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We consider the vertex function of two vector and one axial-vector currents using the soft-wall

holographic model of QCD with the Chern-Simons term. Two structure functions wL and wT describe

such a vertex in the special case in which one of the two vector currents corresponds to an on-shell soft

photon. We briefly review the QCD results for these functions, obtained from triangular loop diagrams

with quarks having mass mq ¼ 0 or mq � 0, we compute wL and wT in the soft-wall model and compare

the outcome to the QCD findings. We also calculate and discuss the two-point �VV ��AA correlation

function, together with a few low-energy constants, which turn out to be close to the QCD results. Finally,

we comment on a relation proposed by Son and Yamamoto between wT and �VV ��AA.
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I. INTRODUCTION

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence conjecture [1–3] provides tools to access
gauge theories at strong coupling. This remarkable result
has inspired the idea that the quantum chromodynamics
can be described using methods rooted in the gauge/gravity
duality principle, as first proposed in [4]. QCD is different
from the field theories for which the correspondence has
been established; however, being nearly conformal in the
UV, for massless quarks and neglecting the running of the
strong coupling constant, QCD can be considered as a
candidate for a description based on gauge/gravity duality,
on condition (at least) that a mechanism to break confor-
mal invariance in the infrared region and to generate
confinement is supplied. A strategy that can be pursued
is the so-called ‘‘bottom-up’’ approach: one starts from
QCD and tries to construct a five-dimensional (5d) holo-
graphic dual theory encoding as much as possible the QCD
properties, namely, hadron spectra, form factors, hadronic
matrix elements. The features of the dual theory are then
scrutinized with the final purpose of selecting the best
formulation which (hopefully) can be used to compute
properties of QCD not accessible to other analytical or
numerical approaches. Under the name of AdS/QCD a
number of extra-dimensional models are collected, set up
with the aim of reproducing the largest number of known
QCD aspects [5–9].1

An important point to investigate in the holographic
approaches is related to the chiral anomaly. It is known
that the longitudinal part of massless fermion anomalous
triangle diagrams is fixed by the chiral anomaly, which
produces, for example, the successful expression of the

�0 ! �� decay amplitude [11–13]. For the transverse part
of these triangle diagrams, results have been obtained for
current-current correlators in an infinitesimally weak elec-
tromagnetic field, and such results concern the existence
and the expression of both perturbative and nonperturba-
tive effects. In particular, it has been found that, for mass-
less quarks, radiative �s corrections are absent also in the
transverse part of triangle diagrams, and that the nonper-
turbative corrections show up in this part at precise orders
in the operator product expansion (OPE) [14,15]. Other
corrections appear, both in the longitudinal and in the
transverse part, if the quark masses do not vanish [16,17].
The investigation of this sector of QCD using hologra-

phy could permit to assess the degree of reliability of the
gauge/gravity duality approach to the quantum chromody-
namics, and indeed a few studies have been devoted to this
and other closely related topics in various dual models
[18–20]. In particular, it has been suggested, using a holo-
graphic model of QCD in which the chiral symmetry is
broken, as in [21], by boundary conditions for the vector
and axial-vector fields, that a relation should connect the
transverse part of the anomalous quark triangle diagrams
and the two-point left-right current correlation function
[22]. However, it has been claimed that such a relation is
not obeyed in QCD [23].
Motivated by the discussion, we consider the issue of the

quark triangle diagrams in a holographic model in which
chiral symmetry breaking is realized by the presence of a
scalar field, as in [6,7], and confinement is provided by a
background dilaton field which ensures linear Regge tra-
jectories for light hadrons, the so-called soft-wall dual
model of QCD [8]. Our aim is to compute the longitudinal
and transverse parts of the anomalous quark triangle dia-
grams and establish which QCD features are reproduced
in the holographic framework, and whether relations
exist between the transverse part and the left-right current

1We do not discuss here the so-called ‘‘top-down’’ AdS/QCD
approach, which has been reviewed, e.g., in [10].
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correlation function, as proposed in [22]. This also allows
us to investigate in details aspects of the chiral symmetry
breaking in the soft-wall model.

We start our study by reviewing in Sec. II the properties,
in QCD, of the longitudinal and transverse part of anoma-
lous triangle diagrams for zero and nonvanishing quark
mass. In Sec. III we formulate the holographic soft-wall
model with a Chern-Simons term, and in Sec. IV we
determine the longitudinal and transverse structure func-
tions wL and wT for various possibilities of the chiral
symmetry breaking quantities, the quark mass and the
quark condensate, collecting in the appendices several
computational details. The relations to two-point correla-
tion functions, together with the properties of such corre-
lation functions, are discussed in Secs. V and VI, with a
determination of a few low-energy constants. In Sec. VII
there are our conclusions.

II. AV�V VERTEX FUNCTION IN QCD

Let us consider the vertex function involving two vector
currents J� ¼ �qV��q and an axial-vector current J5� ¼
�qA���5q, with quark fields qif carrying a color (i) and a

flavour (f) index, and V and A diagonal matrices acting on
the flavour indices. In particular, we consider the case
where one of the two vectors corresponds to a real and
soft photon, i.e. with squared four-momentum k2 ¼ 0 and
momentum k ’ 0. An example of such a kind of functions
is the Z0��� vertex, described by two electromagnetic
currents J� ¼ P

fQf �qf��qf with Qf the electric charges,

and J5� the axial current J
5
� ¼ P

f2I
3
f �qf���5qf with I3f the

third component of the weak isospin, and in this case the
sum involves the quarks and also the leptons. The triangle
graph corresponding to the vertex produces the anomaly of
the Z0 axial current, which vanishes in the standard
SUð3Þc � SUð2ÞL �Uð1ÞY model provided that the con-
tributions of all the fermions (quarks and leptons) in a
given generation are added up.

We define the two-point correlation function of J� and

J5� in an external electromagnetic field

T��ðq; kÞ ¼ i
Z

d4xeiq�xh0jT½J�ðxÞJ5�ð0Þ�j�ðk; �Þi: (1)

It can be related to the three-point vacuum correlation
function

T���ðq; kÞ ¼ i2
Z

d4xd4yeiq�x�ik�y

� h0jT½J�ðxÞJ5�ð0ÞJem� ðyÞ�j0i; (2)

where Jem� is the electromagnetic current, since

T��ðq; kÞ ¼ e��T���ðq; kÞ; (3)

with ��ðkÞ the photon polarization vector and e the electric
charge unit.

For soft photon momentum k ! 0 one can express
T��ðq; kÞ keeping only linear terms in k and neglecting

quadratic and higher order powers of the momentum. In
this kinematical condition, accounting for the conservation
of the vector current J�, the amplitude T�� can be decom-

posed in terms of two structure functions wLðq2Þ and
wTðq2Þ:

T��ðq; kÞ ¼ � i

4�2
Tr½QVA�fwTðq2Þð�q2 ~f�� þ q�q

� ~f��

� q�q
� ~f��Þ þ wLðq2Þq�q� ~f��g; (4)

where Q is the electric charge matrix and ~f�� ¼
1
2 ����	f

�	 is the dual field of the photon field strength

f�	 ¼ k��	 � k	��. The first term in the decomposition
(4) is transversal with respect to the axial current index, the
second one is longitudinal.
We briefly recall what is known in QCD about the two

invariant functionswLðq2Þ andwTðq2Þ; in the next Sections
we shall compute these quantities in the AdS/QCD soft-
wall model, aiming at understanding which QCD proper-
ties are reproduced in that holographic approach.
In the case in which the triangle loop corresponding to

(1) and (2) takes contribution from a single quark of mass
m belonging to the fundamental representation of the color
gauge group SUðNcÞ, defining Q2 ¼ �q2, the one-loop
result for T�� gives [11]

wLðQ2Þ ¼ 2wTðQ2Þ ¼ 2Nc

Q2

�
1þ 2m2

Q2
ln
m2

Q2
þO

�
m4

Q4

��
:

(5)

In principle, such a result could be modified by perturba-
tive and nonperturbative corrections. Actually, a nonre-
normalization theorem for the anomaly protects wL from
receiving perturbative corrections [13]. As forwT , in [14] it
has been demonstrated that for the special kinematic con-
dition considered here, in which one of the photons is on
shell and soft (k ! 0), and for Q2 � m2, the perturbative
corrections towT also vanish to all orders. This implies that
in the chiral limitm ¼ 0 the �s corrections are both absent
in wL and wT ; hence,

wLðQ2Þ ¼ 2Nc

Q2
(6)

and, discarding nonperturbative corrections, the relation
holds:

wLðQ2Þ ¼ 2wTðQ2Þ: (7)

Now we turn to the nonperturbative corrections in the
case of light quarks. In the chiral limit m ¼ 0 such correc-
tions to wL are also absent, a consequence of the fact that
the behavior wL / 1

Q2 reflects the contribution of the pion

pole to the longitudinal part of T��, and the pole is located

in this case at Q2 ¼ 0. On the other hand, wT receives
nonperturbative corrections which start from Oð 1

Q6Þ.
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To understand the case m � 0, we consider the non-
perturbative corrections in the framework of the OPE. At
large EuclideanQ2 we define the expansion of the operator

T̂��

T̂ �� ¼ i
Z

d4xeiq�xT½J�ðxÞJ5�ð0Þ�

¼ X
i

ci���1�2...�i
ðqÞO�1�2...�i

i (8)

in terms of local operators Oi and of perturbatively com-
putable coefficients ci. The dimension of the operators Oi

matches the dependence of the coefficients ci on the in-
verse powers of Q2. From the expansion (8) it follows that

T��ðq; kÞ ¼ h0jT̂��j�ðk; �Þi
¼ X

i

ci���1�2...�i
ðqÞh0jO�1�2...�i

i j�ðk; �Þi: (9)

Keeping only linear terms in the photon momentum k, the

structure of the OPE for T̂�� is

T̂�� ¼ X
i

fciTðq2Þð�q2Oi
�� þ q�q

�Oi
�� � q�q

�Oi
��Þ

þ ciLðq2Þq�q�Oi
��g; (10)

so that, parameterizing the photon-vacuum matrix ele-
ments of the local operators Oi as

h0jO�	
i j�ðk; �Þi ¼ � ie

4�2

i
~f�	; (11)

one has an expression for the functions wL and wT in terms
of the coefficients ci and of the parameters 
i,

wL;TðQ2Þ ¼ X
i

ciL;TðQ2Þ
i: (12)

The leading (lowest dimensional) operator in the OPE has
dimensionD ¼ 2 and involves the dual of the field strength
tensor F�	 ¼ @�A	 � @	A�, with A the photon field:

OðD¼2Þ
�	 ¼ e

4�2
~F�	: (13)

From the relation h0jF�	j�ðk; �Þi ¼ �if�	 and using the

definition in (11) one obtains 
ðD¼2Þ ¼ 1.
The next contribution to the OPE comes from the op-

erator of dimension D ¼ 3

OðD¼3Þ
�	 ¼ �i �q��	�5q (14)

with coefficient cðD¼3Þ
L;T ¼ 4m

Q4 . From the relation ��	�5 ¼
i
2 ��	���

�� and defining

h0j �q���qj�ðk; �Þi ¼ � ie

4�2

ðD¼3Þf��


ðD¼3Þ ¼ �4�2h �qqi (15)

one obtains

wðD¼3Þ
L ðQ2Þ ¼ 2wðD¼3Þ

T ðQ2Þ ¼ 4m

Q4
ð�4�2Þh �qqi; (16)

where h �qqi denotes the vacuum quark condensate and we
have introduced the so-called magnetic susceptibility  of
the quark condensate. Therefore, at this order a relation
holds for wL and wT :

wLðQ2Þ ¼ 2wTðQ2Þ

¼ 2Nc

Q2

�
1þ 2m2

Q2
ln
m2

Q2
� 8�2mh �qqi

NcQ
2

þO
�
m4

Q4

��
(17)

at large Q2 (with Oð�sÞ corrections computed in [17]). As
for higher order terms, the dimension D ¼ 4 operators can
be reduced to the D ¼ 3 ones using the quark equation of
motion, while both D ¼ 5 and D ¼ 6 terms contribute to
Oð 1

Q6Þ order. Remarkably, the contribution of the dimen-

sionD ¼ 6 operators does not vanish in the chiral limit and
is responsible of the difference between wL and 2wT .

Indeed, for mq ¼ 0, wL remains wLðQ2Þ ¼ 2Nc

Q2 , while

wT , including the leading nonperturbative correction, reads
[16,24]:

wTðQ2Þ ¼ Nc

Q2
þ 128�3�sh �qqi2

9Q6
þO

�
1

Q8

�
: (18)

The susceptibility of the chiral condensate  arises here
after assuming factorization of the matrix element of four-
quark operators in the electromagnetic external field F�	.
In principle, there might be otherOð1=Q6Þ contributions in
the OPE from operators like ~F�	Ga

��G
��
a , with Ga

�� the

gluon field strength; however, they appear at one-loop with
small coefficients, while the 1=Q6 term in (18) comes from
tree-level diagrams.
In the next sections we discuss the determination of the

functions wLðQ2Þ and wTðQ2Þ in the soft-wall model, to
assess the extent to which these QCD results are
reproduced.

III. THE SOFT-WALL ADS/QCD MODEL
WITH THE CHERN-SIMONS TERM

As in other holographic approaches, the AdS/QCD soft-
wall model [8] is defined in a five-dimensional AdS space
with line element

ds2 ¼ gMNdx
MdxN ¼ R2

z2
ð���dx

�dx� � dz2Þ: (19)

The coordinate indices M, N are M, N ¼ 0, 1, 2, 3, 5,
��� ¼ diagðþ1;�1;�1;�1Þ and R is the AdS curvature

radius (set to unity from now on). In the model, the fifth
coordinate z runs in the range � � z <þ1, with � ! 0þ,
and a background dilatonlike field is introduced

�ðzÞ ¼ ðczÞ2; (20)
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the form of which is chosen to obtain linear Regge trajec-
tories for light vector mesons; c is a dimensionful parame-
ter setting a scale for QCD quantities, and its numerical
value, obtained from the spectrum of the light vector

mesons, is c ¼ M�

2 . The model describes light vector,

axial-vector and pseudoscalar mesons, with a mechanism
of chiral symmetry breaking related to the presence of a
scalar field; the model has been extended to include the
sector of light scalar mesons [9].

As in [6–8], we introduce the left and right gauge fields
Aa

L� and Aa
R� which are dual to the SUðNfÞL and

SUðNfÞR flavour currents, �qL�
�TaqL and �qR�

�TaqR,

with Ta the generators of SUðNfÞ. Moreover, we enlarge

the gauge group to UðNfÞL �UðNfÞR to describe the dual

of the electromagnetic current which contains both isovec-
tor and isoscalar components.

We introduce a scalar field X which is the dual to the

quark bifundamental field �q�Rq
	
L :

X ¼ X0e
2i� (21)

and contains the background field X0 ¼ vðzÞ
2 and the chiral

field �ðx; zÞ. X0 only depends on z and incorporates the
chiral symmetry breaking behavior. A scalar field Sðx; zÞ
could also be included to describe light scalar mesons by
the substitution X0e

2i� ! ðX0 þ SÞe2i� [9]. It is repre-
sented by Sðx; zÞ ¼ SAðx; zÞTA, with the indices A ¼ 0, a
and a ¼ 1; . . .N2

f � 1. The matrix T0 ¼ 1ffiffiffiffiffiffi
2Nf

p , together

with the SUðNfÞ generators Ta, satisfies the normalization

condition

Tr ðTATBÞ ¼ �AB

2
: (22)

The five-dimensional Yang-Mills action describing the
fields AM

L;R, as well as the X field, is

SYM ¼ 1

kYM

Z
d5x

ffiffiffi
g

p
e��Tr

�
jDXj2 �m2

5jXj2

� 1

4g25
ðF2

L þ F2
RÞ
�
; (23)

with FMN
L;R ¼ FMNa

L;R Ta ¼ @MAN
L;R � @NAM

L;R � i½AM
L;R;

AN
L;R�. g is the determinant of the metric tensor gMN ,

�ðzÞ is the dilaton in (20), and kYM is a parameter included
to provide canonical 4d mass dimensions for the fields. The
5d mass of the field X is fixed tom2

5 ¼ �3 according to the
AdS/CFT correspondence dictionary. The covariant de-
rivative acting on X is defined as

DMX ¼ @MX� iAM
L X þ iXAM

R ; (24)

hence for X ¼ 0 the left and right sectors in (23) are
decoupled. We combine the gauge fields AM

L;R into a

vector field VM ¼ AM
L þAM

R

2 and an axial-vector field AM ¼
AM

L �AM
R

2 , so that the 5d action for the fields V, A and X is

SYM ¼ 1

kYM

Z
d5x

ffiffiffi
g

p
e��Tr

�
jDXj2 �m2

5jXj2

� 1

2g25
ðF2

V þ F2
AÞ
�
: (25)

The covariant derivative is now defined as

DMX ¼ @MX � i½VM; X� � ifAM; Xg (26)

and the field strengths FMN
V;A are

FMN
V ¼ @MVN � @NVM � i½VM; VN� � i½AM; AN�

FMN
A ¼ @MAN � @NAM � i½VM; AN� � i½AM; VN�: (27)

Matching the two-point correlation function of the vector
field V, and the two-point correlation function of the scalar
field S, with the corresponding leading order perturbative
QCD results allows to fix the constants kYM and g25 in the

Yang-Mlls action: kYM ¼ 16�2

Nc
and g25 ¼ 3

4 [6,9].

The modification to the approach in [6–8], required to
compute the functions wL and wT , consists in adding to
SYM a Chern-Simons contribution, discussed in [2] and
considered in holographic models in [18–20,22,25–27].
This contribution is given by the difference SCSðALÞ �
SCSðARÞ, where

SCSðAÞ ¼ kCS
Z

d5xTr

�
AF2 � i

2
A3F� 1

10
A5

�
:

(28)

Actually, the terms in the Chern-Simons action SCS pro-
portional to higher odd powers of AL;R do not contribute

to the correlation function AV�V of interest here, therefore
we do no consider them anymore, and only keep in (28) the
terms Tr½AL;RF

2
L;R� ¼ �ABCDETr½AA

L;RF
BC
L;RF

DE
L;R�, with

A; . . . ; E indices of the 5d coordinates. Moreover, since
the Chern-Simons actions depend explicitly on the gauge
fields A and are invariant only up to a boundary term, we
include a boundary term to make explicit the invariance
under a vector gauge transformation, obtaining:

SCSþb ¼ 3kCS�ABCDE

Z
d5xTr½AAfFBC

V ; FDE
V g�: (29)

The constant kCS will be fixed below.2 In the AdS/QCD
soft-wall model the starting point is then the effective
action

Seff5d ¼ SYM þ SCSþb: (30)

In order to compute correlation functions of vector and
axial-vector currents, we exploit the basic relation of the
AdS/QCD correspondence, i.e. the duality relation be-
tween the QCD generating functional relative to a given
operatorOðxÞ and the effective 5d action. The duality holds

2In some top-down models of holographic QCD the Chern-
Simons action also contains a coupling with the scalar tachyon
X, as derived by brane actions [28,29].
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provided that the source of OðxÞ coincides with the z ¼ 0
boundary value f0ðxÞ ¼ fðx; 0Þ of the dual field fðx; zÞ in
the 5d action:

hei
R

d4x0ðxÞf0ðxÞiQCD ¼ eiS
eff
5d
½fðx;zÞ�: (31)

Let us define ~Ga
�ðq; zÞ as the Fourier transform with

respect to the 4d coordinates x� of a generic gauge field
Gaðx; zÞ ¼ Vaðx; zÞ and Aaðx; zÞ (a flavour index). The
bulk-to-boundary propagator Gðq; zÞ can analogously be

defined in the Fourier space: ~Ga
�ðq; zÞ ¼ Gðq; zÞGa

�0ðqÞ,
where Ga

�0ðqÞ is the source field. Furthermore, we decom-

pose each vector and axial-vector field of momentum q
using two projection tensors,

P?
�� ¼ ��� �

q�q�

q2
Pk
�� ¼ q�q�

q2
; (32)

so that the vector and axial-vector bulk-to boundary propa-
gators can be written in terms of the transverse and longi-
tudinal parts:

~Va
�ðq;zÞ¼V?ðq;zÞP?

��V
a�
0 ðqÞ

~Aa
�ðq;zÞ¼A?ðq;zÞP?

��A
a�
0 ðqÞþAkðq;zÞPk

��Aa�
0 ðqÞ;

(33)

with boundary conditions V?ðq; 0Þ ¼ 1 and A?ðq; 0Þ ¼
Akðq; 0Þ ¼ 1. We discuss below the behavior at z ! 1. In

(33) we have taken into account that the (conserved) vector
field is transverse.

Writing the longitudinal component of ~A as ~Aak
� ðq; zÞ ¼

Akðq; zÞPk
��Aa

�0ðqÞ ¼ iq� ~�a, from the effective 5d action

(30) we may work out a set of linearized equations of
motion, obtained in the axial gauge Vz ¼ Az ¼ 0:

@y

�
e�y2

y
@yV?

�
� ~Q2 e

�y2

y
V? ¼ 0 (34)

@y

�
e�y2

y
@yA?

�
� ~Q2 e

�y2

y
A? � g25v

2ðyÞe�y2

y3
A? ¼ 0

(35)

@y

�
e�y2

y
@y ~�

a

�
þ g25v

2ðyÞe�y2

y3
ð~�a � ~�aÞ ¼ 0 (36)

~Q 2ð@y ~�aÞ þ g25v
2ðyÞ
y2

@y ~�
a ¼ 0: (37)

We have defined the dimensionless quantities: y ¼ cz and
~Q2 ¼ Q2

c2
, withQ2 ¼ �q2 (Q2 > 0 represent the Euclidean

momenta). We also adopt the notation V ¼ V? and A ¼
A?. Using the relation

~�aðq; yÞ ¼ �i
q�

q2
Akðq; yÞPk

��Aa
�0ðqÞ; (38)

and writing ~�aðq; yÞ ¼ �i q
�

q2
�ðq; yÞAa

�0ðqÞ, we find that

�ðq; yÞ and Akðq; yÞ obey the same equations (36) and (37)

as ~�a and ~�a.
From the action (25) an equation can also be derived for

the field X0 ¼ 1
2v:

@y

�
e�y2

y3
@yvðyÞ

�
þ 3e�y2

y5
vðyÞ ¼ 0 (39)

the general solution of which is a combination of the
Tricomi confluent hypergeometric function Uð12 ; 0; y2Þ
and of the Kummer confluent hypergeometric function

1F1ð32 ; 2; y2Þ. Imposing regularity of the solution for

y ! þ1, the latter must be discarded, and vðyÞ reads
vðyÞ � �ð32ÞyUð12; 0; y2Þ: (40)

In the expansion of this function for y ! 0: vðyÞ ! C1yþ
C2y

3, the two chiral symmetry breaking parameters can be
identified on the basis of the holographic dictionary [6]: the
quark mass, which breaks explicitly the chiral symmetry,
enters in the coefficient C1 of y, and the quark condensate,
the spontaneous chiral symmetry breaking parameter, en-
ters in the coefficient C2 of y

3:

mq / C1 � / h �qqi / C2: (41)

However, in the expansion of the solution vðyÞ in (40) the
coefficients C1 and C2 are related, and this would imply a
proportionality relation between the quark massmq and the

quark condensate h �qqi. In QCD such a proportionality
relation is absent, the quark mass and the quark condensate
in the chiral limit being independent parameters. This
feature of the soft-wall model comes from the choice of
the terms in the X field in the action (23) or (25), and could
be corrected adding potential terms VðjXjÞ to the action
[30,31]. In the following analysis we do not explore such a
possibility, but simply assume for vðyÞ the form

vðyÞ ¼ mq

c
yþ �

c3
y3; (42)

the same choice done, e.g., in [32], considering separately
the cases where one or both the chiral symmetry breaking
parameters are different from zero.
Now we proceed to determine the functions wL and wT

which can be obtained, according to the AdS/CFT pre-
scription, by a functional derivation of the effective 5d
action (30). Before the calculation, we express the
Chern-Simons action (29) in terms of the weak background
electromagnetic field

SCSþb ¼ 48kCSd
ab ~F

��
em

Z
d5xAb

�@zV
a
�; (43)

with dab ¼ 1
2 Tr½QfTa; Tbg�, Q the electric charge matrix

as before, and ~F��
em the field strength corresponding to the

external photon. The electric charge matrix obeys
the Gell-Mann Nishijima relation: Q ¼ T3 þ Y

2 , with Y
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the hypercharge that can be expressed in terms of the
generators of UðNfÞ: Ta for SUðNfÞ and T0 proportional

to the baryon number matrix B ¼ 1
3 1 that generates Uð1Þ.

With two light flavors the relation is Y ¼ B
2 , while for three

flavour it is Y ¼ 1
2 ðBþ SÞ where S ¼ Diagð0; 0;�1Þ is the

strangeness matrix. In this case Y is proportional to the
generator T8 of SUð3Þ: Y ¼ 1ffiffi

3
p T8, so that Q ¼ T3 þ 1ffiffi

3
p T8

and ~F��
em ¼ ~F3;�� þ 1ffiffi

3
p ~F8;��. Notice that for a soft

x�-independent electromagnetic field its dual vector field
is also independent of the fifth coordinate z, so ~F

��
em is

placed out of the 5d integral in Eq. (43).
The action (43) can be used to derive the expressions of

wLðQ2Þ and wTðQ2Þ. Analogously to the decomposition in
(4), the correlation function of a vector and an axial-vector
current in the external electromagnetic background field
can be written in terms of the functions wL and wT :

dabhJV�JA� i ~F 	 i
Z

d4xeiqxhTfJVa� ðxÞJAb� ð0Þgi ~F

¼ dab
Q2

4�2
P?
��½P?

�	wTðQ2Þ

þ Pk
�	wLðQ2Þ� ~F�	: (44)

The two terms in this expression, the one proportional to

P?
��P

?
�	 and the other one proportional to P?

��P
k
�	, can be

obtained by functional derivation of the action (30):

dabð2�Þ�4�4ðq1 þ q2ÞhJV�JA� i??
~F

¼ �2SCSþb

�Va?
�0 ðq1Þ�Ab?

�0 ðq2Þ

dabð2�Þ�4�4ðq1 þ q2ÞhJV�JA� i?k
~F

¼ �2SCSþb

�Va?
�0 ðq1Þ�Abk

�0ðq2Þ
;

(45)

and from the comparison of (44) with (45) one finds:

wLðQ2Þ ¼ � 2Nc

Q2

Z 1

0
dyAkðQ2; yÞ@yVðQ2; yÞ (46)

wTðQ2Þ ¼ � 2Nc

Q2

Z 1

0
dyA?ðQ2; yÞ@yVðQ2; yÞ: (47)

The coefficient 2Nc has been obtained fixing the factor kCS
in the Chern-Simons action (28) to the value kCS ¼ � Nc

96�2 ;

this permits to recover the leading terms in the QCD OPE
Eq. (7), as discussed below.

To see whether the expressions obtained from Eqs. (46)
and (47) match the QCD results of the previous Section,
the equations for V, Ak and A? must be analyzed and

solved.

IV. DETERMINATION OF THE FUNCTIONS wL

AND wT

In order to compute the functions wLðQ2Þ and wTðQ2Þ
using Eqs. (46) and (47) we need to analyze and solve the
equations of motion (34)–(37) for V, Ak and A?. Equation
(34) for VðQ2; yÞ can be exactly solved with the boundary
conditions VðQ2; 0Þ ¼ 1 and VðQ2;1Þ ¼ 0, yielding

VðQ2; yÞ ¼ �

�
1þ Q2

4c2

�
U

�
Q2

4c2
; 0; y2

�
; (48)

with U the Tricomi confluent hypergeometric function.
The calculation is more difficult for A? and Ak since

Eqs. (35) and (37) involve the chiral symmetry breaking
function vðyÞ. Adopting the expression in (42), we discuss
separately the cases:
(A) mq ¼ � ¼ 0

(B) mq � 0, � ¼ 0

(C) mq ¼ 0, � � 0

(D) mq � 0, � � 0.

A. mq ¼ � ¼ 0

If both the chiral symmetry breaking parameters mq and

� vanish, the equations of motion (35)–(37) can be solved
and provide the results AkðQ2; zÞ ¼ 1, and AðQ2; zÞ ¼
A?ðQ2; zÞ ¼ VðQ2; zÞ since Eqs. (35) and (34) coincide
for vðyÞ ¼ 0. Therefore, the expressions (46) and (47) for
the structure functions wLðQ2Þ and wTðQ2Þ become

wLðQ2Þ ¼ � 2Nc

Q2

Z 1

0
dy@yVðQ2; yÞ ¼ 2Nc

Q2
(49)

wTðQ2Þ ¼ � 2Nc

Q2

Z 1

0
dyVðQ2; yÞ@yVðQ2; yÞ ¼ Nc

Q2
(50)

using the boundary conditions for VðQ2; yÞ at y ¼ 0 and
y ! þ1. Equations (49) and (50) show that the QCD
results in Eqs. (6) and (7) in the case of chiral symmetry
restoration are recovered in the holographic approach.

B. mq � 0, � ¼ 0

In this case, Eqs. (35) and (34) coincide replacing ~Q2 !
~Q2 þ ~M2, where ~M2 ¼ m2

qg
2
5

c2
. Therefore, the solution of

(35) satisfying the conditions A?ðQ2; 0Þ ¼ 1 and
A?ðQ2;1Þ ¼ 0 is

A?ðQ2; yÞ ¼ �

�
1þ

~Q2 þ ~M2

4

�
U

� ~Q2 þ ~M2

4
; 0; y2

�
: (51)

Also Eqs. (36) and (37) can be solved and yield

�ðQ2; yÞ ¼
~Q2

~M2
½1� AkðQ2; yÞ� þ �ðQ2; 0Þ (52)
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AkðQ2; yÞ ¼ ~M2

~Q2 þ ~M2
½1� �ðQ2; 0Þ�A?ðQ2; yÞ

þ
~Q2 þ ~M2�ðQ2; 0Þ

~Q2 þ ~M2
: (53)

These results lead to a relation between wT and wL:

wLðQ2Þ ¼ 2Nc

Q2
þ ~M2½1� �ðQ2; 0Þ�

~Q2 þ ~M2

�
wTðQ2Þ � 2Nc

Q2

�
:

(54)

A critical role is played by the boundary condition
�ðQ2; 0Þ of the chiral field solution of (36) and (37), an
issue that we shall examine later on.

C. mq ¼ 0, � � 0

In this limit, the chiral limit, it is possible to determine
the largeQ2 behavior ofwL andwT by the Green’s function
method described in Appendix B. An important point,
demonstrated in the same appendix, is that AkðQ2; yÞ ¼ 1
to all orders in the 1=Q2 expansion, and at the same
conclusion one arrives considering the regularity of the
solutions of the equation of motion, as discussed in
Appendix A. The consequence, using (46), is that

wLðQ2Þ ¼ 2Nc

Q2
: (55)

Regarding A?, the first correction appears atOð 1
Q6Þ, and the

resulting modification in wT is

wTðQ2Þ ¼ Nc

Q2
� �g25�

2 2Nc

Q8
þO

�
1

Q10

�
; (56)

with � ¼ 2:74286 a numerical constant obtained in the
Appendix B 1 by the Green’s function method. The result
in (56) does not reproduce the QCD one, Eq. (18), in which
the first power correction shows up at Oð 1

Q6Þ and is propor-
tional to the magnetic susceptibility  of the quark
condensate.

A comment concerning this discrepancy is in order. The
asymptotic conformal symmetry of QCD in the Euclidean
large Q2 region suggests that AdS/CFT related methods
can be used to describe strong interactions in this range of
squared momenta. However, QCD is weakly coupled in
this regime while, in principle, the gauge/gravity corre-
spondence relates a supergravity theory to a gauge field
theory which is strongly coupled at all scales. Standing the
conjecture, the smallness of the QCD coupling at Q2 ! 1
could enhance the stringy effects in the gravity dual. In
bottom-up models, this might imply a mismatch of the
Oð�sÞ corrections, as reported here in the case of the
anomaly, or a mismatch of condensate terms in the 1=Q2

expansion of different correlation functions [33]. A justi-
fication of the application of the holographic correspon-
dence in a regime different from the one in which it is

expected to hold can be found observing that a few results
computed in QCD through expansions, including the 1=Q2

one, can be reproduced in dual models with various gravity
backgrounds, as obtained in [34].

D. mq � 0, � � 0

In this more general case, results can be obtained by the
Green’s function method in the large Q2 limit, as we
discuss afterward. There is also the possibility to work
out analytical results in an interesting situation, in which
m2

q and �2 terms in the function vðyÞ2 are neglected, and

only the term proportional to mq� is considered. In this

case, the inclusion ofm2
q terms can be done subsequently in

a straightforward way in the case of A?. Notice that, on
dimensional ground,�2 terms will be suppressed by higher
inverse powers of Q2 and give subleading contributions in
a 1=Q2 expansion to be matched with the OPE in QCD.
Therefore, we first concentrate on the discussion of these
analytic results.

Let us consider Eq. (35) for A ¼ A?. For v2ðyÞ ¼
2mq�

c4
y4, defining the dimensionless parameter � ¼

2g2
5
mq�

c4
, Eq. (35) becomes

@2yA�
�
2yþ 1

y

�
@yA� ~Q2A� �y2A ¼ 0; (57)

and its solution satisfying the boundary conditions
AðQ2; 0Þ ¼ 1 and regularity for y ! 1, is

AðQ2; yÞ ¼ eðy2=2Þð1�
ffiffiffiffiffiffiffi
1þ�

p Þ�
�
1þ

~Q2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
�

�U

� ~Q2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p ; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
y2
�
: (58)

The expansion of this solution at first order in � involves
the function VðQ2; yÞ in (48) and its derivatives:

AðQ2; yÞ ¼ VðQ2; yÞ þ �

2

�
�
�
1þ y2

2

�
VðQ2; yÞ

þ y

2
@yVðQ2; yÞ þ

� ~Q2

4

�
2
W

� ~Q2

4
; 0; y2

��
;

(59)

together with the function W, defined as

Wða; b; cÞ ¼ �@af�ðaÞUða; b; cÞg

¼
Z 1

0
dte�ctta�1ð1þ tÞb�a�1 log

�
1þ t

t

�
:

(60)

This function W can be related to V:

W

� ~Q2

4
; 0; y2

�
¼
�
4
~Q2

�
2½VðQ2; yÞ � ~Q2@ ~Q2VðQ2; yÞ�

(61)
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and satisfies the condition Wð ~Q2

4 ; 0; 0Þ ¼ ð 4
~Q2Þ2. The solu-

tion permits to compute the function wT at the first order in
�,

wTðQ2Þ ¼ Nc

Q2

�
1þ �

2
ðð3� ~Q2ÞI1 � 1þ 2 ~Q2IQÞ

�
; (62)

where

I1 ¼
Z 1

0
dyy2VðQ2; yÞ@yVðQ2; yÞ

¼ � 1

½�ð ~Q2

4 Þ�2
G33

33 1

�������� 1; 1; 3� ~Q2

4

2; 3; 1þ ~Q2

4

 !
;

IQ ¼
Z 1

0
dyð@ ~Q2VÞ@yVðQ2; yÞ:

(63)

G33
33 is the Meijer’s G function. Expanding I1 and IQ in

inverse powers of ~Q2,

I1 ¼ � 2

3 ~Q2
� 8

5 ~Q4
� 352

105 ~Q6
þO

�
1
~Q8

�

IQ ¼ 1

6 ~Q2
þ 1

5 ~Q4
� 8

105 ~Q6
þO

�
1
~Q8

�
;

(64)

gives the result, at Oð 1
~Q6Þ,

wTðQ2Þ ¼ Nc

Q2

�
1� 4�

5 ~Q4

�
: (65)

Let us discuss the inclusion of Oðm2
qÞ terms. The solution

for AðQ2; yÞ can be obtained in a straightforward way

solving Eq. (57) after replacing ~Q2 ! ~Q2 þ ~M2 where

again ~M2 ¼ m2
qg

2
5

c2
. Hence, the solution is provided by

Eq. (58) (to all orders in �) or by Eq. (59) (at Oð�Þ)
performing such a replacement. Neglecting terms of
Oð� ~M2Þ, wT gets a correction which reads (up to Oð ~M4Þ)

wð ~M2Þ
T ðQ2Þ ¼ � 2Nc

Q2

�
~M2IQ þ ~M4

2
@ ~Q2IQ

�
; (66)

so that, expanding in the inverse powers of ~Q2, we find:

wTðQ2Þ ¼ Nc

Q2

�
1� g25m

2
q

3Q2
� 2g25m

2
qc

2

5Q4
þ g45m

4
q

6Q4

� 8g25mq�

5Q4

�
þO

�
1

Q8

�
: (67)

Now we turn to the determination of Ak and wL for

g25v
2 ¼ �y4. Using Eqs. (36) and (37), together with the

relation between ~� and Ak, we obtain for the function

fðQ2; yÞ ¼ @yAkðQ2; yÞ the equation

@y

�
1

y2
@yf

�
� @y

��
2

y
þ 1

y3

�
f

�
�

~Q2

y2
f� �f ¼ 0; (68)

the regular solution of which is

fðQ2; yÞ ¼ C1e
ðy2=2Þð1� ffiffiffiffiffiffiffi

1þ�
p ÞyU

� ~Q2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p ; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
y2
�

¼ C1

y

�ð1þ ~Q2

4
ffiffiffiffiffiffiffi
1þ�

p Þ
AðQ2; yÞ: (69)

The last equality comes from the comparison with (58).
The integration constant C1 is critical. If C1 does not

depend on �, the solution in (69) is compatible with the
condition AkðQ2; yÞ ¼ 1 for � ! 0 only for C1 ¼ 0, with

the consequence: wL ¼ 2Nc

Q2 . If C1 depends on �, it should

vanish for � ! 0 in order to fulfill that condition for
Ak. Assuming C1 / � and expanding f ¼ f0 þ �

2 f1, we

obtain:

f0ðQ2; yÞ ¼ 0 f1ðQ2; yÞ ¼ ~C1yVðQ2; yÞ (70)

where ~C1 does no more depend on �. Hence Ak reads

AkðQ2; yÞ ¼ 1þ ~C1

�

2

1

4� ~Q2
½2ðy2 þ 1ÞVðQ2; yÞ

� yð@yVðQ2; yÞÞ � 2�; (71)

and wL is given by

wLðQ2Þ ¼ 2Nc

Q2

�
1� �

2
~C1I1

�

¼ 2Nc

Q2

�
1þ �

2
~C1

�
2

3 ~Q2
þ 8

5 ~Q4
þ . . .

��
(72)

in terms of ~C1 which typically is a function of ~Q2.
In the general case mq � 0, � � 0 analytical results are

difficult to work out, and we rely, in the large Q2 limit, on
the findings of the Green’s function method in the
Appendix B. ForwT the result of such a method reproduces
Eq. (67). The result for wL can be expressed in terms of the
boundary condition of the chiral field �ðQ2; 0Þ:

wLðQ2Þ ¼ 2Nc

Q2
� ½1� �ðQ2; 0Þ�Nc

�
g25m

2
q

Q4
þ 4g25mq�

Q6

� 2g45m
4
q

3Q6
þO

�
1

Q8

��
: (73)

Notice that, for � ¼ 0, the results (67) and (73) satisfy the
relation (54).
Considering Eqs. (72) and (73), we conclude that, in the

holographic model, the survival of quark mass corrections
to wL depends on integration constants: they appear if
~C1 � 0, or �ðQ2; 0Þ � 1. Regardless of this, the relation
(17) between the functions wL and wT at large Q2 is
violated.

V. �VV ��AA IN THE SOFT-WALL MODEL

In [22] the idea has been put forward that, in massless
QCD and for any positive and negative Q2, a relation
should hold between the structure function wT and the
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left-right two-point correlation function, defined by the
difference �LR ¼ �VV

? ��AA
? of the transverse invariant

functions appearing in the vector and axial-vector two-
point correlators:

�ab
��ðqÞ ¼ i

Z
d4xeiqxh0jTfJa�ðxÞJb�ð0Þgj0i

¼ ðq�q� � q2g��Þ�ab�?ðq2Þ
þ q�q��

ab�kðq2Þ; (74)

with vector Ja� ¼ �q��T
aq and axial-vector currents J5a� ¼

�q���5T
aq. The proposed relation reads

wTðQ2Þ ¼ Nc

Q2
þ Nc

F2
�

�LRðQ2Þ; (75)

with F� the pion decay constant.
Before commenting on the relation (75), let us focus on

�LR in our holographic approach; it is worth reminding
that, for mq ¼ 0, �LR is an order parameter of the sponta-

neous chiral symmetry breaking, therefore it represents an
important quantity for studying the chiral structure of the
theory.

In the AdS/QCD soft-wall model the expression of
�LRðQ2Þ requires the bulk-to-boundary propagators
VðQ2; yÞ and A?ðQ2; yÞ close to the UV brane y ¼ cz ! 0:

�LRðQ2Þ ¼ � e�y2

kYMg
2
5
~Q2

�
VðQ2; yÞ@yVðQ

2; yÞ
y

� A?ðQ2; yÞ@yA?ðQ2; yÞ
y

���������y!0
: (76)

An expression for �LRðQ2Þ can be obtained solving the
equations of motion (34) and (35) for V and A? through a
perturbative expansion in 1

~Q2 using the Green’s function

method, and the details of the computation can be found

in Appendix B 1. The large ~Q2 expansion reads

�LRðQ2Þ ¼ � 1

kYMg
2
5

X1
k¼0

�k

ð ~Q2Þk : (77)

As shown in Appendix B 1, formq ¼ 0 the first nonvanish-

ing coefficient in (77) is

�3 ¼ 8g25�
2

5c6
; (78)

yielding

�LRðQ2Þ ¼ � Nc�
2

10�2Q6
þO

�
1

Q8

�
: (79)

Therefore, the first term in the expansion of �LR is of
Oð1=Q6Þ, with the same negative sign found in QCD for
the corresponding dimension six condensate [35–37]. The
result (79) is quite robust, since additional contributions to

v ¼ �y3=c3 with higher orders in y would modify �LR at
Oð1=Q8Þ or beyond.
Concerning the relation (75), at large Q2 the difference

between V and A is ofOð1=Q6Þ, and this leads, formq ¼ 0,

to the result obtained in Sec. IVC that the leading power

correction to wT is wTðQ2Þ ¼ Nc

Q2 ð1þOð 1
Q6ÞÞ. Considering

that �LR is given by Eq. (79), we conclude that the Q2

dependences of the two sides of the proposed equality (75)
do not match, therefore the validity of the relation (75)
between wT and �LR is not corroborated. A similar result
has been found in the so-called hard-wall model [22].

VI. PHENOMENOLOGY FOR mq ¼ 0

For mq ¼ 0 and Q2 ! 0, simple analytical results for

�LR and wT can be worked out. In this case g5vðzÞ ¼ �y3

(with � ¼ g5�=c
3), therefore the regular solution

Að0; yÞ ¼ A?ð0; yÞ of Eq. (35) can be written in terms of
the Airy function AiðxÞ:

Að0; yÞ ¼ eðy2=2Þ
Ai ð �2y2þ1

2ð2=3Þ�ð4=3ÞÞ
Ai ð 1

2ð2=3Þ�ð4=3ÞÞ
: (80)

The pion decay constant is then provided by the relation [6]

F2
� ¼ � 1

g25kYM
c2

@yAð0; yÞ
y

��������y!0

¼ � Nc

12�2
c2

@yAð0; yÞ
y

��������y!0
: (81)

The functionwT atQ
2 ¼ 0 is related to a chiral low-energy

constant CW
22, defined in [38,39]: they can be both com-

puted and read

CW
22 ¼

wTð0Þ
128�2

¼ � Nc

64�2c2

Z 1

0
dyAð0; yÞfVðyÞ; (82)

with

fVðyÞ ¼
@yVðQ2; yÞ

~Q2

�������� ~Q2!0
¼ � y

2
ey

2
�ð0; y2Þ (83)

and �ða; xÞ the incomplete gamma function.
Let us remark that, as F2

� is of OðNcÞ, the derivative
@yAð0; yÞ must be OðN0

cÞ. This requires that the parameter

� in the scalar background function X0ðzÞ must be of
OðN0

cÞ or smaller. Indeed, from the analysis of the AdS/
QCD effective action including, together with the back-
ground field X0ðzÞ, the dynamical scalar fields Sðx; zÞ
[9,30], we work out the relation: � ¼ � 8�2

Nc
h �qqi. As a

consequence, the numerical results for F� and CW
22 from

(81) and (82), using the central value of the quark conden-
sate from QCD sum rules analyses h �qqi ¼ �ð0:24

0:01 GeVÞ3 (at the scale � ¼ 1 GeV) [40], together with
c ¼ M�=2 ¼ 0:388 GeV and Nc ¼ 3, are

F� ¼ 86:5 MeV; CW
22 ¼ 6:3� 10�3 GeV�2: (84)
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The experimental value of the neutral pion decay constant
is F� ¼ 92:2 MeV. The low-energy constant CW

22 can be
related to the slope at Q2 ¼ 0 of the �0 ! ��� form

factor: FðQ2Þ ¼ Fð0Þð1� � Q2

M2

�0

Þ. The slope � has been

measured: � ¼ 0:032
 0:004 [41], and the relation with

CW
22 has been obtained in the large Nc limit: CW

22 ¼ �Nc

64�2M2

�0

[39]. The corresponding value is CW
22 ¼ ð8:3
 1:3Þ �

10�3 GeV�2. Our result is also close to an estimate by a
resonance chiral theory, expressed in terms of the light

vector meson mass M�: CW
22 ¼ Nc

64�2M2
�
¼ 7:9�

10�3 GeV�2 [42].
Finally, from Eq. (79) it is also possible to obtain a

determination of the dimension six condensate in �LR,
i.e. the coefficient of the 1=Q6 term in the 1=Q2 expansion,

O 6 ¼ � 32�2

5Nc

h �qqi2 ¼ �4:0� 10�3 GeV6; (85)

in reasonable agreement with QCD sum rule determina-
tions [35–37], an average of which is provided in [37]:
O6 ¼ ð�3:9
 0:8Þ � 10�3 GeV6. Using different values
of the parameters, namely, the quark condensate reported
in [43], would not spoil the overall agreement of the soft-
wall results with the other determinations.

VII. DISCUSSION AND CONCLUSIONS

In the holographic approach with the Chern-Simons
term in the action, the expressions (46) and (47) allow to
determine wL and wT in terms of the functions V, Ak and
A? which regulate the vector and the axial-vector sectors in
the dual model. In the chiral mq ¼ 0 limit, the result (6)

dictated by the chiral anomaly is recovered for wL. We
have explicitely obtained such a result also in the case
where the chiral condensate does not vanish, looking at
regularity requirements for Ak (discussed in Appendix A),

or calculating explicitly the large Q2 expansion (in
Appendix B). This confirms that, in the chiral limit, wL

is essentially a topological quantity, it does not depend on
the equations of motion but only on boundary conditions
for V and Ak. On the other hand, wT is dynamical and

requires the solution of such equations: we have obtained
that, when the chiral symmetry breaking field v vanishes,
the result for wT reproduces the QCD expression and is
related to wL through Eq. (7).

Away from the chiral limit, the explicit solutions of the
equations of motion for V, Ak and A? are needed to

account for the quark mass corrections both in wL and
wT , and for other nonperturbative corrections to wT . In the
soft-wall model, these equations entail the field v which
breaks the chiral symmetry. We have chosen a simple
functional form for vðyÞ, in which the quark mass term
and the chiral condensate term are specified, Eq. (42), in
order to study separately the effect of these two quantities

in wL and wT , as well as in other observables and in a few
low-energy constants, working out analytic solutions or
expansions for large Euclidean squared momentum Q2.
The effects of vðyÞ in more involved models in which
this field dynamically arises, namely, by appropriate po-
tential terms in the 5d action, or in which the backreaction
of matter on geometry is included, deserve other dedicated
investigations.
Considering the correction induced by the quark mass,

we recover in the Q2 expansion of the structure function

wT the next-to-leading Oðm2

Q4Þ term, see Eq. (67), but with

an incorrect numerical factor (� 1
4 instead of þ2), and

missing the logðm2

Q2Þ coefficient which appears in the corre-

sponding one-loop QCD expression (5). This is a conse-
quence of the simplest inclusion of the quark mass in the
holographic framework, and it is unlikely that it could be
avoided without a radical modification of the ansatz (42).
Themq � 0 case also brings along a difficulty in fixing the

value of the chiral field �ðQ2; yÞ at the UV boundary
y ¼ 0, which could not be established within our AV�V
analysis. This boundary condition affects Ak too, and there-
fore a possibility to fix the value of �ðQ2; 0Þ (which is 1 in
the chiral limit) is through the�AkAk correlation function at

nonvanishing quark mass, a problem requiring an indepen-
dent study. This boundary condition also influences the
relation (54) between wL and wT .
For the general case in which both the quark mass and

the quark condensate are different from zero, it is interest-
ing to compare term by term the subleading contributions
in the 1=Q2 expansion of wL and wT obtained in QCD and
in the holographic model. Before doing that, let us remark
that we have derived an exact analytical solution for
A?ðQ2; yÞ in the case in which v2ðyÞ can be approximated
by the mixedmq�y

4 term, Eq. (58), obtaining also that this

analytical expression can be generalized when them2
q term

is included, by the substitution ~Q2 ! ~Q2 þ ~M2 in (58).
Such an achievement represents a step towards a better
understanding of the axial-vector sector in the soft-wall
model. Moreover, it allows to obtain the structure function
wT in the full range of squared momentum Q2 assuming
this ansatz for v.
Considering the expansion of wT for large Euclidean

momenta Q2, we have found a mismatch with the QCD
result. Indeed, while in QCD, in the massless case, the
next-to-leading contribution in wT is Oð1=Q6Þ, as in
Eq. (18), we have found a Oð1=Q8Þ term in Eq. (56) in
the dual model. Notice that in QCD the next-to-leading
correction involves the magnetic susceptibility  of the
quark condensate. Analogously, in the massive case, in-
stead of finding a Oð1=Q4Þ term, which is also controlled
by the susceptibility  in QCD, Eq. (17), we have found a
Oð1=Q6Þ correction, Eq. (67). Both issues can be under-
stood by the perturbative Green’s function expansion in

1= ~Q2. Indeed, for mq � 0 the first mq� correction to A?;k
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shows up at next-to-next-to-leading order, i.e. at Oð1=Q6Þ
in wT;L; on the other hand, for mq ¼ 0 the first correction

from v2ðyÞ is proportional to �2, it appears at third order in
perturbation theory, hence at Oð1=Q8Þ in wT .

A simple interpretation of this mismatch is that, in the
soft-wall holographic model, the magnetic susceptibility of
the chiral condensate turns out to vanish. Going more
deeply, the mismatch implies that OPE terms in QCD
involving operators like the tensor D ¼ 3 operator O�� ¼
�q���q and their matrix elements in the external electro-

magnetic field F��, have been missed in the dual approach,

which instead produces an expansion similar to an OPE in
vacuum. A possible way out, which deserves dedicated
studies, consists in explicitly including theseD ¼ 3 opera-
tors through additional dual fields in the holographic
model, a possibility already considered in different con-
texts [44]. Although the semiclassical limit of the theory in
the AdS space is supposed to describe the nonperturbative
regime of the gauge theory, it would be interesting to
develop such new investigations in order to shed light,
empirically, on the possibility of using the holographic
approach in a regime which is not strongly coupled, as
requested to compute the results of an OPE in QCD.

The study of the left-right current correlator �LR in the
chiral limit has shown that other important features of
QCD are reproduced in the dual theory, namely, the leading
order of the 1=Q2 expansion and the value of the corre-
sponding coefficient, which is in agreement with the result
found by traditional nonperturbative methods. Moreover,
together with the value of the pion decay constant, also the
low-energy parameter CW

22, related to the slope at zero

squared momentum transfer of the �0��� form factor, is
close to the QCD value and to the experimental measure-
ment. On the other hand, corroboration of a proposed
relation between wT and �LR, Eq. (75), is not found.

To conclude, although we are not yet close to a formu-
lation, in the bottom-up approach, of a holographic model
in complete agreement with QCD, we have found that, in
spite of its extreme simplicity and economicity, the soft-
wall model reproduces more QCD properties that one
could have expected. Our study of the chiral AV�V anoma-
lous vertex has shown several new features and difficulties,
and has deepened our understanding of the advantages and
the limits of the model; this represents a step towards
further improvements.
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Note added.—Another paper discussing the same corre-
lation function considered here has recently appeared [45].

APPENDIX A: REGULAR SOLUTIONS
FOR � AND Ak FOR mq ¼ 0

For mq ¼ 0 there are constraints deriving from the

requirement of regularity of AkðQ2; yÞ and �ðQ2; yÞ.
Indeed, in the gauge Az ¼ 0, the parallel component of
the axial-vector field and � obey the equations

e�@y

�
e��

y
@yAk

�
þ g25v

2

y3
ð�� AkÞ ¼ 0;

~Q2@yAk þ g25v
2

y2
@y� ¼ 0:

(A1)

For Euclidean momentum Q2 > 0, one can define the
positive definite functional

f½Ak; �� ¼
Z 1

�
dy

e��

y

�
~Q2ð@yAkÞ2 þ g25v

2

y2

� ½ ~Q2ð�� AkÞ2 þ ð@y�Þ2�
�
� 0: (A2)

If Ak and � are solutions of the equations of motion, the

functional can be rewritten as a surface term:

f½Ak; �� ¼
Z 1

�
dy@ygðyÞ ¼ gð1Þ � gð�Þ � 0; (A3)

with

gðyÞ ¼ � e��

y
~Q2ð�� AkÞ@yAk: (A4)

Notice that @ygðyÞ vanishes for values of y where @yAk ¼
�� Ak ¼ 0. On the other hand, @ygðyÞ is positive for the
values of y where both @yAk � 0 and � � Ak. Therefore,
gðyÞ is a monotonically growing function, and gð�Þ< gð1Þ
in correspondence to nontrivial solutions having @yAk � 0

and � � Ak in some range of y. If, in addition, one

assumes at most a power behavior �yn for the fields at
y ! 1, then gð1Þ ¼ 0 and one has gð�Þ< 0 for nontrivial
solutions.
Equation (A1) is a system of first order differential

equations for the functions @yAk and �� Ak, and it has

two independent sets of solutions, which we label with the
subscripts (1) and (2). In the casemq ¼ 0, vðyÞ¼y!0 Oðy3Þ
and the analysis of the equations of motion provides the
small y behavior for the two solutions,

@yAkð1Þ
�ð1Þ � Akð1Þ

� �
�y!0 y5

y0

� �
;

@yAkð2Þ
�ð2Þ � Akð2Þ

� �
�y!0

y1

y�2

� �
:

(A5)

If one assumes gð1Þ ¼ 0, the functional (A3) becomes,
in correspondence to the first solution:

f½Akð1Þ; �ð1Þ� ¼ �gð�Þð1Þ ¼ Oð�4Þ ¼�!0
0: (A6)
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Therefore, the first solution cannot be simultaneously non-
trivial and regular at y ! 1 since, otherwise, f½Akð1Þ; �ð1Þ�
would be different from zero.

On the other hand, the second solution (or a combination
of the first and the second one) makes not vanishing the
functional (A3):

f½Akð2Þ; �ð2Þ� ¼ �gð�Þð2Þ ¼ Oð��2Þ �
�!0 0; (A7)

therefore it can be simultaneously nontrivial and regular at
y ! 1. However, from the second solution in (A5) one
finds that the combination �ð2Þ � Akð2Þ � y�2 when y ! 0.
Since the ultraviolet boundary condition requires
Akð�Þ ¼ 1, the consequence is that �ð2Þ cannot be regular

for y ! 0.
The conclusion is that the only possible solution, regular

both at small and large y, is the trivial one,

�ðQ2; yÞ � AkðQ2; yÞ ¼ @yAkðQ2; yÞ ¼ 0; (A8)

which leads to AkðQ2; yÞ ¼ �ðQ2; yÞ ¼ 1 after imposing

the ultraviolet boundary condition.
In the next appendix we show explicitly that the same

conclusion follows from the perturbative 1= ~Q2 expansion
in the case � ¼ y2 and v ¼ �y3=c3.

APPENDIX B: PERTURBATIVE 1= ~Q2 EXPANSION
BY THE GREEN’S FUNCTION METHOD

The equations of motion (34)–(37) can be solved per-

turbatively in 	 ¼ 1= ~Q2 for large Euclidean ~Q2 (small 	)

by defining the new variable t ¼ y
ffiffiffiffiffiffi
~Q2

q
. In this variable the

equations read:

V 00 � 1

t
V0 � V ¼ 2	tV 0

A00
? � 1

t
A0
? � A? ¼ 2	tA0

? þ ð	 ~M2 þ 2	2 ~M�t2

þ 	3�2t4ÞA?

A00
k �

1

t
A0
k � Ak ¼ 2	tA0

k þ ð	 ~M2 þ 2	2 ~M�t2

þ 	3�2t4ÞðAk � �Þ
A0
k ¼ �ð	 ~M2 þ 2	2 ~M�t2 þ 	3�2t4Þ�0

(B1)

where ~M ¼ g5mq

c and � ¼ g5�
c3

, and the derivatives are with

respect to t. Expanding

VðQ2; tÞ ¼ X1
n¼0

	nVnðtÞ; A?ðQ2; tÞ ¼ X1
n¼0

	nA?
n ðtÞ;

AkðQ2; tÞ ¼ X1
n¼0

	nAk
nðtÞ; �ðQ2; tÞ ¼ X1

n¼0

	n�nðtÞ;

(B2)

we can solve the equations order by order in 	. At Oð	0Þ
we have Bessel equations for V and A?:

V00
0 � 1

t
V0
0 � V0 ¼ 0 A?00

0 � 1

t
A?0
0 � A?

0 ¼ 0 (B3)

with boundary conditions V0ð0Þ ¼ A?
0 ð0Þ ¼ 1, therefore

the solution is V0ðtÞ ¼ A?
0 ðtÞ ¼ tK1ðtÞ, with K1ðtÞ the

modified Bessel function of the second kind. For the next
orders, we consider separately the chiral limit, correspond-
ing to ~M ¼ 0, and the case ~M � 0. The two cases have in
common the feature that all the equations, to all orders n,
are of the form

f00n � 1

t
f0n � fn ¼ F ½fn�1; fn�2; fn�3; ~M;�; t� (B4)

where fn ¼ Vn, A
?
n , A

k
n, �n, and F is a functional that

depends on the results found for the three previous orders
(two for n ¼ 2, one for n ¼ 1) and on the parameters. This
problem has a Green’s function Gðt; sÞ which obeys the
equation

@2t Gðt; sÞ � 1

t
@tGðt; sÞ �Gðt; sÞ ¼ �ðt� sÞ (B5)

and is given by

Gðt; sÞ ¼
�
C2ðsÞtI1ðtÞ t < s
C3ðsÞtK1ðtÞ t > s

where

�C2ðsÞ ¼ � K1ðsÞ
s½I1ðsÞK0ðsÞþI0ðsÞK1ðsÞ�

C3ðsÞ ¼ � I1ðsÞ
s½I1ðsÞK0ðsÞþI0ðsÞK1ðsÞ�

(B6)

with I0;1 andK0 the modified Bessel functions of the first of

the second kind, respectively. The solutions can be ob-
tained to all orders through (B6).

1. ~M ¼ 0, � � 0

In this limit, the chiral limit, the first difference between
the equations for V and A? shows up at Oð	3Þ since Vi ¼
A?
i for i ¼ 0, 1, 2 while V3 � A?

3 :

A?
3 ðtÞ ¼ V3ðtÞ þ�2a3ðtÞ; with

a3ðtÞ ¼
Z 1

0
dss4Gðt; sÞV0ðsÞ:

(B7)

These results, inserted in a large Q2 expansion of (46) and
(47), can be used to evaluate theOð1=Q8Þ correction to wT

reported in Eq. (56), coefficient of which is

� ¼
Z 1

0
dtV 0

0ðtÞa3ðtÞ ¼ 2:74286: (B8)

The coefficients of Eq. (77) can also be evaluated:

�k ¼ lim
t!0

1

t

Xk
j¼0

½Vk�jðtÞV0
jðtÞ � A?

k�jðtÞA?0
j ðtÞ� (B9)

and, in particular,
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�3 ¼ �g25�
2

c6
lim
t!0

1

t

d

dt
½a3ðtÞV0ðtÞ� ¼ 8g25�

2

5c6
: (B10)

Concerning the longitudinal fields, we have Ak
0ðtÞ ¼

�0ðtÞ ¼ 1 identically, and Ak
nðtÞ ¼ �nðtÞ ¼ 0, for all inte-

gers n � 1, since the equation for the �n fields

�00
n þ 3

t
�0

n � �n ¼ 0 (B11)

does not admit any solution which is regular in both the UV
and the IR. Therefore, we have AkðtÞ ¼ �ðtÞ ¼ 1 and, as a

consequence, wLðQ2Þ ¼ 2Nc

Q2 perturbatively to all orders in

	 ¼ 1= ~Q2.

2. ~M � 0, � � 0

In this case the first difference between the equations for
V and A? appears already at Oð	Þ: A?

0 ¼ V0 and A?
1 ðtÞ ¼

V1ðtÞ þ ~M2�1ðtÞ, with

V1ðtÞ ¼ 2
Z 1

0
dsGðt; sÞsV 0

0ðsÞ

�1ðtÞ ¼
Z 1

0
dsGðt; sÞV0ðsÞ:

(B12)

At Oð	2Þ, we have
A2ðtÞ ¼ V2ðtÞ þ ~M2	2ðtÞ þ ~M4�2ðtÞ þ 2 ~M��2ðtÞ

(B13)

with

V2ðtÞ ¼ 2
Z 1

0
dsGðt; sÞsV 0

1ðsÞ 	2ðtÞ ¼
Z 1

0
dsGðt; sÞ½V1ðsÞ þ 2s�0

1ðsÞ�

�2ðtÞ ¼
Z 1

0
dsGðt; sÞ�1ðsÞ �2ðtÞ ¼

Z 1

0
dsGðt; sÞs2V0ðsÞ: (B14)

For the longitudinal fields, leaving the boundary condition for �ðQ2; xÞ at x ¼ 0 unspecified, we have Ak
0ðtÞ ¼ 1 and

Ak
1ðtÞ ¼ ½1� �0ð0Þ� ~M2½V0ðtÞ � 1� Ak0

2 ðtÞ ¼ ½1� �0ð0Þ�f ~M2V0
1ðtÞ þ 2 ~M�½t2V0

0ðtÞ � V 0
1ðtÞ� þ ~M4½�0

1ðtÞ � V0
0ðtÞ�g:
(B15)

Such expressions, inserted in a large Q2 expansion of (46) and (47), allow to evaluate the functions wT and wL up to
Oð1=Q6Þ by means of the integrals

Z 1

0
dtV0

0ðtÞ�2ðtÞ ¼ 2

5
;

Z 1

0
dtV 0

0ðtÞ�1ðtÞ ¼ 1

6
;

Z 1

0
dtV 0

0ðtÞ�2ðtÞ ¼ � 1

12
;

Z 1

0
dtV 0

1ðtÞ�1ðtÞ ¼ � 1

15
;

Z 1

0
dtV 0

0ðtÞ	2ðtÞ ¼ 4

15
;

Z 1

0
dtV 0

0ðtÞV0ðtÞ ¼ � 1

2
;

Z 1

0
dtV0ðtÞV 0

1ðtÞ ¼
1

3
;

Z 1

0
dtt2V0

0ðtÞV0ðtÞ ¼ � 2

3
;

Z 1

0
dtV0ðtÞ�0

1ðtÞ ¼ � 1
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