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We extend the Collins-Soper-Sterman (CSS) formalism to apply it to the spin dependence governed by

the Sivers function. We use it to give a correct numerical QCD evolution of existing fixed-scale fits of the

Sivers function. With the aid of approximations useful for the nonperturbative region, we present the

results as parametrizations of a Gaussian form in transverse-momentum space, rather than in the Fourier

conjugate transverse coordinate space normally used in the CSS formalism. They are specifically valid at

small transverse momentum. Since evolution has been applied, our results can be used to make predictions

for Drell-Yan and semi-inclusive deep inelastic scattering at energies different from those where the

original fits were made. Our evolved functions are of a form that they can be used in the same parton-

model factorization formulas as used in the original fits, but now with a predicted scale dependence in the

fit parameters. We also present a method by which our evolved functions can be corrected to allow for

twist-3 contributions at large parton transverse momentum.
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I. INTRODUCTION

High energy collisions with transversely polarized had-
rons are ideal processes for extracting information about
the structure of hadrons. The nonperturbative functions
that enter into the corresponding factorization formulas
are sensitive to novel aspects of QCD dynamics such as
chiral symmetry breaking and the role of orbital angular
momentum. (See e.g. [1] for some interesting recent dis-
cussions.) The Sivers function is an example which has
received considerable attention in recent years, and will be
the focus of this article, although many of the results and
techniques are extendable to other interesting transverse-
momentum dependent (TMD) functions. In loose terms,
the Sivers function describes the transverse-momentum
distribution of (unpolarized) partons inside a transversely
polarized hadron (usually a proton). In semi-inclusive
cross sections with a single transversely polarized target
hadron, it leads to a characteristic sinð���hÞ azimuthal
modulation (� and �h being the azimuthal angles of the
transverse spin and the produced hadron, respectively). It is
one of a collection of TMD parton distribution functions
(PDFs) and fragmentation functions (FFs) that are actively
being studied for the insight they can provide about hadron
structure and the unique opportunities they provide for
comparing theoretical descriptions with experimental
results [2–6].

The Sivers effect was originally proposed more than two

decades ago in Ref. [7] as a mechanism for generating
transverse single spin asymmetries (SSAs) in hadron-
hadron collisions. Shortly afterward, it was argued in
Ref. [8] on the basis of time-reversal (actually TP) invari-
ance that the Sivers function vanishes. This result, if true,
implies that the corresponding SSA in semi-inclusive deep
inelastic scattering (SIDIS) is power suppressed (i.e., it is
of ‘‘higher twist’’), leaving only the spin-dependent effects

due to the Collins function in fragmentation. Thus, a con-
tradiction arose when spectator model calculations [9]
gave an explicit nonvanishing leading-twist SSA in
SIDIS with the azimuthal dependence associated with the

Sivers function. The situation was clarified in Ref. [10],
where it was shown that the proof of vanishing of the Sivers
function was incorrect in QCD, because it ignored the
Wilson lines needed in the definitions of parton densities.

Instead, the true consequence of TP invariance of QCD is
that the Sivers function reverses sign between SIDIS and
Drell-Yan (DY) processes. This is because future-pointing
Wilson lines are needed in TMD functions like the Sivers

function when used for SIDIS, but past-pointing Wilson
lines are needed for the Drell-Yan process. At the level of
the actual cross section, the sign reversal for the Drell-Yan
process was verified in model calculations in Ref. [11].
Certain other polarization or azimuthally dependent

functions, such as the Boer-Mulders and the pretzelosity
distributions [12,13], also share this ‘‘T-odd’’ property of
reversal of sign between SIDIS and Drell-Yan. Over the
past decade, there has developed much work in the extrac-
tion, study, and formal theoretical description of these
functions.
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However, phenomenological fits of the Sivers function
(and of related functions) have so far [14,15] used only the
simplest parton-model factorization formulas where the
TMD parton densities and fragmentation functions do not
evolve with the scale of the process, or use incorrect
evolution formalisms. This is inadequate when they are
to be applied to experiments at widely different energies.
There is a good QCD formalism for applying TMD func-
tions in a factorization framework, due to Collins, Soper,
and Sterman (CSS) [16,17]. The CSS formalism gives a
correct treatment of the region of low transverse momen-
tum, which is where the Sivers function analysis is used.
However, it has not been fully systematized for the case of
the Sivers function and other azimuthally dependent func-
tions, except in the work of Boer [18,19] and Idilbi et al.
[20], on which we comment below.

In this paper, we give a complete extension of the CSS
method to processes that need the Sivers function, using the
methods recently given in Ref. [21]. It is straightforward to
extend our results to the other azimuthally dependent PDFs
and FFs (e.g., the Collins function and the Boer-Mulders
function).We apply the formalism to give numerical results
for the Sivers function evolved from existing fits. The only
extra nonperturbative information needed for the evolution
is universal and is obtained from existing fits to the
unpolarized Drell-Yan process. This extends the results
given by two of us in Ref. [22] for the unpolarized case.
Reference [15] attempts to include some effects of evolu-
tion by simply including the evolution from collinear
factorization, but this is incorrect for TMD factorization.
It is also stated (Ref. [15], for example) that the true
scale evolution of the Sivers function is unknown. One
purpose of this article is to demonstrate that this is no longer
true.

With the aid of an approximation useful for the non-
perturbative region, we present the results as Gaussian
transverse-momentum distributions with scale-dependent
parameters. They are therefore as easy to use in simple
parton-model-style calculations as the original fixed-scale
fits [14,15]. As the scale increases, the distributions
broaden substantially in transverse momentum, and get
diluted in size. It will be necessary to include perturbative
twist-3 corrections to get more accurate values at the larger
values of transverse momentum, and we present a scheme
for how this should be done.

Boer [18,19] has applied the CSS method to processes
involving the Collins function. Idilbi et al. [20] have ap-
plied the CSS method to their definitions of various TMD
distributions [23,24] including the Sivers function. Our
treatment is substantially improved, to include a correct
treatment of the nonperturbative region in CSS evolution
applied to T-odd functions, to use a more modern version
of the CSS formalism, to apply it to the Sivers function,
and to obtain convenient numerical results for the Sivers
function.

Although it has recently become common for the word
‘‘resummation’’ to be used to indicate any CSS-like treat-
ment, in our work we will maintain a firm distinction
between resummation methodology and TMD factoriza-
tion. The term resummation is often used to indicate that
one starts with conventional collinear factorization and
resums logarithms of qT=Q, which can in fact be done
with the CSS methodology. The problem with this ap-
proach is that it is only valid when the underlying collinear
factorization formula is valid, i.e., for the region where the
transverse momentum qT is both much less than the hard
scale and much greater than hadronic binding energies
��QCD. (See, in particular, the recent work of Ref. [25].)

But to extend the calculations to transverse momenta com-
parable to�QCD and to zero transverse momentum requires

a complete TMD-factorization formalism, which we use
here. This is particularly important because many SIDIS
experiments such as HERMES and JLab are performed at
kinematical scales where transverse momenta of order
�QCD are certainly important, and Q is not so large.

A number of difficulties are caused by the use of a pure
resummation formalism rather than TMD factorization as
the basis of calculations. For the present paper, one of the
most significant is that a leading-power resummation for-
malism does not give the effects associated with the Sivers
function (and also those associated with the Boer-Mulders
[26] function). But, provided that spin effects are treated
correctly, the presence of these functions is automatic in
TMD factorization, at leading power.

II. SETUP AND DEFINITIONS

In this section we give the factorization formula for
SIDIS: eþ PðSÞ ! eþ hþ X, and present the definitions
of the TMD functions. We let P and S be the momentum
and spin vector of the hadron target, and we let h label the
detected hadron, of momentum ph. With a single ex-
changed photon of momentum q, independent kinematic

variables are Q ¼ ffiffiffiffiffiffiffiffiffiffi�q2
p

, x ¼ Q2=2p � q, z¼P �ph=P �q,
and the virtual photon’s transverse momentum qT (in a
hadron frame where the measured hadrons have zero trans-
verse momentum).
The TMD-factorization formula in the form derived by

Collins [21] is

W�� ¼ X
f

jH fðQ;�Þ2j��

�
Z

d2k1Td
2k2TFf=P" ðx;k1T; S;�; �FÞ

�Dh=fðz; zk2T;�; �DÞ�ð2Þðk1T þ qT � k2TÞ
þ YðQ;qTÞ þOðð�=QÞaÞ: (1)

Here Ff=P" ðx;k1T; SÞ is the TMD PDF for an unpolarized

quark of flavor f in a proton of polarization S, and
Dh=fðz; zk2TÞ is the unpolarized fragmentation function.
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These factors contain nonkinematic parameters,�, �F, and
�D, whose definitions are given below. The hard-scattering
factor jH 2j�� is computed, with appropriate subtractions,
from massless parton scattering in a photon frame where
the photon and partons have zero transverse momentum—
see [21], page 527, for its definition. The first line of the
factorization formula is valid at low transverse momentum,
and the Y term provides a correction for large transverse
momentum in a form like that for ordinary collinear facto-
rization. Although we will focus on SIDIS for this paper,
the same general treatment applies also to DY scattering,
up to the change in direction of the Wilson line in the
definition of the TMD PDF. Note that the TMD-
factorization piece, the first term in Eq. (1), is formulated
specifically to deal with the small kT behavior (kT ! 0),
while allowing for systematic corrections to the behavior
as kT grows larger than �QCD.

The above formula is exactly like the parton-model
formula for the same cross section except for the scale
dependence of the PDF and fragmentation function and
except for higher-order corrections in the hard scattering
and Y term. It differs from the older CSS formula by no
longer needing an explicit soft factor. The factorization
formula (1) is written for the case that the partons at the
hard scattering are unpolarized. Parton polarization effects
can be allowed for simply by inserting spin matrices for the
incoming and outgoing partons of the hard scattering. This
gives other terms, e.g., those with the Collins function in
fragmentation, with their characteristic angular distribu-
tions in the cross section. It was recently suggested in
Ref. [27] that it would be useful to analyze data for cross
sections in transverse coordinate space bT by taking
various weighted integrals with Bessel functions. In that
case, the bT version of Eq. (1) is needed.

The parameter � is a conventional renormalization

scale, which we will choose to be in the MS scheme. It
should be chosen to be of order Q so that the hard scatter-
ing has no large logarithms. The parameters �F and �D are
related to the need to regulate rapidity divergences in the
definitions of the TMDs. They are defined with the aid of
an auxiliary rapidity parameter ys, which has the function
of separating forward and backward rapidity gluons. We
use a hadron frame (in which the hadrons have zero trans-
verse momentum), oriented so that eyP � eyph , and we let
MP andMh be the masses of these hadrons. Then �F and �D
are defined by

�F ¼ M2
Px

2e2ðyP�ysÞ (2)

and

�D ¼ ðM2
h=z

2Þe2ðys�yhÞ: (3)

They obey
ffiffiffiffiffiffiffiffiffiffiffi
�F�D

p ¼ Q2 up to power-suppressed correc-
tions, and have been normalized to correspond to CSS’s
definitions.

The definitions of gauge-invariant TMD functions are
equipped with Wilson lines. AWilson line (or gauge link)
from a point x to1 along the direction of a four-vector n is
defined as

Wð1; x;nÞ ¼ P exp

�
�ig0

Z 1

0
dsn � Aa

0ðxþ snÞta
�
: (4)

Here, bare field operators and bare couplings are used and
P is a path-ordering operation. The generator for the gauge
group in the fundamental representation, with color index
a, is denoted by ta.
To define the parton densities, we use two lightlike

directions that characterize the extreme forward and back-
ward directions:

uA ¼ ð1; 0; 0TÞ; uB ¼ ð0; 1; 0TÞ: (5)

These correspond to the directions of P and ph. Our
coordinates for a 4-vector v are defined by

v ¼ ðvþ; v�; vTÞ; (6)

where

v� ¼ ðv0 � vzÞ= ffiffiffi
2

p
: (7)

Now the most obvious definitions of PDFs use light-like
Wilson lines, which give rise to rapidity divergences [28].
Regulating the divergences can be done by using non-light-
like Wilson lines. So we define vectors nAðyAÞ and nBðyBÞ
with finite rapidities yA and yB:

nA ¼ ð1;�e�2yA ; 0TÞ; nB ¼ ð�e2yB ; 1; 0TÞ: (8)

The actual TMD PDF in Eq. (1) is defined as a limit of an
unsubtracted TMD multiplied by certain unsubtracted soft
functions. These are first defined in transverse coordinate
space and then the final result will be Fourier transformed
to transverse-momentum space. The unsubtracted TMD
PDF is

~Funsub
f=P" ðx;bT; S;�; yP � yBÞ

¼ TrCTrD
Z dw�

2�
e�ixPþw�hP; Sj �c fðw=2Þ

�Wðw=2;1; nBðyBÞÞy

� �þ

2
Wð�w=2;1; nBðyBÞÞc fð�w=2ÞjP; Sic; (9)

where w� ¼ ð0þ; w�;bTÞ, and we notate the function with
a tilde to indicate the use of transverse coordinate space.
The subscript c indicates that only connected diagrams are
included, and TrC and TrD represent color and Dirac traces,
respectively. The unsubtracted soft function is
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~Sð0ÞðbT; yA; yBÞ ¼ 1

Nc

h0jWðbT=2;1; nBÞyca
�WðbT=2;1; nAÞadWð�bT=2;1; nBÞbc
�Wð�bT=2;1;nAÞydbj0i: (10)

In both of these functions, there should be inserted trans-
verse gauge links at infinity. However, their effects cancel
in the subtracted TMD PDF, when Feynman gauge is used,
so we have not indicated the extra gauge links explicitly.

The full definition of the TMD PDF from [21] is

~Ff=P" ðx;bT; S;�; �FÞ
¼ ~Funsub

f=P" ðx;bT; S;�; yP � ð�1ÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Sð0ÞðbT;þ1; ysÞ
~Sð0ÞðbT;þ1;�1Þ~Sð0ÞðbT; ys;�1Þ

vuut ZFZ2: (11)

This involves limits: infinite rapidity on the Wilson lines
indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization).
The factors ZFZ2 at the end of Eq. (11) are the field
strength and TMD renormalization factors, respectively.
Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter ys.

An exactly analogous definition applies to the fragmen-
tation function (see Ref. [21] for the explicit definition). In
our notation, capital letters will denote unintegrated quan-
tities and lower case letters will denote quantities inte-
grated over transverse momentum. Otherwise, we will
stick as closely as possible to the Trento conventions [29].

The momentum-space TMD PDF is

Ff=P" ðx;kT; S;�; �FÞ
¼ 1

ð2�Þ2
Z

d2bTe
ikT �bT ~Ff=P" ðx;bT; S;�; �FÞ: (12)

This has dependence on the azimuthal angle between kT

and the transverse spin vector ST of the target hadron. (We
normalize ST so that its maximum size is unity.) The TMD
PDF is decomposed as usual into the unpolarized TMD
PDF and a spin-dependent term:

Ff=P" ðx;kT;S;�;�FÞ

¼Ff=Pðx;kT ;�;�FÞ�F?f
1T ðx;kT ;�;�FÞ

�ijk
i
TS

j

Mp

; (13)

with F?f
1T ðx; kT ;�; �FÞ being the Sivers function.

III. EVOLUTION OF THE SIVERS FUNCTION

In this section we generalize CSS evolution from the
unpolarized TMDs to the Sivers function. Similar methods
apply to the other TMDs with azimuthal dependence.

The general CSS formalism works equally well for these
functions [21]. But it involves Fourier transformations in

two transverse dimensions, and for practical use it is
convenient to perform the azimuthal integrals analytically
and to write the transforms in terms of integrals over the
sizes of the transverse variables. The treatment of the
azimuthal integrals provided in Sec. III A closely parallels
previous treatments in Refs. [20,23] and recently in [27].

A. Coordinate space representation
of azimuthal dependence

To analyze the evolution of the last term in Eq. (13) we
extract the azimuth-dependent part by defining

�i
f=Pðx;kT;�; �FÞ � kiT

Mp

F?f
1T ðx; kT ;�; �FÞ; (14)

in terms of which the complete Sivers term is

F?f
1T ðx;kT ;�;�FÞ

�ijk
i
TS

j
T

Mp

¼�i
f=Pðx;kT;�;�FÞ�ijSjT: (15)

The Fourier transform of the Sivers function is

~F ?f
1T ðx;bT ;�;�FÞ¼

Z
d2kTe

�ikT�bTF?f
1T ðx;kT ;�;�FÞ

¼2�
Z 1

0
dkTkTJ0ðkTbTÞF?f

1T ðx;kT;�;�FÞ;
(16)

and the Fourier transform of �i
f=Pðx;kT;�; �FÞ is

~�i
f=Pðx;bT;�; �FÞ
¼

Z
d2kTe

�ikT�bT�i
f=Pðx;kT;�; �FÞ

¼
Z

d2kTe
�ikT�bT

kiT
Mp

F?f
1T ðx; kT ;�; �FÞ

¼ 1

MP

Z
d2kT

i@

@bTi
e�ikT�bTF?f

1T ðx; kT ;�; �FÞ: (17)

Using Eq. (16) gives

~� i
f=Pðx;bT;�; �FÞ ¼ i

1

MP

biT
bT

~F0?f
1T ðx; bT;�; �FÞ; (18)

where we have denoted the derivative of ~F?f
1T with respect

to the length of bT by

~F 0?f
1T ðx; bT ;�; �FÞ � @ ~F?f

1T ðx; bT ;�; �FÞ
@bT

: (19)

As we will see shortly, it is this derivative ~F0 and not the
function ~F itself that gets used in the evolution equations
and in the formula for the Sivers term in the actual
transverse-momentum dependence in Eq. (13).
Taking an inverse Fourier transform of Eq. (18) allows

�i
f=Pðx;kT;�; �FÞ to be rewritten in terms of Eq. (19):
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�i
f=Pðx;kT;�; �FÞ ¼ 1

ð2�Þ2
Z

d2bTe
ikT�bT ~�i

f=Pðx;bT;�; �FÞ ¼ i

ð2�Þ2MP

Z
d2bTe

ikT�bT
biT
bT

~F0?f
1T ðx; bT ;�; �FÞ: (20)

To further simplify this expression, and without loss of generality, we use a frame where kT is in the x direction so that
kiT
kT
¼ ð1; 0Þ and biT

bT
¼ ðcos	; sin	Þ. Then,

�i
f=Pðx;kT;�; �FÞ ¼ i

ð2�Þ2MP

Z 1

0
dbTbT ~F

0?f
1T ðx; bT ;�; �FÞ

Z �

��
d	eikTbT cos	ðcos	; sin	Þ

¼ 1

ð2�Þ2MP

Z 1

0
dbTbT ~F

0?f
1T ðx; bT ;�; �FÞ @

@ðkTbTÞ
Z �

��
d	eikTbT cos	ð1; 0Þ

¼ kiT
2�MPkT

Z 1

0
dbTbT ~F

0?f
1T ðx; bT ;�; �FÞ @

@ðkTbTÞ J0ðkTbTÞ

¼ �kiT
2�MpkT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT;�; �FÞ: (21)

Then the complete Sivers term in Eq. (13) is

�i
f=Pðx;kT;�; �FÞ�ijSjT

¼ �kiT�ijS
j
T

2�MpkT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT ;�; �FÞ: (22)

So, from Eq. (15) we express the momentum-space Sivers
function in terms of ~F0:

F?f
1T ðx; kT ;�; �FÞ
¼ �1

2�kT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT ;�; �FÞ; (23)

whose inverse transform is

~F0?f
1T ðx; bT ;�; �FÞ
¼ �2�

Z 1

0
dkTk

2
TJ1ðkTbTÞF?f

1T ðx; kT ;�; �FÞ: (24)

Notice that the originally defined ~F?f
1T from Eq. (16) no

longer appears. The bT-dependent function ~F0?f
1T ðx; bT ;�;

�FÞ is closely analogous to the quantity ~f?ð1Þ
1T that appears

in Eqs. (16) and (20) of Ref. [27], and to @ibqT in Eq. (40) of
Ref. [20], though the basic definition for the bT-space
TMD PDF in Eq. (11) is significantly different.

B. The evolution equations

The set of evolution equations comprises the Collins-
Soper (CS) equation which gives evolution with respect to
�F, and the renormalization-group (RG) equations which
give evolution with respect to �. The CS equation for the
TMD function defined in Eq. (11) is [21]

@ ~Ff=P" ðx;bT; S;�; �FÞ
@ ln

ffiffiffiffiffiffi
�F

p ¼ ~KðbT ;�Þ ~Ff=P" ðx;bT; S;�; �FÞ;
(25)

where

~KðbT;�Þ ¼ 1

2

@

@ys
ln

�~SðbT ; ys;�1Þ
~SðbT ;þ1; ysÞ

�
: (26)

The RG equations are

d ~KðbT ;�Þ
d ln�

¼ ��Kðgð�ÞÞ (27)

and

d ~Ff=P" ðx;bT; S;�; �FÞ
d ln�

¼ �Fðgð�Þ; �F=�2Þ ~Ff=P" ðx;bT; S;�; �FÞ: (28)

Similar equations apply to the fragmentation function.
It follows that the �F dependence of �F is determined:

@�Fðgð�Þ; �F=�2Þ
@ ln

ffiffiffiffiffiffi
�F

p ¼ ��Kðgð�ÞÞ; (29)

so that

�Fðgð�Þ; �F=�2Þ ¼ �Fðgð�Þ; 1Þ � 1

2
�Kðgð�ÞÞ ln�F

�2
:

(30)

These equations were used in Ref. [22] to calculate the
evolution of the unpolarized TMDs. For the spin-
dependent case, the Fourier transform of the second term
in Eq. (13) obeys the same evolution equations, i.e., the
equations apply to

Z
d2kTe

�ikT�bTF?f
1T ðx; kT ;�; �FÞ

�ijk
i
TS

j
T

Mp

¼ ~�i
f=Pðx;bT;�; �FÞ�ijSjT: (31)

The CS equation for the spin-dependent part is therefore

@ ~�i
f=Pðx;bT;�;�FÞ�ijSjT

@ln
ffiffiffiffiffiffi
�F

p ¼ ~KðbT ;�Þ ~�i
f=Pðx;bT;�;�FÞ�ijSjT:

(32)
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Hence, Eq. (18) shows that the CS equation for
~F0?f
1T ðx; bT ;�; �FÞ is the same as for the unpolarized

TMD PDF:

@ ln ~F0?f
1T ðx; bT ;�; �FÞ
@ ln

ffiffiffiffiffiffi
�F

p ¼ ~KðbT;�Þ: (33)

Similarly, its RG equation is like Eq. (28):

d ~F0?f
1T ðx; bT;�; �FÞ

d ln�
¼ �Fðgð�Þ; �F=�2Þ ~F0?f

1T ðx; bT ;�; �FÞ:
(34)

Note that in Eqs. (33) and (34) the same CS kernel
~KðbT ;�Þ and anomalous dimension �Fðgð�Þ; �F=�2Þ ap-
pear as in the unpolarized case. This is because ~K and �F

are properties of the operator defining the parton density,
and this operator is the same for the ordinary unpolarized
TMD PDF as for the Sivers function; both concern the
number density of quarks in a hadron, with no polarization
restriction on the quark.

It is important to emphasize that the evolution equations
(25), (27), and (28) are set up to be exactly correct for all
bT , and for all kT . This includes the region where bT ! 1
(and hence kT ! 0). Indeed, the first term on the right side
of Eq. (1) (the TMD-factorization term) is designed to give
an accurate pQCD treatment when kT � Q, independently
of the relative sizes of kT and �QCD.

C. Power laws for kT and bT dependence

As a guide to the qualitative behavior of the Sivers
function, we summarize in this section the power laws
for its dependence on transverse momentum and transverse
position as obtained from simple model calculations. (For
a detailed treatment of the power law behavior of other
TMDs, see Ref. [30] and also recent discussions in
Ref. [27].) In purely perturbative higher-order calculations,
these get modified by logarithms, while use of a correct
solution of the evolution equations can significantly mod-
ify the power laws [31]. Nevertheless, the power laws from
elementary perturbative calculations form a useful stan-
dard of comparison.

First, we characterize the power law for an ordinary
unpolarized TMD PDF by

Fðx; kTÞ � 1

k2T þM2
: (35)

At large kT , the falloff 1=k2T is the simple dimensional-
analysis power, appropriate to a theory with a dimension-
less coupling. The increase at low kT is tamed by an
infrared cutoff M, which in QCD is nonperturbative. In
bT space, the large-kT behavior Fourier transforms to

~Fðx; bTÞ � constant� logarithms ðas bT ! 0Þ:
(36)

At large bT , the falloff of ~F should be at least rapid enough
that the integral over all bT is convergent, to give a finite
value for Fðx; kTÞ at kT ¼ 0. Normally an exponential or
Gaussian falloff is assumed (which is controlled by non-
perturbative effects in QCD).
As for the Sivers function, its contribution to the quark

density, F?f
1T ðx; kTÞ�ijkiTSj=Mp, has a kinematic zero at

kT ¼ 0. In addition, it is a chirality-violating quantity,
and at large kT , this requires a suppression by a factor of
mass divided by kT relative to the unpolarized density. So
we characterize the result by

F?f
1T ðx; kTÞ

�ijk
i
TS

j

Mp

� kTM

ðk2T þM2Þ2 : (37)

For the Sivers function itself, we therefore have

F?f
1T ðx; kTÞ �

M2

ðk2T þM2Þ2 : (38)

This falloff is characterized as ‘‘twist-3.’’ In bT space, the
behavior of the Fourier transform of (38) at small bT is

~F ?f
1T ðx; bTÞ � constantþ b2T � logarithms: (39)

However, as we saw, it is the derivative of this quantity
with respect to bT that is actually used, for which the
behavior is linear:

~F 0?f
1T ðx; bTÞ � bT � logarithms: (40)

Although the actual equations for evolution are the same
for the Sivers function as for the standard unpolarized
TMD PDF, there are substantial differences in the way in
which the evolution is reflected in the numerical values of
these functions in transverse-momentum space. Because
~F0?
1T is approximately linear in bT at small bT and because

the J1 Bessel function instead of J0 appears in Eq. (21), the
Fourier transform for the Sivers function is sensitive to
larger bT values than the transform for the unpolarized
TMD. This also implies that the evolution of Sivers is
subject to more uncertainty from the nonperturbative
large-bT region than that of the unpolarized TMD.

D. Small-bT expansion

For the unpolarized TMD PDF, an expansion for small
bT can be made in terms of the integrated PDFs. After
Fourier transformation, this gives both the large-kT behav-
ior, and the normalization of the integral over the whole
small kT region.
The same idea continues to apply when we include the

dependence of the TMD density on the target polarization.
We can write

~Fðx;bT; SÞ ¼
X
j

coefficientj 	 hP; SjoperatorjjP; Si;

(41)
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where the coefficients and operators are unaltered since
they are properties of the TMD number-density operator.
But the twist-2 operator on the right-hand side of (41) is the
ordinary number-density operator used to define an inte-
grated PDF, and its matrix element is independent of
transverse spin. Thus, the twist-2 operator, corresponding
to a 1=k2T falloff at large kT , provides no contribution to the
Sivers function in Eq. (41). The leading large-kT behavior
of the Sivers function is the 1=k3T term associated with the
twist-3 operators, the same operators that are used in the
Qiu-Sterman formalism [32].

IV. OBTAINING EVOLVED SIVERS FUNCTIONS

In this section, we discuss the steps for obtaining the
evolved Sivers function using already existing fits to the
nonperturbative parts.

A. Solution in terms of fixed-scale Sivers function

Previous fits [14,15] of the Sivers function used the
parton-model formula for the hadronic tensor. We now
show how these can be converted to use the correct QCD
formula.

The parton-model version of TMD factorization
amounts to applying the following approximations to the
true QCD formula (1):

(i) Replace the hard scattering by its lowest order.
(ii) Neglect the Y term.
(iii) Omit the evolution of the TMD PDFs.

If the renormalization scale � is taken of order Q, higher-
order corrections to the hard scattering are purely pertur-
bative. One of the simplifications for TMD factorization is
that these are just an overall factor, dependent on Q only
through the running coupling 
SðQÞ. This factor is the
same, independently of the hadron and the quark polariza-
tion, so it does not affect the ratio of the Sivers function to
the ordinary TMD PDF.

The Y term only affects large transverse momentum (of
order Q), whereas the data is dominantly at transverse
momenta in the nonperturbative region. So the neglect of
Y should be an adequate approximation with present data,
and is easily corrected in the future, with the aid of fits for
the Qiu-Sterman twist-3 function.

For a fixed value of Q, the TMD functions can be given
fixed values of � and �F, � ¼ Q and �F ¼ Q2, and the
QCD factorization formula is the same as the parton-model
formula, up to an overall K factor. This legitimizes the
fixed-scale fits. But as can be seen from Fig. 1, evolution
gives substantial changes in the TMD PDFs needed at
higher Q. These are easily obtained, in their transverse-
coordinate-space form, in terms of the parton-model fits at
a fixed scale. We derive the necessary result starting from
Eqs. (33), (34), and (30).

In these equations, the anomalous dimensions �F and
�K are perturbatively calculable, but the function ~K at

large values of bT is nonperturbative. We follow
Ref. [17] to separate the perturbative and nonperturbative
parts of ~K. First, we define

b 
 ¼ bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2T=b

2
max

q ; �b ¼ C1

b

: (42)

Here C1 is a fixed numerical coefficient and bmax is chosen
to keep b
 in the perturbative region. In the fits to unpo-
larized Drell-Yan, the values chosen were bmax ¼
0:5 GeV�1 in [33], and bmax ¼ 1:5 GeV�1 in [34]. Next
we write

~KðbT;�Þ ¼ ~Kðb
;�bÞ �
Z �

�b

d�0

�0 �Kðgð�0ÞÞ � gKðbTÞ:
(43)

The first two terms are perturbative and include all the
evolution of ~K. The last term is nonperturbative but scale
independent. It represents the only nonperturbative infor-
mation needed to evolve the Sivers function from the scale
Q0 where it was initially fit. But this function is process
independent [21], so we can take its value from already
existing fits to unpolarized Drell-Yan [33,34] scattering at a
variety of energies.
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FIG. 1 (color online). The (negative of the) up quark Sivers
function at x ¼ 0:1 evolved fromQ ¼ ffiffiffiffiffiffiffi

2:4
p

GeV (solid maroon)
to Q ¼ 5 GeV (dashed blue) and Q ¼ 91:19 GeV (dot-dashed
red). The upper plot is found by evolving the Gaussian fits of the
Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
quark one. For the Torino fits, the down quark Sivers function is
obtained by multiplying the up quark Sivers function by �1:35.
These functions acquire an overall reversal of sign if used in
Drell-Yan.
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This gives the evolved function:

~F0?f
1T ðx; bT ;�; �FÞ

¼ ~F0?f
1T ðx; bT ;�0; Q

2
0Þ exp

�
ln

ffiffiffiffiffiffi
�F

p
Q0

~Kðb
;�bÞ

þ
Z �

�0

d�0

�0

�
�Fðgð�0Þ; 1Þ � ln

ffiffiffiffiffiffi
�F

p
�0 �Kðgð�0ÞÞ

�

þ
Z �b

�0

d�0

�0 ln

ffiffiffiffiffiffi
�F

p
Q0

�Kðgð�0ÞÞ � gKðbTÞ ln
ffiffiffiffiffiffi
�F

p
Q0

�
:

(44)

We can set �0 ¼ Q0 and then use Q0 ¼
ffiffiffiffiffiffiffiffiffi
2:4

p
GeV, which

is the appropriate scale for the fits in [14,15], which used
data from the HERMES experiment. For the prediction of
data at a higher energy, one should set�2 ¼ �F ¼ Q2. The
anomalous dimensions �F and �K are used in a region
where perturbative calculations are appropriate.

The Sivers function in transverse-momentum space is
then obtained from Eq. (44) by Fourier transformation, as
in Eq. (23).

The one-loop values of the relevant perturbative
quantities are listed in the Appendix.

The size of the Sivers asymmetry is also often parame-
trized by the function

Ff=P" ðx;kT; S;�; �FÞ � Ff=P" ðx;kT;�S;�; �FÞ

¼ �NFf=P" ðx; kT ;�; �FÞ
�ijk

i
TS

j
T

kT
; (45)

where

�NFf=P" ðx; kTÞ ¼ � 2kT
Mp

F?f
1T ðx; kT ;�; �FÞ: (46)

As can be seen from Figs. 1 and 2, TMD functions
broaden substantially as the scale increases. Thus, larger
values of transverse momentum become important, and
correspondingly we need the ~F factor at small bT .

B. Including the perturbative calculation
of Sivers function at small-bT

At low scales, the Sivers function is dominantly at low
values of kT , and correspondingly the range of bT that
matters concerns the larger values where both the starting

value ~F0?f
1T ðx; bT ;�0; Q

2
0Þ and the evolution kernel

~KðbT ;�Þ are in the nonperturbative region. After evolution
to a sufficiently large scale, the broadening of the kT
distribution makes smaller values of bT important, where
there is perturbative information. For both this case and the
treatment of the large-kT tail of the Sivers function we can
use the expansion (41) to write it in terms of the twist-3
Qiu-Sterman function.

Following the method used for the unpolarized TMD
PDF—see Refs. [17,21] and Eq. (31) of Ref. [22]—we
write

~F0?f
1T ðx; bT ;�; �FÞ

¼ X
j

MpbT
2

Z 1

x

dx̂1dx̂2
x̂1x̂2

~CSivers
f=j ðx̂1; x̂2; b
;�2

b;�b; gð�bÞÞ

� TFj=Pðx̂1; x̂2; �bÞ exp
�
ln

ffiffiffiffiffiffi
�F

p
�b

~Kðb
;�bÞ

þ
Z �

�b

d�0

�0

�
�Fðgð�0Þ; 1Þ � ln

ffiffiffiffiffiffi
�F

p
�0 �Kðgð�0ÞÞ

��

� exp

�
�gSiversf=P ðx; bTÞ � gKðbTÞ ln

ffiffiffiffiffiffi
�F

p
Q0

�
: (47)

The first part describes the matching to a collinear treat-

ment relevant to small bT . There, ~F0?f
1T ðx; bT ;�; �FÞ is

expressed as a coefficient function ~Cf=jðx̂1; x̂2; b
;�2
b;

�b; gð�bÞÞ convoluted with a (twist-3) Qiu-Sterman func-
tion TFj=Pðx̂1; x̂2; �bÞ, where for the simplicity, we ne-

glected the terms proportional to the derivative of the
twist-3 Qiu-Sterman function. On the last three lines,
the first exponential comes from the perturbative part of
the evolution of the Sivers function; the use of b
 and �b

ensures that ~C, ~K, �F, and �K are in the perturbative
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FIG. 2 (color online). The up quark Sivers function at Q ¼
5 GeV and Q ¼ 91:19 GeV (solid curves) and the correspond-
ing Gaussian fit for the low-kT region (dashed curves). Note that
the function plotted is the Sivers function multiplied by �2�k3T .
The upper panel is obtained by evolving the Gaussian fits of the
Bochum group [14] and the lower panel is obtained by evolving
the Gaussian fits of the Torino group [15]. Below each plot, the
ratio between a Gaussian fit and the evolved function including
the tail is also shown.
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region. The second exponential gives a correction to allow
for nonperturbative behavior at larger bT . In its exponent
are both the nonperturbative term gKðbTÞ for the evolution
kernel, and an extra term gSiversf=P ðx; bTÞ for the Sivers

function itself. These terms are both scale independent.1

The coefficient ~C can be determined, for example, by
performing a low-order perturbative calculation of the left-
hand side of Eq. (47), of the Qiu-Sterman function, and of
the first exponential, while ignoring the nonperturbative
correction [25]. The normalization factor, MpbT=2, in

Eq. (47) ensures that TFðx̂1; x̂2; �bÞ has the standard nor-
malization [25], and at zeroth order the contribution to the

hard coefficient ~CSivers
f=j ðx̂1; x̂2; b
;�2

b; �b; gð�bÞÞ is
~C Sivers;ð0Þ
f=j ðx̂1; x̂2; b
;�2

b;�b; gð�bÞÞ
¼ �f;j�ð1� x=x̂1Þ�ð1� x=x̂2Þ; (48)

which is similar to the zeroth order term in Eq. (A11) of
Ref. [22] for the unpolarized case. (Recall that, since the
Qiu-Sterman function TFðx̂1; x̂2; �bÞ is universal, an extra
minus sign is needed if we consider Drell-Yan instead of
SIDIS.) The factor of bT in the normalization is a reminder
that it is the derivative of the Sivers function that we evolve
in Eq. (47), not the Sivers function itself. Higher-order
contributions to the coefficient function can be taken di-
rectly from work, such as Ref. [25], which treats smaller bT
within the Qiu-Sterman method. Calculations of the unpo-

larized coefficient functions to higher orders in the MS
scheme have already been carried out in Refs. [21,22].

The corresponding formula for the unpolarized TMD
PDFs is very useful, since instead of the Qiu-Sterman
function it uses the ordinary integrated PDFs, which are
very well measured. In contrast, the phenomenology of the
Qiu-Sterman function is less well known quantitatively, so
there may be less of an advantage of using Eq. (47) instead
of Eq. (44).

In the remaining sections, we will discuss the imple-
mentation of evolution, given some nonperturbative input
functions, and provide specific evolved fits. Before con-
tinuing, however, we should emphasize that matters related
to the fitting of the nonperturbative functions, including
the choice of functional form for gKðbÞ and the matching
procedure in Eq. (42), are unrelated to the validity
of the TMD-factorization formalism itself. The TMD-
factorization formalism automatically accommodates any
refinements to knowledge about the nonperturbative phys-
ics. Indeed, a central aim of this article is to demonstrate
the generality of the method. In our calculations below, we
have chosen to consider fits to the nonperturbative func-
tions that correspond to detailed studies of existing data. In
addition to providing tools for phenomenology, our calcu-
lations illustrate how numerical values for the Sivers

function corresponding to the definition in Eq. (11) can
be obtained, once the nonperturbative functions are con-
strained by data. Thus, our use of TMD factorization is
closely analogous to what already exists for collinear
factorization.

V. GAUSSIAN PARAMETRIZATIONS
IN THE LOW-qT REGION

In this section we explain the implementation of QCD
evolution for the Sivers function with a Gaussian ansatz.
Since the small-bT region is twist-3, the tail of the
(momentum-space) Sivers function (at large kT) is power
suppressed relative to the unpolarized TMD function.
Furthermore, as illustrated in Ref. [22], a Gaussian pa-
rametrization provides a good description of the low
transverse-momentum behavior, even up to transverse mo-
menta of a few GeV. Therefore, we take as a starting point a
detailed treatment of the twist-2 large-bT behavior, leaving
for future refinements an account of the matching of the
small-bT behavior to the twist-3 factorization formalism.
That is, we use Eq. (44) rather than Eq. (47).
Even so, a full treatment that extends to small-bT by

including higher orders in ~Cf=jðx̂1; x̂2; b
;�2
b;�b; gð�bÞÞ

will be crucial in the long run for a complete understanding
of the evolved Sivers function over the full range of bT .
This is especially important to keep in mind when dealing
with weighted integrals of the Sivers function where the
effect of the large transverse-momentum tail becomes
magnified. We intend to pursue this in future refinements
of the TMD approach.
At the initial fitting scale, we drop the explicit scale

dependence:

~F 0?
1T;0ðx; bTÞ ¼ ~F0?f

1T ðx; bT;�0; Q
2
0Þ: (49)

To match previous fits [14,15], we approximate the input
function by a Gaussian

~F 0?f
1T;0ðx; bTÞ ¼ � hk2Ti0f?1TðxÞbT

2
exp½�hk2Ti0b2T=4�; (50)

which corresponds also to a Gaussian ansatz for the
momentum-space distribution:

F?
1T;0fðx; kTÞ ¼

f?f
1T ðxÞ

hk2Tif0�
exp½�k2T=hk2Tif0�: (51)

The parameter hk2Tif0 is the width of the Sivers function for

a quark of flavor f at the scale where the Gaussian fit is
performed. Comparing with Eq. (47), we see that

gSiversf=P ðx; bTÞ ¼ hk2Tif0b2T=4. The fits performed in [14,15]

are for quite low scales (Q2 ¼ 2:4 GeV2 for HERMES
data). We therefore assume that the Sivers function is
dominated by the nonperturbative large-bT region, in
which case a Gaussian description, with a negligible tail

1Note that our sign convention on gSiversf=P ðx; bTÞ and gKðbTÞ is
opposite of Ref. [22].
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effect, makes sense. The first moment of the input
momentum-space Sivers function obeys the usual relation:

f?ð1Þ
1T;0 ðxÞ ¼

Z
d2kT

k2T
2M2

p

F?
1T;0ðx; kTÞ ¼

hk2Ti0
2M2

p

f?1TðxÞ:
(52)

We again remind the reader that, for our calculations, we
are assuming a Sivers function for SIDIS and that a sign
flip is necessary to go to DY.

With gKðbTÞ already known from previous fits to high
energy Drell-Yan data [33–35], all that is now needed in

order to obtain evolved Gaussian fits are hk2Tif0 and f?f
1T ðxÞ.

These will come from previously obtained fixed-scale
Gaussian fits. In the next section, we will provide two
examples and illustrate the effect of evolution for two of
the sets of Gaussian fits available in the literature.

The function gKðbTÞ is the only nonperturbative input
that is necessary apart from these initial fits. We have also
adopted the standard Gaussian ansatz for gKðbTÞ, writing
gKðbTÞ ¼ g2b

2
T=2. Fits like those of Refs. [33–35] provide

numerical values for g2. In the Brock-Landry-Nadolsky-
Yuan fits [33] a value of g2 ¼ 0:68 GeV2 is found. This
corresponds to a value for bmax of 0:5 GeV�1, and is what
we will use in the fits of the next section.

VI. SPECIFIC FITS

In this section we provide examples of evolved fits,
obtained by following the steps of Sec. V with specific
fits for the input distributions. We remind the reader that
our numerical calculations correspond to the Sivers func-
tion of SIDIS, and that they acquire an overall minus sign
in the Drell-Yan process.

A. Bochum fits

The fits of Ref. [14] use a Gaussian to describe the
HERMES measurements [36] which were performed
with an average Q2 of 2:41 GeV2. We refer to these as

the Bochum fits. The function corresponding to f?f
1T ðxÞ in

Eq. (51) is

½f?up=down
1T ðxÞ�Bochum ¼ � 2M2

P

hk2Ti0
Axb�1ð1� xÞ5: (53)

The fit parameters are

A ¼ 0:17; b ¼ 0:66:

In the Bochum fits, the parameter corresponding to hk2Tif0 in
Eq. (51) is assumed to be independent of flavor and lies
between 0.10 and 0:32 GeV2. We take

hk2Tif0Bochum ¼ hk2Ti0Bochum ¼ 0:2 GeV2; (54)

which corresponds to the ‘‘best fit’’ scenario of Ref. [14].
Samples of the result of using the Bochum fits in

Eq. (44) to evolve to different Q are shown in the upper

panel of Fig. 1. The curves are shown for Q ¼ffiffiffiffiffiffiffi
2:4

p
; 5; 91:19 GeV since these are also the values already

used to illustrate the evolution of the unpolarized distribu-
tion functions in Ref. [22].

B. Torino fits

Next we consider the fits of Ref. [15] which incorporated
data from both HERMES [37] and COMPASS [38,39].
Again, the scale for the initial distributions is Q2 ¼
2:4 GeV2. We refer to these as the Torino fits. The function

corresponding to f?f
1T ðxÞ in Eq. (51) is

½f?f
1T ðxÞ�Torino ¼ �Mp

ffiffiffiffiffi
2e

p

M1hk2Ti
N fðxÞffðxÞhk2Ti0; (55)

where

NfðxÞ � Nfx

f ð1� xÞ�f

ð
f þ �fÞð
fþ�fÞ




f

f �
�f

f

; (56)

and ffðxÞ is the unpolarized parton distribution function

for quarks of flavor f. The fit parameters Nf, 
f, �f are

Nu ¼ 0:35; 
u ¼ 0:73; �u ¼ 3:46; (57)

Nd ¼ 0:90; 
d ¼ 1:08; �d ¼ 3:46; (58)

and M2
1 ¼ 0:34 GeV2, hk2Ti ¼ 0:25 GeV2. The Gaussian

slope parameter of the initial input distribution in the
Torino fits is again flavor independent and is

hk2Tif0Torino ¼ hk2Ti0Torino ¼
M2

1hk2Ti
M2

1 þ hk2Ti
: (59)

For the integrated PDFs in Eq. (55), we have used the
lowest order Martin-Stirling-Thorne-Watt parametriza-
tions [40–43]. Samples of the evolved Torino fits are shown
in the lower panel of Fig. 1.
Note that there is over a factor of 2 difference between

the Torino and the Bochum fits, and this gives a rough
indication of the uncertainty involved in current treat-
ments. A discussion of the difference in the two methods
can be found in Ref. [44].
We do hope for future improvements of the fits. A very

recent parametrization of the nonperturbative input was
presented in Ref. [45]. The results are similar to the
Torino fits above, but utilize a relation to generalized
parton distributions, and allow for a connection to a quan-
tification of parton angular momentum. Moreover, model
calculations, such as in Refs. [46–48], and lattice QCD
calculations [49] can aid in providing meaningful parame-
trizations of the nonperturbative input over the whole of
phase space and open up interesting questions regarding
the matching of purely nonperturbative descriptions of the
Sivers function to pQCD.
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C. Evolved Gaussian parametrizations

Figure 1 suggests that, apart from the tail at large kT , the
Sivers function continues to be well described by a
Gaussian shape, even after evolution to large Q. To de-
scribe the evolution of a purely Gaussian parametrization,
with the x and kT dependence factorized, requires only a
specification of the scale dependence of the Gaussian
parameters. This saves having to directly calculate
Eq. (44), and its transformation to momentum space, sepa-
rately for each value of Q and x. Because of the general
convenience of working with Gaussian functions, we
have obtained Gaussian fits for a range of Q starting

at Q ¼ ffiffiffiffiffiffiffi
2:4

p
GeV for the Bochum and Torino fits up to

Q ¼ 90 GeV. The fits are obtained using the Wolfram
MATHEMATICA 7 FINDFIT routine, and examples

are shown as the dashed curves in Fig. 2. A table of the
resulting values for the Gaussian parameters is
shown in Table I. (Fortran, C++, and Wolfram

MATHEMATICA 7 code that produce evolved Gaussian fits

is available at [50].)
In Fig. 2, we illustrate the quality of the Gaussian

fits to the Sivers function at intermediate and large
Q (Q ¼ 5 GeV and 91.19 GeV, respectively). In practice,
the Sivers effect is often probed via observables
like Eq. (52), so we have plotted the integrand,

�2�k3TF
?up
1T ðx; kT ;�;QÞ. Note that, after the evolution to

large Q, the �2�k3TF
?up
1T ðx; kT ;�;QÞ acquires a very

broad tail for both the Bochum and Torino fits. The tail
falls off slowly; for Q ¼ 91:19 GeV, the ratio of the value
of the Bochum fit at kT ¼ 10 GeV to the value at kT ¼
5 GeV is about 0.65. This is roughly consistent with the
1=kT falloff at large kT that is expected from the
power counting arguments in Sec. III C. The last two
columns in Table I show the values of kT where
the ratio of the Gaussian fits to the original Sivers functions
is 0.8. That is, above kTorinoT;max (GeV) the Gaussian fits to the

TABLE I. Table of evolved Gaussian parameters, obtained by fitting Gaussians to the evolved Bochum and Torino fixed-scale fits.

The fits are for x�NFf=P" ðx; kT ;�; �FÞ and are related to F?f
1T ðx; kT;�; �FÞ via Eq. (46). The parameters are listed for the up quark

distributions at x ¼ 0:1; the Sivers function at different values of x can be found by multiplying by the appropriate ratios obtained from
Eqs. (53) and (55). The Gaussian slope parameter bfit is the same for the up and down quarks. The normalization parameters afitup are

related to the down quark normalizations by aBochumdown ¼ �aBochumup and aTorinodown � �1:35aTorinoup . The last two columns, kBochumT;max and

kTorinoT;max , are the values of kT above which the Gaussian fits drop to less than a ratio of 0:8 of the Sivers functions calculated directly from

Eq. (44).

x�NFfit
f=Pðx ¼ 0:1; kTÞ ¼ afitf kTe

�bfitk2T

Q (GeV) bBochum (GeV�2) bTorino (GeV�2) aBochumup (GeV�3) aTorinoup (GeV�3) kBochumT;max (GeV) kTorinoT;max (GeV)ffiffiffiffiffiffiffi
2:4

p
4.9999 6.9382 6:5570� 10�1 1:7763� 100 � � � � � �

2.0 1.8251 2.0329 9:5506� 10�2 1:6661� 10�1 � � � � � �
2.5 1.1726 1.2552 4:1658� 10�2 6:7105� 10�2 2.36 2.29

3.0 0.9067 0.9555 2:5716� 10�2 4:0138� 10�2 2.56 2.50

3.5 0.7604 0.7945 1:8430� 10�2 2:8276� 10�2 2.70 2.65

4.0 0.6668 0.6929 1:4329� 10�2 2:1745� 10�2 2.80 2.76

4.5 0.6013 0.6225 1:1718� 10�2 1:7649� 10�2 2.89 2.85

5.0 0.5526 0.5705 9:9179� 10�3 1:4854� 10�2 2.96 2.92

10.0 0.3562 0.3637 3:9881� 10�3 5:8409� 10�3 3.39 3.36

15.0 0.2941 0.2992 2:5477� 10�3 3:7049� 10�3 3.56 3.54

20.0 0.2612 0.2653 1:8893� 10�3 2:7372� 10�3 3.67 3.65

25.0 0.2400 0.2435 1:5090� 10�3 2:1810� 10�3 3.75 3.73

30.0 0.2249 0.2280 1:2602� 10�3 1:8182� 10�3 3.81 3.79

35.0 0.2135 0.2163 1:0841� 10�3 1:5621� 10�3 3.86 3.84

40.0 0.2044 0.2070 9:5257� 10�4 1:3712� 10�3 3.90 3.88

45.0 0.1969 0.1993 8:5046� 10�4 1:2232� 10�3 3.94 3.92

50.0 0.1907 0.1929 7:6878� 10�4 1:1049� 10�3 3.97 3.95

55.0 0.1853 0.1874 7:0188� 10�4 1:0081� 10�3 3.99 3.98

60.0 0.1806 0.1826 6:4604� 10�4 9:2744� 10�4 4.02 4.00

65.0 0.1765 0.1784 5:9868� 10�4 8:5906� 10�4 4.04 4.02

70.0 0.1728 0.1747 5:5800� 10�4 8:0035� 10�4 4.06 4.04

75.0 0.1695 0.1713 5:2267� 10�4 7:4937� 10�4 4.08 4.06

80.0 0.1665 0.1683 4:9164� 10�4 7:0467� 10�4 4.10 4.08

85.0 0.1638 0.1655 4:6421� 10�4 6:6514� 10�4 4 11 4.09

90.0 0.1613 0.1629 4:3976� 10�4 6:2993� 10�4 4.13 4.11
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evolved Torino Sivers function drop to less than
0.8 of the original evolved Sivers function and similarly
for kBochumT;max .

That the description at small kT remains Gaussian is not
entirely surprising given that the input we use for the
nonperturbative evolution is Gaussian (gKðbTÞ / b2).
However, it should be emphasized that the perturbative
contribution to evolution results in a substantial modifica-
tion of the shape and normalization of the TMD PDF, even
at low kT . Therefore, Table I is not the result of simply
Fourier transforming the nonperturbative contribution to
Eq. (44). Rather, to get the right TMD PDF, even when
using a Gaussian approximation for low kT , the full pQCD
evolution must be included. We find that difference be-
tween the fitted Gaussian and the result obtained by naively
Fourier transforming the nonperturbative part of the evo-
lution is similar to what was found for the unpolarized
TMD PDF (see Fig. 2 of Ref. [22]).

The presence of the tail illustrates the danger in evaluat-
ing moment integrals like Eq. (52) without a careful ac-
count of the large-kT behavior. For Q ¼ 91:19 GeV, there
is more than 40% suppression in the integral of the curves
in Fig. 2 from 0 to 10 GeV when the Gaussian fit is used
rather than the fit including the tail. (Note that, in principle,
the integral should be extended to order Q.) For the Q ¼
5 GeV curves, integrated up to 5 GeV, the corresponding
suppression is only about 9%.

By contrast, at low kT the Gaussian functions, shown as
the dashed curves in Fig. 2, provide excellent approxima-
tions to the evolved Sivers function. This suggests that the
evolved Gaussian approximation is especially suited to
low-Q=low-kT studies. A sample of evolved Gaussian fits
for lower Q is shown in Fig. 3.

VII. DISCUSSION AND CONCLUSIONS

Many of the recent phenomenological efforts related
to the study of transverse polarization effects in TMDs
have assumed a lowest-order, generalized parton-model

(GPM) picture [51] and work within a rather narrow
range of energy scales. However, the full power of
factorization theorems lies in their ability to make pre-
dictions for a variety of processes over a wide range of
energy scales. In this article, we have explained the
steps for implementing evolution for polarization depen-
dent TMD PDFs, specifically illustrated with the Sivers
function. The basic method is the CSS formalism
[16,17,31], with the specific formulation of the TMD-
factorization formalism given recently in Ref. [21]. An
advantage of the most up-to-date TMD-factorization
formula is that it is written in a form closely analogous
to the GPM [see Eq. (1)], with explicit definitions for
the individual TMDs. Therefore, existing treatments that
rely on a GPM framework need only to replace the
unevolved TMDs with the evolved ones. An important
aspect of our approach is that it relies on a genuine,
complete TMD-factorization formalism, to be contrasted
with the resummation methodology that has often been
relied on in the past to treat many aspects of TMD
physics. That is, the TMD-factorization formalism pro-
vides, from the outset, a consistent treatment of factori-
zation for the full range of kT (or, equivalently, the full
range of bT in coordinate space).
Fortunately, many of the results obtained from the treat-

ment of unpolarized TMDs can be carried over directly to
the polarization dependent case, including the calculation
of the anomalous dimensions �F, �D, and �K, and the CS
evolution kernel K, in both its calculable perturbative part
and its nonperturbative part gKðbTÞ that is known from fits
to unpolarized Drell-Yan. An important difference from
the unpolarized case is in the matching at large kT . In the
unpolarized case, the TMD PDF (or FF) matches to a twist-
2 collinear factorization treatment at large kT , whereas the
Sivers function matches to a twist-3 collinear factorization
treatment related to the Qiu-Sterman formalism, as in
Eq. (47). Thus, the treatment provided in this article unifies
several different aspects of TMD physics.
It is worth commenting on the often repeated state-

ment (see, e.g., Ref. [52]) that calculations in covariant
gauges are impractical or inconvenient, and that working
in light-cone gauge is therefore preferred. In our work,
we find that the opposite is true. Namely, the calculation
of the perturbative parts (at least to order 
s) follows
clear-cut steps in Feynman gauge, while the derivation
of TMD-factorization theorems is much more direct in
Feynman gauge than in light-cone gauge. (Indeed, we
are not aware of the existence of a detailed light-cone
gauge derivation of TMD factorization.) Moreover, once
the calculation of the perturbative parts has been per-
formed in Feynman gauge, a generalized parton-model
interpretation follows directly from the TMD-
factorization formula in Eq. (1). For these reasons, we
advocate continuing to work in Feynman gauge for both
calculations and derivations.
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FIG. 3 (color online). The evolving Gaussian parameters for

�2�k3TF
?up
1T ðx; kT ;�;QÞ for a range of Q obtained from the

Torino and Bochum fits. Table I lists the Gaussian parameters for
a selection of Q.
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We have implemented the evolution explicitly using as
input the already known �F, �D, and �K (supplied for easy
reference in the Appendix), previous fixed-scale Gaussian
fits of the Sivers function at low-Q [14,15], and previous
fits of the CSS formalism to DY [33]. For the explicit
calculations in the present article, we have focused only
on the low-kT region where we need not be concerned with
the treatment of the Qiu-Sterman formalism at large kT ,
and the approximations of Sec. V make sense. The result-
ing evolved momentum-space Sivers functions are shown
in Fig. 1. Comparing with Fig. 1 of Ref. [22] for the
evolution of the unpolarized TMD PDF, one sees even
more suppression as Q is increased than in the unpolarized
case. Also note that a significant perturbative tail is gen-
erated at large Q as shown in Fig. 2. We reemphasize that
this should be kept in mind when evaluating integrals like
Eq. (52).

Gaussian parametrizations are particularly convenient
for doing explicit calculations. Therefore, we have tested
the quality of Gaussian fits after evolution to large Q and
find that the Gaussian function provides an excellent ap-
proximation to the Sivers function at small kT , even for
Q � 90:0 GeV. We have made these fits available, as well
as code for generating evolved TMDs at a website main-
tained by two of us (Aybat and Rogers) [50].

Much work remains to be done in the effort to connect a
full QCD treatment of TMDs with phenomenology. An
explicit implementation of the matching to the twist-3
Qiu-Sterman formalism is still needed, and will be particu-
larly important for a correct treatment of kT-weighted
observables in which the extra kT factors enhance the
contribution from the large-kT region. The recent work of
Ref. [25] may help. Moreover, as new data become avail-
able for both polarized and unpolarized cross sections, it
will be useful to construct new fits that include evolution
from the beginning. Finally, explicit calculations, analo-
gous to the ones presented here, need to be applied to the
other TMDs like the Boer-Mulders and Collins functions.

At large Q, the shape of the distribution is especially
sensitive to the value of bmax, g2 and the functional form of
gKðbTÞ. Reference [34], for example, finds that a larger
value of bmax is preferred, along with a corresponding
change in g2. Furthermore, Refs. [53,54] find advantages

to using a different functional form,�b2=3 rather than�b2,
for gKðbTÞ. This should be taken into account in future
improvements to the fits. The particular set of parameters
used in the calculations in the present article were chosen
both because of their simplicity and because they corre-
spond to the current state-of-the-art of global fits to the
unpolarized Drell-Yan cross section.

In the future, model calculations (see, e.g., [55] and
references therein for an overview) can be potentially
helpful for fixing nonperturbative input. Certain models
also lead to nonperturbative input distributions that deviate
from the Gaussian ansatz. Conversely, incorporating evo-

lution into model calculations can help establish the scale
appropriate to the model.
Theoretical uncertainties in the TMD fits, both for un-

polarized and polarized TMDs, can be reduced by includ-
ing higher-order results for the anomalous dimensions and
the CSS kernel K (in the perturbative region). Fortunately,
as we have discussed in this paper, these anomalous
dimensions and the kernel K are the same for unpolarized
TMDs and the Sivers function. Therefore by calculating
them at next-to-next-to-leading order in perturbative
QCD, we can reduce the theoretical uncertainties for both
unpolarized and polarized TMDs at the same time.
The ultimate goal is to obtain sets of TMD PDFs and FFs

that can be used in a way that is closely analogous to what
already exists for processes that use collinear factorization.
Namely, we would like to obtain a set of TMD fits based on
precise TMD definitions such that they can be reliably used
to make predictions.
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APPENDIX: ANOMALOUS DIMENSIONS ETC.

Here we list theMS-scheme anomalous dimensions [21]
that were used in, for example, Eqs. (44) and (47):

�Fð�; �F=�
2Þ ¼ 
s

CF

�

�
3

2
� ln

�
�F
�2

��
þOð
2

sÞ: (A1)

At order 
s, the quark TMD FF anomalous dimension is
the same as for the TMD PDF. The CS kernel up to order

s in bT space is

~Kð�; bTÞ ¼ �
sCF

�
½lnð�2b2TÞ � ln4þ 2�E� þOð
2

sÞ:
(A2)

The anomalous dimension of ~K is up to order 
s,

�Kð�Þ ¼ 2

sCF

�
þOð
2

sÞ: (A3)
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