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This paper is a first report on the determination of �MS from lattice simulations with 2þ 1þ 1 twisted-

mass dynamical flavors via the computation of the ghost-gluon coupling renormalized in the MOM Taylor

scheme. We show this approach allows a very good control of the lattice artefacts and confirm the picture

from previous works with quenched and Nf ¼ 2 twisted-mass field configurations, which prove the

necessity to include nonperturbative power corrections in the description of the running. We provide an

estimate of �MS in very good agreement with experimental results. To our knowledge, it is the first

calculation with a dynamical charm quark which makes the running up to �sðMZÞ much safer.
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I. INTRODUCTION

QCD, the theory for the strong interactions, can be
confronted with experiments only after providing it with
a few inputs: one mass parameter for each quark species
and the only surviving parameter in the limit of massless
quarks, namely �QCD, the energy scale used as the

typical boundary condition for the integration of the
Renormalization Group equation for the strong coupling
constant. Thus, contrary to its running that can be com-
puted in perturbation theory, the value of the renormalized
strong coupling at any scale, or equivalently �QCD, has to

be taken from experiment.
The QCD running coupling can be also obtained from

lattice computations, where the lattice spacing replaces
�QCD as a free parameter to be adjusted from experimental

numbers: masses, decay constants, etc. Different methods
have been used for the lattice calculation of �QCD. Among

the most extensively applied, we can enumerate the im-
plementation of the Schrödiger functional scheme (see, for
instance, [1–4], and references therein), those based on the
perturbative analysis of short-distance sensitive lattice
observables as the interquark static potential (see for
instance [5,6]), heavy-quark potential, Wilson loops or
small Creutz ratios expanded in the ‘‘boosted’’ lattice
coupling (see [7–10], and reference therein) or the vacuum
polarization functions [11,12], and, in particular, those
based on the study of the momentum behavior of Green
functions (see [13–19], and references therein). In previous
studies we compared the behavior of the 2-gluon and
3-gluon Green functions as a function of the renormaliza-
tion scale with the perturbative predictions. This allowed
us to get estimations for �S and �QCD, but it also revealed

the presence of nonperturbative power corrections which
we interpreted as coming from the dimension-two nonzero
Landau-gauge gluon condensate in an operator-product
expansion (OPE) approach.1

In the last few years, several authors of this paper have
been pursuing a program to study the running of the strong
coupling, and so evaluate �QCD, grounded on the lattice

determination of the ghost-gluon coupling in the so-called
MOM Taylor renormalization scheme. The main advan-
tage of this ghost-gluon approach is that the lattice com-
putation of the coupling only involves the calculation of
two-point correlators, which yields a very good control of
the lattice artefacts over a large momentum window,
mainly owing to the Hð4Þ-extrapolation prescription
[23,24], and then for a precise checking of the running.
We have first analyzed the pure Yang-Mills case (Nf ¼ 0)

[25,26] and next extended the analysis to the case in which
twisted Nf ¼ 2 dynamical quarks were included in the

lattice simulations [27–29]. Now, for the first time, we
apply the same approach (outlined in Sec. II) to study the
strong coupling by dealing with lattice simulations with
two light degenerate twisted-mass flavors and a heavy
doublet to include the strange and charm dynamical
quarks. This is done within the framework of the
European Twisted Mass (ETM) Collaboration from where
we used several ensembles of gauge fields for different

1The possible phenomenological implications in the gauge-
invariant world of such a dimension-two Landau-gauge gluon
condensate and in connection with confinement scenarios has
been also largely investigated, as can be seen for instance in
Refs. [20,21]. This condensate has been also related to the QCD
vacuum properties through the instantons liquid model [22]
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bare lattice couplings, twisted masses and volume to con-
clude that: (i) the running description of the data requires to
take into account nonperturbative power corrections,
which appear to behave as OPE [30,31] predict when a
nonvanishing Landau-gauge dimension-two gluon conden-
sate is considered, and (ii) only after taking into account
the nonperturbative power corrections, the lattice estimate
for �QCD strikingly agrees with the experimental result, as

can be seen in Sec. IV.

II. ABOUT THE PROCEDURE

We shall follow the procedure described in detail in
Refs. [25,27] to extract an estimate of �MS from the non-

perturbative lattice determination of �Tðq2Þ, the running
strong coupling renormalized in the MOM Taylor scheme
and Landau gauge. Let us recall briefly how the procedure
works. The Taylor coupling is defined by

�Tð�2Þ�g2Tð�2Þ
4�

¼ lim
�!1

g20ð�2Þ
4�

Gð�2;�2ÞF2ð�2;�2Þ; (1)

where F and G stand for the bare ghost and gluon dressing
functions in Landau-gauge. As was thoroughly explained
in Ref. [25] (see also the Appendix A of Ref. [32]), the
well-known Taylor’s paper [33] proved that, at any order in
perturbation, the proper ghost-gluon vertex trivially takes
its tree-level form when the incoming ghost momentum
vanishes, this implying that the renormalization constant
for this proper ghost-gluon vertex is just equal to 1 in the
MOM-like scheme defined by the particular kinematics
with a zero-momentum incoming ghost, i.e. Taylor
scheme. This is not only true in perturbation, but it can
be also concluded that taking the limit of a vanishing
incoming ghost momentum drops any nonperturbative
correction away from the whole proper ghost-gluon vertex,
as discussed in Ref. [34]. Thus, Eq. (1) for the Landau-
gauge Taylor-scheme running coupling can be straighfor-
wardly derived from this last result.

The ghost and gluon dressing functions will be here
obtained from Nf ¼ 2þ 1þ 1 gauge configurations for

several bare couplings, light twisted masses and volumes.
Contrary to the analysis performed in Ref. [27], the inter-
play of light and heavy-quark mass and UV cutoff effects
makes a chiral extrapolation harder. Further studies are
underway for a better control of this point. Thus, for the
scope of this paper, we will content ourselves with an
estimation of the uncertainty due to the quark mass effects.

It should be emphasized that a crucial role is played by
the appropriate elimination of discretization artefacts to
provide us with reliable and exploitable results. A first step
consists in curing the artefacts which are due to the break-
ing of the rotational invariance on the lattice, where the
remaining symmetry is restricted to the Hð4Þ isometry
group. For this purpose, we perform the so-called
Hð4Þ-extrapolation procedure [23,24,35] that leaves us
with

�Latt
T

�
a2p2; a2

p½4�

p2
; . . .

�

¼ ��Tða2p2Þ þ @�Latt
T

@ða2 p½4�
p2 Þ

��������a2p
½4�
p2

¼0
a2

p½4�

p2
þ . . . ; (2)

where p½4� ¼ P
ip

4
i is the first Hð4Þ-invariant (and the only

one indeed relevant in our analysis). Thus, we first average
over any combination of momenta being invariant under
Hð4Þ (Hð4Þ orbit) and extrapolate then to the ‘‘continuum

case,’’ where the effect of a2p½4� must vanish, by applying
Eq. (2) for all the orbits sharing the samevalue ofp2, with the
only assumption that the slope depends smoothly on a2p2

and can be fitted to a polynomial form from the whole set of
lattice data. Furthermore, the Hð4Þ-artefact-free lattice cou-
pling, ��Tða2p2Þ might differ from the continuum coupling
by some Oð4Þ-invariant artefacts, as shown, for example, in
the lattice analysis of the quark-propagator renormalization
constant [36–38]. This leads us finally to write

��Tða2p2Þ ¼ �Tðp2Þ þ ca2p2a
2p2 þOða4Þ; (3)

where ca2p2 should be fitted from the lattice data and verify

the appropriate scaling from the simulations with different
bare couplings �, while �T is the lattice prediction to be
compared with the continuum OPE formula for the Taylor
strong coupling [27],

�Tð�2Þ ¼ �
pert
T ð�2Þ

�
1þ 9

�2
Rð�pert

T ð�2Þ; �pert
T ðq20ÞÞ

�
�
�
pert
T ð�2Þ

�pert
T ðq20Þ

�
1��A2

0
=�0 g

2
Tðq20ÞhA2iR;q20
4ðN2

C � 1Þ
�
; (4)

where �A2

0 can be taken from [39,40] to give for Nf ¼ 4,

1� �A2

0 =�0 ¼ 27

132� 8Nf

¼ 27

100
; (5)

applying the same method outlined in the Appendix of
Ref. [27], one can take advantage of theOð�4Þ computations
for the Wilson coefficients in Ref. [40], and obtains

Rð�;�0Þ¼ ð1þ1:18692�þ1:45026�2þ2:44980�3Þ
�ð1�0:54994�0�0:13349�2

0�0:10955�3
0Þ;
(6)

for q0 ¼ 10 GeV. The purely perturbative running in
Eq. (4) is given up to four-loops by [41]
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�pert
T ð�2Þ¼ 4�

�0t

�
1��1

�2
0

logðtÞ
t

þ�2
1

�4
0

1

t2

��
logðtÞ�1

2

�
2

þ
��2�0

�2
1

�5

4

��
þ 1

ð�0tÞ4
� ��3

2�0

þ1

2

�
�1

�0

�
3

ð�2log3ðtÞþ5log2ðtÞþ
�
4�6

��2�0

�2
1

�
logðtÞ�1

��

(7)

with t ¼ ln�
2

�2
T

and the coefficients of the� function in Taylor

scheme [25,42]. As for the �QCD parameters in Taylor

scheme andMS, they are related through [27]

�MS

�T

¼ e�ð507�40Nf=792�48NfÞ ¼ 0:560832; (8)

for the Nf ¼ 4 case.2 Thus, only three parameters, g2hA2i,
�MS and the coefficient for the Oð4Þ-invariant artefacts

ca2p2, remain free to be fitted through the comparison of

the prediction given by Eqs. (3) and (4) and the lattice
estimate of Taylor coupling afterHð4Þ extrapolation.

III. THE LATTICE SETUP

As already mentioned, we obtain �Latt
T by Eq. (1) from

the ghost and gluon propagators computed from the gauge
configurations simulated at several lattices with Nf ¼ 2þ
1þ 1 mass-twisted lattice flavors [43] by the ETM
Collaboration [44,45]. In the gauge sector, we use the
Iwasaki action and compute the propagators as described
in Ref. [27], while for the fermion action, we have

Sl ¼ a4
X
x

��lðxÞðDW½U� þm0;l þ i�l�5�3Þ�lðxÞ (9)

for the doublet of degenerate light quarks [46] and

Sh¼a4
X
x

��hðxÞðDW½U�þm0;hþ i���5�1þ�	�3Þ�hðxÞ

(10)

for the heavy doublet. DW½U� is the standard massless
Wilson Dirac operator. The lattice parameters for the en-
sembles of gauge configurations we used are given in
Table I. Tuning to maximal twist is achieved by choosing
a parity odd operator and determine 
crit such that this
operator has a vanishing expectation value. One appropri-
ate quantity is the PCAC light-quark mass and we demand
mPCAC ¼ 0. We refer the interested reader to Refs. [44,45]
for more details about the setup of the twisted-mass lattice
simulations.

IV. THE RESULTS OF THE ANALYSIS

A. Curing the Hð4Þ artefacts
The first stage of the analysis, as explained above, con-

sists in the application of theHð4Þ extrapolation to cure the
main type of discretization artefacts, namely, the ones
coming from the breaking of the rotational symmetry.
These effects appear to be very visible in Fig. 1(a), where
we plot the ghost dressing function before and after Hð4Þ
extrapolation in terms of the square of the momentum in
lattice units. The classical ‘‘fishbone’’ structures generated
by the different Hð4Þ orbits corresponding to the same
continuummomentum can be strikingly seen before apply-
ing the extrapolation. Moreover, it is obvious that, had we
rather applied some sort of average over a ‘‘democratic’’
selection of the orbits at all physical momenta, the result-
ing ghost dressing function would have shown an anom-
alously flat behavior, with no indication of the perturbative
logarithm, in the large momentum region. All these
anomalies appear to be strikingly cured by the
Hð4Þ-extrapolation prescription. It should be noted that a
very important input to apply properly such a prescription
comes from the many orbits at our disposal on a large
momenta window (this implies to Fourier transform over
large momenta). It is beneficial because, for the same price,
the output is a very clean signal over a large momenta
window that permits a very precise checking of the running
behavior. The results of the extrapolation for the coupling
in Taylor scheme are plotted against the momentum in

TABLE I. Lattice setup parameters for the ensembles we used in this paper. They correspond with the ones coded as B35.48, B35.32,
B55.32, and D20.48 in Table 1 of Ref. [45]. The last column stands for the number of gauge field configurations we used.

� 
crit a�l a�� a�	 ðL=aÞ3 � T=a Configurations

1.95 0.1612400 0.0035 0.135 0.170 323 � 64 50

0.1612400 0.0035 483 � 96 40

0.1612360 0.0055 323 � 64 50

2.1 0.1563570 0.0020 0.120 0.1385 483 � 96 40

2It should be noted that, although�T is gauge-dependent,�MS
is not. Of course, the conversion factor of both parameters to
each other is also gauge-dependent. Then, as far as this conver-
sion factor can be exactly determined because of the RGE
invariance of �QCD, the choice of any gauge for the lattice
determination of �T (Landau gauge in our case) is irrespective
for the final determination of �MS.
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lattice units in Fig. 1(b) for the four lattice ensembles
analyzed.

B. Flavor mass, finite volume, and Oð4Þ-invariant
artefacts

After Hð4Þ extrapolation, a main part of the discretiza-
tion artefacts are supposed to be removed and, if so, all the

curves for the running coupling in Fig. 1(b) should appear
superimposed after being reexpressed in terms of the mo-
mentum in physical units, at least over the momentum
region where other artefacts do not play any significant
role. In particular, with no further conversion, the three
ones for � ¼ 1:95 should coincide with each other (and
they are close to) and the one for � ¼ 2:1 should also after

FIG. 2 (color online). The same shown in Fig. 1(b) but after the appropriate rescaling of the x axis to superimpose the four curves as
much as possible. The right plot is a zoom for the large momentum region to exhibit the discrepancies indicating that Oð4Þ-invariant
artefacts are present.

FIG. 1 (color online). (a) An example of the ghost dressing function lattice data (case: � ¼ 1:95, a�l ¼ 0:035, L ¼ 48) before (top
black points) and after (bottom red crosses) Hð4Þ extrapolation, plotted in terms of the square of momentum in lattice units. (b) The
running of the coupling as a function of the momentum in lattice units for the four ensembles of lattice data: � ¼ 1:95 with a�l ¼
0:0035 at 483 � 96 (red) and 323 � 64 lattices (blue), with a�l ¼ 0:0055 at 323 � 64 (violet) and � ¼ 2:1 with a�l ¼ 0:0020 at
483 � 96 (green).
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the appropriate rescaling of the momentum in coordinates
axis. On the other hand, the comparison of the running for
the three ensembles with same � parameter shows that no
relevant finite volume effect happens above a lattice mo-
mentum of the order of 0.5, while a small mass effect
appears to be visible: the two ensembles with same bare
mass (a�l ¼ 0:0035) and different volumes appear nicely
superimposed while the ones with same lattice volume
(323 � 64), and different bare masses seem to require an
additional fine rescaling. Then, we apply a rescaling factor
to the lattice momentum, when needed, to render the four
curves coincident and show the results in Fig. 2. We choose
to rescale all the data to those of the ensembles with a�l ¼
0:0035 at� ¼ 1:95, since their lattice spacing seems rather
safely established and we have two different volumes
which agree fairly well. We thus obtain an optimal rescal-
ing factor of 1.07 for lattice momenta with a�l ¼ 0:0055
at � ¼ 1:95 and a factor of 1.36 (containing both the ratio
of lattice spacings and possible flavor bare mass effects) for
those with a�l ¼ 0:0020 at � ¼ 2:1. The agreement is
indeed impressive and make us conclude that the flavor
bare mass effect can be absorbed by physical calibration of
the lattice spacing and be either removed by chiral extrapo-
lation, when possible, or included in the calibration sys-
tematic uncertainty. Nevertheless, it is also manifestly
shown by large lattice momentum pattern of data (see the
right plot of Fig. 2) that theOð4Þ-invariant artefacts, which
cannot be of course cured by the Hð4Þ extrapolation, still
survive and demand some treatment for a precise analysis
of the running. We will proceed to remove the remaining
discretization artefacts for all our lattice data sets by ap-
plying Eq. (3) with the requirement that the coefficient
ca2p2, the correction being a lattice artefact, should be

universal. This will be explained in the next subsection.

C. The physical running, the gluon condensate and�MS

As explained in Sec. II, Eqs. (3) and (4) can be directly
applied to fit the lattice data plotted in Fig. 1(b) with only
three free parameters. In lattice units they are on one hand
�MSað�Þ and g2hA2ia2ð�Þ, which depend on the lattice

spacing at each simulation and on the physical values for
�MS and for the Landau-gauge gluon condensate, and on

the other hand ca2p2 which should be the same number for

any lattice data set. In the following, we will only analyze
the two ensembles at � ¼ 1:95 simulated for 323 � 64

lattices and the one at � ¼ 2:1 for a 484 � 96 lattice, all
of them sharing approximately the same lattice volume in
physical units. The ensemble at � ¼ 1:95 for a 484 � 96
lattice, for which we exploited a smaller number of gauge
configurations and have larger statistical errors, has been
used to check finite-size effects. Then, as we showed that
no visible finite-size effect survives above að�Þp ’ 0:5 and
that the flavor bare mass effects can be fairly well de-
scribed by a lattice calibration, we fit independently any
ensemble of data at both � ¼ 2:1 and � ¼ 1:95, by im-
posing the coefficient ca2p2 to be universal, and including a

(fitted) rescaling factor to bring the heavier mass data to
superimpose with the lighter ones at � ¼ 1:95. Thus, we
obtain the results of Table II for the best-fit parameters.
Using these values with the appropriate rescaling, we plot
in Fig. 3 the fitted running coupling obtained for the differ-
ent lattices after removing all the discretization artefacts.
The universality of the coefficient ca2p2 and the nature of

the remaining discretization artefacts that could be seen in
Fig. 2 can be directly checked on the data. Actually, we
have

��¼2:1
Latt ðað1:95ÞpÞ � ��¼1:95

Latt ðað1:95ÞpÞ

¼
�
a2ð2:1Þ
a2ð1:95Þ � 1

�
ca2p2a

2ð1:95Þp2 þ oða2ð1:95Þp2Þ;
(11)

which means that, after an appropriate rescaling implying
for all the momenta to be written in units of the lattice
spacing at a given reference � (� ¼ 1:95 and a�l ¼
0:0035 has been chosen here), the difference between the
data for the coupling obtained at � ¼ 2:1 and those at � ¼
1:95 has to be proportional to ca2p2 times the square of the

momentum when the momentum is not too large. This is
illustrated in the upper-left plot in Fig. 3, where the linear
behavior on a2p2 is verified (for the two lighter masses).
The slope given by the right-hand side (r.h.s.) of Eq. (11)
with the best-fit parameters of Table II perfectly agrees
with the data. In order to perform the subtraction in the left-
hand side of Eq. (11) some interpolation procedure is
required to estimate the values for the momenta at � ¼
2:1 from the data at � ¼ 1:95. To this purpose, we used the
expression given in Eqs. (3) and (4) with the best-fit
parameters to analytically represent the data at � ¼ 1:95.
The result for the subtraction is shown by the black points
in the plot. This procedure does not work below

TABLE II. Best-fit parameters for the confrontation of the different lattice data and Eqs. (3) and (4), as explained in the text. The
local operator A2 has been renormalized at q0að2:1Þ ’ 3 which corresponds to q0 ’ 10 GeV when the appropriate conversion is
applied. The errors have been computed by using a jackknife procedure.

� að�Þ�l að�Þ�MS að�Þ2g2hA2i að�Þ=að2:1Þ ca2p2

1.95 0.0035 0.126(12) 0.7(3) 1.36(16) �0:0047ð12Þ
0.0055 0.117(8) 0.57(22) 1.27(10)

2.1 0.0020 0.092(5) 0.40(9) 1
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að1:95Þp ’ 1:5, as the expressions Eqs. (3) and (4) do not
represent properly the data in this region. Any other inter-
polating formula, as far as it fits well, would provide us
with equivalent results; we illustrate this point in the plot
by using also a polynomial of fourth degree to describe the
lattice data at � ¼ 1:95. The result for the subtraction in
this case is given by the blue points. The only quantity we
need to estimate the coefficient ca2p2 from the data is the

ratio of lattice spacings. The large uncertainty given for
these quantities in Table II is partially a consequence of our
present analysis, which uses only the momentum window
where the OPE prediction given by Eq. (4) appears to be in
order. As far as any UV cutoff contribution should vanish
at the infinite cutoff limit for the running coupling defined
by Eq. (1), all the data, properly corrected for lattice
artefacts, from different lattice simulations should scale
when expressed in terms of physical units. Had we only
then be interested in obtaining the ratio of lattice spacings,

the matching would be performed over a much larger
momenta window3 and the uncertainties would be drasti-
cally reduced. Nevertheless, in the analysis of the present
paper, we will follow a different fitting strategy, as will be
seen in the next subsection.

D. The global fit

As we concluded in the previous subsection, the analysis
of the three different lattice data sets clearly indicates that
the flavor bare mass effects can be fairly well described by
a lattice calibration. This means that we can suppose that

FIG. 3 (color online). (Upper-left panel) Check of Eq. (11) from the lattice data at � ¼ 1:95 (a�l ¼ 0:0035) and � ¼ 2:1 (a�l ¼
0:0020), as explained in the text. (Upper-right panel) deviation from the lattice data free of discretization artefacts with respect to the
prediction of the four-loop perturbative theory, with a �MS taken from (14), plotted in terms of the perturbative running; the solid line

shows the leading nonperturbative OPE prediction, r.h.s. of Eq. (15) r.h.s. (Bottom-left panel) The departure of lattice data from the
leading nonperturbative OPE prediction for the running coupling plotted in logarithmic scales, in terms of the momentum in lattice
units of a�1ð1:95Þ: a next-to-leading 1=p6 behavior is strikingly manifest. (Bottom-right panel) The physical running of the strong
coupling obtained from the lattice data free of discretization artefacts, expressed in terms of the momentum in units of a�1ð1:95Þ; the
solid line stands here for the best fit with Eqs. (3) and (4), while the dotted one is for the four-loop perturbative prediction.

3One can perfom the matching all over the region where finite-
size effects appear not to be visible, although the matching
procedure would imply some sort of practical fit of the lattice
data inside such a region. This will be the object of a forth-
coming work.
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the lattice spacing for any bare coupling and flavor mass
can be written as

að�;�lÞ¼að�;0Þð1þca�l
að�;0Þ2�2

l þoða2�2
l ÞÞ; (12)

where ca� gives the slope for the chiral behavior of the

lattice spacing. Of course, this light-quark bare mass de-
pendence for the lattice spacing must be transferred to any
physical quantity like the Taylor coupling, after its lattice
artefacts have been removed,

�Tða2ð�;�lÞp2Þ
¼ �Tða2ð�; 0Þp2Þ þ 2a2ð�; 0Þp2ca�

� d�TðxÞ
dx

��������x¼a2ð�;0Þp2
a2ð�; 0Þ�2

l þ � � �

’ �Tða2ð�; 0Þp2Þ þ R0ða2ð�; 0Þp2Þa2ð�; 0Þ�2
l ; (13)

where we also assumed the strong coupling not to ‘‘feel’’
any additional light-quark bare mass effect, as it is clearly
suggested by the results of the previous subsection. In the
analysis of lattice configurations for Nf ¼ 2 twisted-mass

flavors in Ref. [27], Eq. (13) was successfully applied to
extrapolate down to zero light-quark mass all the data
within a narrow momentum window where R0 in
Eq. (13) was shown to be well approximated by a con-
stant.4 Here, we will proceed otherwise: we will take the
ratios of lattice spacings, að�; a�lÞ=að1:95; 0:0035Þ, from
the previous subsection analysis and express the Taylor
coupling from the three ensembles of lattice data in terms
of the momentum in units of að1:95; 0:0035Þ�1. Then, we
make a global fit for the three ensembles (for all momenta
above að1:95; 0:0035Þp ¼ 1:5) and obtain the following
results:

�MSað1:95; 0:0035Þ ¼ 0:125ð5Þ;
a2ð1:95; 0:0035Þg2ðq20ÞhA2iR;q2

0
¼ 0:70ð6Þ;

ca2p2 ¼ �0:0046ð7Þ;
(14)

with a best �2 ¼ 103:8 for 317 degrees of freedom. Some
plots resulting from the global fit can be seen in Fig. 3.

The upper-right plot of Fig. 3 shows the lattice data, after
the subtraction of the perturbative running and the
Oð4Þ-invariant artefacts, multiplied then by the square of
the momentum in units of a�1ð1:95Þ and plotted in terms of
the four-loop perturbative value of the coupling at the same
momentum. To obtain the perturbative coupling, we apply
the value of �MS obtained from (14) which, after being

converted to physical units with lattice spacing taken from

Refs. [44,45], appears to be in very good agreement with
the experimental result (see below). According to Eq. (4),
one would obtain

p2ð�Tðp2Þ � �
pert
T ðp2ÞÞ

¼ 9g2Tðq20ÞhA2iR;q2
0

4ðN2
C � 1Þ Rð�pert

T ðp2Þ; �pert
T ðq20ÞÞ

� �
pert
T ðq20Þ

�
�pert
T ðp2Þ

�
pert
T ðq20Þ

�
2��A2

0
=�0

: (15)

The solid line in the upper-right plot of Fig. 3 corresponds
to the r.h.s. of Eq. (15) with the value for the Landau-gauge
gluon condensate taken from Eq. (14). One should notice
that the departure from zero for the lattice data in the plot
can be only explained by nonperturbative contributions.
Furthermore, the Wilson coefficient for the Landau-gauge
gluon condensate in the OPE expansion successfully ac-
counts for the nonflat behavior from the lattice data in the
small coupling regime. This provides with a striking
indication that (and where) the OPE analysis is in order.
Next, in the bottom-left plot of Fig. 3, we show the depar-
ture of the lattice data from the prediction given by Eqs. (3)
and (4), plotted in terms of the momentum in units of
a�1ð1:95Þ, with logarithmic scales for both axes. The
data seem to indicate that the next-to-leading nonperturba-
tive correction is highly dominated by an 1=p6 term. This
is just a factual statement which might suggest either that
the 1=p4 OPE contributions are negligible when compared
with the 1=p6 ones or that the product of the leading 1=p4

terms and the involved Wilson coefficients leave with an
effective 1=p6 behavior. One might also guess that a differ-
ent nonperturbative mechanism dominates over the mo-
mentum window where the dimension-four OPE
condensates had to be visible. Finally, the bottom-right
plot shows the physical running of the coupling and how
well the OPE formula with the results from Eq. (14) fits the
data.

E. Conversion to physical units

The two main purposes of this paper are to show the
impact of the OPE power corrections in describing the
running of the strong coupling and to give an estimate
for �MS from lattice QCD simulations with a dynamical

charm quark. The results for both goals can be summarized
by the conversion to physical units for �MS and the

Landau-gauge gluon condensate. To this purpose, we will
apply

að1:95; 0:0035Þ ¼ að1:95; 0:0035Þ
að1:95; 0Þ að1:95; 0Þ; (16)

where the absolute calibration of the lattice spacing at � ¼
1:95, after the chiral extrapolation for the light-quark mass,
will be taken from Refs. [44,45]: að1:95;0Þ¼0:0779ð2Þ fm,
and where we approximate

4This was found to happen for 1 � ap � 1:5, where the
decreasing of the derivative of �T compensated the increasing
due to the factor a2p2. It should be furthermore noticed that the
derivative is negative, while ca� appears to be positive from the
chiral extrapolation of the Sommer parameter, r0=a, in Ref. [44].
This agrees with the sign of the chiral slope for the Taylor
coupling in Ref. [27].
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að1:95; 0:0035Þ
að1:95; 0Þ ¼ 1þ0:03

�0 : (17)

The systematic error quoted here has been estimated from
the chiral extrapolation of the Sommer parameter in
Ref. [44]. There, as seen in plot 6.(b), one gets

ðr0=aÞa�l¼0

ðr0=aÞa�l¼0:0035
� 1 ¼ 0:015ð11Þ: (18)

Then, if the string tension for the static interquark potential
is supposed not to depend very much on the light-quark
mass, Eq. (18) gives the conservative systematic uncer-
tainty for the deviation from 1 in Eq. (17). Thus, we apply
Eqs. (16)–(18) into Eq. (14) and obtain

�
Nf¼4

MS
¼ 316� 13� 8þ0

�9 MeV;

g2ðq20ÞhA2iR;q2
0
¼ 4:5� 0:4� 0:23þ0

�0:3 GeV2;
(19)

where the first quoted error is statistical, the second one
reflects the present uncertainty on the absolute calibration
of the lattice spacing that we roughly (and conservatively)
estimate to be of �2:5%; the third one is for the chiral
extrapolation of the light-quark mass. More precise esti-
mates for these systematics uncertainties will be accessible
with more data (more simulations at different �’s and for

more light-quark masses). Finally, the value for �
Nf¼4

MS
and

the four-loop perturbative running with the appropriate
crossing of the bottom mass threshold at mbðmbÞ ¼
4:19þ18

�6 GeV [41] can be used to estimate the value of

the coupling at the Z0 mass,

�SðMZ0Þ ¼ 0:1198ð9Þð5Þþ0
�5; (20)

where the errors have been properly propagated. This is a
first result that will be refined, mainly by improving the
precision for the estimates of systematic uncertainties.
However, it appears to be pretty compatible with the last
world average given by the Particle Data Group (PDG)
[41]: 0.1184(7). Although a more detailed comparison of
our result with PDG average and a discussion of its im-
plications will be left for a phenomenologically targeted
forthcoming letter, we should remark that our result in-
cluding strange and charm dynamical quarks (NF ¼ 2þ
1þ 1) appears to be slightly larger than the lattice estimate
for Nf ¼ 2þ 1 staggered fermions, applied to obtain the

PDG average: �SðMZ0Þ ¼ 0:1183ð8Þ [10]. Assuming no
systematic effect to appear from the different fermion
actions, the meaning for the 1-� discrepancy of both
central values, if any, can be explained from the procedure
applied to cross the threshold from Nf ¼ 2þ 1 to Nf ¼
2þ 1þ 1 flavors. That procedure is very well established
and controlled in perturbation theory [41,47], but some
nonperturbative effects may still appear at the charm quark
running mass.

Indeed, if we compare the result of �MS for Nf ¼ 2 in

Ref. [27], the central value ranging from 310 to 330 MeV
(depending on the lattice size calibration at different values
of �), with that for Nf ¼ 2þ 1þ 1 in this paper, it can be

concluded that the effect for the running coupling of cross-
ing the strange or charm quark thresholds is not very
significant5 on �MS. On the other hand, applying just the

perturbative recipe to cross the charm quark threshold
would result in a stronger decreasing of �MS from Nf ¼
2þ 1 to Nf ¼ 2þ 1þ 1 flavors. Thus, an enhancement

for the estimate of �SðMZ0Þ obtained from the Nf ¼ 2þ
1þ 1 lattice result for �MS can be understood when com-

paring to the one obtained by applying that perturbative
recipe to cross the charm quark threshold with the Nf ¼
2þ 1 lattice result.

V. CONCLUSIONS

We used lattice gauge field configurations with two
degenerate light and one heavy doublet of twisted-mass
flavors, produced within the framework of ETM
Collaboration, to compute the running strong coupling in
theMOMTaylor scheme. In this particular renormalization
scheme, the lattice computation of this coupling has the
very nice feature of involving only propagators. This al-
lows for a very precise control of the lattice artefacts and
other systematic uncertainties. In particular, the so-called
Hð4Þ-extrapolation procedure, which has already been
proven very effective at eliminating the discretization ar-
tefacts of two-point correlation functions, is efficiently at
work in this analysis. The dominant Oð4Þ artefact is also
rather easily isolated and eliminated. On the other hand,
the renormalized coupling, defined in the MOM Taylor
scheme by the combination of the ghost and gluon bare
propagators, must only depend on the UV cutoff through
residual contributions vanishing at the infinite cutoff limit.
Thus, the Taylor coupling computed from the lattice must
join the continuum prediction at this infinite cutoff limit.
This is also a strong point to cure properly lattice artefacts
and get reliable results. Thus, we evaluated the running
strong coupling over a rather large window of lattice
momenta and, after the appropriate relative calibration,
confront it with the perturbative prediction available at
the four-loop level. We clearly demonstrate the necessity
to include nonperturbative power corrections to get an
accurate description for the behavior of the coupling

5In Sec. 4.5 of Ref. [27], a significant difference between
quenched (Nf ¼ 0) and Nf ¼ 2 lattice results for �MS (once
lattice spacing is calibrated from f�) was observed. In that case,
simulations for infinite (quenching) and vanishing (chiral limit)
quark flavors were compared, although it is well-known that the
chiral lmit for the quenched case is wrong. On the contrary, when
comparing Nf ¼ 2þ 1þ 1 and Nf ¼ 2 (or Nf ¼ 2þ 1) cases,
we deal with infinitely massive flavors (s and c) in the latter and
heavy (c) or midheavy (s) in the former. Then, not to see the
same significant effect cannot be too surprising.
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constant. We then show these corrections follow the OPE
predictions when a nonvanishing dimension-two Landau-
gauge gluon condensate is present. This is to our
knowledge the first time a Wilson coefficient is directly
confronted to numerical results. Higher order terms are
visible and seem to be dominated by 1=p6 contributions
instead of the expected 1=p4 ones.

The precise comparison of lattice estimates with con-
tinuum formula allows the estimate of both the gluon
condensate and�MS. The latter is in a very good agreement

with the world average of its experimental determinations
provided by PDG, confirming that the picture we advanced,
first by the analysis of quenched lattice data and next by
studying lattice simulations with two twisted-mass flavors,
agrees very well with the real world when a full QCD
analysis is performed including a heavy doublet for strange
and charm quarks. Going the other way around, with the
experimental value for �MS as an input, this approach

could be used to provide quite good absolute determina-
tions of the lattice spacings. Relative measurements (ratio
of lattice spacings) through the superimposition of the
different curves for �ða2p2Þ over a large window can be
also obtained with a good level of precision. The perturba-
tive running from our results up to the Z boson mass
is well-known in perturbation theory and we apply the
standard formula [41] to cross the b quark threshold. We

do not need to consider the charm quark threshold since,
for the first time to our knowledge, we have used dynami-
cal charm in our computation. This is a very significant
gain: the crossing of the charm threshold using perturbative
QCD is quite questionable, since, as we have seen, non-
perturbative effects (OPE power terms) are sizeable at this
energy.
Further works are in progress. In particular data with

different masses at Nf ¼ 2þ 1þ 1 and from simulations

with Nf ¼ 4 light flavors will soon be available to help to

improve on the question of the mass effect.
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