
Mixing ofDs1ð2460Þ andDs1ð2536Þ
Xiao-Gang Wu1,* and Qiang Zhao1,2,†

1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
2Theoretical Physics Center for Science Facilities, CAS, Beijing 100049, People’s Republic of China

(Received 22 November 2011; published 23 February 2012)

The mixing mechanism of axial-vectors Ds1ð2460Þ and Ds1ð2536Þ is studied via intermediate hadron

loops, e.g., D�K, to which both states have strong couplings. By constructing the two-state mixing

propagator matrix that respects the unitarity constraint and calculating the vertex coupling form factors in

a chiral quark model, we can extract the masses, widths, and mixing angles of the physical states. Two

poles can be identified in the propagator matrix. One is at
ffiffiffi
s

p ¼ 2454:5 MeV corresponding to Ds1ð2460Þ
and the other at

ffiffiffi
s

p ¼ ð2544:9� 1:0iÞ MeV corresponding to Ds1ð2536Þ. For Ds1ð2460Þ, a large mixing

angle � ¼ 47:5� between 3P1 and 1P1 is obtained. It is driven by the real part of the mixing matrix

element and corresponds to �0 ¼ 12:3� between the j ¼ 1=2 and j ¼ 3=2 state mixing in the heavy quark

limit. For Ds1ð2536Þ, a mixing angle � ¼ 39:7�, which corresponds to �0 ¼ 4:4� in the heavy quark limit,

is found. An additional phase angle � ¼ �6:9� � 6:9� is needed at the pole mass of Ds1ð2536Þ since the
mixing matrix elements are complex numbers. Both the real and imaginary parts are found important for

the large mixing angle. We show that the new experimental data from BABAR provide a strong constraint

on the mixing angle at the mass of Ds1ð2536Þ, from which two values can be extracted, i.e., �1 ¼ 32:1� or

�2 ¼ 38:4�. Our study agrees well with the latter one. Detailed analysis of the mass-shift procedure due to

the coupled channel effects is also presented.

DOI: 10.1103/PhysRevD.85.034040 PACS numbers: 13.25.Ft, 14.40.Lb

I. INTRODUCTION

In the past few years, one of the most important experi-
mental progresses in the study of the charmed meson
spectrum is the establishment of the lowest P-wave
charmed-strange mesons, i.e., Ds0ð2317Þ, Ds1ð2460Þ,
Ds1ð2536Þ, and Ds2ð2573Þ as now listed in Particle Data
Group (PDG) 2010 Edition [1]. Since the first observation
by BABAR Collaboration [2], the spin-0 state Ds0ð2317Þ
and spin-1 Ds1ð2460Þ (later confirmed by Belle [3] and
CLEO [4]) have initiated tremendous interests in its prop-
erty and internal structure. These two states have masses
lower than the potential model predictions, and their
widths are rather narrow. It is somehow agreed that their
low masses are caused by the open DK and D�K thresh-
olds, respectively, and as a consequence, their narrow
decay widths are due to the dominant isospin-violating
decays, i.e., Ds0ð2317Þ ! Ds� and Ds1ð2460Þ ! D�

s�
(see the review of Refs. [5,6] and references therein).

The heavy-light Q �q system is an ideal platform for
testing the internal constituent quark degrees of freedom.
In the heavy quark limit, the heavy quark spin is conserved
and decoupled from the light quark degrees of freedom,
which are characterized by the total angular momentum
jq � sq þL, where sq is the light quark spin and L is its

orbital angular momentum. With jq ¼ 1=2 and jq ¼ 3=2,

one can arrange those four P-wave states into two classes,
i.e., JP ¼ 0þ, 1þ and JP ¼ 1þ, 2þ, respectively, where J is

the meson spin as a sum of the heavy quark spin SQ and jq.

For the axial-vector states in the charmed and charmed-
strange meson spectrum, since they are not charge con-
jugation eigenstates, state mixings between the 3P1 and
1P1 configurations are allowed. In the case of charmed and

charmed-strange heavy-light system when the heavy quark
symmetry is broken at order of 1=mc, it would be interest-
ing to study the mechanism that causes deviations from the
ideal mixing scenario, i.e., breakdown of the heavy quark
symmetry. This forms our motivation in this work. As
mentioned earlier, Ds1ð2460Þ and Ds1ð2536Þ lie near the
threshold of D�K and both couple to D�K strongly via a
relative S wave. It gives rise to coupled channel effects in
the mass shifts of potential quark model calculations in
comparison with the observed values [7–9], and produces
state mixings between the 3P1 and 1P1 configurations. A

similar mechanism has been studied in the a0ð980Þ-f0ð980Þ
mixing in Ref. [10]. Determination of the mixing angle
should be useful for understanding the property and inter-
nal structure of these two axial-vector states.
Wemention that various solutions have been proposed in

the literature to explain the observed results for Ds1ð2460Þ
and Ds1ð2536Þ. For instance, D�K molecule or tetra-quark
configuration have been investigated in Refs. [11–13]. In
Ref. [14], Ds1ð2460Þ is explained as a dynamically gener-
ated state. The mixing angle has also been calculated in the
quark model [15,16] but with large uncertainties from the
quark spin-orbital interactions. In this work, we investigate
the two-state mixing propagator matrix that respects the
unitarity constraint in a chiral quark model. We will show
that the coupled channel effects via intermediate hadron
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loops can provide a simultaneous determination of the
masses, widths, and mixing angles of these two axial-
vector states. We also mention that the coupled channel
effects on the 3P1 and

1P1 mixing was recently studied in
Ref. [17], where the couplings were extracted in the 3P0

model and a subtracted dispersion relation was applied to
evaluate the hadron loops. In our approach, we use the
chiral quark model to extract the couplings and vertex form
factor. We then extend the quark model form factor to a
covariant form that can be applied on a general ground to
much broader cases.

The paper is organized as follows. In Sec. II, we give the
basic formulas of two-state mixings via coupled channel
propagators. In Sec. III, the relevant coupling form factors
are determined by the chiral quark model. In Sec. IV, the
propagator matrix is calculated in detail. Section V is
devoted to show our numerical results for the mass and
mixing parameters. The experimental constraints for the
mixing angle are presented in Sec. VI. A summary is given
in the last section. In the Appendix, the detailed definition
and calculation of a special function used in the evaluation
of the loop integrals with exponential form factors are
provided.

II. MIXING THROUGH COUPLED
CHANNEL EFFECT

We use jai and jbi to present two pure states in the quark
model. If they can couple to common final states, there will
be a transition between them via single particle irreducible
(1PI) diagrams as shown in Fig. 1.

The propagator matrix of jai and jbi can be expressed as

Gab ¼ haj
hbj

� �
Ŝðjai; jbiÞ: (1)

The physical states jAi and jBi should be a mixture of jai
and jbi,

jAi
jBi

� �
¼ cos� � sin�ei�

sin�e�i� cos�

� � jai
jbi

� �

¼ Rð�;�Þ jai
jbi

� �
; (2)

where Rð�;�Þ is the mixing matrix, � is the mixing angle,
and � is a possible relative phase between jai and jbi.
Then, the propagator matrix of jAi and jBi is

GAB ¼ RGabR
y: (3)

The physical propagator matrix GAB should be a diagonal
matrix. Thus, we can determine the mixing parameters
f�;�g by diagonalizing the propagator matrix Gab.
In the present case, we set jai ¼ j3P1i, jbi ¼ j1P1i,jAi ¼ jDs1ð2460Þi, and jBi ¼ jDs1ð2536Þi as in Ref. [8].

The mixing scheme is

jDs1ð2460Þi ¼ cos�j3P1i � sin�ei�j1P1i;
jDs1ð2536Þi ¼ sin�e�i�j3P1i þ cos�j1P1i;

(4)

where states j3P1i and j1P1i can be rotated to the eigen-
states in the heavy quark limit:

j3P1i
j1P1i

 !
¼

ffiffi
2
3

q ffiffi
1
3

q
�

ffiffi
1
3

q ffiffi
2
3

q
0
B@

1
CA

�����j ¼ 1
2

E
�����j ¼ 3

2

E
0
B@

1
CA: (5)

The mixing angle � defined in Eq. (4) can be related to �0
defined in j ¼ 1=2 and j ¼ 3=2 bases:

� ¼ �0 þ 35:26�: (6)

Considering parity conservation, the important inter-
mediate states that can couple to Ds1ð2460Þ and
Ds1ð2536Þ are D�K, D�

s�, and DK�, of which the thresh-
olds are listed in Table I.
If all the particles involved are scalars or pseudoscalars,

Fig. 1 will only represent sums of infinite geometric series
and the resulting propagator matrix G becomes [10]

Gab ¼ 1

DaDb �D2
ab

Db Dab

Dba Da

� �
; (7)

FIG. 1. Transition through intermediate states.

TABLE I. The thresholds of intermediate states for Ds1ð2460Þ
and Ds1ð2536Þ.
Intermediate states D�0Kþ D�þK0 D�

s� D0K�þ DþK�0

Threshold (GeV) 2.501 2.508 2.660 2.756 2.761
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where Da and Db are the denominators of the single
propagators of jai and jbi, respectively, and the mixing
term Dab is the sum of all 1PI diagrams, which satisfies
Dba ¼ Dab. But, from Table I, we find that the particles
involved in the present case can be scalars, vectors, or axial
vectors. There are five diagrams for the mixing of
Ds1ð2460Þ and Ds1ð2536Þ as shown in Fig. 2.

The mixing term can be generally divided into trans-
verse and longitudinal terms:

D��
ab � �abP

�� þ BabQ
��; (8)

where P�� � g�� � p�p�=p2 and Q�� � p�p�=p2 are
the transverse and longitudinal projector, respectively, and
satisfy

P��P�
� ¼ P��; Q��Q�

� ¼ Q��; P��Q�
� ¼ 0:

(9)

Next, we concentrate on the evaluation of the propagator
matrix G�� for axial-vector states. The numerator of the
vector propagator is g�� � p�p�=m2 and can be generally
expressed as P�� þ �Q�� where � ¼ 1� p2=m2. With

the properties of Eq. (9), the geometric sums, e.g., hajŜjbi
in Fig. 1, can be taken for the transverse and longitudinal
terms independently. After including the self-energy func-
tions ���

a and ���
b , the complete propagator matrix for

the 13P1 and 11P1 states becomes

G
��
ab ¼ iP��

�GabðsÞ
det �GabðsÞ

þ iQ�� GL
ab

detGL
ab

; (10)

with

�GabðsÞ � M2
ab � �abs

¼ m2
b þ�bðsÞ � s ��abðsÞ
��abðsÞ m2

a þ�aðsÞ � s

� �
; (11)

and

GL
abðsÞ ¼

m2
b
�s

�b
þ BbðsÞ �BabðsÞ

�BabðsÞ m2
a�s
�a

þ BaðsÞ

0
@

1
A; (12)

where M2
ab is the mass matrix. After diagonalization, the

mass matrix becomes

M2
AB ¼ RM2

abR
y ¼ m2

B 0
0 m2

A

� �
: (13)

Note that the longitudinal term GL
ab= detG

L
ab is nonvanish-

ing, but the poles are only related to the transverse
term �Gab.
By searching for the poles in the propagator matrix

G��ðsÞ, which is equivalent to set det �GðsÞ ¼ 0, we can
obtain the masses and widths of the physical states. In
general, there are two solutions sA and sB for the two-state
system. We can also extract the mixing angle �A;B and the

relative phase angle �A;B. These mixing parameters are

different for these two states, since they are extracted at the
physical masses of these two states, respectively. If G is a
normal matrix, which means GGy ¼ GyG, then it can be
diagonalized through a unitary transformation R. The re-
sulting mixing angle � and relative phase � can thus be
uniquely determined. Otherwise, we can only get a quasi-
diagonalized matrix through the unitary transformation R.
The reason is because that orthogonality cannot be satisfied
between these two physical states.

III. COUPLING FORM FACTORS IN
THE CHIRAL QUARK MODEL

At hadronic level, all the vertices in Fig. 2 involve the
axial-vector-pseudoscalar (AVP) type of coupling. In gen-
eral, the AVP coupling vertex contains two coupling con-
stants gS and gD representing the S and D waves as shown
in Fig. 3.
Since the decay momentum is small near the threshold,

we expect that contributions from the D-wave coupling
would be small. As a reasonable approximation, we omit
gD and keep gS to the order Oðv0Þ. In the multipole
approach, the helicity amplitude for 1þ ! 1� þ 0� takes
the form [18]

A� ¼ hSf; �; 0; 0jŜjSi; �i
¼ X

L

hL; 0; Sf;�jSi; �iYL0ðq̂ÞGL; (14)

where GL is the coupling constant for the L wave and q̂ is
the momentum direction of the final state particle in the
center-of-mass frame of the initial state. In the present
case, Eq. (14) becomes

A0

A1

� �
¼

1
2
ffiffiffi
�

p � 1ffiffiffiffiffi
2�

p
1

2
ffiffiffi
�

p 1
2
ffiffiffiffiffi
2�

p

" #
GS

GD

� �
: (15)

FIG. 2. Mixing term for Ds1ð2460Þ and Ds1ð2536Þ. FIG. 3. The AVP vertex via the S and D wave couplings.
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In order to obtain gS to the order Oðv0Þ, we set
gS ¼ A0ð ~q ! 0Þ ¼ A1ð ~q ! 0Þ: (16)

A. Coupling to D�K and D�
s�

One notices that at all the coupling vertices the interact-
ing quarks involve only light quark, i.e., u, d, and s. By
treating the light mesons, pseudoscalar, and vector mesons,
as induced fields by a chiral Lagrangian for the mesons
coupling to constituent quarks [19], the light and heavy
quark degrees of freedom can be separated out in terms of
nonrelativistic expansions near the decay threshold. This
approach has been successfully applied to light meson
productions in photo-nucleon and meson-nucleon scatter-
ings [20–26] and strong decays of heavy-light mesons
[27,28] recently.

In the chiral quark model, we treat the pseudoscalar
mesons K and � as the effective chiral fields as shown in
Fig. 4(a). For emitting a pseudoscalar from an active quark
line, the quark-meson coupling and corresponding non-
relativistic form are, respectively, as follows [27]:

Hm ¼ X
j

1

fm
Îj �c j	

j
�	

j
5c j@

��m; (17)

Hnr
m ¼ X

j

1

fm
fG�j � qþ h�j � pi0

j gÎj expð�iq � rjÞ; (18)

with

G � �
�
1þ !

Ef þMf

�
; h � !

2�q

; (19)

where fm is the decay constant of the pseudoscalar meson,

Îj the isospin operator, ! the energy of the pseudoscalar,

Mf and Ef the mass and energy of the final state heavy

meson, �q a reduced mass given by 1=�q � 1=mj þ
1=m0

j, p
i0
j and rj the internal momentum and coordinate

for the light (jth) quark of the final state heavy meson.
Following the procedure in [27], we derive the helicity

amplitude Aq
� � hSf; �jĤmjSi; �i in the quark level. For

13P1 ! 13S1 þ P, the explicit expressions are

Aq
0 ¼ ig1h
 exp

�
� q21
4
2

�
;

Aq
1 ¼ i

g1
4


½2Gqq1 þ hð4
2 � q21Þ� exp
�
� q21
4
2

�
;

(20)

and for 11P1 ! 13S1 þ P, we have

Aq
0 ¼ �i

g1

2
ffiffiffi
2

p


½2Gqq1 þ hð2
2 � q21Þ� exp

�
� q21

4
2

�
;

Aq
1 ¼ � iffiffiffi

2
p g1h
 exp

�
� q21

4
2

�
; (21)

where g1 ¼ hMfjÎ1jMii is the isospin factor, 
 the har-

monic oscillator strength 
 � �ð2m2=ðm1 þm2ÞÞ1=4 as in
Ref. [27], and q1 � qm2=ðm1 þm2Þ. In the c�s system, the
1st quark is �s and the 2nd is c quark, and the flavor
symmetry between the heavy and light quark is apparently
broken.
By taking equivalence between the quark and hadron

level helicity amplitudes, we can extract the coupling form
factor as follows:

A� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEi þMiÞðEf þMfÞ

q
Aq
�: (22)

Then, from Eqs. (16), (20), and (21), we finally obtain:

for 13P1;

gS ¼ � �

fm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MiðEf þMfÞ

q
� g1h
 exp

�
� q21
4
2

�
;

(23)

for 11P1;

gS ¼ �

fm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MiðEf þMfÞ

q
� 1ffiffiffi

2
p g1h
 exp

�
� q21

4
2

�
;

(24)

where � is a global parameter accounting for the strength
of the quark-meson couplings as introduced in [27].

B. Coupling to DK�

In this coupling, the vector meson K� is treated as an
effective chiral field, for which the effective quark-vector-
meson coupling Lagrangian and the corresponding non-
relativistic coupling form [22,29] are

Ĥ v ¼ X
j

a �c j	
j
��

�
v c j; (25)

ĤT
v ¼ X

j

�
�pi0

j � ��
2�q

þ i�j � q

� ��
�

1

2mj

þ 1

Ef þMf

� m0
j

2M0mj

��
aÎj expð�iq � rjÞ;

(26)

Ĥ L
v ¼ X

j

��
q

�

�
1� !

2mj

�
þ q!

2M0�
þ q!m0

j

2M0�mj

�

� !

2��q

pi0
j � q̂

�
aÎj expð�iq � rjÞ; (27)

where �, !, and � are the mass, energy, and polarization
vector of the emitted vector meson, M0 the sum of the

FIG. 4. Pseudoscalar (a) and vector meson (b) emission via an
active light quark j in an effective chiral quark model.
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constituent quark mass of the final meson, a the overall
quark-vector-meson coupling, and other symbols have the
same meaning as those in Eqs. (17)–(19). Using the above
operators, we can extract the helicity amplitudes Aq

�, i.e.,
for 13P1 ! 11S0 þ V,

Aq
1 ¼ � i

2
ffiffiffi
2

p ag1B
q1



exp

�
� q21

4
2

�
; Aq

0 ¼ 0; (28)

and for 11P1 ! 11S0 þ V,

Aq
1 ¼ iag1A
 exp

�
� q21

4
2

�
;

Aq
0 ¼

iffiffiffi
2

p ag1

�
�C

q1



þD


�
q21
2
2

� 1

�� (29)

with

A � � 1

2
ffiffiffi
2

p
�q

; (30)

B � � ffiffiffi
2

p
q

�
1

2mj

þ 1

Ef þMf

� m0
j

2M0mj

�
; (31)

C � �
�
q

�

�
1� !

2mj

�
þ q!

2M0�
þ q!m0

j

2M0�mj

�
; (32)

D � !

2��q

: (33)

Substituting Eqs. (28) and (29) into Eqs. (16) and (22), we
obtain

for 13P1; gS ¼ 0; (34)

for 11P1;

gS ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEi þMiÞðEf þmfÞ

q
� 1ffiffiffi

2
p ag1




�q

exp

�
� q21
4
2

�
:

(35)

The coupling gS ¼ 0 in Eq. (34) is because Aq
1 in Eq. (28)

is proportional to q1. Thus, the effective coupling vanishes
below the open decay threshold. As a consequence, the
contributions from parts (4) and (5) of Fig. 2 should vanish
to the orderOðv0Þ. Therefore, we only need to consider the
contributions from parts (1)–(3) of Fig. 2 in the following
calculations.

C. Numerical results for couplings

In the numerical calculation, we set j ~qj ¼ 0 when the
initial state lies below the threshold for VP final state [29].
We adopt � ¼ 1ffiffi

3
p ðu �uþ d �d� s�sÞ in the �� �0 mixing

scheme that corresponds to �P ¼ � arcsinð1=3Þ ¼
�19:47� for the flavor octet and singlet mixing. Since
the contribution from the D�

s� loop is small, the

uncertainties with �P have only negligible effects on the
mixing matrix. We obtain isospin factors g1 for different
intermediate states as listed in Table II.
The following values are adopted for other parameters

[27]: � ¼ 0:557, � ¼ 0:4 GeV, fK ¼ f� ¼ 160 MeV,

and the constituent quark masses mu ¼ md ¼ 350 MeV,
ms ¼ 550 MeV, mc ¼ 1700 MeV. We note that our nu-
merical results are not sensitive tomc ¼ 1500–1700 MeV,
while the light quark masses mu ¼ md ¼ 330–350 MeV
and ms ¼ 500–550 MeV will lead to about (1–5)% uncer-
tainties with the final results.
The massesMi of the initial states 1

3P1 and 1
1P1 c�s still

have uncertainties. Fortunately, the couplings jgSj change
only 5% at most whenMi 2 ½2:460; 2:536� GeV as shown
in Fig. 5. Also, it shows that the couplings to D�0Kþ and
D�þK0 are almost the same for each state due to the isospin
symmetry. A set of typical gs couplings is listed in
Table III.
Apart from the on-shell coupling gS, the chiral quark

model also provides an exponential momentum-dependent
form factor expð�q21=4


2Þ as shown in Eqs. (23), (24),
(34), and (35). In order to keep this feature in the meson
loops, we modify the exponential form factor to a covariant
form:

TABLE II. Isospin factors g1 extracted in the quark model.

13P1=1
1P1 D�0Kþ D�þK0 D�

s�

g1 1 1 � 1ffiffi
3

p

FIG. 5 (color online). The absolute values of couplings gS as
functions of the initial meson mass Mi.

TABLE III. Vertex couplings gS at Mi ¼ 2:5 GeV.

gS (GeV) D�0Kþ D�þK0 D�
s�

13P1 �7:982 �8:052 2.040

11P1 5.644 5.694 �1:443
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exp

�
� q21
4
2

�
! exp

�
q2 �m2

�2

�
; (36)

where q� and m are the four-vector momentum and mass
of either V or P particle. Parameter � is the cutoff energy,
which can be determined by the quark model, namely, for
the D�K and D�

s� loops,

� ¼ 2
mc þms

mc

�
2mc

mc þms

�
1=4

� ¼ 1:174 GeV: (37)

The exponential form factor serves to remove the ultravio-
let divergence in the loop integrals.

IV. THE PROPAGATOR MATRIX

In this section, we will determine the propagator matrix
G. From Eqs. (23) and (24), we have

�a ¼ � ffiffiffi
2

p
�ab; �b ¼ ��ab=

ffiffiffi
2

p
: (38)

So, we only need to calculate the mixing term �ab. With
the AVP coupling form factors, we can explicitly write
down D��

ab as the following:

D
��
ab ¼ X

gagb � i
Z d4k

ð2�Þ4
expðk2�m2

v

�2 Þ expððkþpÞ2�m2
p

�2 Þ
½k2 �m2

v�½ðkþ pÞ2 �m2
p�

�
�
g�� � k�k�

m2
v

�

� X
gagbð�g�� þ B0p�p�=p2Þ � X

gagbloop;

(39)

where ga and gb are the S-wave couplings of the two
vertices, respectively. Comparing with Eq. (8), we obtain

�ab �
X

gagb�: (40)

The mixing term �ab can be decomposed into two
terms, i.e.,

�ab � �1
ab þ�2

ab; (41)

with

�1
ab �

X
gagb�

1; �2
ab �

X
gagb�

2; (42)

where �1
ab and �2

ab are contributions from the g�� and

k�k� terms of the vector propagator, respectively.
As follows, we first make an on-shell approximation to

investigate the absorptive part. Then, we investigate the
full integrals with the help of the exponential form factors.

A. On-shell approximation

Since the absorptive part of a two-point function is
independent of the form factors, the on-shell approxima-
tion will allow us to separate out the absorptive part and

then compare it with that in a full loop integral. Here, we
only consider�1, for which the loop integral of Eq. (39) in
the on-shell approximation becomes

loop 1 !on shell
g�� �i

16�2
ImB0ðs; m2

p; m
2
vÞ ¼ �1g��: (43)

The resulting mixing term �ab is a function of s. We plot
�abð

ffiffiffi
s

p Þ in Fig. 6 with the couplings listed in Table III
adopted.
In Fig. 6, two kink structures can be identified. The first

one at
ffiffiffi
s

p ¼ 2:501 GeV corresponds to the D�0Kþ thresh-
old, and the second one at

ffiffiffi
s

p ¼ 2:508 GeV to the D�þK0

threshold. This result will be compared with the absorptive
part in the full loop integrals later.

B. Full loop calculation with the exponential
form factor

In this subsection, we perform the full loop calculation
with the exponential form factor. The explicit formula for
�1 is

loop 1 ¼ i
Z d4k

ð2�Þ4
expðk2�m2

v

�2 Þ expððkþpÞ2�m2
p

�2 Þ
½k2 �m2

v�½ðkþ pÞ2 �m2
p�
g��

¼ g�� �1

16�2

Z 1

0
dxecU

�
2; 1;

b2

a
; a�

�
¼ �1g��

(44)

with

a � 2

�2
; b2 � ð1� 2xÞ2

�4
s;

c � sð2x2 � 2xþ 1Þ �m2
p �m2

v

�2
;

� � ð1� xÞm2
v þ xm2

p � xð1� xÞs:

The explicit formula for �2 is

FIG. 6 (color online). The mixing term �ab in the on-shell
approximation.
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loop2 ¼ ð�iÞ
Z d4k

ð2�Þ4
expðk2�m2

v

�2 ÞexpððkþpÞ2�m2
p

�2 Þ
½k2 �m2

v�½ðkþpÞ2 �m2
p�

k�k�

m2
v

¼ g�� 1

32�2am2
v

Z 1

0
dxecU

�
2;0;

b2

a
;a�

�
þB2p

�p�

��2g�� þB2p
�p�; (45)

where a, b, c, � are the same as those in Eq. (44). The
function Uða; b; c; zÞ is a class of special integrals that
appears in the evaluation of the loop integrals with expo-
nential form factors. The detailed definition and calcula-
tion of Uða; b; c; zÞ are provided in the Appendix.

The full loop calculation of the mixing term �abð
ffiffiffi
s

p Þ is
presented in Fig. 7 where the parameters are the same as
before. In order to see clearly the contributions from differ-
ent parts, we also give two sets of the calculated values in
Tables IV and V.

The loop calculation results help us to learn the follow-
ing points:

(i) The imaginary part of �1
ab with exponential form

factors is the same as that in the on-shell approxi-
mation. It justifies our calculation method for
Uða; b; c; zÞ as described in the Appendix.

(ii) The contribution from the term of g�� is dominant.
The open thresholds of D�0Kþ and D�þK0 cause
two kinks in both real and imaginary parts. With the

increase of
ffiffiffi
s

p
, Re�1

ab first increases until it reaches

a summit at the D�þK0 threshold. It then decreases
in a linear behavior in terms of

ffiffiffi
s

p
. In contrast,

Im�1
ab is zero below the D�0Kþ threshold and

then increases quickly when the decay thresholds
are open. One can see that below theD�0Kþ thresh-
old, the real part is the only contribution and cannot
be neglected. The imaginary part becomes signifi-
cant above 2.53 GeV.

(iii) The calculation also shows that the contributions
from the k�k� term of the vector propagator are
negligible. Near the threshold, the momentum is
small such that �2

ab suffers an Oð1=m2
vÞ suppres-

sion comparing to �1
ab in both the absorptive and

dispersive part.
(iv) The contributions from the D�K loops are found

dominant, while the contributions from D�
s� ac-

count for only about 1% of the mixing term due
to the rather small coupling value in the D�

s� loop.

V. POLE POSITIONS AND MIXING PARAMETERS

With the �abðsÞ determined, we can directly search for
poles for the physical states in the propagator matrix G in
Eq. (10). We adopt the following bare c �smasses,m½3P1� ¼
2:57 GeV and m½1P1� ¼ 2:53 GeV, from the Godfrey-

Isgur model [15] as input. By scanning over the energyffiffiffi
s

p
, the requirement of j det½ �GðsÞ�j ¼ 0 provides a direct

access to the pole positions as shown in Fig. 8. Two
possible poles near 2.46 GeVand 2.54 GeVare highlighted.
When varying the cutoff parameter� in Eq. (37) within the
range of ½1:174� 0:22; 1:174þ 0:22� GeV, it shows that
the higher pole is stable and the lower one changes from
2.47 GeV to 2.44 GeV. Searching for the poles on the
complex energy plane, we can pin down the masses and
widths of these two poles as listed in Table VI. It shows that
the mass of Ds1ð2460Þ changes 3.6 MeV at most with or
without the contribution from the k�k� term of the propa-
gator, while the mass of Ds1ð2536Þ changes only 0.1 MeV.
The extracted mass of Ds1ð2460Þ is only 5 MeV below the
experiment value, and the mass of Ds1ð2536Þ is only
10 MeV above the experiment one. In principle, the
Okubo-Zweig-Iizuka rule allowed hadronic decay width
of Ds1ð2460Þ is zero. The obtained width 2.0 MeV for
Ds1ð2536Þ seems to be slightly larger than the experiment
value 0.92 MeV, but can still be regarded as in good
agreement. In brief, our prediction for the masses and

FIG. 7 (color online). The mixing term �ab with exponential
form factors. �1

ab and �2
ab are the contributions from the g��

term and k�k� term of the vector propagator, respectively. The
dashed lines represent the dispersive parts, while the dash-dotted
lines represent the absorptive ones.

TABLE IV. The mixing term �ab at the pole position
ffiffiffi
s

p ¼ 2:4545 GeV.

Intermediate state D�0Kþ D�þK0 D�
s� �ab ¼ P

gagb� (GeV2)

gagb (GeV2) �45:05 �53:90 �2:944 � � �
�1 (on-shell) 0 0 0 0

�1 �2:391� 10�3 �2:253� 10�3 �0:868� 10�3 0.2317

�2 5:650� 10�5 5:448� 10�5 2:503� 10�5 �0:0056
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widths of these two states agrees well with the experiment
data.

Before extracting the mixing parameters, we show that
our formalisms can reproduce the ideal mixing angle �0 in
the heavy quark limit. In this limit, ma and mb are degen-
erate. From Eqs. (11) and (38), we only need to diagonalize
the simple matrix

� 1ffiffi
2

p �1

�1 � ffiffiffi
2

p
 !

; (46)

which immediately leads to �0 ¼ arctan½1= ffiffiffi
2

p � ¼ 35:26�.

Now, we proceed to the extraction of the mixing
parameters f�;�g by diagonalizing �GðsÞ with

ffiffiffi
s

p
fixed

at the poles. When �G is a complex matrix, we try to
approach the diagonal limit R �GabR

y ¼ �GAB in three
ways: method I, set �GAB

12 ¼0; method II, set �GAB
21 ¼0;

and method III, minimize j �GAB
12 j þ j �GAB

21 j. The results

from these three diagonalization schemes are listed in
Table VII. As we expected before, the mixing angles of
these two states determined at their pole masses are
indeed different. For Ds1ð2460Þ, �G is a symmetric real
matrix. So, the mixing parameters are the same in these
three methods: � ¼ 47:6�, � ¼ 0�. From the mixing
scheme in Eq. (4), � > 45� means that the 1P1 compo-

nent is larger than the 3P1 in Ds1ð2460Þ. This mixing

pattern would affect the mass shift as we will show
later. The result corresponds to �0 ¼ 12:3� in the j ¼
1=2 and j ¼ 3=2 mixing in the heavy quark limit. For
Ds1ð2536Þ, �G is a complex matrix. The mixing angle
� ¼ 39:7� determined at the Ds1ð2536Þ mass changes
little in those three methods, while the relative phase
suffers an uncertainty of � ¼ �6:9� � 6:9�. We will
show later in Sec. VI that the mixing angle � ¼ 39:7�
is consistent with the experimental constraints and can
be useful for picking up one of those two solutions
from the experimental fit. Again from the mixing
scheme, � < 45� means that the 1P1 component is

larger than the 3P1 one in Ds1ð2536Þ. The result corre-

sponds to �0 ¼ 4:4� in the j ¼ 1=2 and j ¼ 3=2 mixing
bases. The energy dependence of the mixing angle
reflects the breaking of orthogonality among these two
physical states.
From the mixing angle analysis, we also learn that the

Ds1ð2460Þ has a larger j ¼ 1=2 component that couples to
the D�K through an S wave. It hence acquires a significant
mass shift �100 MeV through meson loop corrections. In
contrast, the Ds1ð2536Þ contains a larger j ¼ 3=2 compo-
nent that couples to the D�K through a D wave. It only
gains a small mass shift �10 MeV.

TABLE V. The mixing term �ab at the pole position
ffiffiffi
s

p ¼ ð2:5449� 0:0010iÞ GeV.
Intermediate state D�0Kþ D�þK0 D�

s� �ab ¼ P
gagb� (GeV2)

gagb (GeV2) �45:05 �53:90 �2:944 � � �
�1 (on-shell) �2:969i� 10�3 �2:718i� 10�3 0 0:2803i
�1 ð�4:157� 2:969iÞ � 10�3 ð�4:260� 2:718iÞ � 10�3 �1:389� 10�3 0:4210þ 0:2803i
�2 ð9:419þ 0:886iÞ � 10�5 ð9:059þ 0:678iÞ � 10�5 3:560� 10�5 �0:0092� 0:0008i

FIG. 8 (color online). Pole structures highlighted by the zero
values of det½ �G� in the propagator matrix.

TABLE VI. Masses and widths obtained from the pole
analysis.

½m� i �2� (MeV) Ds1ð2460Þ Ds1ð2536Þ
�1

ab 2454.5 2544:9� 1:0i
�1

ab þ�2
ab 2455.8 2544:9� 1:1i

Experiment 2459.5 2535:08� 0:46i

TABLE VII. The mixing angle � and relative phase � extracted at the two poles in those three
diagonalization schemes.

f�;�g½�� Ds1ð2460Þ Ds1ð2536Þ
I II III I II III

�1
ab f47:5; 0g f47:5; 0g f47:5; 0g f39:7;�6:4g f39:7; 6:4g f39:7; 0g

�1
ab þ�2

ab f47:6; 0g f47:6; 0g f47:6; 0g f39:8;�6:5g f39:8; 6:5g f39:7; 0g
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The mass-shift procedure is also an interesting issue
and can help us to understand why Ds1ð2460Þ has a
larger 1P1 component. As shown in Fig. 9 and

Table VIII, we can decompose the mass-shift procedure
into two classes, i.e., diagonal shift and off-diagonal
shift. The diagonal elements �a and �b cause both
3P1 and 1P1 states to move downward, while the off-

diagonal elements �ab make one state to shift up and
the other to shift down. At

ffiffiffi
s

p ¼ 2:46 GeV, after the
diagonal shift the 3P1 state is still higher than the 1P1.

But, after the off-diagonal shift, the higher mass state
moves down to become an on-shell Ds1ð2460Þ and the
lower state moves up to become a virtual Ds1ð2536Þ.
The reversal of the mass ordering results in a mixing
angle � > 45� and thus a larger 1P1 component in

Ds1ð2460Þ. At
ffiffiffi
s

p ¼ 2:54 GeV, after the diagonal shift
the 1P1 becomes higher than the 3P1. Then, after the

off-diagonal shift, the higher state becomes much higher
and the lower much lower, which causes a mixing angle
� < 45� and a larger 1P1 component in Ds1ð2536Þ. Note
that in this situation the on-shell state corresponds to
the Ds1ð2536Þ, and the Ds1ð2460Þ appear as a virtual
one.

VI. EXPERIMENTAL CONSTRAINTS ON THE
MIXING ANGLE

In this part, we come to survey the constraints for the
mixing angle � from experiments. The strong decays of
Ds1ð2536Þ have been measured with reasonable precision,
which are summarized in Table IX. Since theD�K channel
is the only allowed strong decay channel for Ds1ð2536Þ, it
is a good approximation to assume

�½Ds1ð2536Þ� 	 �ðDs1ð2536Þ ! D�KÞ; (47)

which can be estimated in the chiral quark model. The
partial width fractions R1 and R2 can also be calculated and
compared with the data.
The helicity amplitudes for 13P1 ! D�K and 11P1 !

D�K have been listed in Eqs. (20) and (21). The partial
width can be obtained by [27]

� ¼
�
�

fm

�
2 ðEf þMfÞj ~qj
4�Mið2Ji þ 1Þ

X
�

jAq
�j2; (48)

where Ji is the spin of the initial particle. In order to
calculate R2, we need to extract the S-wave components

from the helicity amplitudes. By defining As ¼ GS

2
ffiffiffi
�

p and

AD ¼ GD

2
ffiffiffi
�

p , we deduce from Eq. (15)

A0 ¼ AS �
ffiffiffi
2

p
AD

A1 ¼ AS þ 1ffiffi
2

p AD
) AS ¼ 1

3 ðA0 þ 2A1Þ
AD ¼ �

ffiffi
2

p
3 ðA0 � A1Þ;

(49)

where the S- andD-wave components have been separated
out. We use the same model parameters as before to
calculate the partial width �½Ds1ð2536Þ� and ratios R1

and R2 in terms of the mixing angle �. The results are
shown in Figs. 10–13.
A similar result as Fig. 10 for �½Ds1ð2536Þ� in terms of �

has been given in Ref. [27] but with the notation � ! �þ
90�. Those three horizontal lines in Figs. 10–12 represent
the upper limits, center values, and lower limits of the
experimental data. The interesting feature arising from
the results of Figs. 10–12 is that the overlaps between the
experimental data and theoretical values are separated into
two narrow bands of � that are located symmetric to
the ideal mixing angle �0 ¼ 35:26�, i.e., �1 ’ 32:1� or
�2 ’ 38:4�. An alternative way to present the results is
via Fig. 13, where the overlapped � values are denoted

FIG. 9 (color online). Schematic plot for the mass-shift pro-
cedure. The thin solid bars represent the original 3P1 and 1P1

states in the quark model. The thick solid bars represent the two
physical states Ds1ð2460Þ (left) and Ds1ð2536Þ (right). The solid
arrows represent the mass shifts due to the diagonal elements�a

and �b, while the dashed arrows represent those due to the off-
diagonal element �ab. The threshold for D�K is shown by the
horizontal dashed line.

TABLE VIII. Mass-shift procedure at different
ffiffiffi
s

p
. From

ffiffiffiffiffiffiffiffiffi
M2

ab

q
, we can see the mass shifts due to �a and �b, while from

ffiffiffiffiffiffiffiffiffiffi
M2

AB

q
,

further mass shifts due to �ab can be learned. Here, we only present the results from the quasidiagonalization method II.ffiffiffi
s

p
GeV bare mass (GeV)

ffiffiffiffiffiffiffiffiffi
M2

ab

q
(GeV)

ffiffiffiffiffiffiffiffiffiffi
M2

AB

q
(GeV)

2.4545 GeV
2:497 0:481i
0:481i 2:505

� �
2:548 0
0 2:455

� �

2.5449 GeV
2:53 0
0 2:57

� �
2:471� 0:040i 0:206� 0:678i
0:206� 0:678i 2:454� 0:080i

� �
2:545� 0:001i 0:141þ 0:303i

0 2:379� 0:123i

� �
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by the vertical dashed lines, while the experimental ob-
servables with errors are presented in terms of �. Notice
that these two bands of � are both smaller than 45�.
Therefore, based on the present experimental measure-
ments, one cannot determine which value for � should be
taken. It turns out that our analysis in Sec. V can precisely
pick up one of these two solutions, namely, �2 ’ 38:4� is

favored in comparison with the theoretical value
� ¼ 39:7�.

VII. SUMMARY

In summary, we have studied the mixing mechanism for
the axial-vector states Ds1ð2460Þ and Ds1ð2536Þ via the
S-wave intermediate meson loops. We establish the propa-
gator matrix for this two-state system. Then, by searching
for the pole structures in the propagator matrix, we can pin
down the masses and widths of the physical states. The
mixing angle and relative phase between the 3P1 and

1P1

components can be determined by diagonalizing the propa-
gator matrix. For Ds1ð2460Þ, we obtain m ¼ 2454:5 MeV,
� ¼ 47:5�, and � ¼ 0�. For Ds1ð2536Þ, we find m ¼
2544:9� 1:0i MeV, � ¼ 39:7�, and � ¼ �6:9� � 6:9�.
Our results agree well with the experimental measurement.
In particular, the new BABAR measurement put a strong
constraint on the mixing angle at the mass of Ds1ð2536Þ
with two solutions, �1 ’ 32:1� and �2 ’ 38:4�. Our theo-
retical calculation finds � ¼ 39:7�, which is in good agree-
ment with �2.
Note that due to the breaking of orthogonality the

energy-dependent mixing angles defined at the different
physical masses turn out to have different values. We find
that both Ds1ð2460Þ and Ds1ð2536Þ have a relatively large
1P1 component in their wave functions.
It is also interesting to learn the important role played by

the coupled channel effects for states near open thresholds.
For states that can couple to each other via the coupled

TABLE IX. The available experimental status of Ds1ð2536Þ.
m ¼ 2535:08
 0:01
 0:15 MeV, � ¼ 0:92
 0:03
 0:04 MeV (BABAR [30])

R1 ¼ �ðD�ð2007Þ0KþÞ
�ðD�ð2010ÞþK0Þ ¼ 1:36
 0:20 (PDG2010 [1])

R2 ¼ �ðD�ð2010ÞþK0ÞS-wave
�ðD�ð2010ÞþK0Þ ¼ 0:72
 0:05
 0:01 (Belle [31])

FIG. 13 (color online). The experimental constraints on the
mixing angle �.

FIG. 10 (color online). �½Ds1ð2536Þ� as a function of �.

FIG. 12 (color online). R2 as a function of �.

FIG. 11 (color online). R1 as a function of �.
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channels, the two-state propagator matrix carries rich in-
formation about the mixing and mass shifts as a manifes-
tation of the underlying dynamics. Extension of such a
study to other axial-vector meson mixings would be useful
for deepening our understanding of the coupled channel
effects and their impact on the hadron spectrum.
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APPENDIX: CALCULATION OF FUNCTION
Uða; b; c; zÞ

Initially, we define

Uða; b; c; zÞ ¼ 1

�ðaÞ
Z 1

0
dtta�1ð1þ tÞb�a�1

� exp

�
�zt� c

1þ t

�
; (A1)

which is the typical integral we encounter in the calcula-
tion. A special case, Uða; b; c ¼ 0; zÞ ¼ Uða; b; zÞ, is the
Tricomi confluent hypergeometric function, which is a
built-in function in MATHEMATICA. The function
Uða; b; zÞ is a single-valued function on the z plane cut
along the interval ð�1; 0�, where it is continuous from
above, i.e.,

when z < 0; Uða; b; zÞ ¼ lim
�!0þ

Uða; b; zþ i�Þ:
(A2)

Function Uða; b; c; zÞ as a physical quantity should be
analytic with respect to its arguments. However, the inte-
gral in Eq. (A1) only converges when ReðzÞ> 0 and
ReðaÞ> 0. In order to analytically continue the integral
to ReðzÞ< 0, we make a change in variables zt ¼ xðz > 0Þ.
Hence, Eq. (A1) becomes

Uða; b; c; zÞ ¼ z1�b

�ðaÞ
Z 1

0
dxxa�1ðxþ zÞb�a�1

� exp

�
�x� cz

xþ z

�
: (A3)

In the region ReðzÞ> 0, Eqs. (A1) and (A3) are exactly
equivalent to each other when ReðbÞ< 2. The difference
between them can be expressed by the integral over CR in
Fig. 14(a).

FIG. 14. The continuation of Uða; b; c; zÞ.

FIG. 15 (color online). Test the accuracy and precision of the analytic continuation of Uða; b; c; zÞ.
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When ReðbÞ< 2, the contribution from CR is zero.
Comparing with Eq. (A1), the integral in Eq. (A3) has
larger convergent region, i.e., the whole complex z plane
except z < 0. When z < 0, there is a singular point at x ¼
�z in the integral path as shown in Fig. 14(b). Considering
Eq. (A2),Uða; b; c; zÞmust satisfy a similar requirement. It
means that the integral path C1 in Fig. 14(b) should be
replaced by the integral path C2. Using the expression in
Eq. (A3) and the replacement in Fig. 14(b), we can analyti-
cally continue the integral in Eq. (A1) to the whole z plane.

The constraints of the above method are ReðaÞ> 0 and
ReðbÞ< 2, which could satisfy our present need.
To test this method, we compare the results forUða; b; zÞ

in Fig. 15 using our method and the built-in MATHEMATICA

program. It shows that these two calculations are in good
agreement with each other. This test is done at c ¼ 0. Since
c in Eq. (A3) does not bring either new divergence prob-
lems or new singular points, we can justify that our analytic
continuation of Uða; b; c; zÞ is quite reliable and generally
applicable.
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