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The behavior of the Landau gauge gluon and ghost propagators is studied in pure SUð3Þ gauge theory at
nonzero temperature on the lattice. We concentrate on the momentum range (0.6, 2.0) GeV. For the

longitudinal as well as for the transverse component of the gluon propagator we extract the continuum

limit. We demonstrate the smallness of finite-size and Gribov-copy effects at temperatures close to the

deconfinement phase transition at T ¼ Tc and within the restricted range of momenta. Since the

longitudinal component DLðqÞ turns out to be most sensitive with respect to the phase transition, we

propose some combinations of DLðqÞ signaling the transition much like ‘‘order parameters.’’
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I. INTRODUCTION

It is commonly believed that hadronic matter at high
temperature undergoes a phase transition into another
phase, traditionally called ‘‘quark-gluon plasma’’. At
present, strong efforts are made at Relativistic Heavy Ion
Collider, Brookhaven National Laboratory, and at the
LHC, CERN to establish undeniable experimental signa-
tures in the final states of heavy-ion collisions indicating
that matter had undergone evolution close to or beyond this
transition. The existence of such a transition, concluded
long time ago from Hagedorn’s thermodynamical model
[1], has been one of the first crucial forecasts of lattice
QCD (LQCD). The latter uses a formulation of non-
Abelian gauge theory which is amenable to ab-initio nu-
merical nonperturbative computations. This formulation
also opens the way for analytical calculations at strong
and weak coupling. LQCD calculations can provide esti-
mates for the transition temperature, the equation of state
close to Tc and above, and other features and experimental
observables. For a recent review see [2].

In recent years, another powerful nonperturbative ap-
proach has been developed based on Dyson-Schwinger
equations (DSE) [3–6] and functional renormalization
group equations [7,8]. The main focus was first to find a
field theoretical, model-independent description of quark
and gluon confinement in terms of the infrared behavior of
gauge-variant Green’s functions, in particular, of the
Landau or Coulomb gauge gluon and ghost propagators.
This should confirm or disprove confinement scenarios as
proposed by Gribov and Zwanziger [9–11] and Kugo and
Ojima [12,13]. Landau gauge gluon and ghost propagators
have been intensively studied for zero temperature with
DSE and functional renormalization group equations (see,

e.g., [14] and citations therein). On the lattice, these propa-
gators have been computed by several groups (see [15,16]
for our own recent computations and references to earlier
work by other groups).
If these propagators encode confinement, they should

also be considered in LQCD studies at nonvanishing tem-
perature (see [17–20] and for more recent work [21–24]).
Complementary to this, the temperature dependence has
also been studied in the framework of DSE [25–28].
In the recent past we also have extended our lattice

computations of the gluon and ghost propagators at zero
temperature to the case of nonzero temperature. First re-
sults have been obtained without [29] and also withNf ¼ 2

dynamical fermion flavors [30]. In this paper we will focus
on results for pure SUð3Þ gauge theory known to have a
first order finite-temperature phase transition. We concen-
trate on the continuum limit within a restricted range of
momenta. For this range finite-size or Gribov-copy effects
turn out to be small. Moreover, a noticeable sensitivity of
the longitudinal component of the gluon propagator with
respect to the deconfining phase transition is observed. We
show that certain ratios of this component may serve as
useful indicators (order parameters) for this transition, thus
complementing the information obtained from the ever
popular Polyakov loop.
The paper is organized as follows. In Sec. II we describe

the setup of our lattice Monte Carlo simulation. In Sec. III
we review the basic definitions of the gauge-variant propa-
gators on the lattice, modified to finite temperature. In
Sec. IV we present results for the gluon and ghost propa-
gators for various temperatures. The signal of the phase
transition is not as strong as one might have expected.
Nevertheless, as stated above, the longitudinal gluon
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propagator allows us to define ratios, which gives a clear
signal at the deconfinement phase transition. In Secs. Vand
VI we analyze the finite-volume and Gribov-copy effects,
respectively. In Sec. VII we investigate then scaling prop-
erties for varying lattice spacing a, keeping the temperature
and the volume fixed. This allows us to extrapolate our data
to the continuum limit. Finally, in Sec. VIII, we shall draw
our conclusions.

II. SETUP OF THE LATTICE SIMULATIONS

We have generated SUð3Þ pure gauge field configura-
tions on a four-dimensional lattice of size N3

� � N�

with periodic boundary conditions employing standard
Monte Carlo simulations using the Euclidean path integral
weight � expð�SWÞ, where SW denotes the Wilson one-
plaquette action

SW ¼ �
X

x;�>�

�
1� 1

3
ReTrðUx�Uxþ�̂;�U

y
xþ�̂;�U

y
x�Þ

�
;

� ¼ 6=g20:

g0 is the bare coupling constant and Ux� 2 SUð3Þ denotes
the link variables. The imaginary-time extent corresponds
to the inverse temperature T�1 ¼ N�a, where að�Þ is the
lattice spacing. For generating the gauge field ensemble we
have used the standard hybrid over-relaxation algorithm,
with a step of 4 microcanonical over-relaxation sweeps
followed by one heat-bath step [31,32]. In both steps a
decomposition of SUð3Þ link variables into SUð2Þmatrices
(as proposed in [33]) was applied. Oð2000Þ combined
thermalization sweeps were allowed between the individ-
ual measurements of the propagators.

In order to determine the temperature dependence of the
gluon and ghost propagators, as a first step we kept the
lattice spacing fixed (and, as we shall see, sufficiently
small) while varying N�. As a reference value, we have
chosen � ¼ 6:337 providing a ’ 0:055 fm (in accordance
with [34]). This �-value corresponds, for N� ¼ 12, to a
temperature very close to the temperature Tc characteristic
for the deconfinement phase transition in a lattice with a
linear spatial extent N�að� ¼ 6:337Þ ¼ 48a ’ 2:64 fm.
According to Ref. [35], it has been fixed by interpolating
with the help of the fit formula

�cðN�; N�Þ ¼ �cðN�;1Þ � h

�
N�

N�

�
3
;

where �cðN�;1Þ corresponds to the thermodynamic limit
and h denotes a fitted coefficient (h & 0:1). N� ¼ 48
guarantees a reasonable aspect ratio over the whole
temperature range T=Tc � 12=N� 2 12=18; 12=4ð Þ and
permits to reach three-momenta below 1 GeV.

As a second step, we decided to study systematic effects
as there are finite-volume effects (cf. Sec. V), Gribov-copy
effects (cf. Sec. VI), and the scaling properties (cf. Sec. VII)
in order to extrapolate to the continuum limit a ! 0 for a

couple of momentum values. For the two latter studies, we
varied að�Þ while having kept constant the physical spatial
volume ð2:7 fmÞ3 as well as two representative temperature
values (T ’ 0:86Tc and T ’ 1:20Tc, respectively).
A compilation of the lattice sizes (N� � N3

�) and�-values
together with the number of independent lattice configura-
tions generated for this study can be found in Table I.

III. GLUON AND GHOST PROPAGATORS

For determining the gluon and ghost propagators, we
have to fix the gauge. Under local gauge transformations
fgxg, the link variables transform as

Ux��
g
Ug

x� ¼ gyxUx�gxþ�̂; gx 2 SUð3Þ: (1)

In order to satisfy the Landau gauge transversality condition

r�A� ¼ 0 (2)

with the lattice gauge potentials

A�ðxþ �̂=2Þ ¼ 1

2iag0
ðUx� �Uy

x�Þjtraceless (3)

it is sufficient to maximize the gauge functional

FU

�
g ¼ 1

3

X
x;�

ReTrgxUx�g
y
xþ�̂

�
(4)

with respect togx.What concerns theGribov nonuniqueness
problem for solutions of the gauge condition in Eq. (2), we
adopt the strategy of finding gauge copies being as close as

TABLE I. Temperature values, lattice size parameters, values
of the inverse bare coupling �, the lattice spacing a in units of
GeV�1 and fm, the number nconf of independent lattice field
configurations, and the number ncopy of gauge copies used

throughout this study.

T=Tc N� N� � aðGeV�1Þ aðfmÞ nconf ncopy

0.65 18 48 6.337 0.28 0.055 150 1

0.74 16 48 6.337 0.28 0.055 200 1

0.86 14 48 6.337 0.28 0.055 200 1

0.99 12 48 6.337 0.28 0.055 200 1

1.20 10 48 6.337 0.28 0.055 200 1

1.48 8 48 6.337 0.28 0.055 200 1

1.98 6 48 6.337 0.28 0.055 200 1

2.97 4 48 6.337 0.28 0.055 210 1

0.86 8 28 5.972 0.49 0.097 200 27

0.86 12 41 6.230 0.33 0.064 200 1

0.86 16 55 6.440 0.24 0.048 200 1

1.20 6 28 5.994 0.47 0.094 200 27

1.20 8 38 6.180 0.35 0.069 200 1

1.20 12 58 6.490 0.23 0.045 200 1

0.86 14 56 6.337 0.28 0.055 200 1

0.86 14 64 6.337 0.28 0.055 200 1

1.20 10 56 6.337 0.28 0.055 200 1

1.20 10 64 6.337 0.28 0.055 200 1
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possible to the global maximum ofFU gð Þ [36,37] as already
practiced in [15,16,38–41]. This prescription has been
shown to provide correct results for Landau gauge photon
and fermion propagators within compactUð1Þ lattice gauge
theory [42–45]. Very efficient for this aim is the simulated
annealing (SA) algorithm combined with subsequent over-
relaxation (OR) iterations [15,16,46–48]. The SA algorithm
generates gauge transformations fgxg randomly with a sta-
tistical weight� expðFU g=TsaÞð Þ. The ‘‘temperature’’Tsa is
a technical parameter, which ismonotonously lowered in the
course of 3500 SA simulation sweeps (actually, these are
heat-bath updates). Also, for better performance, a few
microcanonical steps are applied after each heat-bath step.
In fact, we start withTsa ¼ 0:45 and decrease this parameter
down to Tsa ¼ 0:01 in equal steps after each combined
sweep. Finally, in order to satisfy the gauge condition in
Eq. (2) with a local accuracy of

max
x

ReTr r�Ax�r�A
y
x� < "; " ¼ 10�13

� �
(5)

we employ the standard OR procedure. Except for the study
of the influence of Gribov copies (cf. Sec. VI), we carry out
only one such attempt per configuration to fix the gauge. As
in our previous studies, we call the corresponding (first-trial)
gauge copy ‘‘first copy’’ (fc).

The gluon propagator is defined in momentum space as

Dab
��ðqÞ ¼ h ~Aa

�ðkÞ ~Ab
�ð�kÞi; (6)

where h� � �i represents the average over configurations, and
~Aa
�ðkÞ denotes the Fourier transform of the gauge-fixed

gluon field (3), depending on the integer-valued lattice
momentum k� (� ¼ 1; . . . ; 4). The latter is related to the

physical momentum (for the Wilson plaquette action) as

q�ðk�Þ ¼ 2

a
sin

�
�k�

N�

�
; k� 2 ð�N�=2; N�=2; (7)

where ðNi; i ¼ 1; 2; 3;N4Þ � ðN�;N�Þ characterizes the
lattice size.

For nonzero temperature it is convenient to split the
propagator into two components: the transverse DT

(‘‘chromomagnetic,’’ i.e. transverse to the heat-bath rest
frame) and the longitudinal DL one (‘‘chromoelectric’’),
respectively,

Dab
��ðqÞ ¼ �abðPT

��DTðq24; ~q2Þ þ PL
��DLðq24; ~q2ÞÞ; (8)

where q4 plays the role of the Matsubara frequency, which
will be put to zero lateron. For the Landau gauge, the tensor
structures PT;L

�� represent projectors transverse and longi-

tudinal relative to the (� ¼ 4)-direction

PT
�� ¼ ð1� ��4Þð1� ��4Þ

�
��� �

q�q�

~q2

�
; (9)

PL
�� ¼

�
��� �

q�q�

~q2

�
� PT

��: (10)

For the propagator functions DT;L we find

DT ¼ 1

2Ng

�X3
i¼1

~Aa
i ðkÞ ~Aa

i ð�kÞ � q24
~q2

~Aa
4ðkÞ ~Aa

4ð�kÞ
�

(11)

and

DL ¼ 1

Ng

�
1þ q24

~q2

�
h ~Aa

4ðkÞ ~Aa
4ð�kÞi; (12)

where the number of generators Ng ¼ N2
color � 1 for

Ncolor ¼ 3. The zero-momentum propagator values can
be defined as

DTð0Þ ¼ 1

3Ng

X3
i¼1

h ~Aa
i ð0Þ ~Aa

i ð0Þi; (13)

DLð0Þ ¼ 1

Ng

h ~Aa
4ð0Þ ~Aa

4ð0Þi: (14)

Notice that—at least for large enough �—the Landau
gauge gluon propagator is expected to depend on the
Zð3Þ-sectors into which the Polyakov loop spatial averages
can fall [49]. Therefore, before carrying out the SA gauge
fixing procedure, we always apply a Zð3Þ-flip as described
in Sec. VI but with respect to the fourth direction. It
ensures the phases of the corresponding Polyakov loop
averages to fall into the interval ð��=3; �=3.
The Landau gauge ghost propagator GðqÞ and its dress-

ing function JðqÞ are defined as follows:

GabðqÞ ¼ a2
X
x;y

he�2�iðk=NÞ�ðx�yÞ½M�1�abxy i ¼ �abGðqÞ

� �abJðqÞ=q2; (15)

where q2 � 0 and ðk=NÞ � ðx� yÞ � P
�k�ðx�

yÞ�=N�.M denotes the lattice Faddeev-Popov operator cor-

responding to the gauge field definition (3) and the related
gauge functional (4), i.e.,

Mab
xy ¼ X

�

Aab
x;y�x;y � Bab

x;y�xþ�̂;y � Cab
x;��x��̂;y

� �
(16)

with

Aab
x;y ¼ ReTr

�
fTa; TbgðUx;� þUx��̂;�Þ;

Bab
x;y ¼ 2 �ReTr

�
TbTaUx;�;

Cab
x;y ¼ 2 �ReTr TaTbUx��̂;�;

� ���

where Ta (a ¼ 1; . . . ; Ng) are the Hermitian generators of

the suð3Þ Lie algebra satisfying Tr TaTb ¼ �ab=2
	 


. In order

to invert M, we use the conjugate gradient algorithm with

plane-wave sources ~c c with color and position components
c a

cðxÞ ¼ �a
c expð2�iðk=NÞ � xÞ. Actually, we apply a pre-

conditioned conjugate gradient algorithm to solve the equa-
tions Mab

xy�
bðyÞ ¼ c a

cðxÞ, where as for a preconditioning

matrix we use the inverse Laplacian ��1 with a color-
diagonal substructure [50,51].
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In order to study hypercubic lattice artifacts, we have
analyzed the influence of the choice of momenta on the
behavior of the gluon propagator. When comparing on-axis
with diagonal momenta (for � ¼ 6:337 and in the lower
momentum range), we found only small but nonetheless
systematic deviations due to the hypercubic lattice geometry.
To maximally reduce them the so-called cylinder cut [52]

X
�

k2� � 1

4

�X
�

k�

�
2 � c; (17)

with k4 ¼ 0 and c ¼ 3 has been applied to all our data.

IV. RESULTS: GLUON AND GHOST
PROPAGATORS VERSUS TEMPERATURE

In Fig. 1 we display the multiplicatively renormalized
propagators DLðqÞ and DTðqÞ as functions of the three-
momentum (q � j ~qj, q4 ¼ 0) for � ¼ 6:337; obtained
with N� ¼ 48 and different N�, i.e. for temperature values
varying from T ¼ 0:65Tc up to T ’ 3Tc. For details, we
refer to the upper section of Table I. The renormalization
condition is chosen such that DL;T take their tree-level

values at the subtraction point q ¼ �. We choose
� ¼ 5 GeV in order to be close to the perturbative
range and still reasonably away from our lattice cutoff

(qmax ¼ 2
ffiffiffi
3

p
=a ’ 12:4 GeV).

One can see from Fig. 1 that the temperature dependence
of both DL and DT becomes weaker with increasing mo-
mentum. This weakening proceeds faster for DT than for
DL. The ultraviolet regions of DT and DL turn out to be
‘‘phase-insensitive.’’ This observation was also reported in
[30]. More precisely, while the temperature changes from
its minimal value to our maximal one, the change of DT is
less than 5% for q > 2:2 GeV, while for DL this is guar-
anteed for q > 2:7 GeV. For T & Tc, DL shows a com-
paratively weak temperature dependence also at small
momenta. This changes drastically as soon as T * Tc. In
contrast to that DTðqÞ changes monotonously with T in the
infrared region. This can be seen in more detail from Fig. 2.
There we show the temperature dependence of DLðqÞ
(left panel) as well as ofDTðqÞ (right panel) for six selected
momenta in the range up to 1.6 GeV.
One can see that DL at fixed momentum shows strong

variations in the neighborhood of Tc. It is rising with T

FIG. 1. Temperature dependence of the longitudinal (l.h.s.) and the transverse (r.h.s.) gluon propagator for � ¼ 6:337 and a spatial
lattice size N� ¼ 48.

FIG. 2. The longitudinal propagator, DL, (l.h.s.) and the transverse one, DT , (r.h.s.) vs temperature for a few low momenta, the latter
represented as (k1, k2, k3, k4). � ¼ 6:337 and N� ¼ 48.
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below Tc and sharply drops around Tc. This behavior looks
most pronounced for zero momentum and gets progres-
sively weaker at higher momenta. For the lowest momenta,
we observe maxima at T ¼ 0:86Tc. It remains open
whether the maxima are shifted away from the transition
temperature with increasing volume.1

In any case, our data confirms that the infrared part of
DLðpÞ is strongly sensitive to the temperature phase tran-
sition [23,30]. It may serve to construct some kind of order
parameters characterizing the onset of the phase transition,
as we will propose below. In contrast to that, DT is ever
decreasing and varying smoothly across Tc, showing no
visible response to the phase transition at all momenta.

We fit the momentum dependence in the range
0:6:8:0 GeVð Þ with a Gribov-Stingl interpolation formula
[9,53] in [24,54] and derived lateron in the so-called
‘‘Refined Gribov-Zwanziger’’ approach [55,56]

DðqÞ ¼ cð1þ dq2nÞ
ðq2 þ r2Þ2 þ b2

: (18)

Expected logarithmic corrections needed for the ultraviolet
limit have been neglected here (for a thorough discussion
see [52]). We put throughout n ¼ 1. In a first attempt, we
have left b varying. We obtained values compatible with

b ¼ 0 except for DTðqÞ at the highest three temperature
values inspected. Therefore, in all other cases we have
repeated the fits with fixed b ¼ 0 and obtained
	2
df-values reasonably below 2.0. The fit parameters can

be found in Table II.2 Since we expect to see a plateau and
even a bend over for DT at momenta below our minimal
ones, the parameter b might become nonzero also at lower
temperatures. This would then correspond to a complex
effective mass parameter.
We have tried to form quantities constructed from the

gluon propagator, which can serve as indicators for the
deconfinement transition. First, we plot the ratio

	 ¼ DLð0; TÞ �DLðq; TÞ=DLð0; TÞð Þ (19)

as a function of T=Tc in the left panel of Fig. 3. We observe
that all the curves labeled by the momentum 4-tuples in the
legend show approximate plateaux below Tc. Then, pass-
ing the phase transition they suddenly fall off with slopes
becoming slightly smaller with increasing momentum, but
still with visible temperature sensitivity. This means that 	
can be used as an indicator for the deconfinement transition
and, moreover, the transition can be traced even at rather
high momentum. This was not so clear from the l.h.s. of
Fig. 2, where the behavior of DL at higher momenta looks
rather smooth.

TABLE II. Results from fits with Eq. (18) (n ¼ 1) for DL (l.h.s.) and DT (r.h.s.) corresponding to the Monte Carlo data shown in
Fig. 1 (� ¼ 6:337, N� ¼ 48). The fit range is 0:6:8:0 GeVð Þ. The values in parentheses provide the fit errors. The boldface printed
b-values indicate that they are fixed to zero.

Parameters DL fits

T=Tc N� r2ðGeV2Þ bðGeV2Þ dðGeV�2Þ cðGeV2Þ 	2
df

0.65 18 0.372(29) 0:0 0.192(8) 4.29(17) 1.49

0.74 16 0.296(22) 0:0 0.206(7) 4.11(13) 1.40

0.86 14 0.257(22) 0:0 0.221(8) 3.70(13) 1.57

0.99 12 0.359(30) 0:0 0.209(10) 3.89(16) 1.83

1.20 10 1.029(41) 0:0 0.155(6) 5.43(21) 1.27

1.48 8 1.547(47) 0:0 0.118(4) 7.12(24) 1.06

1.98 6 2.455(75) 0:0 0.086(4) 9.55(37) 1.35

2.97 4 5.327(159) 0:0 0.045(2) 17.15(73) 0.51

DT fits

r2ðGeV2Þ bðGeV2Þ dðGeV�2Þ cðGeV2Þ 	2
df

0.751(24) 0:0 0.153(4) 5.40(14) 1.17

0.756(20) 0:0 0.161(3) 5.31(11) 0.99

0.847(22) 0:0 0.152(4) 5.50(12) 1.09

0.869(26) 0:0 0.157(4) 5.45(14) 1.44

0.951(25) 0:0 0.147(4) 5.56(13) 1.17

0.886(138) 0.810(167) 0.146(11) 5.70(42) 1.46

0.856(109) 1.398(62) 0.133(8) 6.15(34) 0.93

0.927(126) 2.559(33) 0.100(6) 7.58(41) 1.01

1For SUð2Þ gauge theory the maximum of DLð0Þ was recently
reported [24] to move away from the transition with decreasing
lattice spacing.

2Note that for b ¼ 0 Eq. (20) is equivalent to the interpolation
formula DðqÞ ¼ 


ðq2þ�2Þ þ �
ðq2þ�2Þ2 .
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From the behavior of 	, at least in the interval 0:65Tc &
T & Tc and at low momentum, one can conjecture the
factorization

DLðq;TÞ ’ AðqÞ � BðTÞ: (20)

Then, as long as the temperature, T, varies in the given
interval, the change of DL can be described by a momen-
tum independent rescaling. This is a rather nontrivial
property from which further conclusions can be drawn.
For example, in the interpolation formula (18), we
should find the mass parameter r2 and the parameter d to
be (approximately) temperature independent as long as
T < Tc.

From the left panel of Table II one can see that this is
true for the parameter d, which varies within error bars.
The variation of parameter r2 is up to 30%. This compara-
tively large variation might be explained by the fact that
the propagators were fitted over a wide range of momenta,
specifically from 0.6 to 8 GeV, while the factorization
we expect to hold only at low momenta. Indeed, a fit
in the range up to 2.5 GeV, which includes also the
zero momentum value has shown r2 to become approxi-
mately constant. It remains to be seen whether this
behavior in the infrared region survives the continuum
and the thermodynamic limits which goes beyond the
scope of this paper.

Let us consider another ratio,

�¼ DLð0;TÞ�DLðq;TÞ
DLð0;TminÞ�DLðq;TminÞ ; Tmin¼0:65Tc; (21)

which according to the factorization (20) should be ap-
proximately momentum independent. Indeed, this can be
seen from the right panel of Fig. 3. Moreover, �ðq; TÞ
should resemble qualitatively the temperature dependence
of DL at q ¼ 0. Close to Tc, however, � falls off reaching
very small values at higher temperatures (around 2Tc).
Therefore, we conclude that both quantities 	 (ceasing to

be constant) and� (with its strong fall off) signal the finite-
temperature transition. It remains to be seen whether they
also map out the (pseudo)-critical behavior in unquenched
QCD.
Let us note that our volumes are not large enough to

study the infrared asymptotic behavior. Moreover, at the
lowest momenta we expect systematic deviations due to
finite-size effects, lattice artifacts, and Gribov-copy ef-
fects. This also concerns the parameters 	 and � because
of their dependence on the value DLðq ¼ 0Þ. The system-
atic effects will be discussed to some extent in Secs. V, VI,
and VII, in order to identify the momentum range where
they play only a negligible role.
In summary, we agree with findings in other recent

investigations [21–24,30], and we observe the strongest
response to the phase transition to occur in the gluonic
chromoelectric sector (the longitudinal propagator) rather
than in the gluonic chromomagnetic one (the transverse
propagator).
We have also computed the ghost propagator accord-

ing to Eq. (15), restricting it for simplicity to the diagonal
three-momenta and vanishing Matsubara frequency,
k� ¼ ðk; k; k; 0Þ with k ¼ 1; . . . ; 7. The data are again

normalized at � ¼ 5 GeV such that the ghost dressing
function equals unity at q ¼ �. The result for the latter
function is displayed in Fig. 4. In comparison with the
gluon propagator, we see the ghost propagator to change
relatively weakly with the temperature.3 This is in agree-
ment with the observation in [21]. An increase becomes
visible at temperature values T > 1:4Tc for the lowest
momenta studied [see Fig. 4(b)]. The relative insensitiv-
ity with respect to the temperature is the reason why we
will not further consider the ghost propagator in what
follows.

FIG. 3. Temperature behavior of the ratios 	 (Eq. (19), left panel) and � (Eq. (21), right panel) at low momenta, as given in the
legend, for a spatial lattice size N� ¼ 48 and � ¼ 6:337.

3Note the use of a linear scale at the vertical axis in Fig. 4(a) in
contrast to the logarithmic one in Fig. 1.
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V. FINITE-VOLUME EFFECTS

In order to estimate finite-volume effects we compare the
data shown before with data obtained on even larger spatial
volumes while keeping fixed the coupling (at � ¼ 6:337)
and two temperature values, T ¼ 0:86Tc (confinement) and

T¼1:2Tc (deconfinement), respectively. The linear spatial

extent varies from 48a ¼ 2:64 fm to 64a ¼ 3:52 fm

(see also the middle section in Table I).
In Figs. 5 and 6 we show the corresponding plots for

DL and DT , respectively. In all four cases we observe

FIG. 4. The renormalized ghost dressing function Jðq; TÞ for various temperature values (l.h.s.) and its dependence on the
temperature shown for the fixed diagonal 3-momenta (ðk; k; k; 0Þ, k ¼ 1; 2; 3 ), and normalized with Jðq; TminÞ for Tmin ¼ 0:65Tc

(r.h.s.). The lowest panel shows the lowest momentum. All data are obtained at � ¼ 6:337 on a lattice with spatial size N� ¼ 48.

FIG. 5. Finite-size effect study for DL at � ¼ 6:337. l.h.s.: T ¼ 0:86Tc, r.h.s.: T ¼ 1:20Tc.

FIG. 6. Same as in Fig. 5 but for DT .
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the effects to be small for momenta above 0:6 GeV.4 For
lower momenta, especially at zero momentum, systematic
deviations become more visible. With increasing volume
the infrared values of DL seem to rise, whereas for DT the
opposite is the case. This behavior has already been re-
ported for pure gauge theories in [29,57] for SUð2Þ and in
[30] for SUð3Þ, respectively.

VI. GRIBOV COPY EFFECTS

In order to study Gribov-copy effects, we compare first
copies, i.e. randomly occurring copies, with ‘‘best’’ copies
(bc). The latter were produced as follows.

We searched for copies within all 33 ¼ 27 Zð3Þ sectors
characterized by the phase of the spatial Polyakov loops,
i.e. Polyakov loops in one of the three spatial directions.
For this purpose the Zð3Þ flipping operations [30,40] were
carried out on all link variables Ux;i (i ¼ 1, 2, 3) attached
and orthogonal to a three-dimensional hyperplane with
fixed xi by multiplying them with expf�2�i=3g. Such
global flips are equivalent to nonperiodic gauge transfor-
mations and do not change the pure gauge action. For the
fourth direction, we stick to the sector with j argPj<�=3,
which provides maximal values of the functional (4) at the
�-values considered in Sec. III [30]. Thus, the flip opera-
tions combine for each lattice field configuration (the 27
distinct gauge orbits of strictly periodic gauge transforma-
tions) into one larger gauge orbit.

The number of copies actually considered in each of the
27 sectors depends on the rate of convergence (with in-
creasing number of investigated copies) of the propagator
values assigned to the best copy (bc), in particular, at zero
momentum. From our experience with SUð3Þ theory, we
expect that the effect of considering gauge copies in differ-
ent flip sectors is more important than probing additional

gauge copies in each sector. For this reason and to save
CPU time, we have considered one gauge copy for every
Zð3Þ-sector, therefore, in total ncopy ¼ 27 gauge copies for

every configuration.
To each copy the simulated annealing algorithm with

consecutive over-relaxation was applied in order to fix the
gauge. We take the copy with maximal value of the func-
tional (4) as our best realization of the global maximum
and denote it as best copy.
The parameters of the SA algorithm in the study of

Gribov copies were slightly different from those described
above in Sec. III: 2000 SA combined simulation sweeps
with a ratio 11:1 between microcanonical and heat bath
sweeps were applied starting with Tsa ¼ 0:5 and ending at
Tsa ¼ 0:0033.
Since this procedure is quite CPU-time consuming we

restricted this investigation to coarser lattices 6� 283 and
8� 283 with larger lattice spacing, such that both the
temperature values T ¼ 0:86Tc and T ¼ 1:20Tc, respec-
tively, as well as the physical three-dimensional volume
ð2:64 fmÞ3 were approximately reproduced.
In Figs. 7 and 8 we compare bc with fc results for the

gluon propagators DL and DT , respectively. As one can
see,DL is almost insensitive to the choice of Gribov copies
(at least for the comparatively small values of N� consid-
ered), as has been already reported in [29] for the SUð2Þ
case and in [30] for the SUð3Þ case. On the contrary, the
transverse propagator is strongly affected in the infrared
region. This observation is independent of the temperature.
Moreover, we see that the transverse gluon propagator
values in the infrared become lowered for bc compared
with fc results. These observations resemble those already
made in [29,30].
The main conclusion of this section is that Gribov-copy

effects may be neglected for all nonzero momenta in the
case of the longitudial propagator (at least, for compara-
tively small values of N�), and for momenta above
800 MeV in the case of the transverse propagator. The
momentum range where the last statement is true might
depend on the temperature.

FIG. 7. Comparison of the bcwith the fc Gribov-copy result for the longitudinal propagatorDL (unrenormalized) (l.h.s.: T ¼ 0:86Tc,
r.h.s.: T ¼ 1:20Tc).

4Below Tc the transverse propagator changes by less than
12%, the longitudinal one by less than 5%. Above Tc the
transverse propagator varies by less than 8% and the longitudinal
one by less than 11%.
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VII. SCALING AND CONTINUUM LIMIT

In order to check for good scaling properties, we have
used the same reference values for the temperature below
and above Tc as discussed before (i.e., 0:86Tc and 1:20Tc).
We kept also the spatial volume fixed at ð2:7 fmÞ3. We
compare the renormalized propagators at four different
values for the lattice spacing að�Þ (see Table I). Our results
are displayed for the momentum range up to 1.5 GeV in

Fig. 9 for DL and in Fig. 10 for DT , respectively. Gauge
fixing has been carried out as originally described in
Sec. III.
We provide the renormalization factors for

DL;Tðq;�Þ � ZL;Tða;�ÞDbare
L;T ðq; aÞ (22)

in the left panel of Table III. As expected, the Z-factors of
DL and DT approximately agree.

FIG. 9. The longitudinal propagator DL renormalized at � ¼ 5 GeV and obtained for fixed physical volume and temperature but
varying a ¼ að�Þ (l.h.s.: T ¼ 0:86Tc, r.h.s.: T ¼ 1:20Tc).

FIG. 8. Same as in Fig. 7 but for the transverse propagator DT (l.h.s.: T ¼ 0:86Tc, r.h.s.: T ¼ 1:20Tc).

FIG. 10. Same as in Fig. 9 but for the transverse propagator DT (l.h.s.: T ¼ 0:86Tc, r.h.s.: T ¼ 1:20Tc).
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From Figs. 9 and 10 we see that the scaling violations
happen to be reasonably small for momenta above 0.8 GeV.
This shows that our choice of a ¼ 0:055 fm for � ¼ 6:337
was already close to the continuum limit.

In order to study the a-dependence at five particular
physical momenta p, we need interpolations of the mo-
mentum dependence in between the data points. For the fit
within the interval 0:6 GeV � q � 3:0 GeV, we have used
again Eq. (18) with parameter b fixed to zero. The values of
the fit parameters are displayed in the right-hand panels of
Table III. In all cases, we find 	2-values per degree of
freedom around or below unity.

The propagators, now interpolated to the set of selected
momentum values, are shown in Fig. 11 for DL and in

Fig. 12 for DT , respectively, as functions of the lattice
spacing a. We show them together with the respective fit
curves

Dða;pÞ ¼ D0 þ B � a2; (23)

assuming onlyOða2Þ lattice artifacts. The corresponding fit
results are collected in Table IV. The respective fit parame-
ters D0 represent the continuum limit values of the propa-
gators at the preselected momenta.
Our lattice propagator data obtained for � ¼ 6:337, as

discussed in Sec. IV, can now be compared with the values
extrapolated to the continuum limit. This is shown in
Fig. 13. In more detail, when we compare the continuum
extrapolated values at some lower momentum—say at

TABLE III. Left panel: renormalization factors ZL;T of the renormalized propagators
DT;Lðq;�Þ according to Eq. (22). The renormalization point is � ¼ 5 GeV. Right panels: fit
parameters and 	2

df for fits of DL (l.h.s.) and DT (r.h.s.) using the generic fit function Dðq2Þ
according to Eq. (18), but with b ¼ 0. The fit range is restricted to 0:6:3:0 GeVð Þ. The fit errors
are indicated in parentheses.

Parameters Z-factors

T=Tc � N� N� ZT ZL

0.86 5.972 28 8 1.43 1.43

0.86 6.230 42 12 1.45 1.47

0.86 6.337 48 14 1.48 1.53

0.86 6.440 56 16 1.64 1.66

1.20 5.994 28 6 1.46 1.46

1.20 6.180 38 8 1.52 1.52

1.20 6.337 48 10 1.62 1.63

1.20 6.490 58 12 1.62 1.65

DL fits

r2ðGeV2Þ dðGeV�2Þ cðGeV2Þ 	2
df

0.317(20) 0.138(24) 4.67(26) 0.30

0.254(9) 0.224(7) 3.90(8) 0.44

0.262(12) 0.224(11) 3.80(12) 0.42

0.256(7) 0.220(6) 3.86(7) 0.24

0.995(37) 0.153(10) 5.46(24) 0.80

0.985(20) 0.163(6) 5.34(13) 0.28

0.960(19) 0.180(7) 4.96(13) 0.22

1.018(18) 0.162(5) 5.27(11) 0.06

DT fits

r2ðGeV2Þ dðGeV�2Þ cðGeV2Þ 	2
df

0.810(23) 0.148(7) 5.49(17) 1.19

0.835(16) 0.151(5) 5.69(12) 0.52

0.867(18) 0.142(6) 5.62(14) 0.14

0.880(15) 0.143(4) 5.65(11) 0.36

0.894(26) 0.144(7) 5.55(18) 1.10

0.924(22) 0.142(6) 5.71(16) 0.57

0.982(27) 0.133(8) 5.87(21) 0.59

0.963(19) 0.140(5) 5.77(13) 0.45
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q ¼ 0:70 GeV—with those obtained from að�¼6:337Þ¼
0:055fm and interpolated to the same momentum, we find
deviations being smaller than 4%. Thus, we are really
justified to say that the results obtained for � ¼ 6:337 in
the given momentum range are already very close to the

continuum limit. The continuum limit extrapolated propa-
gators can be easily interpolated with formula Eq. (18).
The results are drawn in Fig. 14.
We conclude that for the higher �-values and the mo-

mentum range considered in this paper we are close to the

FIG. 11. DL vs lattice spacing a for a set of different preselected momenta p (l.h.s. T ¼ 0:86Tc; r.h.s. T ¼ 1:20Tc).

FIG. 12. Same as in Fig. 11 but for DT (l.h.s. T ¼ 0:86Tc; r.h.s. T ¼ 1:20Tc).

TABLE IV. Results of the fits for DL (l.h.s.) and DT (r.h.s.) as a function of the lattice spacing
a using the fit functionDða;pÞ according to Eq. (23). The errors of the fit parameters are given in
parentheses. 	2

df in all cases is close or well-below unity. See also Figs. 11 and 12.

Parameters DL fits DT fits

T=Tc pðGeVÞ B D0ðGeV�2Þ B D0ðGeV�2Þ
0.86 0.70 �1:3ð28:1Þ 7.68(16) 32.3(20.0) 3.20(11)

0.86 0.85 13.5(14.5) 4.63(8) 19.5(14.0) 2.42(8)

0.86 1.00 12.3(7.9) 2.95(4) 11.7(9.8) 1.83(5)

0.86 1.20 7.0(4.1) 1.75(2) 5.9(6.4) 1.27(4)

0.86 1.40 3.0(2.6) 1.12(1) 3.2(4.4) 0.90(2)

1.20 0.70 23.1(9.3) 2.48(5) 30.7(11.0) 2.84(6)

1.20 0.85 15.8(6.5) 1.93(4) 18.5(7.4) 2.19(4)

1.20 1.00 11.8(4.7) 1.49(2) 10.8(4.8) 1.68(2)

1.20 1.20 7.4(3.3) 1.07(2) 5.3(3.0) 1.19(2)

1.20 1.40 4.8(2.2) 0.77(1) 2.4(1.8) 0.86(1)
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continuum limit. Moreover, systematic effects (as there are
finite-volume and Gribov-copy effects) seem to be negli-
gible for momenta above 0.8 GeV.

VIII. CONCLUSIONS

We have presented lattice results for the Landau gauge
gluon and ghost propagators computed in pure gauge
SUð3Þ lattice theory at nonzero temperatures.

Overall, our results agree with those published in [23]
and there are hardly any deviations which are not due
to the lattice discretization or the finite volume.
However, our aim here was to go a step further and to
provide results in the continuum limit for temperatures
below and above the deconfinement phase transition,
and this with negligible systematic finite volume and
Gribov-copy effects. For this to become feasible, we had
to restrict the analysis to a well-defined momentum range
around 1 GeV.

The systematic effects were studied at two temperatures,
T ¼ 0:86Tc and T ¼ 1:20Tc, such that we cannot really tell
what happens very close to Tc. Since for our reference value
� ¼ 6:337 the critical temperature Tc is reached with

N� ¼ 12; there is hope that in this case we keep close to
the continuum limit and the other systematic effects are
under control.
Our results and their parametrization can be further used

to compare with the outcome of Dyson-Schwinger or func-

tional renormalization group equations for the gluon propa-

gators or employed as reliable input in Dyson-Schwinger

studies of the quark propagator. It is well-known that the

nonperturbative continuum approaches rely on a truncated

tower of equations for the propagators and vertex functions.

The way it is truncated has a strong influence on the

behavior, especially at intermediate momenta. Lattice re-

sults from first principles, as those presented here, can help

to tune the truncation correspondingly.
Concentrating on this aim, we have been forced to

choose the lattice spacing a and the linear spatial lattice
extent N� such that we were prevented from going far
towards the infrared limit. Therefore, we were not able to
clarify the question of what the correct behavior is in the
far infrared region. Concerning this region, we know that
the Gribov problem is serious and still not completely
understood. This is also the reason why we did not attempt,

FIG. 13. Comparison of the renormalized propagators DLðqÞ (l.h.s.) and DTðqÞ (r.h.s.) obtained from the Monte Carlo simulation at
� ¼ 6:337 with some continuum limit extrapolated values.

FIG. 14. Continuum extrapolated values ofDLðqÞ (l.h.s.) andDTðqÞ (r.h.s.) together with their respective interpolation curves for two
temperature values.
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in this paper, to give estimates for the color-electric and
magnetic-screening masses.

Our results confirm that, contrary to the transverse
gluon propagator DT and to the ghost propagator G, the
longitudinal gluon propagator DL is sensitive to the
deconfinement transition. However, despite the fact that
we are faced with a first-order phase transition, the
response to it occurs relatively smooth. We were able
to propose two parameters built from DL, which can be
employed as indicators (order parameters) for the tran-
sition itself. One might hope that they will help to shed
additional light on the transition region also in full QCD.
There, at least for Nf ¼ 2 quark flavors within the range

of intermediate pion masses, a rather smooth crossover is
expected (see e.g. [2] and references therein, as well as
[58,59]). We shall come back to this question in the near
future.
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