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Generating gaugino masses at the leading order has typically been difficult in direct/semidirect gauge

mediated supersymmetry breaking models. The Komargodski-Shih (KS) theorem has established that

local stability of the supersymmetry breaking vacuum implies a vanishing leading-order gaugino mass in

generic renormalizable O’Raifeartaigh models. We relax the condition of renormalizability and

investigate the possibility to evade the KS no-go theorem using higher dimensional operators in the

Kähler potential and the superpotential. We demonstrate that higher dimensional terms which are

polynomial in superfields are not adequate to evade the KS theorem. We narrow down on the possible

class of nonpolynomial corrections that can induce unsuppressed gaugino mass in a global supersymmetry

breaking vacuum. We find that these models are tantalizingly close to the theories obtained from strongly

coupled supersymmetry breaking schemes.
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I. INTRODUCTION

The realization that generalized O’Raifeartaigh (O’R)
models of direct gauge mediated supersymmetry (SUSY)
breaking [1] are low energy description of dynamical
supersymmetry breaking scenarios from a strongly coupled
sector, has been known for some time now. Better under-
standing of this phenomenon was achieved in [2], which
has kindled renewed interest in these models. A typically
stubborn problem of these scenarios is the generation of
gaugino masses at the leading order, even with explicit tree
level R-symmetry breaking, see [3] for a recent review of
direct and semidirect gauge mediation models. First
pointed out in [4], explicit calculations with all known
renormalizable models of direct gauge mediation have
shown that cancellations lead to zero gaugino masses at
the leading order whereas scalar masses are generally
generated at two loop level. Further, the phenomenon of
gaugino mass screening [5] prevents gaugino masses being
generated at the next order in the messenger loop.1 This
further complicates the possibility to generate sizable gau-
gino masses in direct gauge mediation models. It was
finally realized in [7] that the condition for local stability
of the supersymmetry breaking pseudomoduli direction
would prevent gaugino masses from being generated at
the leading order for general renormalizable models of
direct gauge mediation. It was demonstrated that for stable
supersymmetry breaking pseudomoduli direction, the de-
terminant of the fermionic mass matrix for the messengers
is independent of the pseudomoduli field dependence. This
leads to a vanishing gaugino mass in the leading order
which is proportional to, Ma

g / @ logdetðMfÞ=@X where X

is the pseudomoduli field and Mf is the fermionic mass

matrix for the messenger fields. The vanishing gaugino

masses in direct gauge mediation models is now under-
stood in terms of this Komargodski-Shih (KS) no-go
theorem.
With the early data from the LHC [8] constraining the

SUSY spectra in general and the gluino, in particular, to be
relatively heavy, it has become evermore important
to investigate avenues to generate unsuppressed gaugino
masses in direct gauge mediation models of supersymme-
try breaking. Recently, ways to ameliorate this problem
have been suggested in the literature [9,10]. In [9] the
discussion is based on the fact that the form of the fermi-
onic mass matrix for the messenger fields is not con-
strained by the KS theorem for models with tachyonic
directions in the scalar potential. One would expect
leading-order gaugino masses to be generated is these
models. Noncanonical Kähler corrections can be used in
these models to lift the tachyonic directions. It has been
argued that with the noncanonical Kähler corrections, the
effective scalar potential of these models will not have any
tachyonic direction but leading-order gaugino masses will
be generated. In the present paper we make a complemen-
tary investigation. We study the possibility to evade the KS
theorem by introducing nonrenormalizable terms to
models with stable supersymmetry breaking vacuum. We
consider the possibility that these contributions introduce a
holomorphic pseudomoduli dependence in the determinant
of the fermionic mass matrix for the messengers generating
leading-order gaugino masses, without disturbing the
vacuum configuration.
We investigate the possibility to generate leading-order

gaugino masses by introducing nonrenormalizable opera-
tors in both the superpotential and the Kähler potential.
The most general form of the noncanonical Kähler terms
that can contribute to the reduced fermionic mass matrix of
the messenger fields are identified. We note that all
possible nonrenormalizable superpotential terms can be
considered to be a subset of the noncanonical Kähler terms

1However see [6] for ways to address this problem by using
chiral messengers.
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as far as their contribution to the messenger mass matrices
in the desired vacuum is considered. We systematically
study the viability of generating unsuppressed gaugino
masses using higher dimensional terms that are polynomial
in the fields. Though we do not specify the UV completion
of these models, they can in principle be considered to have
originated from some perturbative dynamics at higher
energy. However, we find that this class of models are
unable to generate unconstrained gaugino masses which
are in general suppressed by the high cutoff scale (�) of the
effective nonrenormalizable theory. The lowest order
Kähler term which induces nontrivial corrections to the
fermionic mass matrix of the messenger fields has a mass
dimension of four. Qualitatively, we observe that beyond
this order, gaugino masses are suppressed by ðhXi=�Þ��4

where hXi is the vev of the pseudomoduli field and � is the
dimension of the operator in the Kähler potential. In gen-
eral one expects hXi � �, hence a large suppression.

Next we relax the condition of perturbative UV com-
pletion and consider more general functions of the fields
motivated by strongly coupled supersymmetry breaking
scenarios. We demonstrate that with this generalization
the condition for local stability can be explicitly solved
in the simplest cases. We obtain surprisingly simple solu-
tions for models of supersymmetry breaking that evade the
KS theorem. This class of models break supersymmetry
at the global minimum but generates unconstrained
gaugino masses. However the condition of local stability
of the pseudomoduli direction puts severe constraints on
the functional form of the effective Goldstino-messenger
terms in the superpotential. The general class of interac-
tions that are allowed are very close to the UV complete
theories studied in the literature.

The rest of the paper is organized as follows: In Sec. II,
we briefly review the KS theorem within the renormaliz-
able setup and then lay down the framework to generalize
to nonrenormalizable scenarios. In Sec. III, we consider
the possibility to evade the KS theorem using higher
dimensional operators that are polynomial in fields. In
Sec. IV, we consider the nonpolynomial generalization.
Finally in Sec. V, we conclude with some general
observations.

II. GENERALIZATION OF THE KS THEOREM

A. A review of the KS theorem
in the renormalizable scenario

Consider a general O’R theory with canonical Kähler
potential and a renormalizable superpotential. Let the
gauge singlet X and f�ag be a set of chiral superfields
which constitutes the sector that will break SUSY sponta-
neously. In order that the f�ag should also act as messen-
gers, they should be charged under the SM gauge group.
The superfield X is an SM singlet and can get a vev in the
vacuum configuration to break SUSY spontaneously.
Typically X represents a flat direction in the scalar

potential. With this field content, the most general renor-
malizable superpotential can be written as

W ¼ fX þ 1
2ð�abX þmabÞ�a�b þ 1

6gabc�a�b�c: (1)

Here the fermionic mass matrix for the messenger fields
f�ag is MF ¼ Wab ¼ �abXþmab, where Wa �
@W=@�a. In general the determinant of this matrix may
be written as

detðMF Þ ¼ detð�abXþmabÞ ¼ �Cnð�;mÞXn: (2)

Let the roots of the polynomial on the right-hand side of the
above equation be defined by �Cnð�;mÞXnjX!Xl

0
¼ 0. At

X ¼ Xl
0 the determinant of the fermionic mass matrix

vanishes and a Goldstino direction ðvÞ is defined for every
root of the polynomial as follows:

ð�abX
l
0 þmabÞv ¼ 0: (3)

The bosonic mass matrix for the messenger fields is
given by

M 2
B ¼ M�

FMF F �

F MFM�
F

 !
; (4)

where F ab ¼ W�
cWabc. If the pseudomoduli direction is

locally stable everywhere then the scalar mass matrix has
to be positive semidefinite. However note that if v is the
Goldstino direction defined byMFv ¼ 0 then it is easy to
show that

v

v�

 !y M�
FMF F �

F MFM�
F

 !
v

v�

 !
¼ vTFvþ cc: (5)

The right-hand side of this equation must vanish identically
if the bosonic mass matrix is required to be positive semi-
definite, otherwise one can make the expression negative
by rotating the complex phase of v. We conclude that the
condition of local stability of the desired vacuum implies
that for a massless Goldstino ðvÞ in the fermionic sector
there exists a flat direction in the scalar potential given by
the vector ðvv�Þ. An important corollary of this is

F abv ¼ f�abv ¼ 0: (6)

Using Eq. (6) in Eq. (3) we find v has to be a simultaneous
null eigenvector of the matrices �ab and mab. This implies
that v is a null eigenvector of any matrix of the form
��ab þ �mab. It follows that detðMF Þ ¼ 0, contradicting
our original assumption that the determinant is not identi-
cally zero. Thus we find that the assumption taken in
Eq. (2) is inconsistent and we conclude that

detðMF Þ ¼ detð�abX þmabÞ ¼ Const: (7)

It follows that the leading-order gaugino masses given by

Ma
g � �a

4�
�W �X

@

@X
logdetðMfÞ; (8)
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vanish. In conclusion the KS theorem demonstrates that in
renormalizable models of direct gauge mediation with a
locally stable pseudomoduli direction, gaugino masses are
not generated at the leading order.

B. Nonrenormalizable generalization

To study this scenario in the nonrenormalizable setup we
first define the desired vacuum configuration of a theory
with the field content of Sec. II A. In order to preserve the
SM gauge group we should have h�ai ¼ 08a. The only
field that can take a vev to spontaneously break SUSY is X.
Hence we are looking at a vacuum of the form

hXi ! undetermined; fh�ai ¼ 0g 8a: (9)

We start with the general renormalizable superpotential
given in Eq. (1). The superpotential is linear in X repre-
senting a flat pseudomoduli direction in the scalar poten-
tial. We find that the two equationsWX ¼ W�i

¼ 0 cannot

be simultaneously satisfied. At the desired vacuumwe have
hW�i

i ¼ 0; hWXi ¼ f and SUSY is broken spontaneously.

Considering that the flat direction is locally stable every-

where the determinant of the reduced fermionic mass
matrix for the messenger fields remains independent of
the pseudomoduli field by the KS theorem implying a
zero gaugino mass at the leading order. Our objective is
to introduce an X dependence into the determinant of
reduced fermionic mass matrix for the messenger fields
by adding nonrenormalizable terms to a theory like this
without disturbing the local stability of the SUSY breaking
vacuum.Wewill consider nonrenormalizable terms both in
the superpotential and in the Kähler potential that can
generate such corrections to the mass matrices at the
vacuum configuration.
We first consider noncanonical Kähler terms. Following

the notations of [11], the messenger mass matrices for the
generic noncanonical Kähler potential can be written as

MF
NC ¼ MF

C � �d
abWd; (10)

where �d
abWd ¼ ðKd �e@aKb �eÞWd. The bosonic mass matrix

also receives further corrections due to the noncanonical
Kähler terms and can be given as

ðMNC
B Þ2 ¼ MF

NCM�
F
NC � �W �aðR �bbÞa �aWa F �NC

F NC MF
�NCMF

NC � �W �aðR �bbÞa �aWa

 !
; (11)

where �W �aðR �bbÞa �aWa ¼ �W �aðK �ac@ �b�
a
bcÞWa and F NC ¼

@bcðWaK
�aaÞ �W �a. Considering that in the vacuum we can

only have WX ¼ �W �X � 0, the nonzero components
are given by, ðR �bbÞX �X � K

�Xc@ �b�
X
bc and F NC �

@bcðWaK
�XaÞ �W �X.

By inspecting Eq. (10), one can see that the new terms
need to be bilinear and holomorphic in the messenger fields
in order to contribute to the fermionic messenger mass
matrices. Thus the most general structure of the noncanon-
ical part of the Kähler potential that contributes to the
fermionic mass matrices of the messenger fields may be
symbolically represented as

K � Cab�a�bf

�
X

�
;
�X

�

�
þ cc; (12)

where Cab � 0 , Qð�a�bÞ ¼ 0 and all other terms are

zero. QðÔÞ represents all the charges of the operator Ô
under the SM gauge groups.

With this form of the Kähler terms the curvature tensor
�W �aðR �bbÞa �aWa ¼ 0. We note that the presence of a nonzero
curvature tensor in the Kähler metric results in new con-
tribution to the gaugino masses. With these new contribu-
tions it is impossible to recast the scalar and fermionic
messenger mass matrices in the form

Wmess
eff ¼ Mab�a

~�b þ �2Fab�a
~�b;

Lmess
eff ¼ �ðMabc a

�c b þ H:c:Þ � ð’a ~’
�
aÞ

� MMy F�

F MyM

 !
’�

b

~’b

 !
; (13)

where c and ’ are the fermionic and scalar component,
respectively, of the chiral messenger superfield �. This
would potentially cause the generated gaugino masses to
deviate from the expression given in Eq. (8). This in itself
is an interesting avenue to generate leading-order gaugino
masses in direct gauge mediation models and needs to be
explored further. However the arguments of the KS theo-
rem crucially depend on the expression for the gaugino
masses as given by Eq. (8) and are not well understood in
scenarios where this is no longer true. In this paper we will
be confined to models where the curvature tensor identi-
cally vanishes. With this choice the only new contributions
to the mass matrices are given by

MF
NC ¼ MF

C � CabhWXifX
�
X

�
;
�X

�

�
; (14)

F NC ¼ F C � CabjWXj2fX �X

�
X

�
;
�X

�

�
; (15)

where fx � @f=@x.
At this stage we note that the arguments for the KS

theorem used in the canonical case are no longer
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applicable. We find that if v is now a simultaneous eigen-
vector of both F NC and MF

NC one cannot argue that the

determinant of MF
NC has to be identically zero every-

where. This is because the matrix form ofF NC is in general
different from MF

NC. They also have different depen-

dences on X and/or �X. Some generic observations are
now in order:

(i) The KS argument is valid only in case of a locally
stable pseudomoduli directions i.e., for scenarios
where the reduced scalar messenger mass matrix is
positive semidefinite. The assertion that new contri-
butions from the noncanonical Kahler potentials can
evade this argument and generate leading-order gau-
gino masses should be supplemented by an example
by example demonstration that these additional
terms should not destabilize the scalar mass matrix.

(ii) Corrections to the Kähler terms can potentially lead
to wrong sign kinetic terms in certain region of the
field space. And this consideration puts stringent
constraints on the possible form of higher
dimensional corrections that are allowed in the
Kähler potential. However one can assume that
high energy dynamics near the cutoff scale can fix
this malady. We will ignore this consideration with
the understanding that cutoff scale is much larger
than the scale of SUSY breaking.

We now turn our attention to possible nonrenormalizable
superpotential terms. The most general superpotential term
that contributes to the fermionic mass matrix for the
messenger fields, in the vacuum configuration defined in
Eq. (9) is given by

�WNR ¼ m�a�bg

�
X

�

�
: (16)

The contribution of this term to the mass matrices in the
desired vacuum configuration is identical to the Kähler
potential given in Eq. (12) with the following identifica-
tions,

f

�
X

�
;
�X

�

�
¼ �X

�
g

�
X

�

�
and m ¼ CabhWXi

�
: (17)

Thus we note that the most general nonrenormalizable
terms that can be added to the superpotential and can
contribute to the mass matrices are a specific subset of
the most general noncanonical Kähler terms as far as their
contribution in the vacuum configuration is considered. It
follows that a study of the effect of nonrenormalizable
terms in direct gauge mediation models can be effectively
carried out by considering the noncanonical terms in the
Kähler potential alone.

Having made this observation it should be noted that
there are definite differences between a higher dimensional
superpotential term and a noncanonical Kähler term. These
differences show up in the global structure of the scalar
potential specifically in the field space regions away from
the SUSY breaking vacuum.

III. THEORIES WITH POLYNOMIAL
CORRECTIONS

If we consider a perturbative UV completion of the
theories, we can expect these effective terms to be gener-
ated by integrating out heavy states operative at high scale.
This consideration constraints the functional form of f
defined in Eqs. (12) and (16) to be a polynomial of the
fields. In this section we will discuss the possibility of
evading the KS theorem to generate unconstrained gaugino
masses using such polynomial correction to the Kähler
potential and the superpotential.

A. Noncanonical Kähler potentials:

Let us consider that the function f in Eq. (12) is a
polynomial in bothX and �X. Thus genericallywemaywrite,

f

�
X

�
;
�X

�

�
¼ X

n �n

Cn �n X
n �X �n

�nþ �n : (18)

In this case the contributions to the matrices are of the
following form:

MF
NC ¼ MF

C �X
n �n

Cn �n
abhWXi �nX

n �X �n�1

�nþ �n ; (19)

F NC ¼ F C �X
n �n

Cn �n
abjWXj2 �nnX

n�1 �X �n�1

�nþ �n : (20)

It is clear from Eqs. (19) and (20) that for the new
nonrenormalizable terms to contribute we should ensure
�n � 0. We will now summarize how the individual terms
contribute to the gaugino mass and the stability condition
for various choices of n; �n.
(i) The lowest order contribution comes from the term

�n ¼ 1; n ¼ 0 In this case we find that the new
contribution is just a redefinition of the matrix
mab ! mab � CabhWXi=�. We can now trace the
arguments given in Sec. II A identically. This will
naturally lead to the conclusion that if the vacuum is
locally stable, leading-order gaugino masses will
vanish.

(ii) The next order contribution comes when n ¼
1; �n ¼ 1. In this case we find that the contribution
simply results in a redefinition of the matrix �ab !
�ab � CabhWXi=�2. This again leads to the same
conclusion as in the previous case.

(iii) At this same order we have a nontrivial contribu-
tion given by �n ¼ 2; n ¼ 0. This contributes to the
fermionic mass matrix but does not contribute to
F . This cannot be modeled by redefinition of pa-
rameters. However we make the observation that
this term cannot directly introduce a holomorphic
dependence on X, into the fermionic mass matrix.
With the observation that detð�abXþmabÞ ¼
Const, we expect the detð�abX þmab �
CabhWXi �X=�2Þ � �XX=�2. This will lead to

TIRTHA SANKAR RAY PHYSICAL REVIEW D 85, 035003 (2012)

035003-4



gaugino mass terms that are suppressed by the
factor h �Xi=�. In general it is well known that in
O’R models the one loop correction fixes the X vev
near zero [12]. This will certainly be modified due
to the presence of the noncanonical Kähler terms. It
is still expected that the vev will be generally at a
scale where hXi � � and thus lead to a suppres-
sion of the generated gaugino masses.

(iv) All higher order noncanonical Kähler terms with
�nþ n > 2 will in general lead to further suppres-
sion in the gaugino mass terms of the order

ðhXi� Þn�1ðh �Xi� Þ �n�1.

In conclusion we observe the generic noncanonical Kähler
terms of perturbative origin when added to O’R models
with global SUSY breaking can only lead to leading-order
gaugino masses which are suppressed by the cutoff scale.
This general observation is made without any reference to
the stability condition of the vacuum. Note that in this class
of models the determinant of the fermionic mass matrix
will be a polynomial in X and therefore will have roots in
the finite complex plane. The pseudomoduli direction will
in general have an instability at the point where the
determinant vanishes.

B. Nonrenormalizable superpotential terms:

In continuation of the discussion in the previous section
we point out that the most general nonrenormalizable
terms in the superpotential which are polynomial in the
superfields are a subset of the Kähler potential defined in
Eq. (18). In the phenomenologically acceptable vacuum,
the contribution to the messenger mass matrices from these
noncanonical Kähler terms with �n ¼ 1 corresponds to the
contribution from the most general nonrenormalizable
superpotential term given by

�W ¼ X
n

mðnÞ
ab�a�b

�
X

�

�
n
; (21)

wheremðnÞ can be read off from Eq. (17). The limitations of
such terms for n ¼ 0; 1; >1 are similar to the ones dis-
cussed earlier.

We make the general observation that starting with a
direct gauge mediation theory where SUSY is broken
globally and the leading-order gaugino masses disappear
due to the KS theorem, it is impossible to generate them by
adding nonrenormalizable terms that are polynomial in the
fields, either to the superpotential or the Kähler potential.

IV. THEORIES WITH NONPOLYNOMIAL
CORRECTION

With the conclusion of the previous section we abandon
the possibility of circumventing the KS theorem using
higher dimensional terms that are polynomial in the super-
fields, possibly arising from perturbative dynamics at high

energy scales. Instead we turn our attention to terms arising
from theories with nonperturbative UV completion.
Effective low energy description of nonperturbative theo-
ries of SUSY breaking can give rise to terms that are
nonpolynomial in the superfields. The theories of dynami-
cal SUSY breaking [13,14], commonly incorporate terms
that are exponential of the superfields. In theories where
gaugino condensates are utilized to break SUSY, the
exponential of the dilaton fields commonly appears [15].
In retrofitted O’R models [16] where the vev of the pseu-
domoduli is dynamically generated, we find the effective
superpotential at energies below the dynamical scale con-
tains terms where the pseudomoduli superfields appear in
the exponential. Nonpolynomial terms arise in the effective
superpotential of SUSY theories with Intriligator, Seiberg
and Shih type supersymmetry breaking. This is essentially
generated from the dual of nonperturbative strongly
coupled supersymmetric quantum chromodynamics like
theories [17,18]. In this class of theories the pseudomoduli
field commonly appears with negative powers in the super-
potential and the Kähler potential. In the present paper our
paradigm is to take a bottom up approach to the problem of
generating leading-order gaugino masses in the O’R
models, thus evading the KS theorem. We will neither
endeavor to construct a UV complete theory of the hidden
sector nor try to demonstrate the ability to evade the KS
theorem with nonpolynomial terms in complete generality.
Rather our approach will be to investigate this as a possi-
bility using examples.
To keep matters simple we will look at the possibility of

adding a nonrenormalizable superpotential term to theories
that break supersymmetry globally. We will consider the
simplest supersymmetry breaking scenario. Let X be the

Standard Model gauge singlet chiral superfield. And ð� ~�Þ
is a vectorlike2 pair of messenger fields charged under the
standard model gauge group. The simplest SUSY breaking
sector that can be constructed with this field content is
given by the following superpotential:

W ¼ ��2Xþ fðXÞ� ~�: (22)

We will assume the that the Kähler potential is canonical.
The condition that the theory generates nonzero gaugino
mass at leading order means that fðXÞ has to be a non-
constant function of X. If we further demand that the
theory breaks supersymmetry globally, one needs to
impose the condition fðXÞ � 0 everywhere in the finite
complex plane. Note that this condition is far stronger than
the requirement of local stability which is enough to dis-
cuss the KS theorem.
If we insist that the superpotential is holomorphic in the

entire complex plane then fðXÞ should also be an analytic

2These charged messenger superfields can be considered to fill
a complete representation of a grand unified theory gauge group
like the SU(5) required to preserve gauge coupling unification.
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function of X. This implies that fðXÞ is an entire function
and subject to the constraints of the little Picard theorem.
The examples of entire functions that do not take the value
of zero in the entire finite complex plane are limited. From
a phenomenological perspective a well-motivated choice

would be to take fðXÞ ¼ me�ðX=�Þ in Eq. (22). This is the
simplest entire function that is nonzero everywhere in the
finite complex plane. Thus we expect SUSY to be broken
globally in this model. In the desired vacuum the mass
matrices for the messenger fields now take the following
form:

mf ¼ me�ðX=�Þ and

m2
B ¼ m2e�ðXþX�=�Þ m�2

� e�ðX�=�Þ

m�2

� e�ðX=�Þ m2e�ðXþX�=�Þ

0
@

1
A: (23)

The condition for local stability of the pseudomoduli di-
rection now reduces to

jm2e�ðXþX�=�Þj< jm�2

�
e�ðX=�Þj: (24)

As is evident, this condition is easily violated at finite
values of X, rendering the vacuum unstable at that point.
Typically, these instabilities leads to a vacuum with
anomalous breaking of the Standard Model gauge group.
It should be noted that this conclusion is not an artifact of
the simple form of the superpotential considered and it
cannot be resolved by a simple enlargement of the mes-
senger sector.

A. Generic solution to the local stability condition

Finally, we abandon the constraint that fðXÞ is analytic
everywhere. Rather we directly try to solve for condition of
local stability. Using Eq. (22), the scalar mass matrix for
the messenger fields is given by

m2
B ¼

jfðXÞj2 �
�
�2 @fðXÞ

@X

��
��2 @fðXÞ

@X jfðXÞj2

0
B@

1
CA: (25)

To establish that a 2� 2 matrix is positive definite it is
enough to show that the trace and the determinant are
positive. The condition on the trace is trivially satisfied
by the above matrix. We turn our attention to the determi-
nant. The condition that the determinant has to be positive
implies

jfðXÞj4 �
���������2 @fðXÞ

@X

��������
2

: (26)

We consider the scenario that saturates this bound. To solve
the resulting equation we separate the real and the complex
parts, giving the relation

fðXÞ2
�2@fðXÞ=@X ¼

�
fðXÞ2

�2@fðXÞ=@X
�� ¼ ei�: (27)

This simplifies to the following differential equation:

fðXÞ2 ¼ ei��2 @fðXÞ
@X

: (28)

The functional form of fðXÞ can be easily obtained by
solving the differential equation which gives us

fðXÞ ¼ �2ei�

X þ b
: (29)

Note that this solution saturates the bound given in Eq. (26).
Without any loss of generalitywe can choose the function to
be fðXÞ ¼ m2=X, where m is a real constant. We observe
fðXÞ though not defined at X ¼ 0, is analytic everywhere
else. As long as hXi � 0, the theory defined by the super-
potential given in Eq. (22) is well behaved. To demonstrate
the local stability of this theory we consider the scalar mass
matrix which now takes the following form:

m2
B ¼

m4

jXj2
m2�2

ðX�Þ2
m2�2

X2
m4

jXj2

0
B@

1
CA: (30)

We note that the eigenvalues of this matrix are given by
ðm2 ��2Þm2=jXj2 and ðm2 þ�2Þm2=jXj2. Thus, form2 >
�2, the eigenvalues are positive for any value of hXi and
matrix is positive definite. Therefore with this constraint on
the parameters the pseudomoduli direction is locally stable
everywhere. Importantly, we also note that fðXÞ does not
take the value zero in the finite complex plane. This means
that not only the pseudomoduli direction is locally stable
everywhere, supersymmetry is also broken globally. It natu-
rally satisfies all the conditions we laid down on fðXÞ at the
beginning of this section. Let us now investigate the global
structure of the scalar potential. The potential V ¼ P

aWa

where,

WX ¼ ��2 �m2� ~�=X2; W� ¼ m2 ~�=X;

W ~� ¼ m2�=X: (31)

Clearly these three equations cannot be simultaneously put
to zero and supersymmetry is broken globally. Curiously
the conditionm2 >�2 implies that there is only one global
minimum3 of the potential given by hXi ! undetermined

and h�i ¼ h ~�i ¼ 0 andV ¼ �4. With the single constraint
on the superpotential parameters, we not only ensure that
the desired vacuum is locally stable but also enforce it to be
the global minimum of the scalar potential.

3A lower lying minimum only appears when m2 <�2, in this
case the minimum is at V ¼ ð�2 �m2Þm2.
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The fermionic mass matrix for the messenger is simply
given by

detðmfÞ ¼ m2=X: (32)

Gaugino masses are generated at the leading order. Using
Eq. (8) and Eq. (32) we find that

Ma � �a

4�
�2 1

hXi ; (33)

which is unsuppressed by any high scale. And unlike the
minimal gauge mediation models, within this framework
the messenger masses may be in the TeV scale and ob-
servable at the present collider experiments. This will
potentially lead to interesting phenomenological scenarios
at collider experiments.

In conclusion we note that the possibility to generate
gaugino masses at leading order through direct gauge
mediation with locally stable SUSY breaking vacuum is
restricted to very specific class of models even in its
nonperturbative generalization. Crucially the interactions
of the pseudomoduli field with the messengers are re-
stricted to have very specific functional forms. This brings
us to the possible origin of this class of superpotentials. It
is well known that models of supersymmetry breaking
with an supersymmetric quantum chromodynamics sector
generate effective superpotentials at low energies which
have the pseudomoduli fields appearing in the denomina-
tor [18]. However, we could not find an instance in the
literature where the effective term discussed here appears
in its exact form. To the best of our knowledge, such
terms can not be generated within the framework of the
simplest nonperturbative scenarios like the Intriligator,
Seiberg and Shih .

V. CONCLUSION

In this paper we have studied the possibility of adding
simple nonrenormalizable terms to globally stable SUSY
breaking O’R models to evade the KS no-go theorem. This
is complementary to the study carried out in [9] where
unstable renormalizable theories were considered and non-
canonical Kähler terms were used to lift these instabilities.

Within this framework we have demonstrated that the
simple higher dimensional terms which are polynomial in
the fields, and thus can potentially be generated through
perturbative dynamics at higher scales, are not adequate to
alleviate the problem of generating large unconstrained

gaugino masses. Typically we find in these models the
gaugino masses are suppressed by the high cutoff scale
of the effective theory. Further they exhibit tachyonic
directions along the pseudomoduli direction at points
where the determinant of the fermionic mass matrix
vanishes.
Next we have considered nonpolynomial terms that can

generate unconstrained gaugino masses without disturb-
ing the stability of the vacuum. In this context we have
imposed a stronger constraint on the theory, demanding
that the desired SUSY breaking vacuum is the global
minimum of the scalar potential. With these restrictive
constraints we solved for the condition of local stability
of the potential. We obtain a surprisingly simple solution
that satisfies all the conditions of local and global stability
and generates unsuppressed gaugino masses at the leading
order. We observe that supersymmetry breaking models
having these virtues will have a very specific form of
superpotential where the pseudomoduli field couples to
messenger field with inverse one power. This might have
consequences for Goldstino couplings and can have major
cosmological impact. A systematic discussion of these
issues is beyond the mandate of this paper. The form of
the nonpolynomial terms required for this is also tantaliz-
ingly close to the ones that originate from generic
nonperturbative schemes of SUSY breaking discussed in
the literature.
A more thorough study of possible nonpolynomial terms

described in the literature should be carried out in the
context of direct gauge mediation models. The possibility
of using them to evade the KS theorem and generate
phenomenologically viable soft SUSY breaking spectrum
needs to be carried out. In this context we also note that the
entire discussion in this paper is carried out within a
framework where the Kähler metric is flat i.e., the curva-
ture tensor is considered to be zero everywhere. Relaxation
of this constraint may lead to more phenomenologically
acceptable avenues to evade the KS theorem.
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