing
the analysis of lepton flavor violation above shows that, at
low energies, Z and Z0 exchange [see Eq. (A22)] between
quarks gives rise to four-fermion operators of the form

LL�FCNC!� 1

2!
�
�
1

2

�
2 ��ij�k‘

�
e2

s2	c
2
	

�
f22

f21þf22

�
2 1

M2
Z

þ ~g2

M2
Z0

�

�ð �qiL��qjLÞð �qkL��q
‘
LÞ; (A34)

where the first factor (1=2!) accounts for the two identical
currents and the next [ð1=2Þ2] accounts for the T3 charges
of the external fermions. Using the masses of Eq. (9) and
the relation in Eq. (6), we find the term in square brackets is
approximately 4=f21 so that

L L�FCNC ! ��ij�k‘

2f21
ð �qiL��qjLÞð �qkL��q

‘
LÞ: (A35)

Reference [41] has derived constraints on a variety of
�F ¼ 2 four-fermion operators that cause neutral meson
mixing. We will start with their limits on the coefficients
(C1

j ) of the operators responsible for mixing in the kaon,

Bd, and Bs systems:

14Here the factor of 1
2 accounts for the identical particles in the

� ! 3e final state.
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C1
Kð�sL��dLÞð�sL��dLÞ; C1

Bd
ð �bL��dLÞð �bL��dLÞ;

C1
Bs
ð �bL��sLÞð �bL��sLÞ: (A36)

The numerical values of the limits they obtain in the down-
quark sector in the C1

j correspond, in the notation of

Eq. (A35), to the constraints

�ð4:82�10�4Þ2<<ð�sdÞ2
�
2v2

f21

�
< ð4:82�10�4Þ2; (A37)

�ð3:26�10�5Þ2<=ð�sdÞ2
�
2v2

f21

�
<ð2:60�10�5Þ2; (A38)

j�bdj2
�
2v2

f21

�
< ð2:3� 10�3Þ2; (A39)

j�bsj2
�
2v2

f21

�
< ð1:63� 10�2Þ2; (A40)

or, in a more convenient notation, to

j�dsj< 4:8� 10�4

�
f1ffiffiffi
2

p
v

�
¼ 0:0060ð"idealL Þ2

�
�

MW 0

400 GeV

�
2
� ffiffiffi

2
p

v

f1

�
;

(A41)

j�bdj< 2:3� 10�3

�
f1ffiffiffi
2

p
v

�
¼ 0:0285ð"idealL Þ2

�
�

MW0

400 GeV

�
2
� ffiffiffi

2
p

v

f1

�
;

(A42)

j�bsj< 1:63� 10�2

�
f1ffiffiffi
2

p
v

�
¼ 0:202ð"idealL Þ2

�
�

MW0

400 GeV

�
2
� ffiffiffi

2
p

v

f1

�
:

(A43)

In the three-site model, we expect the eigenvalues of the
matrix � to be of order ð"idealL Þ2. Hence, with the possible
exception of �bs, the data require that the matrix � be
nearly diagonal in the down-quark mass eigenstate basis.

At this point, recalling that Mu ¼ Vy
CKM�u, we also

note that there is a low-energy operator that can cause
D-meson mixing. This is

C1
Dð �cL��uLÞð �cL��uLÞ; (A44)

with

C1
D ¼ � 1

2f21
ðVud�11V


cd þ Vus�22V


cs þ Vub�33V


cbÞ2;
(A45)

where the Vij are the elements of the CKM matrix. The

authors of [41] report a limit

jC1
Dj< 7:2� 10�13 GeV�2; (A46)

from which we conclude

jVud�11V

cd þ Vus�22V


cs þ Vub�33V


cbj2

< ð4:17� 10�4Þ2
�
f21
2v2

�
: (A47)

Now, the product of CKM elements appearing in the third
term jVubV


cbj ’ Oð10�4Þ is much smaller than those in the

other two terms VudV

cd � �VusV


sc � :16. Therefore, bar-

ring a very large difference among the diagonal entries of
�, we may neglect the �33 term in Eq. (A47) and find

j�11 � �22j � 2:61� 10�3

�
f1ffiffiffi
2

p
v

�

¼ 0:0323ð"idealL Þ2
�

MW0

400 GeV

�
2
� ffiffiffi

2
p

v

f1

�
: (A48)

Since we anticipate that each of the �ii is of order ð"idealL Þ2,
we conclude that �11 � �22.
This result is consistent with precision electroweak data:

�11 and �22, respectively, determine the delocalization of
the first- and second-generation left-handed quarks. Their
having different values is disfavored because that would
change the relative rates at which the Z decays to up vs
charm or down vs strange quarks. Similarly, �33 controls
the delocalization of bL—and, as discussed below, data on
Rb and Rc constrain how much this can differ from �11;22.

These are the strongest limits available from flavor-
changing processes in the quark sector. Bounds on
flavor-changing decays in the third-generation up-quark
sector are rather weak: current limits imply only that
Brðt ! cZÞ< 3:7% [40], which provides no new informa-
tion on the elements of �. While the Bs or D

0 systems are,
respectively, the most promising for eventual limits on
right-handed FCNC’s in the down and up sectors, no limits
presently exist.

b. Z-pole constraints on Rb and Rc

The LEPEWWG has obtained bounds on the relative
rates at which the Z decays to heavy quarks, as compared
with decays to all hadrons [38],

�ðZ ! b �bÞ
�ðZ ! hadronsÞ � Rb ¼ 0:216 29� 0:000 66; (A49)

�ðZ ! c �cÞ
�ðZ ! hadronsÞ � Rc ¼ 0:1721� 0:0030; (A50)
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and gives the, respective, standard model predictions for
these quantities as 0:21 583þ0:000 33

�0:000 45 and 0:17 225þ0:000 16
�0:000 12.

These ratios are useful to work with because QCD correc-
tions, manifesting as dependence on the value of�s, should
largely cancel.15

Because the data from D-meson mixing have already
established that �22 ¼ �11, both Rb and Rc may be written
as linear combinations of just the two diagonal matrix
elements �33 and �22:

ðRbÞ
Rb

¼�b

�b

��hadr:

�hadr:

¼ð�0:8924ð�33�ð"idealL Þ2Þ

þ0:0910ð�22�ð"idealL Þ2ÞÞ
�

2f22
f11þf22

�
; (A51)

ðRcÞ
Rc

¼ �c

�c

� �hadr:

�hadr:

¼ ð0:2512ð�33 � ð"idealL Þ2Þ

þ 1:297ð�22 � ð"idealL Þ2ÞÞ
�

2f22
f11 þ f22

�
: (A52)

Solving the coupled equations for the two �ii � ð"idealL Þ2
yields the limits

� 0:093ð"idealL Þ2
�

MW0

400 GeV

�
2
<�33 � ð"idealL Þ2

< 0:020ð"idealL Þ2
�

MW0

400 GeV

�
2
; (A53)

� 0:30ð"idealL Þ2
�

MW0

400 GeV

�
2
<�22 � ð"idealL Þ2

< 0:30ð"idealL Þ2
�

MW0

400 GeV

�
2
; (A54)

while rotating (A51) and (A52) into the �33 � �22 basis
says, equivalently,

� 0:48ð"idealL Þ2
�

MW0

400 GeV

�
2
<�33 � �22

< 0:41ð"idealL Þ2
�

MW 0

400 GeV

�
2
:

(A55)

We conclude that �33 is constrained at 90% CL to lie
within a few percent of the ideal delocalization value,
while �22 (and �11) must lie within about 30% of the ideal
delocalization value and within about 45% of �33. The
limit on �22 is consistent with what the LEPEWWG
data on �c imply; the limit on �33 surpasses that obtained
from �b.

c. Summary

Combining the 90% CL bounds for the �ii obtained in
this section, we find that deviations in the elements of the
matrix � from ideal delocalization are bounded by

j��ð"idealL Þ2 �I j& ð"idealL Þ2
�

MW0

400GeV

�
2

�
0:30 0:0060

ffiffi
2

p
v

f1
0:0285

ffiffi
2

p
v

f1

0:0060
ffiffi
2

p
v

f1
0:30 0:202

ffiffi
2

p
v

f1

0:0285
ffiffi
2

p
v

f1
0:202

ffiffi
2

p
v

f1
0:09

0
BBB@

1
CCCA;

(A56)

subject to the constraints on �22 � �11 and �33 � �22

noted above. The factors of
ffiffiffi
2

p
v=f1 in the off-diagonal

elements reflect the fact that those bounds arise from joint
Z and Z0 contributions to �F ¼ 2 meson mixing pro-
cesses; the constraints on the diagonal elements, like all
the elements of �‘, come from decay processes involving
only Z couplings. We conclude that the flavor matrix � for
quarks must be nearly proportional to the identity matrix.
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