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As an approach to describe the long-range properties of non-Abelian gauge theories at nonzero

temperature T < Tc, we consider a noninteracting ensemble of dyons (magnetic monopoles) with nontrivial

holonomy. We show analytically that the quark-antiquark free energy from the Polyakov loop correlator

grows linearly with the distance, and how the string tension scales with the dyon density. In numerical

treatments, the long-range tails of the dyon fields cause severe finite-volume effects. Therefore, we

demonstrate the application of Ewald’s summation method to this system. Finite-volume effects are shown

to be under control, which is a crucial requirement for numerical studies of interacting dyon ensembles.
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I. INTRODUCTION

Insight into the mechanisms of the QCD vacuum is not
only provided by simulations of lattice gauge theory—an
ab initio method, whose numerical results, however, are
hard to interpret—but also by analytical nonperturbative
approaches like the semiclassical one [1,2]. The latter
relies, for instance, on instantons, self-dual and anti-self-
dual solutions of the Euclidean Yang-Mills equations [3].
Instantons in R4 are localized in space and time, but also
naturally contain long-range fields (since the Yang-Mills
Lagrangian is scale-invariant): the gauge potential A�

decays like the inverse of the four-dimensional distance
to their center or its third power, in the regular and singular
gauges, respectively. Semiclassically motivated models of
the QCD vacuum based on instantons are suitable to de-
scribe certain nonperturbative effects like chiral symmetry
breaking, but so far cannot explain confinement. For more
details of instanton models we refer to the reviews [4,5].

When studying instantons or similar long-range (or ‘‘in-
frared’’) objects in a finite-volume approximation—an
unavoidable restriction for virtually every numerical
approach—one expects severe effects: interactions with
objects outside the finite volume (and their contribution
to observables) are neglected, which can introduce consid-
erable systematic deviations from analogous systems with
infinite extent.

The purpose of our work is twofold. On the one hand, we
investigate confinement in a semiclassical approach at
nonzero temperature. Guided by the invention of KvBLL
calorons with nontrivial holonomy [6–8] our basic objects
are dyons—the constituents of calorons. We assume maxi-
mally nontrivial holonomy in order to describe the con-
finement phase of the model. Dyons will be analytically
shown to provide a confining Polyakov loop correlator
already within the simplest noninteracting model for the
low-temperature phase.
Concerning the long-range nature, dyons are as difficult

to simulate as instantons. Therefore, as the second part, we
provide the proof of concept for a method capable of
controlling the finite-volume effects in such systems in
an efficient way: Ewald’s summation method [9]. This
method was originally developed for Coulomb interactions
typical, for example, in plasma or soft matter physics.
When using Ewald’s method, the infinite space is mim-
icked by infinitely many replicas of one so-called supercell
that contains a (for numerical simulations) feasible number
of objects/charges. Typical observables like potentials are
sums, which can be split into a short-range and a long-
range part. After rewriting the long-range sum by means of
a Fourier transform, both sums can efficiently be computed
(see Sec. IVA for details). In order to come back to the
original system in the infinite space, only the volume of the
supercell has to be extrapolated to infinity at the end of a
computation. In Ewald’s method this is a well-controlled
limit in contrast to simpler approaches.
In this work we apply this method to the simplest dyon

model, for which a comparison with analytical results can
be made. The advantages of the Ewald method will be
essential for later numerical studies of interacting dyon
ensembles.
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The paper is organized as follows. In Sec. II the crucial
features of dyons are introduced. The Polyakov loop cor-
relator in a noninteracting dyon model is analytically
evaluated in Sec. III, both in infinite and finite volume.
Contact to lattice simulations is made and consequences
for dyon models are discussed. Section IV introduces
Ewald’s summation method. In Sec. V numerical results
are presented. Section VI summarizes this work and opens
a view to simulations of interacting dyon models. In
Appendix A some integrals required in the analytical ap-
proach are computed, whereas Appendix B compares
Ewald’s method of summing over an infinite number of
copies of the supercell with the result of the converging
series of sums over a finite number of cells.

II. DYON GAS MODEL FOR SUð2Þ
YANG-MILLS THEORY

The notion of finite temperature instanton solutions,
traditionally called ‘‘calorons’’ [10], was radically ex-
tended when new caloron solutions were found by Kraan
and van Baal [6,7] as well as Lee and Lu [8]. They consist
of magnetic monopoles as constituents. The latter also
carry (the Euclidean analog of) electric charge and will
therefore be called ‘‘dyons.’’ The asymptotic Polyakov
loop of these solutions, the trace of the so-called holonomy,
is an additional external parameter that governs, for in-
stance, how the instanton (caloron) action is shared by the
constituent dyons.

Dyons as self-dual objects at finite temperature can be
obtained by considering the gauge field of a caloron in the
limit of infinite dyon separation [6]. The dyon constituents
can be understood as Bogomol’nyi-Prasad-Sommerfield
monopoles interpreting the scalar Higgs field as a temporal
gauge field. In the far-field limit, when the distance to the
dyon center is large, the gauge field is Abelian along the
direction of the asymptotic Polyakov loop (‘‘the color
direction of the Higgs field’’), which we take to be diagonal

A0 ! 2�!T�3; (1)

PðrÞ � 1

2
Tr

�
exp

�
i
Z 1=T

0
dx0A0ðx0; rÞ

��

! 1

2
Trðexpð2�i!�3ÞÞ ¼ cosð2�!Þ; (2)

with T the temperature and �3 ¼ diagðþ1;�1Þ the third
Pauli matrix. The parameter ! specifies the holonomy.
Maximally nontrivial holonomy refers to ! ¼ 1=4 and
PðrÞ ! 0 and is conjectured to be valid in the confined
phase, where hPi ¼ 0 (as a quantum spatial average), in
contrast to trivial holonomy PðrÞ ! �1 valid deep in the
deconfined phase. The viability of confinement has been
shown semianalytically, even without complete decompo-
sition into constituents [11]. Further investigations sup-
porting the conjecture have been focused on the quantum

amplitude [12], moduli space metric [13,14] and the vortex
content of calorons [15].
Dyons are genuine non-Abelian objects, whose field

components color-perpendicular to the asymptotic
Polyakov loop decay exponentially (like, e.g., fields of
massive bosons color-perpendicular to the Higgs vacuum
expectation value) outside a region of size � � 1=T. The
dyons’ long-range fields are Abelian in the same color
direction and Coulomb-like [in addition to the constant
of Eq. (1)]:

a0ðr;qÞ ¼ q

r
; a1ðr;qÞ ¼ � qy

rðr� zÞ ;

a2ðr;qÞ ¼ þ qx

rðr� zÞ ; a3ðr;qÞ ¼ 0; (3)

where r ¼ ðx; y; zÞ and r ¼ jrj is the three-dimensional
distance to the dyon center. With the help of the
’t Hooft’s symbol one can write in a compact way

a�ðr; qÞ ¼ �q ��3
��@� lnðr� zÞ: (4)

The vector potential in this limit results in electric and
magnetic fields

e ¼ qr

r3
; b ¼ q

�
r

r3
þ 4��ðxÞ�ðyÞ�ðzÞez

�
: (5)

The possible charges are q ¼ þ1 for dyons and q ¼ �1
for antidyons. The Dirac string singularities along the
positive z axis are artifacts of the Abelian limit. They do
not need to concern us here.
So far we have considered self-dual dyons, whose elec-

tric and magnetic charges are coupled as e ¼ b (neglecting
Dirac strings). The actual semiclassical field content domi-
nating the partition function should be built from self-dual
and anti-self-dual dyons and antidyons. For anti-self-dual
dyons and antidyons, for which e ¼ �b, the ’t Hooft
symbols ��3

�� are replaced by �
3
��. As we will argue below,

all that matters for our work is the Coulomb-like decay of
a0 away from positive and negative electric charges �q,
which are placed at random positions. This will apply also
to a mixed model including anti-self-dual dyons and
antidyons. In other words, for the aspects under study
self-duality and anti-self-duality and the magnetic charges
are irrelevant properties, and as a consequence, our for-
mulation respects CP invariance. In due course, total num-
bers and densities will refer to dyons of both magnetic
charges.
The superposition of the gauge fields of 2K dyons in the

Abelian limit reads

A�ðrÞ ¼
�
��02�!T þ 1

2

XK
i¼1

X2
m¼1

a�ðr� rmi ; qmÞ
�
�3; (6)

where rmi and qm ¼ �ð�1Þm are the positions and
charges of the ith dyon (m ¼ 1) and antidyon (m ¼ 2),
respectively.
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Like the vector potentials, interactions of monopoles or
dyons behave Coulomb-like [16–18]. Relying on these
long-range fields, Diakonov and Petrov have presented a
formal solution for the statistical mechanics of purely
(anti-)self-dual dyons [19], later extended to both self-
dualities [20].

The assumed moduli space metric of the dyon configu-
rations allowed for a particular analytic treatment in the
spirit of Polyakov’s monopole confinement mechanism
[21]. In an attempt to implement a simulation for dyon
gases with this interaction, however, we have noticed that
the metric severely suffers from nonpositivity [22], which
casts doubts on the validity of the analytical results ob-
tained in [19] in the context of Yang-Mills theory.

In this paper we consider dyon ensembles without mod-
uli space metric or other interactions; i.e., we perform a
uniform sampling of dyon positions. We will focus on
maximally nontrivial holonomy, ! ¼ 1=4, where both
dyons and antidyons possess the same topological charge
of 2! ¼ 1� 2! ¼ 1=2 of an instanton unit and hence the
same action, such that they do not differ in their classical
and quantum weight. Therefore, it is natural to use the
same number of dyons and antidyons, i.e., an electrically
and magnetically neutral ensemble, and denote by nD ¼
2K the total number of dyons and antidyons. For other
values of the holonomy, say, for those close to maximally
nontrivial, the assumption of equally frequent dyons is
only a first approximation; arguments suggesting the con-
trary are discussed in Refs. [23,24].

The basic parameters of our model are the holonomy !,
the three-dimensional density of dyons �, and the tempera-
ture T. The scale can be set by identifying the string tension
� extracted from the free energy of a static quark-antiquark
pair with the corresponding lattice result as explained in
Sec. III C.

Our primary observable is the local Polyakov loop PðrÞ
at position r [cf. Eq. (2)]. In the Abelian limit the fields are
static and we need to sum the holonomy and the a0
component of the individual dyons as follows,

PðrÞ ¼ cos

�
2�!þ 1

2T
�ðrÞ

�
;

PðrÞj!¼1=4 ¼ � sin

�
1

2T
�ðrÞ

�
(7)

with the following sum over Coulomb terms:

�ðrÞ � XK
i¼1

X2
m¼1

qm
jr� rmi j

¼ XK
i¼1

�
1

jr� r1i j
� 1

jr� r2i j
�
: (8)

As is well-known, the correlator of Polyakov loops yields
the free energy of a static quark-antiquark pair:

F �QQðdÞ ¼ �T lnhPðrÞPyðr0Þi; d � jr� r0j: (9)

From the point of view of a Coulomb gas, correlators of
trigonometric functions are slightly exotic, but for the dyon

model of QCD this is the essential correlation function
probing confinement.
In simulations using a finite number of dyons and anti-

dyons the positions rmi are restricted to a finite dyon
sampling volume. Then contributions from dyons outside
this volume to the sum in Eq. (8) are ignored. How one can
control such finite-volume effects systematically is the
main subject of the second part of this paper. We will resort
to Ewald’s summation method and compare it to the ana-
lytic result for Polyakov loop correlators, which are pre-
sented in the next section.

III. THE POLYAKOV LOOP CORRELATOR IN A
NONINTERACTING DYON GAS MODEL

In this section we treat the noninteracting dyon en-
semble analytically. In particular, we show the Polyakov
loop correlator (9) from random dyons to be confining and
investigate finite-volume effects. Interacting dyon ensem-
bles can be reformulated as scalar theories [19,25], but
here—due to the absence of interactions—the model can
be solved. In this simple system we therefore obtain ana-
lytic formulas for the string tension, which later will be
used to set the scale and as a benchmark for numerical
methods.

A. The correlator

Expectation values of observables O in the ensemble
with K dyons of charge þ1 at positions r1i and K dyons of
charge �1 at positions r2i are given by

hOi ¼
Z YK

i¼1

dr1i dr
2
i Oðfr1i ; r2i gÞ

�Z YK
i¼1

dr1i dr
2
i

¼
Z YK

i¼1

dr1i dr
2
i Oðfr1i ; r2i gÞ

�
V2K; (10)

where V is the spatial volume in which the 2K dyons are
randomly distributed. Their density is

� ¼ 2K

V
(11)

accordingly.
The Polyakov loop correlator is given by a product of

cosines [see (7)–(9)], and can be rewritten as

hPðrÞPðr0Þi¼1

2

�
cos

�
4�!þ�þ

2T

��
þ1

2

�
cos

�
��
2T

��
; (12)

where the Coulomb sums

����ðrÞ��ðr0Þ

¼XK
i¼1

��
1

jr�r1i j
� 1

jr0 �r1i j
�
�
�

1

jr�r2i j
� 1

jr0 �r2i j
��

(13)
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contain all dyons and depend on the two measurement
points r and r0.

Rewriting

hPðrÞPðr0Þi ¼ 1

4
e4�i!

�
exp

�
i
�þ
2T

��
þ c:c:

þ 1

4

�
exp

�
i
��
2T

��
þ c:c: (14)

the ingredients are the following expectation values:�
exp

�
i
��
2T

��

¼ 1

VK

Z YK
i¼1

dr1i exp

�
i

2T

�
1

jr� r1i j
� 1

jr0 � r1i j
��

� c:c:

¼
�
1

V

Z
ds exp

�
i

2T

�
1

jr� sj �
1

jr0 � sj
���

K � c:c:

¼
�jI�j
V

�
2K
: (15)

They are real and have factorized into integrals given in
terms of one dyon location only:

I� �
Z

ds exp

�
i

2T

�
1

jr� sj �
1

jr0 � sj
��

: (16)

The result for the Polyakov loop correlator is then

hPðrÞPðr0Þi ¼ 1

2
cosð4�!Þ

�jIþj
V

�
2K þ 1

2

�jI�j
V

�
2K
: (17)

Keeping the density fixed, we can replace the number of
dyons 2K and obtain

hPðrÞPðr0Þi ¼ 1

2
cosð4�!Þ

��
1þ jIþj � V

V

�
V
�
�

þ 1

2

��
1þ jI�j � V

V

�
V
�
�
; (18)

in particular, at maximally nontrivial holonomy ! ¼ 1=4:

hPðrÞPðr0Þij!¼1=4 ¼ � 1

2

��
1þ jIþj � V

V

�
V
�
�

þ 1

2

��
1þ jI�j � V

V

�
V
�
�
: (19)

This (still exact) form with the explicit volume depen-
dence1 has been chosen in anticipation of the properties
of I� discussed below.

B. String tension in the infinite-volume limit

The task here will be to calculate the asymptotic behav-
ior of the integrals I� of Eq. (16) in the limit of large
quark-antiquark separations. The behavior at finite separa-

tions as well as finite-volume corrections are investigated
in the next subsection.
By shifting and rotating the integration variable in

Eq. (16) one can see that I� are functions of the distance
jr� r0j ¼ d as expected.
As the integrands of both integrals Iþ and I� asymptoti-

cally approach unity, the corresponding (divergent) term
will be canceled by V in Eq. (19). However, there is an
important difference: with the relative plus sign in Iþ the
next term in the asymptotic expansion is the monopole
term (proportional to 2=s), while the integrand of I� will
only start with a dipole term due to the relative minus sign.
We will show that as a consequence the first term in
Eq. (19) vanishes in the infinite-volume limit, whereas
the second term survives and induces the string tension.
We consider regularized integrals in a 3-ball of radius R

and fix the Polyakov loop arguments at r ¼ ð0; 0;þd=2Þ
and r0 ¼ ð0; 0;�d=2Þ. Notice first that the integration vari-
able s can be rescaled by the temperature

I� ¼ 1

T3

Z
S3RT

ds exp

�
i

2

�
1

jrT � sj �
1

jr0T � sj
��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼f�

(20)

such that these integrals are functions of the finite-volume
radius R and the separation d only, both in units of 1=T. In
other words

I� ¼ 1

T3
f�ðdT; RTÞ: (21)

In spherical coordinates the dT dependence of the dis-
tances jrT � sj and jr0T � sj becomes explicit:

D�ðs; 	; dTÞ � jð0; 0;�d=2ÞT � sj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � sdT cos	þ ðdTÞ2=4

q
: (22)

In order to evaluate the leading terms in the radius R, we
consider the RT derivatives of f� for large RT given by
angle integrals on the two-sphere s ¼ RT:

d

dðRTÞ f� ¼ 2�ðRTÞ2
Z �

0
d	 sin	

� exp

�
i

2

�
1

RT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d=R � cos	þ d2=4R2

p
� 1

RT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d=R � cos	þ d2=4R2

p
��
: (23)

This can be expanded in 1=RT and d=R to give

d

dðRTÞfþ¼4�ðRTÞ2þ i4�ðRTÞ�2�þO

�
1

RT
;
d4

R4

�
; (24)

d

dðRTÞ f� ¼ 4�ðRTÞ2 þO

�
d2

R2
;

1

ðRTÞ2
d4

R4

�
; (25)

1The use of dimensionful quantities in the exponent can be
avoided by normalizing with some standard volume.
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where the first terms on the right-hand sides will, of course,
be the volume contributions. Moreover, the aforemen-
tioned difference in the two integrals concerning sublead-
ing terms is clearly visible. Integrating back with respect to
RT then yields

fþ ¼ 4�

3
ðRTÞ3 þ i2�ðRTÞ2 � 2�ðRTÞ

þOðlnRTÞ þ gþðdTÞ; (26)

f� ¼ 4�

3
ðRTÞ3 þ g�ðdTÞ (27)

where g� are RT-independent and where we have ne-
glected all terms vanishing as RT ! 1.

For jIþj we finally get the following leading terms:

jIþj ¼








4�

3
R3 � 2�

R

T2
þ i � 2�R2

T









¼ V � cT2R;

jIþj � V

V
¼ �c0

T2

R2
(28)

with c and c0 being positive constants. In the infinite-
volume limit at fixed temperature the contribution to the
Polyakov loop correlator vanishes:

lim
V!1

�
1þjIþj�V

V

�
V ¼ lim

R!1

�
1�c0T2

R2

�ð4�=3ÞR3

¼0: (29)

In jI�j, on the other hand, only R-independent terms enter
the Polyakov loop correlator as

jI�j ¼








V þ g�

T3









¼ V þ g�
T3

(30)

and

lim
V!1

�
1þ jI�j � V

V

�
V ¼ lim

V!1

�
1þ g�=T3

V

�
V ¼ exp

�
g�
T3

�
:

(31)

Hence it remains to compute g� as a function of the
Polyakov loop separation d ¼ jr� r0j (in units of T),
which according to the above is

g� ¼
Z
R3

ds

�
exp

�
i

2

�
1

jrT � sj �
1

jr0T � sj
��

� 1

�
: (32)

The imaginary part vanishes by invariance under reflec-
tions s ! �s. We split

g� ¼ � 1

8
gð2Þ� þ gðresÞ� ;

gð2Þ� �
Z
R3

ds

�
1

jrT � sj �
1

jr0T � sj
�
2

(33)

such that all terms are integrable around rT and r0T. The
important observation is now that the second-order contri-
bution is linear in dT (see also [12]),

gð2Þ� ¼ 4�dT; (34)

whereas the remainder gðresÞ� is bound by a constant inde-
pendent of dT, both derived in detail in Appendix A.
Finally, in the Polyakov loop correlator (19), using

Eqs. (29), (31), (33), and (34), we obtain an exponential
decay at large distance d ¼ jr� r0j,

hPðrÞPðr0Þi ¼ 1

2
exp

�
��d�

2T2
þ const

�
; (35)

or equivalently a linear growth of the free energy,

F �QQðdÞ ¼ �dþ const:; (36)

and read off the string tension

� ¼ �

2

�

T
: (37)

Given the dependence on �, d, and T in Eqs. (19), (21),
(25), and (31), the coefficient of a term linear in d can only
be of that form (also for dimensional reasons). The
achievement of this part of our work was to analytically
prove this confining behavior and to determine the propor-
tionality factor.
As a side result we find that the holonomy dependence

has dropped out completely in the infinite volume [techni-
cally because ! enters together with Iþ, see Eq. (18), this
contribution, however, vanishes in the infinite-volume
limit]. This is consistent with the fact that the average
Polyakov loop in our model actually vanishes for all hol-
onomies in the infinite-volume limit, which is not difficult
to show.
In other words, the disorder generated by long-range

fields of dyons dominates the effect of the holonomy on
the average Polyakov loop. We remind the reader that this
finding is based on the same density of all kinds of dyons for
all holonomies. Hence our model is valid only at maximally
nontrivial holonomy, i.e., in the low-temperature phase,
whereas in the high-temperature phase modifications are
expected that may reintroduce a holonomy dependence.

C. Fixing the physical scale

With the string tension of Eq. (37) at hand, we can set the
scale of our model. All analytical and later numerical
calculations provide, of course, relations between dimen-
sionless quantities. As we have done already, we can
measure all lengths in units of the inverse temperature
� ¼ 1=T. For the string tension this means

�

T2 ¼ �

2

�

T3
¼ �

2

�
�

��1=3

�
3 � �

2
ðfPÞ3: (38)

The ratio on the left-hand side is known from lattice
simulations. We have introduced a ‘‘packing fraction’’ fP
of the dyon gas, since ��1=3 represents the mean distance
and � can be interpreted as being proportional to the core
size of corresponding non-Abelian dyons.
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We resort to lattice results on the SUð2Þ string tension
and its temperature dependence in [26]. We parametrize
these results (cf. Fig. 3 in that reference) by

�ðTÞ
�ðT ¼ 0Þ ¼ A

�
1� T

Tc

�
0:63

�
1þ B

�
1� T

Tc

�
1=2

�
; (39)

but additionally require �ðTÞ=�ðT ¼ 0ÞjT¼0 ¼ 1, which
amounts to B ¼ 1=A� 1. We find A ¼ 1:39 to describe
the lattice data reasonably well.

Using another lattice result, Tc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðT ¼ 0Þp � 0:71 [27],

allows us to rewrite Eq. (39) according to

�ðTÞ
T2

¼ �ðT ¼ 0Þ
T2
c|fflfflfflfflffl{zfflfflfflfflffl}

�1:99

�
Tc

T

�
2
A

�
1� T

Tc

�
0:63

�
�
1þ B

�
1� T

Tc

�
1=2

�
: (40)

Together with (38) this formula relates the density of dyons
or their packing fraction to the temperature ratio T=Tc.
Finally, physical units can be introduced using �ðT ¼
0Þ ¼ ð440 MeVÞ2 (as we already did in [22]) correspond-
ing to Tc ¼ 312 MeV.

Assuming that our dyon gas model provides the correct
phenomenological value of the string tension we can tell
how the density and the packing fraction have to behave as
functions of the temperature below Tc. For both the limits
T ! Tc and T ! 0 the density � tends to zero. Its maximal
value �max � 0:25Tc�ðT ¼ 0Þ is reached at T � 0:65Tc.
In physical units we have �max � 2 fm�3. The packing
fraction fP for our model diverges for T ! 0 and tends to
zero for T ! Tc. The latter behavior can be interpreted
such that the diluteness assumption applies best near the
phase transition, but becomes more and more violated for
low temperatures. This problem, however, is well-known
to occur also for the instanton liquid model (see, e.g., [4]).

D. Polyakov loop correlator at arbitrary
separation and finite-volume effects

In this subsection we numerically evaluate the Polyakov
loop correlator from Eq. (19) and correspondingly the
integrals I� from Eq. (20) at arbitrary quark-antiquark
separation d and arbitrary volume V (both finite and infi-
nite). This allows us to investigate finite-volume effects. As
a by-product we will confirm the linear behavior for
infinite-volume and large separations, Eqs. (36) and (37).

To perform the numerical integration efficiently, we split
the integrals into two regions, S � S3~RT , a ball of radius
~R< R, and its complement �S � S3RT � S:

f� ¼
Z
S
ds exp

�
i

2

�
1

jrT � sj �
1

jr0T � sj
��

þ
Z

�S
ds exp

�
i

2

�
1

jrT � sj �
1

jr0T � sj
��
: (41)

The integral over S can be solved numerically with
standard methods, e.g., ordinary Monte Carlo sampling,
because both the region of integration and the integrand are
finite. By introducing spherical coordinates it can even be
reduced to a two-dimensional integral:

f�;S ¼
Z
S
ds exp

�
i

2

�
1

jrT � sj �
1

jr0T � sj
��

¼ 2�
Z ~RT

0
ds s2

Z �

0
d	 sin	

� exp

�
i

2

�
1

Dþðs; 	; dTÞ �
1

D�ðs; 	; dTÞ
��

; (42)

with D� according to Eq. (22). For R ! 1 the integrals
over �S exhibit infinities, which need to be subtracted,
before a numerical treatment is possible. For finite but
large R this subtraction is essential for an efficient compu-
tation of the integrals. To exhibit the infinities, we expand
in powers of 1=s:

fþ; �S ¼
Z

�S
ds exp

�
i

2

�
1

jrT � sj þ
1

jr0T � sj
��

¼ 2�
Z RT

~RT
ds s2

Z �

0
d	 sin	

�
1þ i

s
� 1

2s2

þ ið�3ðdTÞ2 þ 9ðdTÞ2cos2	� 4Þ
24s3

þOð1=s4Þ
�

¼ Vð �SÞ þ�þ finite; (43)

f�; �S ¼
Z

�S
ds cos

�
1

2jrT � sj �
1

2jr0T � sj
�

¼
Z

�S
ds cos

�
1

2s

�
dTsz
s2

þOð1=s3Þ
��

¼ 2�
Z RT

~RT
ds s2

Z �

0
d	 sin	ð1þOð1=s4ÞÞ

¼ Vð �SÞ þ finite; (44)

where

� ¼ 2�
Z RT

~RT
ds s2

Z �

0
d	 sin	

�
i

s
� 1

2s2

þ ið�3ðdTÞ2 þ 9ðdTÞ2cos2	� 4Þ
24s3

�
(45)

¼ 2�

3

�
�3iT2ð ~R2 � R2Þ þ 3Tð ~R� RÞ þ i ln

� ~R
R

��
(46)

[see also (26)]. Note that the imaginary part of f� vanishes,
as argued in Sec. III B.
The finite parts of the above integrals can be evaluated

numerically:
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fþ; �S;finite ¼ 2�
Z RT

~RT
ds s2

Z �

0
d	 sin	

�
exp

�
i

2

�
�

1

Dþðs; 	; dTÞ þ
1

D�ðs; 	; dTÞ
��

� 1� i

s

þ 1

2s2
� ið�3ðdTÞ2 þ 9ðdTÞ2cos2	� 4Þ

24s3

�
;

f�; �S;finite ¼ 2�
Z RT

~RT
ds s2

Z �

0
d	 sin	

�
cos

�
1

2Dþðs; 	; dTÞ
� 1

2D�ðs; 	; dTÞ
�
� 1

�
: (47)

The range of integration of
R
ds, which extends to

infinity in the limit R ! 1, still poses a problem, but can
be overcome by a change of variables according to

ds
1

s2
¼ dx (48)

(we have chosen that particular form, because the inte-
grands of fþ; �S;finite and f�; �S;finite are proportional to 1=s

2 for

large s). Consequently,

Z s

~RT
ds0

1

s02
¼

Z x

x0

dx0 ! s ¼ 1

1= ~RT � xþ x0
: (49)

For simplicity and without loss of generality we choose
x0 ¼ 0 in the following. Then

Z RT

~RT
dsFðsÞ ¼

Z 1= ~RT�1=RT

0
dx

Fð1=ð1= ~RT � xÞÞ
ð1= ~RT � xÞ2 ; (50)

where the integrand is roughly equally distributed over the
finite range of integration 0 � x � 1= ~RT � 1=RT, if
FðsÞ � #=s2. The final expressions for numerical evalu-
ation are

fþ; �S;finite ¼ 2�
Z 1= ~RT�1=RT

0
dx s4

Z �

0
d	 sin	

�
exp

�
i

2

�
1

Dþðs; 	; dTÞ þ
1

D�ðs; 	; dTÞ
��

� 1

� i

s
þ 1

2s2
� ið�3ðdTÞ2 þ 9ðdTÞ2cos2	� 4Þ

24s3

�
;

f�; �S;finite ¼ 2�
Z 1= ~RT�1=RT

0
dx s4

Z �

0
d	 sin	

�
cos

�
1

2Dþðs; 	; dTÞ �
1

2D�ðs; 	; dTÞ
�
� 1

�
; (51)

where s ¼ 1=ð1= ~RT � xÞ.
In total

fþ ¼ fþ;S þ fþ; �S;finite þ V � VðSÞ þ�; (52)

f� ¼ f�;S þ f�; �S;finite þ V � VðSÞ: (53)

The Polyakov loop correlator for maximally nontrivial
holonomy is

hPðrÞPðr0Þi ¼ 1

2
exp

�
2K ln

jf�j
VT3

�
� 1

2
exp

�
2K ln

jfþj
VT3

�

(54)

[cf. Eq. (17)]. In the limit V ! 1 this equation simplifies
to

hPðrÞPðr0Þi ¼ 1

2
exp

�
�ðf�;S þ f�; �S;finite � VðSÞÞ

T3

�
: (55)

We have performed the remaining integrations numerically
and show the results below in Figs. 2 and 3.

IV. EWALD’S SUMMATION METHOD

A. Outline of the method

In the following we briefly summarize Ewald’s method.
For a more detailed presentation we refer to [28]. Our main
motivation to use this method is to systematically control

finite-volume effects in observables, in particular, those
contributing to the Polyakov loop in Eq. (8).
The first step in Ewald’s method is to mimic the infinite

space by sampling the physical system restricted to a basic
cell, the so-called supercell, of spatial volume L3 which
will—for finite density—contain only a finite number of
randomly placed dyons. In a second step the space is filled
with replicas of the supercell shifted by nL, n 2 Z3. Sums
over infinitely many dyons in infinite space are replaced by
sums over these replicas.
The infinite sum � in the Polyakov loop, Eq. (8), is

modified to2

�ðrÞ ¼ X
n2Z3

X
j

qj
jr� rj � nLj ; (56)

where j ¼ ði; mÞ is now a superindex running over all
dyons and antidyons coming in equal number (j takes
nD ¼ 2K different values).
Naively one might think that such a sum can be approxi-

mated by summing over a large but finite number of copies
of the supercell. One can show, however, that even though
this sum converges, when increasing the total volume
further and further, it converges to a result that differs

2Note that Ewald’s method is quite general in a sense that it is
capable of performing infinite sums of arbitrary inverse powers
[29].

CONFINING DYON GAS WITH FINITE-VOLUME EFFECTS . . . PHYSICAL REVIEW D 85, 034502 (2012)

034502-7



from the desired infinite sum �ðrÞ (see Appendix B). The
distortion depends on details of the charge distribution like
surface charges. Only in the limit L ! 1 it is expected to
be identical to the Ewald result.

The third step and key idea of Ewald’s method is to split
the terms 1=jr� rj � nLj in � in a very specific way into

an exponentially decaying ‘‘short-range part’’ and a
smooth ‘‘long-range part.’’ While the sum over the terms
appearing in the short-range part converges exponentially,
the sum in the long-range part is carried out in Fourier
space, where it also converges exponentially. This allows a
rather efficient computation of the sum in Eq. (56) up to
arbitrary precision.

In detail the splitting into the short- and long-range sum
is done in the following way:

�ðrÞ ¼ �shortðrÞ þ�longðrÞ; (57)

�shortðrÞ� X
n2Z3

X
j

�
1�erf

�jr�rj�nLjffiffiffi
2

p



��
qj

jr�rj�nLj ;

(58)

�longðrÞ� X
n2Z3

X
j

erf

�jr�rj�nLjffiffiffi
2

p



�
qj

jr�rj�nLj ; (59)

where erf denotes the error function. The physical intuition
behind this decomposition becomes clear by computing the
charge corresponding to this potential, i.e., by applying the
Laplace operator to �. Of course, the original potential
1=jr� rj � nLj yields pointlike sources at the dyon

positions rj þ nL. The auxiliary term �erfðjr� rj �
nLj= ffiffiffi

2
p


Þ=jr� rj � nLj yields a continuous charge dis-

tribution around the same locations, but with Gaussian
profile of width 
 and opposite sign. It is clear that the
effect of these two charge distributions increasingly can-
cels in �short with growing distance, actually in an expo-
nential manner.

In �long the smeared charge generates a nonsingular
potential at the dyon positions. This leads to a convergence
in its Fourier transform, which is exponential, too:

�longðrÞ ¼ 4�

L3

X
n2Z3n~0

eþikðnÞr e
�
2kðnÞ2=2

kðnÞ2
�XN
j¼1

qje
�ikðnÞrj

�
;

kðnÞ ¼ 2�

L
n: (60)

The expressions in parentheses are called ‘‘structure func-
tions,’’ since they contain the information about the dyon
positions. Note that this expression for�long is correct only
if the system is neutral, i.e., if

P
jqj ¼ 0. This is the case

for the noninteracting dyon model. For non-neutral sys-
tems �long diverges. The free parameter 
 determines the
tradeoff between the long-range sum and the short-range
sum. While the short-range sum can be evaluated rather

quickly for small 
, the opposite is the case for the long-
range sum. The optimal choice for 
 is discussed in the
following section.

B. Performance of Ewald’s method

To determine the free energy of a static quark-antiquark
pair within the noninteracting dyon model, we need to
evaluate Polyakov loop correlators. Doing this in an effi-
cient way amounts to computing � at a set of sample
points r distributed on a cubic lattice throughout the spatial
volume. Let M be the number of sample points. The
computational costs to evaluate the short-range sum (58)
up to any desired accuracy are OðM
3Þ assuming that
dyons within a spherical region around a given sample
point can be always identified within the same cpu time
(see below for how this can be realized).
Similarly one can read off the computational costs for

evaluating the long-range sum (60) up to exponential pre-

cision. The structure functions
P

jqje
�ikðnÞrj are indepen-

dent of the sample point r and, therefore, need to be
computed only once for a given dyon configuration. The
number of the required structure functions is proportional
to V=
3; hence the corresponding computational costs are
of order OðV2=
3Þ. The time needed for the subsequent
computation of�long at allM sample points is proportional
to MV=
3. Consequently, the total computational costs to
perform the long-range sum are OðV2=
3Þ þOðMV=
3Þ.
The computational costs of the short-range sum and of

the long-range sum depend on 
 in just the opposite way
(as expected). One should choose 
 in an optimal way,
such that the total computational costs are minimized.
Obviously the optimal choice for 
 also depends on M.
Since typicallyM / V, as is the case for our computations,

the optimal value for 
 should be chosen according to 
3 /ffiffiffiffi
V

p
. Then the performance of Ewald’s method is

OðV3=2Þ. This behavior has been confirmed numerically
(cf. Figure 1, left panel).

Of course, 
3 / ffiffiffiffi
V

p
is only a statement on how to

increase 
, when enlarging the spatial volume V. How to
choose 
 for a given V such that the corresponding com-
puting time is minimized has to be determined by numeri-
cal experiment. In the right panel of Fig. 1 we show in an
exemplary plot corresponding to nD ¼ 8000 and V ¼
ð20:0Þ3 the computing time needed to calculate the dyon
potential � as a function of 
. Obviously, there is an
optimal choice for 
.
Note that in the literature there also exists another

version of the just explained ‘‘classical Ewald method,’’
the so-called particle mesh Ewald method (see, e.g., [29]).
This version is more efficient when the interaction energy
of a system of positive and negative charges needs to be
computed. However, for our problem at hand, the compu-
tation of the temporal gauge field �, there is no advantage
with respect to performance. Since it is significantly sim-
pler to implement, we resort to the classical Ewald method.
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For an efficient computation of the short-range sum
�shortðrÞ, it is mandatory to determine which dyons are
located in a spherical region of given radius R centered
around r in Oð1Þ computer time. To this end we divide the
supercell into a grid of cubic subcells and generate for each
subcell a list of the contained dyons. In addition we have
implemented a function that determines all subcells which
are inside or which intersect the surface of the above
mentioned ball. Then we call all those subcells for the
dyons they contain. In this way we do not need to inspect
all the dyons in the supercell and check whether their
distance to r is smaller than R. Of course, the grid of
subcells has to be sufficiently fine-grained to be able to
mimic a ball of radius R with rather small cubes.

V. NUMERICAL RESULTS

Extracting the infinite-volume string
tension using Ewald’s method

We compute the free energy of a static quark-antiquark
pair as a function of their separation from Polyakov loop
correlators as described in Sec. II. We keep the dyon
density � and the temperature T fixed and perform com-
putations for various dyon numbers nD, corresponding to
various spatial volumes V ¼ nD=� of the supercell. The
superposition of dyon potentials � is calculated by means
of the Ewald method as explained in Sec. IV. We restrict
ourselves to maximally nontrivial holonomy.

Of course, the resulting free energies are different for
different dyon numbers, i.e., spatial volumes of the super-
cell, because of finite-volume effects. In particular, the
dyon potential � is L-periodic along the three spatial
directions, which obviously implies periodic Polyakov

loops and loop correlators. Therefore, L has to be chosen
sufficiently large to ensure that the free energy can be
determined for quark-antiquark separations of phenome-
nological interest, typically a few fm, without being sig-
nificantly distorted due to periodicity.
In Fig. 2 we show quark-antiquark free energies for

�=T3 ¼ 1:0 and dyon numbers 1000 � nD � 125 000

(corresponding to 10:0 � L�1=3 � 50:0) as functions of

the quark-antiquark separation d�1=3. We also show the
analytic results for finite and infinite volume in this plot.

Note that we express lengths in units of �1=3, which is the
average dyon separation in a random dyon gas. The num-
ber of dyon configurations used for each dyon number nD
is listed in Table I. It can be seen that the free energies

converge, when increasing nD (or equivalently L�1=3).
This allows an extrapolation to infinite volume. In the
left panel of Fig. 3 we show linear extrapolations of the
finite-volume static free energy to infinite volume for a
number of quark-antiquark separations. We also compare
the results of the extrapolation to the analytically obtained
free energy at infinite volume in the right panel of Fig. 3.
As can be seen, analytic and extrapolated results nicely
agree within errors.
Let us point out that there are other methods of obtaining

an infinite-volume result numerically without employing
Ewald’s summation method.
An obvious method is a straightforward superposition of

dyon potentials in a finite cubic box of size L3, which we
call ‘‘dyon sampling volume.’’ We have used this method

 1
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FIG. 1 (color online). Performance of Ewald’s method. Left: A
log-log plot of the computing time needed to evaluate the
potential � at M / V sample points per dyon configuration as
a function of the spatial volume V. The density of dyons is � ¼
1:0. The vertical axis is labeled such that one unit of cpu time
was needed to perform the computation for V ¼ ð10:0Þ3 corre-
sponding to a number of dyons nD ¼ 1000. 
 was chosen
according to 
3 / ffiffiffiffi

V
p

. The straight line with slope 3=2 illus-
trates that for large spatial volumes/dyon numbers Ewald’s
method indeed exhibits the expected OðV3=2Þ scaling. Right:
The computing time as a function of the parameter 
 (in units of
the inverse temperature) for nD ¼ 8000 and V ¼ ð20:0Þ3. The
vertical axis is labeled such that one unit of cpu time was needed
to perform the computation at the optimal value 
opt � 1:5.

FIG. 2 (color online). Free energy of a static quark-antiquark
pair as a function of its separation for �=T3 ¼ 1:0 and various
supercell extensions L�1=3 corresponding to different dyon
numbers nD. In addition we show the results obtained from a
numerical evaluation of the analytic result at finite and infinite
volume. For better visibility the analytic results are shifted by
log 2 and therefore the corresponding curves start close to the
origin.
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in a previous publication [22], to which we refer for further
details. Note that there is no exact translational invariance
anymore, in contrast to when using periodic boundary
conditions via Ewald’s method. To keep finite-volume
effects at a tolerable level, we have to restrict the evalu-
ation of Polyakov loops to a spatial subvolume sufficiently
far away from the boundary of the dyon volume. We will
call this subvolume ‘‘field sampling volume.’’ It is centered
inside the dyon sampling volume and has extension l � L.
On the one hand, finite-volume effects are expected to be
negligible for sufficiently small l. On the other hand,
however, decreasing l reduces the available information
per dyon configuration and, therefore, reduces statistical
accuracy. In practice one would need to identify plateaus in
the observables as functions of l. An obvious and major
drawback of proceeding in such a way is that one needs to
extrapolate in two parameters the extension l of the sam-
pling volume and the extension L of the dyon volume.
Clearly this is technically more complicated than what
has to be done using Ewald’s method, where the only
parameter subject to extrapolation is the extension of the
supercell L.

One can also think of evaluating just one Polyakov loop
correlator in the center of the volume of each random
configuration. We should point out that this is not really
feasible if there are interactions, since a significantly larger
statistics is needed when no volume averaging is done. For

the noninteracting case it is applicable and therefore worth
being mentioned.

VI. SUMMARYAND OUTLOOK

In this work we have shown analytically that a non-
interacting random dyon gas leads to a linearly rising free
energy of a static quark-antiquark pair as a function of the
distance in between. Correspondingly the string tension �
has turned out proportional to the ratio of the density and
the temperature, i.e., to �=T [cf. Eq. (37)]. We have been
able to present explicit formulas for arbitrary distance and
for finite volume with certain integrals left to be evaluated
numerically. We have convinced ourselves that the depen-
dence on the holonomy drops out in the infinite-volume
limit. This reflects the fact that—concerning the Polyakov
loop and its correlator—the model is able to describe only
the confinement phase. For the deconfinement transition as
well as for the deconfinement phase, where the center
symmetry becomes broken, the model should be altered
taking into account that dyons with opposite charge should
be statistically weighted differently.
We emphasize that our analytical approach is specific

for the noninteracting case. For the interacting case it will
not be applicable without approximations, and in the first
instance we will have to rely on numerical simulations.
Strong finite-size effects of the naive treatment with finite
boxes containing the dyon sources have led us to employ a
numerical method well-known in the physics of a three-
dimensional Coulomb plasma, the Ewald summation
method. We have convinced ourselves that this method
will be applicable also to the more realistic interacting
dyon gas.
Indeed, we have demonstrated how Ewald’s summation

method can be used to deal with long-range objects also in
field theory, in our case with random ensembles of dyon
constituents. In this semiclassically motivated model we
have computed the local Polyakov loop, and from its
correlator we have extracted the string tension, the main

FIG. 3 (color online). Demonstration of the infinite-volume limit. Left: Static free energy for ten distances as a function of the
inverse supercell extensions L�1=3 (corresponding to different dyon numbers nD) and its extrapolation to infinite volume. Right:
The latter compared to the analytic result, Eq. (55), for arbitrary distances in infinite volume.

TABLE I. Number of random dyon configurations used for
every simulation at fixed dyon number nD or dimensionless
length of the volume in which the dyon positions are sampled,
L�1=3, respectively.

nD L�1=3 Number of configurations

1000 10 1600

8000 20 800

27 000 30 120

64 000 40 90

125 000 50 60
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observable characterizing confinement/deconfinement at
finite temperature.

The Polyakov loop is a function of an infinite sum of
Coulomb contributions of dyons with both signs of charge
[cf. Eq. (8)]. According to Ewald’s method we have de-
composed this sum into short-range and long-range parts,
Eqs. (58) and (60), and have optimized the width 
 of the
auxiliary Gaussian charge cloud governing the strength of
the exponential convergence of both parts.

Figures 2 and 3 show our main results, the free energy of
a quark-antiquark pair as a function of its separation,
for various extensions of the (periodically repeated) super-
cell volume, but fixed dyon density. These figures also
demonstrate that the straightforward extrapolation to infi-
nite supercell volume is a valid procedure to obtain results
for an infinite noninteracting system of dyons. In this limit
the Polyakov loop correlator behaves as expected: it decays
exponentially toward larger quark-antiquark separations.
The corresponding string tension can be read off unambig-
uously (and used to fix the physical scale of this model).

We have discussed the advantages of Ewald’s periodic
summation over methods that at finite volumes measure
observables only in subvolumes: it keeps translational
invariance and the infinite-volume limit amounts to extrap-
olating just one parameter.

The applicability of the numerical method we have used
is not restricted to a noninteracting dyon ensemble and/or
to SUð2Þ. Dyon fields in higher gauge groups decay with
the distance in the same Coulombic manner, just possess-
ing different color structures. Several other ingredients of
dyon models contain Coulomb tails, too, like the interac-
tion of dyons via the action or their moduli space metric.
Furthermore, spatial Wilson loops (providing an area law
decay with magnetic screening persistent also in the de-
confined phase) can—with the help of Stokes’s theorem
and based on (anti-)self-duality—be represented as area
integrals over the normal component of the gradient of the
same infinite sum.

The ability to perform a controlled infinite-volume ex-
trapolation (with a single remaining parameter L, the ex-
tension of the periodically continued spatial volume) is
even more important in more complicated systems. An
ensemble of random dyons could be treated easily with
up to 105 dyons. Interacting dyon ensembles are numeri-

cally much more expensive such that the reduction to a
smaller number of dyons most likely cannot be avoided.
Then finite-volume effects might become a limiting factor.
Consequently, Ewald’s summation method seems to be-
come indispensable, however, in the form of the particle
mesh Ewald method, which is more efficient than the
classical Ewald method, when computing dyon
interactions.
Finally, one could think about applying Ewald’s method

to more complicated objects in gauge theory, whose cor-
responding fields are also of long-range nature, such as
merons or regular gauge instantons [30,31] and general-
izations thereof [32,33].
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APPENDIX A: CALCULATION
OF SOME INTEGRALS

We derive the following results for the integrals gð2Þ� and

gðresÞ� involved in Polyakov loop correlators in Sec. III B:

Z
R3

ds

�
1

ju� sj �
1

ju0 � sj
�
2 ¼ 4�ju� u0j; (A1)

0<
Z
R3

ds

�
cos

�
1

ju� sj �
1

ju0 � sj
�
� 1

þ 1

2

�
1

ju� sj �
1

ju0 � sj
�
2
�
< const: (A2)

In the first integral we use the well-known Fourier repre-
sentation of the Coulomb potential

1

jsj ¼
1

ð2�Þ3
Z

dp
4�

p2
eips (A3)

to calculate

Z
ds

�
1

ju�sj�
1

ju0�sj
�
2¼ 1

4�4

Z
ds

Z
dpdq

1

p2q2
ðeipðs�uÞ�eipðs�u0ÞÞðeiqðs�uÞ�eiqðs�u0ÞÞ

¼ 1

4�4

Z
dpdq

1

p2q2
�ðpþqÞðe�ipu�e�ipu0 Þðe�iqu�e�iqu0 Þ¼ 2

�

Z
dp

1

p4
ð2�2cosðpðu�u0ÞÞÞ

¼8
Z 1

0
dp

1

p2

Z �

0
d	sin	ð1�cosðpju�u0jcos	ÞÞ¼8

Z 1

0
dp

1

p2

�
2�2

sinðpju�u0jÞ
pju�u0j

�
¼4�ju�u0j:

(A4)
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The Laplace operator can be used to check this result.
Acting with respect to u0 and u on the left-hand side we
obtain (from the mixed term in the integrand)

�u�u0
Z

ds

�
1

ju� sj �
1

ju0 � sj
�
2

¼ �2
Z

dsð�4�Þ2�ðu� sÞ�ðu0 � sÞ
¼ �32�2�ðu� u0Þ: (A5)

On the right-hand side it gives the same since

�u�u04�ju�u0j¼�u

8�

ju�u0j¼�32�2�ðu�u0Þ: (A6)

The integrand of the second integral cosx� 1þ x2=2 �
hðxÞ is positive, which proves the first inequality. For the
second inequality we split s space into two half-spaces,
ju� sj + ju0 � sj, separated by the midplane between the
two points u and u0. The integral over each half-space
gives half of the full integral and thus we can specify to one
of them, e.g., where

0 � 1

ju� sj �
1

ju0 � sj<
1

ju� sj (A7)

holds. Since the integrand hðxÞ is monotonically increasing
for x > 0, we obtain an upper bound
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1
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ds
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<2
Z
ju�sj�ju0�sj

ds

�
cos

1

ju�sj�1þ 1

2ju�sj2
�
: (A8)

Because of the positivity of the integrand, we can extend
the latter integral back to the full space and by virtue of
translational invariance put u ¼ 0 obtaining another bound

Z
R3

ds

�
cos

�
1

ju� sj �
1

ju0 � sj
�
� 1

þ 1

2

�
1

ju� sj �
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2
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< 2 � 4�
Z 1

0
ds s2

�
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1

s
� 1þ 1

2s2

�
¼ 2�2

3
(A9)

independently of ju� u0j, by which we have proven the
second inequality.

APPENDIX B: EWALD’S SUM COMPARED WITH
SUMMING OVER A FINITE ARRAY OF

SUPERCELLS

Ewald’s method amounts to summing over infinitely
many copies of the cubic spatial volume L3 called ‘‘super-
cell.’’ An alternative approach is to truncate this sum after a

large but finite number of copies in every spatial direction
�x, �y, and �z. The corresponding dyon potential ob-
tained by summing over ð2nþ 1Þ3 copies of the supercell
is then

�finite sumðrÞ ¼ Xþn

nx¼�n

Xþn

ny¼�n

Xþn

nz¼�n

X
j

qj
jr� rj � nLj ; (B1)

where r, rj 2 ½�L=2;þL=2	3 and n ¼ ðnx; ny; nzÞ. One
might expect that, when n is chosen sufficiently large, the
Ewald result, denoted by �Ewald, and �finite sum become
arbitrarily close. In this section we explain that this is not
the case, i.e., that even though �finite sum converges, when
increasing n, it will in general differ from �Ewald.
The difference between the two approaches is

��ðrÞ ¼ �EwaldðrÞ ��finite sumðrÞ
¼ X

nx2Znf�n;...;þng

X
ny2Znf�n;...;þng

X
nz2Znf�n;...;þng

�XnD
j

qj
jr� rj � nLj : (B2)

In the following we demonstrate by means of a simple
example that ��ðrÞ � 0 in general. To this end consider
nD ¼ 2, a dyon (q1 ¼ þ1) at position r1 ¼ ð�d=2; 0; 0Þ,
and an antidyon (q2 ¼ �1) at position r2 ¼ ðþd=2; 0; 0Þ.
For d ¼ L dyons and antidyons in (B2) cancel exactly

with the exception of antidyons/dyons located on planes at
ð�ðnþ 1=2Þ; ny; nzÞL, ny; nz 2 Z. Since the dyon poten-

tial is identical to the potential of an electric charge in
classical electrostatics, the situation is reminiscent of that
of a uniformly polarized cubic dielectric with volume
ðð2nþ 1ÞLÞ3. For n 
 1 the discrete charges can be ap-
proximated by the surface charge density � ¼ �4�=L2 at
the two opposite sides x ¼ �ðnþ 1=2ÞL.
For d < L the dyon and antidyon potentials only partly

cancel resulting in a reduced surface charge density � ¼
�4�d=L3.
For n 
 1 the difference �� is given by

rð��ðrÞÞ ¼ �2
Z þðnþ1=2ÞL

�ðnþ1=2ÞL
dy

Z þðnþ1=2ÞL

�ðnþ1=2ÞL
dz

� dðr� ððnþ 1=2ÞL; y; zÞÞ
4�L3jr� ððnþ 1=2ÞL; y; zÞj3

¼ 4�d

3L3
ðex þOð1=nÞÞ; (B3)

i.e.,

��ðrÞ ¼ 4�d

3L3
xð1þOð1=nÞÞ: (B4)

In Fig. 4 we show that this analytical result is accurately
reproduced by our numerical implementation of Ewald’s
method and the finite sum (B1) using n ¼ 50.
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For a larger number of dyons with arbitrary positions,
�� is, of course, rather hard to estimate analytically. The
physical picture, however, will remain the same: like in a
polarized dielectric, surface charges will cause a difference
between �Ewald and �finite sum. Only in the limit nD ! 1
corresponding to L ! 1 both approaches are expected to
become identical.

In principle both approaches can be used to simulate
dyon ensembles, since, after appropriately extrapolating
the dyon number nD ! 1 (or alternatively L ! 1), one
should obtain the same correct infinite-volume result.
We consider, however, Ewald’s method to be superior,

because in this approach the spatial volume is translation-
ally invariant. This allows us to maximally exploit a given
dyon gauge field configuration by evaluating observables
throughout the whole spatial volume. In contrast to that,
translational invariance is broken when truncating the
sum over copies of the supercell. Observables must only
be evaluated in regions where this breaking is sufficiently
mild. Each observable requires us to determine a corre-
sponding region of sufficiently mild finite-volume
effects. Moreover, one has to ensure that the asso-
ciated systematic is removed by the infinite-volume
extrapolation.
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[4] T. Schäfer and E.V. Shuryak, Rev. Mod. Phys. 70, 323
(1998).

[5] D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003).
[6] T. C. Kraan and P. van Baal, Nucl. Phys. B533, 627 (1998).
[7] T. C. Kraan and P. van Baal, Phys. Lett. B 435, 389 (1998).
[8] K.-M. Lee and C.-H. Lu, Phys. Rev. D 58, 025011 (1998).
[9] P. Ewald, Ann. Phys. (N.Y.) 369, 253 (1921).
[10] B. J. Harrington and H.K. Shepard, Phys. Rev. D 17, 2122

(1978).
[11] P. Gerhold, E.-M. Ilgenfritz, and M. Müller-Preussker,

Nucl. Phys. B760, 1 (2007).
[12] D. Diakonov, N. Gromov, V. Petrov, and S. Slizovskiy,

Phys. Rev. D 70, 036003 (2004).
[13] T. C. Kraan, Commun. Math. Phys. 212, 503 (2000).
[14] D.DiakonovandN.Gromov, Phys.Rev.D72, 025003 (2005).
[15] F. Bruckmann, E.-M. Ilgenfritz, B. Martemyanov, and B.

Zhang, Phys. Rev. D 81, 074501 (2010).
[16] N. S. Manton, Phys. Lett. 154B, 397 (1985).
[17] G.W. Gibbons and N. S. Manton, Nucl. Phys. B274, 183

(1986).

[18] G.W. Gibbons and N. S. Manton, Phys. Lett. B 356, 32
(1995).

[19] D. Diakonov and V. Petrov, Phys. Rev. D 76, 056001
(2007).

[20] D. Diakonov, Nucl. Phys. B, Proc. Suppl. 195, 5 (2009).
[21] A.M. Polyakov, Nucl. Phys.B120, 429 (1977).
[22] F. Bruckmann, S. Dinter, E.-M. Ilgenfritz, M. Müller-

Preussker, and M. Wagner, Phys. Rev. D 79, 116007
(2009).

[23] V. Bornyakov, E.-M. Ilgenfritz, B. Martemyanov, and M.
Müller-Preussker, Phys. Rev. D 79, 034506 (2009).

[24] F. Bruckmann, Proc. Sci., CONFINEMENT8 (2008) 179.
[25] A.M. Polyakov, Phys. Lett. 72B, 477 (1978).
[26] S. Digal, S. Fortunato, and P. Petreczky, Phys. Rev. D 68,

034008 (2003).
[27] B. Lucini, M. Teper, and U. Wenger, J. High Energy Phys.

02 (2005) 033.
[28] H. Lee and W. Cai, lecture notes, Stanford University,

2009.
[29] U. Essmann et al., J. Chem. Phys. 103, 8577 (1995).
[30] F. Lenz, J.W. Negele, and M. Thies, Phys. Rev. D 69,

074009 (2004).
[31] F. Lenz, J.W. Negele, and M. Thies, Ann. Phys. (N.Y.)

323, 1536 (2008).
[32] M. Wagner, Phys. Rev. D 75, 016004 (2007).
[33] C. Szasz and M. Wagner, Phys. Rev. D 78, 036006 (2008).

FIG. 4 (color online). Lð��Þ as a function of x=L (y ¼ z ¼ 0) for a dyon at ð�d=2; 0; 0Þ and an antidyon at ðþd=2; 0; 0Þ (see text for
details). (a) d ¼ L. (b) d ¼ L=2.

CONFINING DYON GAS WITH FINITE-VOLUME EFFECTS . . . PHYSICAL REVIEW D 85, 034502 (2012)

034502-13

http://dx.doi.org/10.1103/PhysRevD.17.2717
http://dx.doi.org/10.1103/PhysRevD.17.2717
http://dx.doi.org/10.1103/PhysRevD.19.1826
http://dx.doi.org/10.1103/PhysRevD.19.1826
http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1016/S0146-6410(03)90014-7
http://dx.doi.org/10.1016/S0550-3213(98)00590-2
http://dx.doi.org/10.1016/S0370-2693(98)00799-0
http://dx.doi.org/10.1103/PhysRevD.58.025011
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1103/PhysRevD.17.2122
http://dx.doi.org/10.1103/PhysRevD.17.2122
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.003
http://dx.doi.org/10.1103/PhysRevD.70.036003
http://dx.doi.org/10.1007/s002200000223
http://dx.doi.org/10.1103/PhysRevD.72.025003
http://dx.doi.org/10.1103/PhysRevD.81.074501
http://dx.doi.org/10.1016/0370-2693(85)90417-4
http://dx.doi.org/10.1016/0550-3213(86)90624-3
http://dx.doi.org/10.1016/0550-3213(86)90624-3
http://dx.doi.org/10.1016/0370-2693(95)00813-Z
http://dx.doi.org/10.1016/0370-2693(95)00813-Z
http://dx.doi.org/10.1103/PhysRevD.76.056001
http://dx.doi.org/10.1103/PhysRevD.76.056001
http://dx.doi.org/10.1016/j.nuclphysbps.2009.10.010
http://dx.doi.org/10.1016/0550-3213(77)90086-4
http://dx.doi.org/10.1103/PhysRevD.79.116007
http://dx.doi.org/10.1103/PhysRevD.79.116007
http://dx.doi.org/10.1103/PhysRevD.79.034506
http://dx.doi.org/10.1016/0370-2693(78)90737-2
http://dx.doi.org/10.1103/PhysRevD.68.034008
http://dx.doi.org/10.1103/PhysRevD.68.034008
http://dx.doi.org/10.1088/1126-6708/2005/02/033
http://dx.doi.org/10.1088/1126-6708/2005/02/033
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1103/PhysRevD.69.074009
http://dx.doi.org/10.1103/PhysRevD.69.074009
http://dx.doi.org/10.1016/j.aop.2007.11.009
http://dx.doi.org/10.1016/j.aop.2007.11.009
http://dx.doi.org/10.1103/PhysRevD.75.016004
http://dx.doi.org/10.1103/PhysRevD.78.036006

