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We present results for the spectrum of light and strange mesons on configurations with two flavors of

mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of

lattice size 163 � 32 at three different gauge couplings and with pion masses ranging from 250 to

600 MeV. To reliably extract excited states, we use the variational method with an interpolator basis

containing both Gaussian and derivative quark sources. Both conventional and exotic channels up to spin 2

are considered. Strange quarks are treated within the partially quenched approximation. For kaons we

investigate the mixing of interpolating fields corresponding to definite C-parity in the SU(3) limit. This

enlarged basis allows for an improved determination of the low-lying kaon spectrum. In addition to

masses we also extract the ratio of the pseudoscalar decay constants of the kaon and pion and obtain

FK=F� ¼ 1:215ð41Þ. The results presented here include some ensembles from previous publications and

the corresponding results supersede the previously published values.
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I. INTRODUCTION

Considering only strong decays, with the exception of
the pion and the proton all hadrons are resonances, em-
bedded in a continuous spectrum. In lattice calculations we
can only determine discrete energy levels, with spacings
Oð1=LÞ related to the spatial extent L of the studied lattice
volume. When disregarding the fermion vacuum in the so-
called quenched simulations energy levels can be related
directly to hadron excitations. In dynamical situations the
energy levels are denser close to resonances and they are
influenced by coupled open hadronic scattering channels.
Although in principle the Euclidean correlator of any
hadron interpolator with the correct quantum numbers
should feel these scattering channels, in actual calculations
there is little, if any, trace of it [1,2] unless such multi-
hadron interpolators are included explicitly in the set of
operators. However, inclusion of those is costly, since it
involves disconnected contributions. In actual calculations
efficient but demanding all-to-all propagator methods are
used [3–7].

In recent years much effort has been invested into devel-
oping methods for determining the lowest energy levels for
hadron correlators. In [1,2,8–13] meson excitations have
been studied in a dynamical quark background with a
variety of quarks species, interpolators, and extraction
methods. A central technique employed was the variational
method [14,15] where one finds the energy levels by
diagonalization of cross correlations of a (hopefully) suffi-
ciently large set of interpolators which allows for a good
overlap with the relevant hadron states.

In continuum quantum field theory there has been recent
progress in investigations of mesons using Schwinger-
Dyson equations and the Bethe-Salpeter equation as
well as effective field theories (see, for example,
Refs. [16–22]).
Starting with [23], we have been determining hadron

ground states and low excited states in a framework of
simulations with two light dynamical quarks. The fermi-
onic action used is the so-called Chirally Improved (CI)
action [24,25], an approximate solution to the Ginsparg-
Wilson relation for fermions obeying chiral symmetry in a
lattice form. The strange quarks have been incorporated in
the valence sector only. In [1] results based on three
ensembles at three different gauge couplings but with
only one quark mass for each coupling have been pre-
sented. We have meanwhile significantly extended the
statistics and also the number of ensembles. Here, we
present our results for the meson sector based on the final
set of seven ensembles at three gauge couplings and two or
three quark mass values at each. This allows an extrapola-
tion towards the physical point. Previously published re-
sults are generally confirmed, although in some cases we
observe new behavior related to new symmetry consider-
ations. Some results have been presented already in [26].
Following the presentation of the action and the parame-

ters of the gauge configuration ensembles in Sec. II, we
discuss scale setting, decay constants, and the quark mass
in Sec. III. The interpolators used for the meson fields in
the variational analysis are discussed in Sec. IV and tabu-
lated in the Appendix. The main parts are Secs. V and VI,
where results for the mesons are presented.
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II. ACTION AND SIMULATION

A. Fermion action and gauge action

In our study the fermions are represented by the Chirally
Improved Dirac operator DCI [24,25]. This is an approxi-
mate solution of the Ginsparg-Wilson equation and results
from a general ansatz for the Dirac operator, namely, an
expansion of the form

D ¼ m01þDCI; DCIðn;mÞ ¼
X16
i¼1

cðiÞnmðUÞ�i; (1)

where the sum runs over all 16 elements �i of the Clifford

algebra and the coefficients cðiÞnm were fit by minimizing the
violation of the Ginsparg-Wilson equation. It includes
paths up to a maximum length of 4 lattice units. The paths
and coefficients used are found in the appendix of [23]. We
used the same 19 coefficients for all ensembles, modifying
only the diagonal mass term in order to account for the
additive mass renormalization. For that reason the values
of the bare mass parameter m0 given in Table I are nega-
tive. Thus, the actual (unrenormalized) mass is given by the
values mAWI determined from the axial Ward identity.

For further improvement of the fermion action one level
of stout smearing of the gauge fields [27] was included in
its definition. The parameters are adjusted such that the
value of the plaquette is maximized (� ¼ 0:165 following
[27]). For the pure gauge field part of the action we use the
tadpole-improved Lüscher-Weisz gauge action [28]. For a
given gauge coupling we used the same assumed plaquette
value for the different values of the bare quark mass
parameter.

B. Lattice ensembles

The analysis presented here is based on seven ensembles
of configurations for lattice size 163 � 32. These substan-
tially extend (by a factor of 3) the data base of [1,23]. A
summary of the notation and some parameters of these
ensembles is given in Table I.
The notation for the couplings follows [23], where all

parameters of the fermion action are detailed. For each
value of the gauge coupling we have two or three values of
the quark mass parameter. Following equilibration every
5th configuration has been selected for analysis. Further
details on the updating hybrid Monte Carlo algorithm and
statistical checks for equilibration have been discussed
in [23].
From the values of m�L we expect non-negligible finite

size effects for the three ensembles with smallest quark
mass, A66, B70, and C77. Discretization effects have been
discussed in the quenched simulations, where for the used
action only small Oða2Þ corrections have been identified
[29]. In order to confirm this for the dynamical simulation
we would have to perform our study at several lattice
spacings and volumes, which is not possible based on the
given ensembles and statistics. Studies with a larger vol-
ume (243 � 48) with linear size Oð3:6 fmÞ are in progress.

III. SCALE AND LOW ENERGY PARAMETERS

A. Scale

In our earlier work [1,23] we had analyzed configura-
tions at one quark mass parameter for three values of the
gauge coupling. There, we used the lattice spacing derived
from the static potential with a Sommer parameter r0 ¼
0:48 fm. Now we have two or three quark mass parameters
for each gauge coupling and can attempt an extrapolation
to the physical point or the chiral limit. The latter extrapo-
lation would be relevant for the parameters of chiral per-
turbation theory, which we will not attempt to extract here.
We use two approaches to set the scale. In the first one

we determine y � a=r0 from the static potential separately

TABLE I. Parameters of the simulation: We used several en-
sembles with different gauge couplings �LW and/or light quark
mass parameters m ¼ 0. We also show the strange quark mass
parameter ms, the number of configurations analyzed, and the
physical extent of the spatial volume multiplied with the pion
mass.

Set �LW m0 ms Configurations m�L

A50 4.70 �0:050 �0:020 200 6.4

A66 4.70 �0:066 �0:012 200 2.7

B60 4.65 �0:060 �0:015 300 5.7

B70 4.65 �0:070 �0:011 200 3.4

C64 4.58 �0:064 �0:020 200 6.7

C72 4.58 �0:072 �0:019 200 5.1

C77 4.58 �0:077 �0:022 300 3.7
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FIG. 1 (color online). Setting the scale with the Sommer
parameter and the pion mass as input at the physical point.
The green (long-dashed) line is the curve Eq. (2). The solid
and short-dashed lines represent the extrapolation of our lattice
data. Their intersections with the green line define the lattice
constants a.
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for each ensemble, as discussed in [23]. We then study the
dependence of this quantity on the measured values of x �
ðam�Þ2 (cf. Fig. 1). The physical values are obtained along

y ¼
ffiffiffi
x
p
m�r0

: (2)

For each of the three gauge couplings we then perform a
linear fit and obtain the physical value where the extrap-
olations intersect Eq. (2) with m�r0 ¼ 137 MeV�
0:48 fm ¼ 0:3332. (We use the average of charged and
neutral pion masses.) From this one reads off the lattice
spacing a. Table II gives the resulting value in the row
labeled ð�; r0Þphys. The value in the chiral limit is obtained

as usual from a=r0 where am� ¼ 0.
The other approach is to replace y ¼ a=r0 by mass

values like amN or am�. Since the � is unstable for small

enough pion mass, there will be threshold effects. In our
parameter range we find no coupling to the (p-wave) ��
sector yet and a linear extrapolation intersecting with y ¼ffiffiffi
x
p

m�=m� gives the values of the lattice spacing in Table II

compatible with the results of the first method, but with
larger errors.

Throughout this presentation we will use the values
obtained from the definition denoted by ð�; r0Þphys in

Table II.

B. Setting the strange quark mass

In this two-flavor simulation we use the partial quench-
ing approximation to access the strange hadron spectrum,
i.e., we consider the strange quark as a valence quark
only. In view of results with full strange quark dynamics
(e.g., [30]) we find, at least for the ground states, no
noticeable difference in the mass range considered here.

In each ensemble the strange quark mass parameter ms is
set by identifying our result for the � baryon positive
parity ground state energy level with the physical
�ð1672Þ. These parameters are found in Table I.
For this definition we use r0;exp ¼ 0:48 fm in each en-

semble, differing from the (in Sec. III A) discussed method
to set the overall scale. Since the two different definitions
agree at physical pion masses, this method is consistent at
the physical point, but results have to be taken with care at
unphysically large pion masses.

C. AWI mass

The so-called axial Ward identity (AWI) mass (or PCAC
mass) is determined from the asymptotic (i.e., plateau of
the) ratio of the unrenormalized correlators,

2mAWI ¼ cA
cP

h0j@tAþ4 ðp ¼ 0; tÞXð0Þj0i
h0jP�ðp ¼ 0; tÞXð0Þj0i ; (3)

where P� ¼ �d�5u, A
�
4 ¼ �d�4�5u, and X is an interpolator

with the quantum numbers of the pion, usually Pþ or Aþ.
The constants cAðsÞ and cPðsÞ denote the lattice factors
relating the smeared interpolators to the lattice pointlike
interpolators (not to be confused with the renormalization
constants Z relating lattice point operators to the contin-
uum renormalization scheme). They are obtained from the
ratio of correlators from smeared to point sources [23].
The relation to the renormalized quark mass needs the

renormalization factors for the pseudoscalar and axial
currents,

mðrÞ ¼ ZA

ZP

mAWI: (4)

Table III gives the values of mAWI and m� for the ensem-
bles studies. (Values for the renormalization constants have
been derived in [31,32].)

D. Decay constants

The pseudoscalar decay constant describes the coupling
to weak decays. It can be extracted from the asymptotic
behavior of the correlation between the pseudoscalar or the
time components of the axial interpolators,

c2AZ
2
AhA�4 ðp ¼ 0; tÞAþ4 ð0Þi �m�F

2
�e
�m�t � ce�m�t: (5)

TABLE II. Lattice spacing in physical units derived for en-
sembles of types A, B, and C (cf. Table I) by the methods
discussed in the text.

A B C

ð�; r0Þphys 0.1324(11) 0.1366(15) 0.1398(14)

ð�; r0Þchiral 0.1314(12) 0.1356(17) 0.1387(15)

ð�; �Þphys 0.1330(44) 0.1378(50) 0.1400(29)

TABLE III. Pion masses and quark AWI masses for the different sets of gauge configurations.

Set a [fm] am� m� [MeV] amAWI mAWI [MeV]

A50 0.1324(11) 0.3997(14) 596(5) 0.030 27(8) 45(1)

A66 0.1324(11) 0.1710(48) 255(7) 0.005 89(40) 9(1)

B60 0.1366(15) 0.3568(15) 516(6) 0.023 56(13) 34(1)

B70 0.1366(15) 0.2111(38) 305(6) 0.008 36(23) 12(1)

C64 0.1398(14) 0.4163(18) 588(6) 0.029 95(20) 42(1)

C72 0.1398(14) 0.3196(18) 451(5) 0.017 28(16) 24(1)

C77 0.1398(14) 0.2340(27) 330(5) 0.010 54(19) 15(1)
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The coefficient then gives

F� ¼ 2mAWIcPZA

ffiffiffiffiffiffiffi
c

m3
�

s
; (6)

and equivalently for the kaon FK.
The dependence of the pion decay constant on the quark

mass can be described by chiral perturbation theory. Up to
1-loop order, one finds [33]

F� ¼ F�;0 �m
2�0

16�2F3
�;0

ln

�
m

2�0

�2
4F

2
�;0

�
: (7)

Here, F�;0 and �0 refer to the pion decay constant and the

quark condensate in the chiral limitm! 0 and�4 is a low
energy constant. The corresponding expressions including
the 2-loop order can be found in [34,35].

The renormalization factor ZA cancels in the ratio
FK=F�. We show this ratio in Fig. 2 where we assume a
lattice spacing of 0.135 fm [the average of our values for
the scheme ð�; r0Þphys] and a physical pion mass of

139.57 MeV. The extrapolation of our data to that point
gives

FK=F� ¼ 1:215ð41Þ; (8)

which fully covers the experimental value 1.197(9) [36].

IV. ANALYSIS METHOD AND MESON
INTERPOLATORS

Given interpolating operators OM with the quantum
numbers of a hadron, the correlation function of such
operators separated by some Euclidean time distance pro-
vides the energy spectrum,

hOMðtÞOyMð0Þi ¼
X
n

hOMjnihnjOyMie�Ent: (9)

The asymptotic exponential decay, however, gives just the
ground state energy in that channel. On finite lattices,
depending on parameters like size and lattice spacing,
this may be related either to a single meson or to meson
scattering states. For the study of scattering and of higher
lying mesons it is imperative to find also the excited energy
levels.
An efficient tool for this is the so-called variational

analysis [14,15,37]. Using several interpolators with the
correct quantum numbers, one diagonalizes the cross-
correlation matrix of these, using the generalized eigen-
value formulation

CijðtÞ � hOiðtÞOyj ð0Þi;
CðtÞ ~vkðt; t0Þ ¼ �kðt; t0ÞCðt0Þ ~vkðt; t0Þ:

(10)

If the set of interpolators is large enough, then one
expects that the eigenvectors approach the eigenstates
of the system. In fact, the eigenvectors act as a finger-
print of the states and should remain stable over the
considered window of t values. In such a window the
eigenvalues decay exponentially, approximating the de-
sired eigenenergies,

�kðt; t0Þ / e�ðt�t0ÞEkð1þOðe�ðt�t0Þ�EkÞ: (11)

Here, depending on t and t0, the value of �Ek denotes
either the difference to the first neglected energy level
(for t0 � t � 2t0) or to the nearest energy level (for a
careful discussion see [37]). It was also demonstrated
that even ghost states can be identified with this type of
analysis [38].
A possible systematic influence comes from choosing t0

in the variational method and the fit range for the general-
ized eigenvalues. We use t0 ¼ 1 throughout. In principle,
the impact of that choice can be estimated by choosing
several values of t0 and varying the fit range. For the final
fit, one should then choose a window where this impact is
negligible. However, in practice the corresponding choices
are restricted by the given signal-to-noise ratio for coarse
lattices and weak signals. In the actual analysis, one de-
termines the window from a combination of indicators,
ranging from effective energy values to approximate
constancy of the corresponding eigenvectors. The energy
levels then result from an exponential fit to the eigenvalues
over that window. In some cases a second exponential is
used in these fits to allow for a small admixture of higher
energy states.
Various techniques have been suggested to construct

interpolators. In [39] we introduced lattice operators based
on smeared quarks. Combining differently smeared quarks,
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FIG. 2 (color online). The ratio of FK=F� is plotted against
m2

� (in dimensionless units) for each set of gauge configurations.
The full black line is a fit of the data using the relevant
expressions for numerator and denominator; the shaded area
indicates the error band. The magenta cross indicates the ex-
perimental value [36].
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also including covariant derivatives [40–42], several me-
son and baryon energy levels could be determined in the
quenched [43,44] and dynamical case [1].

The interpolators are constructed by hypercubic smear-
ing [45–47] the time slice gauge variables, i.e., smearing
only the spatial links in each time slice.1 Based on these
gauge variables the quark sources are smeared with the
covariant Jabobi smearing [48,49],

S�;K ¼
XK
n¼0

�nHnS0; (12)

Hð ~n; ~mÞ ¼X3
j¼1
ðUjð ~n; 0Þ�ð ~nþ ĵ; ~mÞ

þUjð ~n� ĵ; 0Þy�ð ~n� ĵ; ~mÞÞ; (13)

where S0 denotes the point source. The parametersK and �
are adjusted to obtain Gaussian-like shapes of the sources
[44] with different smearing widths. In the definitions of
the operators we denote the smearing types by n and w
(narrow and wide) and by @k for the derivative in spatial
direction k. The widths of the sources do not exactly agree
for the various ensembles (which would be dependent on
the definition of the scale anyway.) However, the width of
the narrow source is in the range 0.2 to 0.3 fm and the width
of the wide source is in the range 0.4 to 0.6 fm.

The derivative sources S@k have been constructed nu-

merically by applying the covariant difference operators on
the wide source, Sw, see [42,50]. This corresponds to an
asymmetric definition of the interpolators. If S1; S2 denote

Gaussian smearing operators and ~D the derivative acting to
the right, then our operators (involving one derivative)
have the structure

O ¼ �c ðS1�S2 ~D�D
 
S2�S1Þc (14)

instead of

O ¼ �c ðS1� ~DS2 � S2D
 
�S1Þc ; (15)

where the ‘‘�’’ symmetrization ensures a good C-parity
quantum number. Following Eq. (15), some interpolators
(with S1 ¼ S2) are identical to zero after partial integra-
tion. The operator Eq. (14) is in general nonvanishing even
if S1 ¼ S2, since ½D; S� � 0. This commutator can be seen
as introducing additional pieces of paths in the combined
smearing operator, which means changed weights of the
existing paths and a few new paths. Numerically, we find

that the corresponding correlators are of the same magni-
tude as others and yield consistent signals. Hence, this
asymmetric definition enlarges effectively the basis of
operators to some extent. In particular, some exotic chan-
nels can be accessed this way already with fewer
derivatives.
In the Appendix we list all meson interpolators used in

our study, ordered according to their spin and parity
(Tables IV, V, VI, VII, VIII, IX, X, and XI). The tables
differ from those in [1] since we here account for the
approximate symmetry under C-parity of strange mesons
and construct the interpolators accordingly. Monitoring
the eigenvectors in the variational method allows for
insights in approximate C-parities of various strange me-
son states, and furthermore in the breaking of C-parity of
strange mesons when approaching the physical pion
mass.

V. ISOVECTOR LIGHT MESONS

The energy levels are obtained from exponential fits
to the eigenvalues in a range of t values where the
eigenvalues and eigenvectors are compatible with pla-
teau behavior. Typically that plateau extends from t ¼ 2
or 3 up to t ¼ 6 to 12. In some cases the eigenvalues are
close to each other and their order changes from one
time slice to another and also changes randomly over
the set of configurations. This complicates the exponen-
tial fits to the eigenvalues and the automatic attribution
of the eigenvectors to physical eigenstates. In such
situations we use scalar products of eigenvectors at a
given time slice with the eigenvectors at the preceding
time slice to sort the eigenvalues according to their
corresponding physical states. This procedure becomes
more reliable towards finer lattice spacings. For subsets
of configurations (in the jackknife analysis), the eigen-
vectors are contracted with the average of the vectors at
the same time slice.
All masses are extrapolated towards the physical point

as a function of the pion ground state mass squared. In the
plots we also show the corresponding one � error band
(dashed curves). The number of energy levels shown is
always less than the number of interpolators chosen for the
diagonalization. The 	2 per degree of freedom for the
chiral fits of all energy levels are collected in Tables XII,
XIII, and XIV.

A. Scalars

0�þð�Þ: For the first excitation in the pion channel (see
Fig. 3), the set of operators (1, 2, 17) is used in all
ensembles. The corresponding effective mass plateaus are
rather short, increasing the uncertainty of the extracted
mass. Because of the finiteness of the lattice, the back-
running pion limits the possible fit range for the first
excitation [23,42,51], in particular, at small pion masses.

1Notice that the Dirac operator already contains one level of
stout smearing. We use these stout smeared gauge links and
apply additional smearing to construct the sources.
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Nevertheless, masses can be extracted and the chiral ex-
trapolation hits the experimental �ð1300Þ within 1�.

0þþða0Þ: In [1], three (A50, B70, and C77) of the seven
ensembles have been analyzed, with less statistics than in
the present work. Partially quenched data was used to
argue that the signal in the 0þþ channel probably has
significant contributions from the S-wave scattering state
�
2. In the present work we analyze only fully dynamical
data (except for the strange sector). Our results are now
compatible with the experimental ground state að980Þ
within 1� and with the first excitation að1450Þ within 2�
(see Fig. 3). However, the channel still poses some diffi-
culties. The plateau is rather short and there remains some
ambiguity in choosing the fit range, leading to a systematic
error. In addition, the results depend on the chosen set of
interpolators. We show results from subsets of (1, 4, 10, 12,
13). In ensemble B60, the excitation signal was not good
enough to be fitted. The extrapolations of the ground state
levels agree for the different choices of interpolators.

However, in particular the ground state energy level of
ensemble A66 deviates when changing the set of interpo-
lators. The result becomes unexpectedly light, most pro-
nounced in the case of the set (10, 12, 13), though the
corresponding effective mass plateaus look stable. Indeed,
this point lies below the (theoretical) �
2 threshold and

could indicate a scattering state signal. It also could
signal a severe finite size effect for this case in A66; this
could be clarified only by increasing the lattice volume.
Nevertheless, except for this point, the results are compat-
ible with the experimental states.
In Fig. 4 we show the eigenvectors for the ground state

for three ensembles covering the whole range of pion
masses presented. They are quite consistent with each
other and not supporting the notion of a change in the
physics of the ground state over that range. Figure 5
shows the effective masses of ground state and first excited
energy level for the ensemble with smallest pion mass
(A66).
There are studies for the finite size dependence of the

lowest energy level in this channel based on unitarized
chiral perturbation theory [21]. However, at the moment
our values are not precise enough to decide on these
grounds on properties of the a0. Also it may be necessary
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to include meson-meson interpolators in a more detailed
study. Simulations to address finite size effects are cur-
rently in progress and the discussion of this ongoing effort
is beyond the scope of the current publication.

B. Vectors

1��ð�Þ: The �ð770Þ comes out nicely as usual (see
Fig. 6). The first and second excitation are extracted
using the set (1, 8, 12, 17, 22), where the second
excitation is not stable in A66. These excitations are
very close to one another, making the chiral extrapola-
tions less reliable. The pattern of energy levels would
allow a crossover of eigenstates but the eigenvectors do
not confirm this. Therefore, we extrapolate the results to
the physical point according to the naively assumed
level ordering, neglecting a possible crossover. The re-
sults are compatible with the experimental �(1450) and
�(1570 or 1700) within error bars (for a discussion on
the latter excitation see [36]).

We find no obvious indication for a coupled �� P-wave
channel. As discussed earlier [1,52] this may be due to
weak coupling. By including two pion interpolators, one
can derive a scattering phase shift from the modification of
the observed energy levels close to the resonance (see, e.g.

[53]). Such a study needs inclusions of disconnected
graphs, which are not accessible to us: The necessary
propagator calculation is numerically too costly for CI
fermions.
1�þð�1Þ: The quantum numbers 1�þ cannot be ob-

tained with isotropic quark sources only. Thus, this channel

is not accessible by simple quark models, and it is com-

monly referred to as exotic. Because of the weak signal, the

set of operators has to be optimized in each ensemble

separately, taking one or two interpolators of (9, 11, 14,

16, 21, 24). This way a mass value can be extracted only

with comparatively large statistical uncertainty. The chiral

extrapolation hits the experimental �1ð1400Þ, but is also

compatible with the �1ð1600Þ (see Fig. 6). In some of the

ensembles we get the best signal using interpolators which

are nonzero only due to the definition in Eq. (14) and

discussed there. This may be related to the ‘‘exotic’’ prop-

erty of this channel.
1þþða1Þ: The signal in the pseudovector meson channels

is usually bad compared to the pion and the � channels.
Nevertheless, the ground state and a first excitation can be
identified. The ground state is extracted using the single
interpolator (1). For the first excitation the set has to be
optimized in each ensemble separately, taking subsets of
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three interpolators out of (1, 2, 4, 13, 15, 17). Some of the
plateaus tend to shift towards smaller masses at large time
separations. However, as far as possible, long fit ranges are
chosen. The chiral extrapolations hit the experimental
a1ð1260Þ and the a1ð1640Þ within error bars (see Fig. 6).

1þ�ðb1Þ: In the 1þ� channel, the ground state plateau is
more stable than in its positive C-parity partner channel
(a1). Using the single interpolator (6), a mass with com-
paratively small error bar is obtained. The chiral extrapo-
lation comes out too high, missing the experimental
b1ð1235Þ by more than 2� (see Fig. 6).

C. Tensors

The continuum representation for spin 2 contributes to
the irreducible representations T2 and E on the lattice.
These interpolators are orthogonal, thus masses can be
extracted in each of them separately. In the continuum
limit, the results should agree; however, at finite lattice
spacings they can show different discretization effects. We
extract the energy levels separately and compare the cor-
responding chiral extrapolations.

2��ð�2Þ: In many of the spin 2 channels the signal is
weak and fits can be performed only for some of the seven
ensembles. In particular, this is the case in the 2�� channel

(see Fig. 7, top and middle). We use the single interpolator
(2) in T2 and also (2) in E. The effective masses are noisy,
the fitted plateaus are rather short, with only 2 d.o.f. in the
fits. Nevertheless, the chiral extrapolations of the T2 and E
ground state masses agree with each other and also with the
experimental �2ð1940Þ mass. Hence, our results are com-
patible with this state, which is omitted from the summary
table of [36].
2�þð�2Þ: In the 2�þ channel (Fig. 7, bottom), interpo-

lator (6) is applied in T2. The extrapolation to the physical
point is compatible with the experimental �2ð1670Þ
(within 1, respectively 1:5�). The signal for representation
E (not shown) is too weak to be reliable.
2þ�: We studied this channel for completeness but the

signals were inconclusive and did not allow to extract an
energy level.
2þþða2Þ: In the 2þþ channel (Fig. 8), we use interpola-

tor (2) in T2 and (2) [respectively (6) for A66] in E. Some
of the plateaus are unexpectedly light, however, that might
be statistical fluctuation. The chiral extrapolations of the T2

and E ground state masses agree and both match the
experimental a2ð1320Þ mass within error bars. The
	2=d:o:f: of the chiral fit of T2 is larger than 3 (see
Table IX), where the major contribution stems from en-
semble A66. Finite volume effects could be responsible for
the significant deviation of this particular value.

VI. MESONSWITH STRANGE VALENCE QUARKS

In 2-flavor simulations, strange hadrons can be studied
by including the strange quark just as a valence quark.
The corresponding quantum field theory is not well
defined, the probability distribution of physical observ-
ables is not anymore strictly non-negative. Nevertheless,
since the strange quark is heavy compared to the light,
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dynamical quarks, observables can be measured and
regarded as predictions including systematic errors. We
stress that, even though light hadrons are well defined in
2-flavor simulations, they also show the systematic error
of neglecting strange sea quarks when the results are
compared to experiment. From this point of view, the
predictive power of strange valence hadrons is not sig-
nificantly below the one of light hadrons in 2-flavor
simulations. The strange quark mass parameter is set
in each ensemble such that the �ð1672Þ is reproduced
(always assuming that r0;exp ¼ 0:48 fm) (see Sec. III B).

In contrast to isovector light mesons, C-parity is no good
quantum number for I ¼ 1

2 strange mesons due to the non-

degeneracy of the light and strange quark mass. At un-
physically large pion masses, however, C-parity is
approximately restored. Our interpolators (see the
Appendix) are constructed such that C-parity is a good
quantum number in the limit of degenerate quark masses.
Therefore, by monitoring the eigenvectors of the varia-
tional method, we can learn about the C-parity content of
the states.

Since excited states are always more difficult to deal
with than ground states, this raises the demands on the
variational method. In some cases it is therefore suggestive
to separate the channels according to C-parity. At our
largest pion masses, around 600 MeV, one expects
C-parity to be almost restored. Approaching the physical
point, C-parity is violated stronger and stronger, and the
corresponding mixing of interpolators is expected to be-
come increasingly important. To investigate this mixing,
we include all possible interpolators in the correlation
matrix, but we also analyze separately the sectors with
given C-parity. The advantage of the second approach is
a clearer distinction of the energy levels, where some come
in the ½C ¼ þ1� sector, some in the ½C ¼ �1� sector. In
the combined correlation matrix we see both sets, but due
to the increased noise, fewer levels can be reliably deter-
mined. We discuss this point in the subsequent channels.
Our results for the dominant C-parity assignments agree
qualitatively with [2]. Here we also discuss the correspond-
ing mixing, which is accessible due to our lighter pion
masses.

A. Scalars

ðI ¼ 1
2Þ 0�ðKÞ: In the strange ðI ¼ 1

2Þ0� channel, inter-

polator (1) is used for the ground state, which extrapolates
close to the experimental kaon (see Fig. 9). The 	2=d:o:f:
of the chiral fit is larger than 4 (see Table X), which
indicates that due to the tiny statistical errors the system-
atic errors (e.g. of setting the strange quark mass) become
visible. For the excited state, we use the set (1, 2, 8, 17), its
linear extrapolation agrees with the experimental Kð1460Þ
within error bars. Hence, we can confirm this state (omitted
from the summary table of [36]). In this channel we use
only 0�þ interpolators, since the signal of the exotic 0��

interpolators is too weak, and the corresponding energy
levels lie too high.
ðI ¼ 1

2Þ 0þðK0Þ: The strange scalar channel 0þ is as

peculiar as its light multiplet partners. The K�0ð800Þ (also
called �) is a very broad resonance (with a width of more
than 80% of its mass) and is omitted from the summary
table of [36] due to its unclear nature.
Using interpolator (13) alone (not shown), the chiral

extrapolation almost hits the presumed center of the
resonance. To apply the variational method, we use the
set (10, 12, 13) and include also (1, 4) in the basis at
small pion masses. We observe that at light pion masses
the effective masses tend to decrease at large time
separations, which may be a signal for contributions of
a scattering state. Like in most cases, we choose a large
fit range (e.g., 8 time slices in A66). The results are
compatible with the K�0ð800Þ and the K�0ð1430Þ, but also
with the S-wave scattering state �K (see Fig. 9). The
	2=d:o:f: of the chiral fit of the ground state is larger
than 8 (see Table X), which is again interpreted as
indication for systematic errors, probably related to scat-
tering states. Here we use only 0þþ interpolators, the
signal of the exotic 0þ� interpolators is too weak.

0 0.1 0.2 0.3 0.4

mπ
2
 [GeV

2
]

0

0.5

1

1.5

2

2.5

3

m
as

s 
[G

eV
]

K

0 0.1 0.2 0.3 0.4

mπ
2
 [GeV

2
]

0

0.5

1

1.5

2

2.5

3

m
as

s 
[G

eV
]

πK S-waveK0

FIG. 9 (color online). (top) ðI ¼ 1
2Þ 0� (K). (bottom) ðI ¼

1
2Þ 0þ (K0). The S-wave scattering state �K for zero and mini-

mum nonzero relative momentum is indicated for all ensembles
using crosses. The chiral fits are omitted for clarity.

QCD WITH TWO LIGHT DYNAMICAL CHIRALLY . . . PHYSICAL REVIEW D 85, 034508 (2012)

034508-9



B. Vectors

ðI ¼ 1
2Þ 1þðK�Þ: Considering the strange JP channels as

mixing of JPþ and JP�, one can use information from the
corresponding light JPC channels to speculate about the
dominating C-parity in the low-lying states of the strange
JP channel. Based on that analogy, in the scalar channels
one expects dominance of positive C-parity, which is con-
firmed by our results. In the vector channels, however, both
C-parities are expected to contribute to the measurable
low-lying states. Looking at the experimental states in
the corresponding light meson channels �(770),
�1(1300), �(1450), and �(1570 or 1700), one expects
that the K�ð892Þ is an (almost) pure 1�� state, while
mixing could become important for K�ð1410Þ and
K�ð1680Þ.

We first discuss sets of purely negative C-parity inter-
polators. Taking interpolators (1, 8, 12, 17, 20), we extract
a ground state and up to two excitations. The chiral ex-
trapolation of the ground state hits the experimental
K�ð892Þ nicely (see Fig. 10), which is clearly an (almost)
pure ½C 	 �� state. The excitations are a bit high com-
pared to the experimental K�ð1410Þ and the K�ð1680Þ.

Considering only 1�þ interpolators, the chiral extrapo-
lation hits the K�ð1680Þ. This suggests that mixing is
important at least for the K�ð1680Þ.

Finally, taking the set (1, 8, 9, 12, 16, 20, 21), both
types of C-parities are included in the variational
method. In this analysis, the three lowest states are
dominated by ½C 	 �� interpolators, where even for
the excitations the mixing is compatible with zero. A
slight mixing is observed in ensemble A66; however, the
signal is very weak, and the corresponding energy levels
cannot be extracted reliably. One might wonder why we
do not see a significant contribution of ½C 	 þ� inter-
polators to at least one of the excitations. A possible
interpretation is that the mixing is indeed weak in this
channel at all simulated pion masses and that there is a
further state, dominated by ½C 	 þ�, which is not
clearly identified in the full analysis. The chiral extrap-
olations of the excitations come out a bit high compared
to the experimental K�ð1410Þ and K�ð1680Þ, suggesting
that simulations at smaller pion masses and with higher
statistics are necessary in order to reliably describe the
mixing of different C-parities and to be able to obtain
the K�ð1410Þ.
ðI ¼ 1

2Þ 1þðK1Þ: Looking at the experimental states in

the corresponding light meson channels a1ð1260Þ,
b1ð1235Þ and a1ð1640Þ, mixing is expected already for
the lowest states K1ð1270Þ, K1ð1400Þ, and K1ð1650Þ.

Employing pure ½C 	 þ� sets of interpolators, the chiral
extrapolation of the ground state ends up between the
K1ð1270Þ and the K1ð1400Þ. The first excitation hits the
K1ð1650Þ within error bars. From pure ½C 	 �� interpola-
tors only a ground state can be extracted, the chiral ex-
trapolation of which agrees with the K1ð1400Þ.

Allowing for both types of C-parity, three states can be
extracted when the set of interpolators is optimized in each
ensemble. The chiral extrapolations are compatible with
K1ð1270Þ, K1ð1400Þ, and K1ð1650Þ (see Fig. 11). Since the
splitting of K1ð1270Þ and K1ð1400Þ is rather small, it is
hard to make a statement about its increase towards smaller
pion masses. (Notice that an increased splitting is observed
when mixing both charged conjugations for the analogous
mesons in the charmed meson sector [54].) This is wors-
ened by the fluctuation of the plateau points. However, the
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eigenvectors indeed show stronger mixing approaching the
physical point (see Fig. 11), which is usually accompanied
by a more pronounced splitting. At simulated pion masses,
K1ð1270Þ and K1ð1650Þ are dominated by ½C 	 þ�,
K1ð1400Þ by ½C 	 �� interpolators. Our results confirm
the existence ofK1ð1650Þ (omitted from the summary table
of [36]), which is dominated by positive C-parity in our
analysis.

C. Tensors

ðI ¼ 1
2Þ 2�ðK2Þ: In the spin 2 channels, investigation

of the mixing becomes more complicated, since the
signal is often weak already for the ground state.
From the light meson states �2ð1670Þ, �2ð1880Þ, and
the (not established) �2ð1940Þ, one could expect a domi-
nance of ½C 	 þ� interpolators in the ground state. So
far, K2ð1580Þ is omitted from the summary table of [36],
the lowest established states in this channel are
K2ð1770Þ and K2ð1820Þ.

Restricting the basis to negative C-parity, we use
interpolator (2) as in the corresponding light channel.
In both T2 and E, the chiral extrapolation is compatible
with K2ð1770Þ and K2ð1820Þ. For positive C-parity, us-
ing interpolator (6) in T2 and (8) in E, the chiral
extrapolations are again compatible with K2ð1770Þ and
K2ð1820Þ.
To take into account both C-parities, the set (2, 5, 6)

[respectively (3, 4, 5, 6) in C72] is chosen in T2 and (2, 5, 8)
in E. The two lowest eigenvalues are very close and have to
be sorted according to the eigenvectors. The eigenvectors
of T2 are shown in Fig. 12. We observe that the ground
(excited) state is dominated by positive (negative)
C-parity. However, there is significant mixing in both
states, which appears to be the strongest mixing of all
channels considered. Strong mixing is also observed in
representation E. The chiral extrapolations are compatible
with the experimentally established K2ð1770Þ and
K2ð1820Þ (see upper panels of Fig. 13) and do not confirm
the K2ð1580Þ, which is omitted from the summary table of
[36]. However, increasing mixing towards lighter pion
masses could still change the slope of the chiral
extrapolation.
ðI ¼ 1

2Þ 2þðK�2Þ: No experimental state is known in

the light-quark 2þ� channel. In the light 2þþ channel,
the lowest states are a2ð1320Þ, a2ð1700Þ, and a2ð1950Þ,
of which the latter two are not established. In the strange
2þ� channel the lowest experimental states are K�2ð1430Þ
and the (not established) K�2ð1980Þ.
The signal of negative C-parity interpolators is weak

here, thus we restrict our analysis to positive C-parity
interpolators. Interpolator (2) (Table XI) is used in T2
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and interpolator (2) (Table IX) in E to extract a ground
state mass. In both lattice channels, the chiral extrapolation
hits the experimental K�2ð1430Þ nicely (see lower panels of
Fig. 13).

D. Isoscalar light mesons

1��ð�Þ: In principle, correlation functions of isoscalar
mesons include connected and disconnected diagrams.
The low-lying isoscalar � mesons decay mainly into
kaons, thus one expects that these states are dominated
by strange quarks (Zweig rule). Since disconnected dia-
grams are dominated by loops of light sea quarks, it is
reasonable to assume that the � mesons are dominated
by connected (strange) diagrams. We extract � meson
masses evaluating only these connected diagrams, albeit
with the systematic error of neglecting the disconnected
diagrams. We use the same set of operators as in the
light isovector 1�� (�) channel (Sec. VB) to extract
three energy levels.

The ground state mass extrapolates to a value very
close to the experimental �ð1020Þ mass (see Fig. 14),
which confirms our choice of the strange quark mass
parameters. The extrapolation of the excited states ends
up significantly higher than the experimental �ð1680Þ.
Since the first excitation �ð1450Þ in the light isovector
channel is reproduced nicely, one may conclude that the
neglected disconnected diagrams play a more important
role for the �ð1680Þ compared to the �ð1020Þ. The
lattice irreducible representation T1 couples to continuum
spins 1 and 3 (among others). This is why we also
indicate the possible spin 3 state �3ð1850Þ in the figure.
This state is hit by the extrapolations of the first and
second excitation. However, all our interpolators in this
channel have a naive continuum limit of spin 1. One of
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these two levels may bend down if disconnected diagrams
are included.

2þþðf2Þ: As in the � meson channel, the experimental
decay channels of the isoscalar light meson f2 suggest
dominance of connected diagrams. We use the same inter-
polators as in the isovector 2þþ (a2) channel. The results of
T2 and E agree (see Fig. 14), but their chiral extrapolations
are in better agreement with the f02ð1525Þ than with the

f2ð1430Þ. The latter needs confirmation and is not listed in
the summary table of [36]. It is unclear if inclusion of the
neglected disconnected diagrams would yield the f2ð1430Þ

or if the ground state of the theory is the established
f02ð1525Þ.

VII. CONCLUSIONS

We presented results for the light and strange meson
spectrum from two dynamical Chirally Improved quarks.
Seven ensembles with pion masses between 250 and
600 MeV were analyzed with the variational method in
order to extract energy levels for ground and excited states.
In addition to dynamical light quarks, we also included
strange quarks within the partially quenched approxima-
tion, fitting the strange quark mass by requiring the correct
�ð1672Þ mass.
Figure 15 shows our chirally extrapolated results for

the spectrum of light mesons compared to experimental
values from [36]. Figure 16 contains a similar plot for
strange mesons (left panel) and isoscalars (right panel).
The results are in general in good agreement with
experiment. For the strange mesons the good agreement
for the ground states in the kaon, the K?, and � meson
channels suggest that these observables are well repro-
duced in the partially quenched approximation and con-
firm our choice of strange quark mass parameter. As
discussed in more detail in Secs. V and VI, we do not
see any clear indications of scattering states, which
probably show only little overlap with the one-particle
interpolators used in this work. Exceptions are the
strange 0þ channel and the light isovector 0þ channel
at small quark masses, where our signal is also consis-
tent with a two-particle scattering state.
The strange meson channels 1�, 1þ, and 2� have

been investigated with respect to their approximate
C-parity. In the 1� channel, the three lowest states
seem to be dominated by negative C-parity, while posi-
tive C-parity was shown to contribute to a state in the
vicinity of the second excitation. The 1þ channel shows
some mixing of different C-parity towards light pion
masses, and the low-lying spectrum seems to contain
states with alternating C-parity dominance. The 2�
channel shows strong mixing towards light pion masses
and the ground state (first excitation) is dominated by
positive (negative) C-parity.
For our lightest three pion masses finite size effects may

play a non-negligible role and their influence on our results
deserves further attention. A study on larger volumes is in
progress and we will investigate this source of possible
systematic errors in the near future. The larger volume will
also be used for the spectroscopy of low-lying baryon
states, where finite volume effects are expected to be
more pronounced.
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APPENDIX: TABLES OF INTERPOLATORS

In the tables for meson interpolators (Tables IV, V, VI,
VII, VIII, IX, X, and XI), the two quark fields are
labeled by a and b. These are placeholders for light
(u, d) or strange (s) quarks. The indices n, w, and @i
correspond to the smearings narrow, wide, and deriva-
tive, respectively. �i are the spatial Dirac matrices, �t is
the Dirac matrix in time direction. �ijk is the Levi-Civita

symbol, Qijk are Clebsch-Gordon coefficients, where all

elements are zero except Q111 ¼ 1ffiffi
2
p , Q122 ¼ � 1ffiffi

2
p ,

Q211 ¼ � 1ffiffi
6
p , Q222 ¼ � 1ffiffi

6
p , and Q233 ¼ 2ffiffi

6
p .

TABLE IV. Meson interpolators for JP ¼ 0�. The first row
shows the number, the second shows the explicit form of the
interpolator. In the last column the C-parity is given, which is
only an approximate quantum number in the case of differing
quark masses. Interpolators with different quark field smearings
and similar Dirac structure are grouped and these groups sepa-
rated by a horizontal rule.

#0� Interpolator C

1 �an�5bn þ
2 �an�5bw þ �aw�5bn þ
3 �an�5bw � �aw�5bn �
4 �aw�5bw þ
5 �an�t�5bn þ
6 �an�t�5bw þ �aw�t�5bn þ
7 �an�t�5bw � �aw�t�5bn �
8 �aw�t�5bw þ
9 �a@i�i�5bn þ �an�i�5b@i þ
10 �a@i�i�5bn � �an�i�5b@i �
11 �a@i�i�5bw þ �aw�i�5b@i þ
12 �a@i�i�5bw � �aw�i�5b@i �
13 �a@i�i�t�5bn þ �an�i�t�5b@i �
14 �a@i�i�t�5bn � �an�i�t�5b@i þ
15 �a@i�i�t�5bw þ �aw�i�t�5b@i �
16 �a@i�i�t�5bw � �aw�i�t�5b@i þ
17 �a@i�5b@i þ
18 �a@i�t�5b@i þ

TABLE V. Same as Table IV, now for JP ¼ 0þ.

#0þ Interpolator(s) C-parity

1 �anbn þ
2 �anbw þ �awbn þ
3 �anbw � �awbn �
4 �awbw þ
5 �a@i�ibn þ �an�ib@i �
6 �a@i�ibn � �an�ib@i þ
7 �a@i�ibw þ �aw�ib@i �
8 �a@i�ibw � �aw�ib@i þ
9 �a@i�i�tbn þ �an�i�tb@i �
10 �a@i�i�tbn � �an�i�tb@i þ
11 �a@i�i�tbw þ �aw�i�tb@i �
12 �a@i�i�tbw � �aw�i�tb@i þ
13 �a@ib@i þ

TABLE VI. Same as Table IV, now for JP ¼ 1�.

#1� Interpolator(s) C

1 �an�kbn �
2 �an�kbw þ �aw�kbn �
3 �an�kbw � �aw�kbn þ
4 �aw�kbw �
5 �an�k�tbn �
6 �an�k�tbw þ �aw�k�tbn �
7 �an�k�tbw � �aw�k�tbn þ
8 �aw�k�tbw �
9 �a@kbn þ �anb@k þ
10 �a@kbn � �anb@k �
11 �a@kbw þ �awb@k þ
12 �a@kbw � �awb@k �
13 �a@k�tbn þ �an�tb@k �
14 �a@k�tbn � �an�tb@k þ
15 �a@k�tbw þ �aw�tb@k �
16 �a@k�tbw � �aw�tb@k þ
17 �a@i�kb@i �
18 �a@i�k�tb@i �
19 �a@k�ijk�j�5bn þ �an�ijk�j�5b@k þ
20 �a@k�ijk�j�5bn � �an�ijk�j�5b@k �
21 �a@k�ijk�j�5bw þ �aw�ijk�j�5b@k þ
22 �a@k�ijk�j�5bw � �aw�ijk�j�5b@k �
23 �a@k�ijk�j�t�5bn þ �an�ijk�j�t�5b@k �
24 �a@k�ijk�j�t�5bn � �an�ijk�j�t�5b@k þ
25 �a@k�ijk�j�t�5bw þ �aw�ijk�j�t�5b@k �
26 �a@k�ijk�j�t�5bw � �aw�ijk�j�t�5b@k þ
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TABLE VII. Same as Table IV, now for JP ¼ 1þ.

#1þ Interpolator(s) C

1 �an�k�5bn þ
2 �an�k�5bw þ �aw�k�5bn þ
3 �an�k�5bw � �aw�k�5bn �
4 �aw�k�5bw þ
5 �a@k�5bn þ �an�5b@k þ
6 �a@k�5bn � �an�5b@k �
7 �a@k�5bw þ �aw�5b@k þ
8 �a@k�5bw � �aw�5b@k �
9 �a@k�t�5bn þ �an�t�5b@k þ
10 �a@k�t�5bn � �an�t�5b@k �
11 �a@k�t�5bw þ �aw�t�5b@k þ
12 �a@k�t�5bw � �aw�t�5b@k �
13 �a@i�k�5b@i þ
14 �ijk �a@k�jbn þ �ijk �an�jb@k �
15 �ijk �a@k�jbn � �ijk �an�jb@k þ
16 �ijk �a@k�jbw þ �ijk �aw�jb@k �
17 �ijk �a@k�jbw � �ijk �aw�jb@k þ
18 �ijk �a@k�j�tbn þ �ijk �an�j�tb@k �
19 �ijk �a@k�j�tbn � �ijk �an�j�tb@k þ
20 �ijk �a@k�j�tbw þ �ijk �aw�j�tb@k �
21 �ijk �a@k�j�tbw � �ijk �aw�j�tb@k þ
22 �an�k�t�5bn �
23 �an�k�t�5bw þ �aw�k�t�5bn �
24 �an�k�t�5bw � �aw�k�t�5bn þ
25 �aw�k�t�5bw �
26 �a@i�k�t�5b@i �

TABLE VIII. Same as Table IV, now for JP ¼ 2�E.

#2�E Interpolator(s) C

1 Qijk �a@k�j�t�5bn þQijk �an�j�t�5b@k �
2 Qijk �a@k�j�t�5bn �Qijk �an�j�t�5b@k þ
3 Qijk �a@k�j�t�5bw þQijk �aw�j�t�5b@k �
4 Qijk �a@k�j�t�5bw �Qijk �aw�j�t�5b@k þ
5 Qijk �a@j�5b@k þ
6 Qijk �a@j�t�5b@k þ
7 Qijk �a@k�j�5bn þQijk �an�j�5b@k þ
8 Qijk �a@k�j�5bn �Qijk �an�j�5b@k �
9 Qijk �a@k�j�5bw þQijk �aw�j�5b@k þ
10 Qijk �a@k�j�5bw �Qijk �aw�j�5b@k �

TABLE IX. Same as Table IV, now for JP ¼ 2þE.

#2þE Interpolator(s) C

1 Qijk �a@k�jbn þQijk �an�jb@k �
2 Qijk �a@k�jbn �Qijk �an�jb@k þ
3 Qijk �a@k�jbw þQijk �aw�jb@k �
4 Qijk �a@k�jbw �Qijk �aw�jb@k þ
5 Qijk �a@k�j�tbn þQijk �an�j�tb@k �
6 Qijk �a@k�j�tbn �Qijk �an�j�tb@k þ
7 Qijk �a@k�j�tbw þQijk �aw�j�tb@k �
8 Qijk �a@k�j�tbw �Qijk �aw�j�tb@k þ
9 Qijk �a@jb@k þ
10 Qijk �a@j�tb@k �

TABLE X. Same as Table IV, now for JP ¼ 2�T2.

#2�T2
Interpolator(s) C

1 j�ijkj �a@k�j�5bn þ j�ijkj �an�j�5b@k þ
2 j�ijkj �a@k�j�5bn � j�ijkj �an�j�5b@k �
3 j�ijkj �a@k�j�5bw þ j�ijkj �aw�j�5b@k þ
4 j�ijkj �a@k�j�5bw � j�ijkj �aw�j�5b@k �
5 j�ijkj �a@k�j�t�5bn þ j�ijkj �an�j�t�5b@k �
6 j�ijkj �a@k�j�t�5bn � j�ijkj �an�j�t�5b@k þ
7 j�ijkj �a@k�j�t�5bw þ j�ijkj �aw�j�t�5b@k �
8 j�ijkj �a@k�j�t�5bw � j�ijkj �aw�j�t�5b@k þ

TABLE XI. Same as Table IV, now for JP ¼ 2þT2.

#2þT2
Interpolator(s) C

1 j�ijkj �a@k�jbn þ j�ijkj �an�jb@k �
2 j�ijkj �a@k�jbn � j�ijkj �an�jb@k þ
3 j�ijkj �a@k�jbw þ j�ijkj �aw�jb@k �
4 j�ijkj �a@k�jbw � j�ijkj �aw�jb@k þ
5 j�ijkj �a@k�j�tbn þ j�ijkj �an�j�tb@k �
6 j�ijkj �a@k�j�tbn � j�ijkj �an�j�tb@k þ
7 j�ijkj �a@k�j�tbw þ j�ijkj �aw�j�tb@k �
8 j�ijkj �a@k�j�tbw � j�ijkj �aw�j�tb@k þ
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[14] M. Lüscher and U. Wolff, Nucl. Phys. B339, 222 (1990).
[15] C. Michael, Nucl. Phys. B259, 58 (1985).
[16] A. Krassnigg, Phys. Rev. D 80, 114010 (2009).
[17] M. Blank, A. Krassnigg, and A. Maas, Phys. Rev. D 83,

034020 (2011).
[18] A. Krassnigg and M. Blank, Phys. Rev. D 83, 096006

(2011).
[19] J. R. Pelaez and G. Rios, Phys. Rev. D 82, 114002 (2010).
[20] V. Bernard, M. Lage, U. G. Meissner, and A. Rusetsky, J.

High Energy Phys. 01 (2011) 019.
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Lang, and A. Schäfer, Phys. Rev. D 70, 054502 (2004).
[40] X. Liao and T. Manke, arXiv:hep-lat/0210030.
[41] J. J. Dudek, R.G. Edwards, N. Mathur, and D.G.

Richards, Phys. Rev. D 77, 034501 (2008).
[42] C. Gattringer, L. Y. Glozman, C. B. Lang, D. Mohler, and

S. Prelovsek, Phys. Rev. D 78, 034501 (2008).
[43] T. Burch, C. Gattringer, L. Y. Glozman, C. Hagen, D.

Hierl, C. B. Lang, and A. Schäfer, Phys. Rev. D 74,
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