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The gluonic action density is calculated in static mesons at finite temperature just below the deconfine-

ment point. Our focus is to elucidate the role of vacuum ultraviolet fluctuations which are filtered using an

improved smearing algorithm. In the intermediate source separation distance, where the free string picture

poorly describes the flux tube width profile, we find upon reducing the vacuum action towards the classical

instanton vacuum, the characteristics of the flux tube converge and compare favorably with the predictions

of the free bosonic string. This result establishes a connection between the free string action and vacuum

gauge fields and reveals the important role of ultraviolet physics in understanding the lattice data at this

temperature scale. As a by-product of these calculations, we find the broadening of the QCD flux tube to

be independent of the ultraviolet filtering at large distances. Our results exhibit a linearly divergent pattern

in agreement with the string picture predictions.
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I. INTRODUCTION

In the dual superconductor scenario of quark confine-
ment, the quantum chromodynamical (QCD) vacuum
squeezes the color fields into a confining string dual to
the Abrikosov line by the dual Meissner effect. The string
conjecture [1] follows as an intuitive realization of this
squeezed color field with the major objective of deriving
the leading and subleading properties of the flux tube in the
infrared region of confining gauge theories. This effective
description is expected to hold on distance scales larger
than the intrinsic thickness of the flux tube 1=Tc [2] in the
rough phase of lattice gauge theories (LGT). The linearly
rising potential part arises from the classical configuration
of the string, and the quantum fluctuations of the string lead
to the presence of a long distance c=r term in the q �q
potential well known as the Lüscher term. The existence
of the subleading term has been verified in high precision
measurements of Polyakov loop correlators in the SU(3)
gauge group at zero temperature [3]. The fluctuations of
the string render an effective width for the flux tube which
grows logarithmically [4] as the color sources are pulled
apart. The logarithmic divergence has been verified in
many lattice simulations corresponding to a variety of
confining gauge models [2,5–7].

At high temperature, higher-order gluonic modes are
present. The corresponding free bosonic string predicts a
new set of measurable thermal effects. These include a
decrease in the effective string tension [8–10], a change in
the pattern of the tube’s growth in width from a logarithmic
divergence into a linear divergence [11], and a nonconstant
width profile [11,12] along the q �q line.

Unlike the situation at zero temperature, the thermal
behavior of the free string manifests only at source

separation distance scales larger than what one expects
normally in the zero temperature regime [11–14]. The
fact that the lattice data are poorly described by the free
theory in the intermediate distance regime has been a
subject of analytic and numerical studies which include
higher-order terms of the effective string’s action [15,16]
into the corresponding partition function. The consequen-
ces of such an approach have been studied on the level of
the q �q potential [17,18] and, recently, has been extended
to the flux-tube width profile [7,19,20]. Other studies
investigate a possible finite intrinsic thickness of the
QCD flux-tube [21].
Apart from the linearly rising potential, the interesting

physics of the effective confining string is mainly due to its
quantum fluctuations. As we will see, remarkable features
arise when the ultraviolet (UV) part of the fluctuations of
the stringlike flux tube is filtered out for intermediate quark
separations at high temperatures. At this distance scale it is
not yet clear if the deviations from the string picture are
due to a non-Nambu-Goto action or the fact that a string-
like behavior has not yet set in. Thus, it is interesting to
address this problem in a variant context by reporting an
observation regarding the role played by the UV fluctua-
tions of the vacuum in these discrepancies. We do this by
tracking the response of the QCD vacuum, which is subject
to UV filtering, to the presence of external static color
sources. This work extends the region for which the free
string picture is of utility.
In the following we measure the gluonic action-density

distribution by correlating an action density operator to
Polyakov loop correlators. Measurements are taken on a
set of SU(3) pure gauge configurations. The configurations
are generated using the standard Wilson gauge action Sw on
two lattices of a spatial volume of 363 and temporal extents
of Nt ¼ 10 and Nt ¼ 8, corresponding to temperatures
T=Tc � 0:8 and T=Tc � 0:9 respectively. The simulations*abakry@physics.adelaide.edu.au
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are performed for coupling value � ¼ 6:00. At this value
the lattice spacing is a ¼ 0:1 fm to reproduce the standard
value of the string tension

ffiffiffiffi
�

p ¼ 440 Mev [22]. The
Monte Carlo updates are implemented with a pseudo-
heat-bath algorithm [23] using Fabricius-Haan and
Kennedy-Pendelton (FHKP) [24,25] updating. Each update
step consists of one heat bath and five over-relaxations. The
measurements are taken on 500 bins separated with 2000
updating sweeps. Averaging inside each bin is performed
by taking 5 measurements separated by 70 updating
sweeps. This leads to a hierarchical integration, that is apart
from updating the last time slice, similar to implementing a
one-level Lüscher Weisz (LW) algorithm [3].

The measurements are taken after smoothing the gauge
field by an over-improved stout-link smearing algorithm
[26]. The value of the smearing parameters used are
� ¼ �0:25 and �� ¼ � ¼ 0:06. Smoothing the gauge

field reduces the action towards the action minimum or
the classical instanton solution [27]. The UV character-
istics of the gauge fields can be characterized in terms of
Dirac eigenmodes. For example, the number of over-
improved stout-link smearing sweeps used here has been
calibrated to a given spectral cutoff �cutoff in the spectral
representation of the Dirac operator [28]. The measure-
ments are taken on sets of smeared gauge configurations
with increasing levels of smearing. This way we are able to
set the limit where the QCD vacuum response to the
presence of an external static color sources asymptotically
approaches the low energy free effective theory behavior.

II. QUARK-ANTIQUARK POTENTIAL

At fixed temperature T, the Monte Carlo evaluation of
the quark-antiquark potential at each R is calculated
through the Polyakov loop correlators

P 2Q¼
Z
d½U�Pð0ÞPyðRÞexpð�SwÞ;¼ expð�VðR;TÞ=TÞ;

(2.1)

with the Polyakov loop given by

Pð ~riÞ ¼ 1

3
Tr

�YNt

nt¼1

U�¼4ð~ri; ntÞ
�
: (2.2)

In the string picture, the Polyakov loop correlator as-
sumes the functional form of the partition function of the
two-dimensional bosonic string

hPð0ÞPyðRÞi ¼
Z

C
½DX� expð�SðXÞÞ: (2.3)

The vector X�ð�1; �2Þ maps the region C � R2 into R4,
with Dirichlet boundary condition Xð�1; �2 ¼ 0Þ ¼
Xð�1; �2 ¼ RÞ ¼ 0, and periodic boundary condition
along the time direction Xð�1 ¼ 0; �2Þ ¼ Xð�1 ¼ LT; �2Þ,
LT ¼ 1

T . S is the string action in the physical gauge [3]

S½X� ¼ �
R

T
þ �

2

Z LT

0
d�1

Z R

0
d�2ðrXÞ2 þ . . . : (2.4)

The action decomposes into the classical configuration, the
fluctuation part, and the string higher-order self interac-
tions. A leading order approximation can be made by
neglecting the self-interaction terms. � ¼ ð�1; i�2Þ is a
complex parametrization of the world sheet, such that

�1 2 ½�R=2; R=2�, �2 2 ½�LT=2; LT=2�, and 	 ¼ LT

R is

the modular parameter of the cylinder. Solving the path
integral of Eq. (2.4) [29], and using Eq. (2.1), the quark
antiquark potential reads

VðR; TÞ ¼ 2T log


�
i

2TR

�
þ �Rþ�ðTÞ: (2.5)


 is the Dedekind eta function


ð	Þ ¼ q1=24
Y1

n¼1

ð1� qnÞ; q ¼ e�2�=TR; (2.6)

and �ðTÞ is a renormalization parameter.
The numerical evaluation of the quark antiquark poten-

tial, Eq. (2.1), using a four-dimensional smearing scheme
leads to a systematic ambiguity in regard to the transfer
matrix interpretation which allows one to identify the
expectation values of the Polyakov loop correlators
with expð�VðR; TÞ=TÞ. We recourse, instead, to three-
dimensional smearing keeping the temporal links un-
smeared. The same smearing parameters as above are used.
Our approach is as follows:
(i) We start with 500 configurations. Each configuration

is smeared only altering the spatial directions of the
links, using spatially-oriented staples. This is de-
picted by shading of spatial links in Fig. 1.

(ii) For every 3D smeared configuration, an update
sweep is applied. Each update sweep consists of a
heat-bath step and four overrelaxation steps on the
lattice. Four or more overrelaxation steps provide
the same result within errors. Each step proceeds as

FIG. 1 (color online). The temporal link U4 is updated based
on the neighboring links. The shaded area represents the 3D
spatial smeared lattice. The heat bath starts from smooth spatial
links.
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an update of every single link based on its neigh-
bors, effectively one at a time as one sweeps across
the lattice in all four directions; spatial and temporal
as indicated in Fig. 1.

(iii) An update sweep and subsequent measurement is
repeated three more times on each configuration of
the ensemble. This results in four measurements
one over each of the four ensembles, where the
ensembles differ in how many update sweeps they
have had after spatial smearing, i.e, 1 to 4.

The measurements proceed as follows:
(i) The temporal links in each of theses newly created

configurations are integrated out using a source Q
sum of staples. The temporal link variables Ut are
replaced with the new link variable

�U t ¼
R
dUUe�TrðQUyþUQyÞ
R
dUe�TrðQUyþUQyÞ (2.7)

using the numerical link-integration method of
Ref. [30]. It should be noted that, unlike the link
integration implementation of Ref. [31] where
pseudo-heat bath hits are performed only on the
temporal links, the pseudo-heat bath updates we
described above are performed on both the smeared
space-oriented links and the time-oriented links. The
temporal links, however, are integrated out by the
numerical evaluation of the equivalent contour inte-
gral of Eq. (2.7) as detailed in Ref. [30].

(ii) Finally, the Polyakov loop correlators are calculated
on each of the four one update sweep separated
configurations. The result is averaged and binned as
a single jackknife entry to avoid artificial error re-
duction. The 500 decorrelated bins are then averaged.

The Monte Carlo update step starts from a low action
configuration in the spatial directions due to smearing. The

above described update procedure brings in a newly up-
dated time-link such that the effects of local action reduc-
tion that was only in the spatial torus takes place in the
four-dimensional lattice. In this way, the UV filtering is
implemented keeping the integration over the path integral
Eq. (2.1) systematic, thus, preserving the transfer matrix
interpretation.
In Fig. 2, the value of the potential measured on various

levels of spatially smeared configurations, normalized to
its value at R ¼ 1:2 fm, are plotted. Figure 2(a) shows
the numerical behavior of the data using the above
described 3D smeared heat bath/overrelaxation driven up-
dates. On the other hand, Fig. 2(b) shows the correspond-
ing numerical behavior of the data measured on standard
four-dimensional smeared configurations. The data corre-
sponding to the unsmeared lattice and the string model
predictions of Eq. (2.5) at T=Tc � 0:9 are also included.
The discrepancies between the unsmeared lattice data

and the free string model occur in the intermediate dis-
tances R � 1 fm. The numerical results for the quark-
antiquark potential evaluated on the 3D smeared updated
configurations show an interesting behavior with respect to
the number of smearing sweeps [see Fig. 2(a)]. The data at
large distances show no response to the filtering of the UV
fluctuations of the gauge field. The data at intermediate
separation distances converge for a large number of smear-
ing sweeps. Moreover, the data approach the free string
model predictions.
It is interesting to compare these results to those ob-

tained from the four-dimensional smearing illustrated in
Fig. 2(b), where 20 and 100 sweeps of smearing are
compared. The results for 100 sweeps of smearing coincide
very well with the convergence toward the string model
predictions observed in Fig. 2(a). Thus, the 4D smearing
approach can be used as an efficient method for exploring
the more demanding three-point functions required to
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FIG. 2 (color online). The quark-antiquark potential measured at each depicted smearing level for three and four-dimensional
smearing, the lines correspond to the string picture predictions of Eq. (2.5). The standard value of the string tension is used.
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determine the distribution of gluon flux, and this is used in
the following. Similar results are observed at T=Tc � 0:8.

III. THE GLUONIC PROFILE

The transverse degrees of freedom of the stringlike flux
tube render an effective width for the tube. The mean-
square width of the free bosonic string is defined as

!2ð�; 	Þ � hX2ð�; 	Þi ¼
R
C½DX�X2 expð�S½X�Þ
R
C½DX� expð�S½X�Þ : (3.1)

The above integral can be solved analytically [11,19].
The width of the tube in D dimensions reads

!2ð�;	Þ¼D�2

2��
log

�
R

R0ð�Þ
�
þD�2

2��
log

��������
�2ð��=R;	Þ
�01ð0;	Þ

��������;

(3.2)

where � are Jacobi elliptic functions, and R0ð�Þ is the UV
cutoff which has been generalized to be dependent on
distances from the sources. This solution gives the mean-
square width at all the planes transverse to the quark-
antiquark line, and hence, is describing the topological
shape of the fluctuating flux tube and its dependence on
the temperature as well as its evolution with the increase of
color source separation. In the above formula, we assume a
dependence of the ultraviolet cutoff, R0, on the position of
the transverse planes, since as we will see, this quantity
assumes different values near the quark sources as we fit
the above formula to lattice data.

Using a modular transform 	 ! �1=	 [11,19], Eq. (3.2),
at R � 1

T , in four dimensions [20] becomes

!2ðR=2;TÞ¼ 1

��
log

�
2R0

T

�
þ 1

2�
TR� 1

��
e�2�RT; (3.3)

which indicates linear growth of the tube’s width at large
distance.

The width of the action density of the free bosonic string
can be compared to the width of the action density of the
corresponding flux tube of the lattice gauge theory. After
constructing the color-averaged infinitely-heavy static-
mesonic state,

P 2Qð ~r1; ~r2Þ ¼ Pð~r1ÞPyð ~r2Þ;
subsequent measurement by an action density operator
1
2 ðE2 � B2Þ is taken at each point of the three-dimensional

torus at each corresponding Euclidean time slice for every
source configuration. The action density operator is con-
structed via a highly-improved Oða4Þ three-loop improved
lattice field-strength tensor [32]. The measurements taken
are averaged over the time slices. A scalar field that char-
acterizes the gluonic action-density distribution field can
be then measured using the definition [33]

C ð ~�; ~r1; ~r2Þ ¼
hP 2Qð~r1; ~r2ÞSð ~�Þi
hP 2Qð ~r1; ~r2ÞihSð ~�Þi ; (3.4)

where h. . . . . .i denotes averaging over configurations and
lattice symmetries, and the vector ~� refers to the spatial
position of the flux probe with respect to some origin. To
further suppress the statistical fluctuations, the density
distributions have been symmetrized around all the sym-
metry planes of the tube.
Unless otherwise indicated, the measurements presented

throughout this section are taken on the 4D smeared con-
figurations. The decrease in CðyÞ with the increase of the
smearing sweeps is depicted in Fig. 3. The action density
asymptotically converges to a minimum for values around
nsw ¼ 80 to 100 sweeps of smearing. Cluster decomposi-
tion of the operators leads to C ! 1 away from the quarks.
A measurement of the width of the flux tube’s action

density may be taken through fitting the density distribu-
tion Cð ~�ðz; r; �ÞÞ, Eq. (3.4), to a Gaussian of the form

C ðz; r; �Þ ¼ 1� a exp½�r2=!2ðzÞ� (3.5)

with r2 ¼ x2 þ y2 in each selected transverse plane
~�ðz; r; �Þ to quark axis z by making use of the cylindrical
symmetry of the tube.
The mean-square width of the flux tube is defined as the

second moment of the flux density with respect to the
central line connecting the two quarks, z,

!2ðzÞ ¼
R
drr3 exp½�r2=!2ðzÞ�

R
drr exp½�r2=!2ðzÞ� ; (3.6)

with z ¼ 0 or z ¼ R denoting the position of the quark
source. The width is normalized with respect to the ultra-
violet cutoff R0ð�Þ of Eq. (3.2) according to

!2
nðzÞ ¼ !2ðzÞ þ 1

��
logðR0ðzÞÞ: (3.7)

The measured values of the mean-square width in the
middle plane z0 ¼ R=2 of the tube versus the source
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FIG. 3 (color online). Plot of the density distribution
Cðz ¼ R=2; x0; yÞ in the quark plane, x0, at the center of the
tube, R=2, for source separation R ¼ 0:9 fm, T=Tc � 0:9.
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separation are plotted in Fig. 4. Similar plots at three
consecutive transverse planes z ¼ 2, z ¼ 3, and z ¼ 4 to
the line joining the two color sources are illustrated in
Figs. 5 and 6. R0ð�Þ has been measured for each smearing
level and � value by fitting Eq. (3.2) to data points having
R> 1 fm. Good 2 is obtained.

At large distances, in the middle plane of the flux tube,
the tube shows a width broadening pattern for increasing R
that does not depend strongly on the corresponding smear-
ing level. The data at large distances are increasing linearly
in agreement with the string model predictions [7,19,20].
The UVeffects, on the other hand, are manifest in the data
points at shorter distances. The width of the flux-tube
measured on the lowest smearing level, where the short
distance physics is best preserved, is poorly described by
the free bosonic string model at short distances. As higher
smearing levels are considered, the subsequent removal of
the short distance physics from the gauge sector regulates
the fast rate of growth of the flux tube width. However, this
does not continue uncontrollably. The data ultimately con-
verge near 100 sweeps of smearing, in accord with the
saturation in the action density of Fig. 3 and the potential in
Fig. 2(a). Moreover, the UV-filtered results converge to the
free string predictions.

Table I summarizes the measured 2
dof for fits of

Eq. (3.2) for the fit range R � 0:5 fm. With the increase
of the number of smearing sweeps the returned values of
the 2

dof improves and becomes stable near the regime of

the action saturation of approximately 100 sweeps.
To clarify this point further, we investigate the response

of the QCD vacuum to the presence of infinitely heavy
sources that are not constructed using smeared temporal

links. Instead, the Polyakov lines are evaluated in the
calculations of the flux strength, Eq. (3.4), using the nu-
merical link integration [31] procedure of Ref. [30] for
noise reduction. The temporal links have not been smeared
in the evaluation of Polyakov loops, rather the temporal
links have been integrated out. This time, the Polyakov
loops are taken from the unsmeared configurations and
correlated with the smeared action density. For our analy-
sis, performed on 500 configurations, we observe that the
data corresponding to the width profile of the flux tube
measured on high levels of vacuum UV filtering do display
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FIG. 4 (color online). The mean-square width of the flux tube
!2

nðz ¼ R=2Þ in the middle plane between the quarks. The lattice
data, corresponding to the action density minimization, approach
the string model predictions at short distances. At large distances
the predicted linear divergence of the flux tube width is manifest
in lattice data.
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FIG. 5 (color online). The normalized width of the flux tube
!2

nðzÞ versus q �q separations measured in the planes (a) z ¼ 2,
(b) z ¼ 3, (c) z ¼ 4, at T=Tc � 0:9. The coordinates z are lattice
coordinates (lattice units) and are measured from the quark
position z ¼ 0. The line denotes the one parameter string model,
Eq. (3.2), fit to lattice data for R � 1 fm. The numbers in the
legend denote the number of smearing sweeps.
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similar behavior to the results in Fig. 5. Figure 6 presents
results for the plane z ¼ 3. Again, the results systemati-
cally converge with a large number of smearing sweeps
and approach the string model predictions. Note that the
evaluation of the correlation function using this method
involves a three-point correlation function which becomes
noisy at large distances.

The shape aspects of the fluctuating free string are
contained mainly in the second term of Eq. (3.2) and can
be isolated by considering the difference in the mean-
square width at a given plane with respect to the central
plane, �!2 ¼ !2ðzÞ �!2ðz0Þ. The measured value of R0,
however, depends on the corresponding plane at which the
lattice data is fit to Eq. (3.2). The value of the fit parameter
R0 is fixed for each plane using lattice data at large sepa-
rations R ¼ 1:1 fm and R ¼ 1:2 fm.

The changes in R0 with respect to central plane is plotted
separately in Fig. 7. The measurements performed at ad-
jacent planes of the flux-tube reveal that this quantity
varies along different planes orthogonal to the string.
Indeed, we do not get a perfect match with the free-string
profile unless we take such changes into account. The
increase in the value of the UV cutoff R0 is mostly obvious
near the quarks and may indicate the importance of string
self interactions near the boundary or the string interaction
with the quark source itself. These interactions are
switched-off in the Nambu-Goto (NG) action and would
appear when fitting the lattice data to the free-string profile
as a variation in the value of the UV cutoff along the tube.

This variation in R0 has been included as part of the
generalized string model solution of Eq. (3.2) illustrated by
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FIG. 7 (color online). The measured change in the ultraviolet
cutoff R0 along the flux tube. The smearing effect is small
relative to the nontrivial dependence of R0 on z.
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FIG. 6 (color online). Same as Fig. 5 for!2
nðzÞmeasured at the

plane z ¼ 3. The Polyakov lines are evaluated after integrating
out the time links. The legend indicates the number of smearing
sweeps applied before action measurements are taken.

TABLE I. The returned 2
dof by the fit of lattice data for

measurement on the flux-tube width in the middle plane between
the quark antiquark to the effective string model predictions of
Eq. (3.2). The lattice data correspond to smearing levels from
nsw ¼ 40 to nsw ¼ 120.

No. Sweeps 40 60 80 100 120

2
dof 3.2 1.6 1.20 0.98 0.96
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FIG. 8 (color online). The change of the tube’s width
�!2 ¼ !2ðzÞ �!2ðz0Þ measured from the central plane for
the depicted q �q separations. The smearing level of the
lattice data is illustrated. The line denotes the width
difference �!2 according to the string model Eq. (3.2). � ¼ 6,
T=Tc � 0:9.
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the curves in the following figures. A comparison of gen-
eralized string model predictions with the corresponding
change in the flux tube’s width on the lattice (obtained
from fits of Eq. (3.4)) is shown in Fig. 8 for a source
separation in the intermediate distance R ¼ 0:8 fm,
R ¼ 0:9 fm and at large distance R ¼ 1:2 fm.

Lattice data for each gauge smoothing level is also
depicted in Fig. 8. The jackknife uncertainties associated
with the change in the mean-squared width of the tube
reveal correlated errors between the adjacent planes. Only
subtle changes are observed in the tube’s width along the
transverse planes with respect to the central plane for the
analysis performed on smeared gauge configurations of
the lowest smearing level nsw ¼ 40 sweeps. The tube tends
to exhibit larger curvatures as higher levels of gauge
smoothing are considered. At large values of UV filtering,
the tube profile converges and approaches the geometrical
shape of the free-bosonic string. At large distances, on the
other hand, the flux tube displays a curved width profile
which compares well with the bosonic string profile and
is not affected by smearing, as is evident in Fig. 8 at
R ¼ 1:2 fm. The string model curve has been calculated
based on the changes in the second term of Eq. (3.2).

IV. CONCLUSION

The presence of a pair of static external sources in the
QCD vacuum induces a response of an effective free
bosonic string for source separations in the intermediate
separation region, provided the short distance vacuum
fluctuations are filtered out. The flux tube, measured as a
correlation between the mesonic operator and the vacuum
action density, is found to exhibit a broadening pattern and
a transverse structure similar to the free-bosonic string for
measurements taken near the saturation in action density

minimization under smearing even at intermediate dis-
tances. At large distances, the UV fluctuations do not affect
the tube growth, which exhibits a linear divergent pattern
consistent with the string model predictions.
In carrying out the q �q potential calculations, we intro-

duced a novel method for studying the effects of UV
filtering of the QCD vacuum. This method avoids the
ambiguities of performing unsystematic integrations due
to smearing the temporal links, thus, preserving the trans-
fer matrix interpretation. Instead three-dimensional spatial
smearing is combined with single pseudo-heatbath driven
updates. The numerical data of the q �q potential obtained
this way converge towards the string model predictions at
large number of smearing sweeps. A comparison with four-
dimensional smearing results reveals that any systematic
effects associated with smearing the temporal links are
subtle.
The analysis performed at short distances provides an

extension of the QCD vacua where the free string picture is
of utility. The infrared region of the UV-filtered vacuum
can be described merely on the basis of a free string picture
in the intermediate distances as well as large distances.
This fact is relevant and complements recent investigations
including higher-order self interactions to match lattice
results.
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