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A key problem in making precise perturbative QCD predictions is to set the proper renormalization

scale of the running coupling. The extended renormalization group equations, which express the

invariance of the physical observables under both the renormalization scale- and scheme-parameter

transformations, provide a convenient way for estimating the scale- and scheme-dependence of the

physical process. In this paper, we present a solution for the scale equation of the extended renormal-

ization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/

Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all nonconformal f�ig terms in the perturbative

expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are

independent of the renormalization scheme. The PMC/BLM scales can be fixed order-by-order. As a

useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales

up to next-to-next-to-leading order. An explicit application for determining the scale setting of Reþe�ðQÞ
up to four loops is presented. By using the world average �MS

s ðMZÞ ¼ 0:1184� 0:0007, we obtain the

asymptotic scale for the ’t Hooft scheme associated with the MS scheme, �0tH
MS

¼ 245þ9
�10 MeV, and the

asymptotic scale for the conventional MS scheme, �MS ¼ 213þ19
�8 MeV.
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I. INTRODUCTION

All physical predictions in QCD should, in principle, be
invariant under any choice of renormalization scale and
scheme. However, at any finite order, the use of different
scales and schemes may lead to different theoretical pre-
dictions. The optimal procedure for obtaining precise QCD
predictions is to choose the renormalization scale so that
the result is scheme-independent at any fixed order in �s.
The result of a scale-setting strategy should satisfy several
self-consistent conditions: the existence and uniqueness
of the scale, reflexivity, symmetry, and transitivity [1].
Moreover, perturbative QCD becomes an Abelian theory
as Nc ! 0, so QCD scale setting must agree with that of
QED in this limit [2]. We shall show that the Brodsky-
Lepage-Mackenzie method (BLM) [3] and the principle of
maximum conformality (PMC) [4] provide a solution to
this problem.1

The main idea of PMC/BLM is that after proper proce-
dures, all nonconformal f�ig terms in the perturbative
expansion are summed into the running coupling so that
the remaining terms in the perturbative series are identical
to that of a conformal theory, i.e., the corresponding theory
with f�ig ¼ f0g. The QCD predictions from PMC/BLM
are then independent of the renormalization scheme. It has
been found that PMC/BLM satisfies all self-consistent

conditions [1]. After PMC/BLM scale setting, the diver-
gent ‘‘renormalon’’ series (n!�n

i �
n
s ) does not appear in the

conformal series; thus, as in QED, the scale can be un-
ambiguously set by PMC/BLM.
One can use PMC/BLM to relate perturbative calculable

observables in QCD, i.e. to derive commensurate scale
relations among different observables [5,6]. Moreover,
from the requirement of scheme independence, one can
determine the displacements among the PMC/BLM scales
that are derived under different schemes or conventions.
We shall show how to fix the PMC/BLM scales order-by-
order. The method for setting the leading-order (LO) and
the next-to-leading order (NLO) PMC/BLM scales has
been suggested in the literature [3–5]. In view of the recent
improvements on perturbative QCD loop-calculations and
the need to improve the theoretical predictions to confront
more accurate experimental data, it is important to provide
a systematic and scheme-independent treatment of
PMC/BLM up to next-to-next-to-leading order (NNLO).
We shall utilize a generalization of the conventional

renormalization group (RG) analysis—extended RG
equations which express the invariance of physical observ-
ables under both the renormalization scale- and scheme-
parameter transformations [7,8]. In this approach, a
universal coupling function which covers all possible
choices of scale and scheme is introduced, whose corre-
sponding perturbative series serves as an intermediate
device for identifying the scale and scheme parameters.
It can be treated as a transparent solution to the scale-
scheme ambiguity problem. A useful advantage is that the
scheme dependence can be reliably estimated through the
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scheme equations. This approach also provides a platform
for a reliable scheme-error analysis and gives a precise
definition for the asymptotic scale under a possible renor-
malization scheme R, i.e. the scale for the ’t Hooft scheme
associated with the R scheme �0tH

R [8]. We shall present a
general solution for the extended RG equation and give
relations between the universal coupling function and the
conventional adopted coupling function.

The remaining parts of the paper are organized as fol-
lows: in Sec. II, we give the extended RG equations and
provide their solution up to four loops. In Sec. III, we
present a systematic procedure for setting the PMC/BLM
scales up to NNLO. Discussions and an explicit application
are also presented in Sec. III. Sec. IV provides a summary.

II. EXTENDED RENORMALIZATION
GROUP EQUATIONS

Conventionally, the scale dependence of an ordinary
coupling constant is controlled by the RG equation or the
� function:

�Rð�R
s Þ ¼ d

d ln�2

�
�R
s ð�Þ
4�

�
¼ �X1

i¼0

�R
i

�
�R
s ð�Þ
4�

�
iþ2

; (1)

where R stands for an arbitrary renormalization scheme.
Various terms in �R

0 ; �
R
1 ; . . . , correspond to one-loop and

two-loop . . . contributions, respectively. In general, the
f�R

i g are scheme-dependent and depend on the quark
mass (mf) through the variable m2

f=�
2. According to the

decoupling theorem, the quark with mass mf � � can be

ignored, and we can often neglectmf terms whenmf � �.

Then, for every renormalization scale �, we can divide
the quarks into active ones with mf ¼ 0 and inactive ones

that can be ignored. Within this framework, it is well-
known that the first two coefficients �R

0;1 are universal, i.e.

�R
0 � 11� 2nf=3 and �R

1 � 102� 38nf=3 for nf active

flavors. Hereafter, we simply write them as �0 and �1.

Under the MS scheme, f�MS
i gi�2 up to four loops can be

found in the literature [9].
It will be convenient to use the first two universal

coefficients �0 and �1 to rescale the coupling constant
and the scale parameter ln�2 in Eq. (1). That is, by rescal-
ing the coupling constant as

aR ¼ �1

4��0

�R
s

and the scale parameter as

� ¼ �2
0

�1

ln�2;

one can express the RG equation (1) into the following
simpler canonical form:

daR

d�
¼ �ðaRÞ2½1þ aR þ cR2 ðaRÞ2 þ cR3 ðaRÞ3 þ . . .�; (2)

where cRi ¼ �R
i �

i�1
0 =�i

1 for i ¼ 2; 3; . . . .

As an extension of the ordinary coupling constant, one
can define a universal coupling constant að�; fcigÞ to in-
clude the dependence on the scheme parameters fcig,
which satisfies the following extended RG equations [7,8]:

�ða; fcigÞ ¼ @a

@�
¼ �a2½1þ aþ c2a

2 þ c3a
3 þ . . .� (3)

and

�nða; fcigÞ ¼ @a

@cn
¼ ��ða; fcigÞ

Z a

0

xnþ2dx

�2ðx; fcigÞ
: (4)

The scale equation (3), similar to Eq. (2), can be used to
evolve the universal coupling function from one scale to
another. By comparing Eq. (2) with Eq. (3), there exists a
value of � ¼ �R, for which

aRð�RÞ ¼ að�R; fcRi gÞ: (5)

This shows that any coupling constant aRð�Þ can be ex-
pressed by a universal coupling constant að�; fcigÞ under
the proper correspondence. The scheme equation (4) can
be used to relate the coupling functions under different
schemes by changing fcig. It is noted that the universal
coupling function has a particularly simple form when all
the scheme parameters fcig are set to zero, i.e. the coupling
function can be written as a function of the scale in terms
of the Lambert W function [10]. This special case with
fcig � f0g is usually called the ’t Hooft scheme [11]. In
addition to simplifying the solution of the RG equations,
the ’t Hooft scheme also provides a precise definition for
the asymptotic scale (�) of QCD, as will be shown
below.2

The evolution of the universal running coupling can be
obtained by integrating Eq. (3), which can be rewritten as

�
�2

0

�1

ln
�2

�2
0

�
¼

Z að�;fcigÞ

að�0;fcigÞ
da

�ða; fcigÞ ; (6)

where �0 ¼ ð�2
0=�1Þ ln�2

0 with �0 stands for an initial

scale. Up to Oða3Þ, it leads to

L¼ Cþ 1

a
þ lnaþ ðc2 � 1Þaþ c3 � 2c2 þ 1

2
a2 þOða3Þ;

(7)

where L ¼ ð�2
0=�1Þ lnð�2=�2Þ and C is an arbitrary inte-

gration constant. � stands for the asymptotic scale,
which is scale-invariant and leads to the coupling constant
without any reference to the specific initial scale �0

2Recently, it has been found that the ’t Hooft scheme fails to
reproduce the factorized form of the MS-scheme generalization
of the generalized Crewther relation [12]. This shows that one
cannot use it for studying some special theoretical features of
gauge theories beyond the two-loop level. Additional references
and detailed discussions of the complimentary approach by
Kataev et al. may be found in Ref. [12]
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[13,14]. The value of � can be associated with the typical
hadron size, which is not predicted by the QCD theory but
must be extracted from a measurement of a strong coupling
constant at a given reference scale or a QCD measure with
mass dimensions such as the pion decay constant f�. The
values of C and � are correlated with each other. One can
find a general relation between the asymptotic parameters
under different schemes from Eq. (7), i.e. for their values
under two different schemes R and S, we have

exp

�
�1

2�2
0

CS

�
�S ¼ exp

�
�1

2�2
0

CR

�
�R; (8)

where �S and �R are asymptotic scales corresponding to
the choice of the integration constants CS and CR,
respectively.

The ’t Hooft scheme is free of higher-order corrections,
i.e. all higher-order coefficients fcig � f0g, and then its
coupling constant is given by the solution of

L0tH ¼ 1

a0tH
þ ln

�
a0tH

1þ a0tH

�
; (9)

where L0tH ¼ ð�2
0=�1Þ lnð�2=�0tH2Þ and the integration

constant C has been absorbed into the asymptotic scale
�0tH for convenience. The ’t Hooft coupling constant
presents a formal singularity at L0tH ¼ 0; i.e. a0tH �
að0; f0gÞ ¼ 1. Inversely, it can provide a precise definition
for the asymptotic scale; i.e. the ’t Hooft scale �0tH, which
is defined to be the pole of the coupling function in the
’t Hooft scheme, a0tH � að�2

0=�1 lnð�2=�0tH2Þ; f0gÞ. Since

the absorbed integration constant C is arbitrary, the value of
�0tH is not unique, and there are an infinite number of
’t Hooft schemes, differing only by the value of �0tH.
However, under a specific renormalization scheme (the R
scheme), its asymptotic scale can be fixed to be the ’t Hooft
scale associated with the R scheme �0tH

R [8], which enters
into both aRð�Þ ¼ að�2

0=�1 lnð�2=�0tH2
R Þ; fcRi gÞ and

a0tHð�Þ ¼ að�2
0=�1 lnð�2=�0tH2

R Þ; f0gÞ. Here, the word

‘‘associated’’ means we are choosing the particular
’t Hooft scheme that shares the same ’t Hooft scale with
the R scheme. In practice, one can obtain a relation be-
tween �0tH

R and the asymptotic scale �R for the R scheme
by setting CS ¼ 0 in the left-hand side of Eq. (8), i.e.

�0tH
R ¼ exp

�
�1

2�2
0

CR

�
�R: (10)

As a special case, by choosing CMS ¼ ln�2
0=�1 [13,14],

we obtain

�0tH
MS

¼
�
�1

�2
0

���1=2�
2
0
�MS; (11)

which agrees with the observation presented in Ref. [8].
The present definition of �MS associated with the choice

of CMS ¼ ln�2
0=�1 is the conventional one, originally

suggested in Refs. [13,14]; there are other choices for
CMS [15–17], which can be helpful in certain cases.

Equation (7) may be solved iteratively, and the solution
to the universal coupling constant can be expanded as a
power series of 1=L; i.e. up to four loops,

a ¼ 1

L
þ 1

L2
ðC� lnLÞ þ 1

L3
½C2 þ Cþ c2 � ð2C� lnLþ 1Þ lnL� 1�

þ 1

L4

�
C
�
C2 þ 5

2
Cþ 3c2 � 2

�
� 1� c3

2
�

�
3C2 þ 5Cþ 3c2 � 2�

�
3C� lnLþ 5

2

�
lnL

�
lnL

�
þO

�
1

L5

�
: (12)

As a cross-check, one finds that the above solution agrees
with Ref. [18] after proper parameter transformations and
by identifying the integration constant C� used there to be
C� ¼ �1

�2
0

ðC� ln4�0

�1
Þ. When setting fcig ¼ f0g and C ¼ 0,

we recover the coupling constant under the ’t Hooft
scheme.

III. BLM SCALE SETTING UP TO NNLO

Generally, perturbative QCD prediction for a physical
observable � can be written as

� ¼ r0½ans ðQÞ þ ðA1 þ A2nfÞanþ1
s ðQÞ

þ ðB1 þ B2nf þ B3n
2
fÞanþ2

s ðQÞ
þ ðC1 þ C2nf þ C3n

2
f þ C4n

3
fÞanþ3

s ðQÞ þ . . .�; (13)

where asðQÞ ¼ �sðQÞ=� and the overall tree-level pa-
rameter r0 is scale-independent and is free of asðQÞ.

Here, nf stands for the quark flavor number, and nð� 1Þ
stands for the initial �s order at the tree level. After
proper scale setting, all nf terms in the perturbative

expansion can be summed into the running coupling.
Here, we shall concentrate on those processes in which
all nf terms are associated with the f�ig terms. Note that

in higher-order processes, there are nf terms coming from

the Feynman diagrams with the light-by-light-quark loops
which are irrelevant to the ultraviolet cutoff. Those nf
terms have no relation to f�ig terms [3], and they should
be identified and kept separate from the BLM scale
setting.3

3Those nf terms, coming from the light-quark loops connected
to at least four photon/gluon lines, are of higher twist and are
usually power-suppressed by the hard scales, so they can be
safely neglected in typical applications.
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The BLM scales can be determined in a general scheme-
independent way. The generalization of the BLM proce-
dure to higher order assigns a different renormalization
scale for each order in the perturbative series. We can shift
the renormalization scale Q into effective ones until we
fully absorb those higher-order terms with nf dependence

into the running coupling.4 LO and NLO BLM scale
setting have been done in the literature [3,5]. Because of
recent improvements in perturbative QCD loop calcula-
tions, it is important to provide a systematic and scheme-
independent treatment of BLM up to NNLO. The BLM
scales can be fixed order-by-order. In the following, we
show how to set the BLM scales for the observable �.

More explicitly, the first step of the BLM method is to
set the effective scale Q>� at LO:

� ¼ r0½ans ðQ�Þ þ ~A1a
nþ1
s ðQ�Þ þ ð ~B1 þ ~B2nfÞanþ2

s ðQ�Þ
þ ð ~C1 þ ~C2nf þ ~C3n

2
fÞanþ3

s ðQ�Þ þ . . .�: (14)

The second step is to set the effective scale Q�� at NLO:

� ¼ r0½ans ðQ�Þ þ ~A1a
nþ1
s ðQ��Þ þ ~~B1a

nþ2
s ðQ��Þ

þ ð~~C1 þ ~~C2nfÞanþ3
s ðQ��Þ þ . . .�: (15)

And the final step is to set the effective scale Q��� at
NNLO:

� ¼ r0½ans ðQ�Þ þ ~A1a
nþ1
s ðQ��Þ þ ~~B1a

nþ2
s ðQ���Þ

þ ~~~C1a
nþ3
s ðQ���Þ þ . . .�: (16)

The step-by-step coefficients are presented in the
Appendix. When performing the scale shifts Q ! Q�,
Q� ! Q��, and Q�� ! Q���, we eliminate the nf terms

associated with the f�ig terms completely. At the same
time, we also have to modify the coefficients, since the net
changes to the coefficients are proportional to � functions.
To set the effective scale for anþ3

s , one needs even higher-
order information, and here, a sensible choice isQ���, since
this is the renormalization scale after shifting the scales up
to NNLO. Note that the effective scales should be a per-
turbative series of as so as to absorb all nf-dependent terms

properly, and up to NNLO, three effective scales can be
written as

ln
Q�2

Q2
¼ ln

Q�2
0

Q2
þ x�0

4
ln
Q�2

0

Q2
asðQÞ

þ y

16

�
�2

0ln
2 Q

�2
0

Q2
� �1 ln

Q�2
0

Q2

�
a2sðQÞ þOða3sÞ;

(17)

ln
Q��2

Q�2 ¼ ln
Q��2

0

Q�2 þ z�0

4
ln
Q��2

0

Q�2 asðQ�Þ þOða2sÞ; (18)

ln
Q���2

Q��2 ¼ ln
Q���2

0

Q��2 þOðasÞ; (19)

where the effective scales Q�;��;���
0 are determined so as to

eliminate A2nf, ~B2nf, and
~~C2nf terms completely, the

parameters x and z are used to eliminate the B3n
2
f and

the ~C3n
2
f terms, respectively, and the parameter y is used to

eliminate the C4n
3
f term. It is found that

ln
Q�2

0

Q2
¼ 6A2

n
; (20)

ln
Q��2

0

Q�2 ¼ 6 ~B2

ðnþ 1Þ ~A1

; (21)

ln
Q���2

0

Q��2 ¼ 6~~C2

ðnþ 2Þ~~B1

; (22)

and

x ¼ 3ðnþ 1ÞA2
2 � 6nB3

nA2

; (23)

y ¼ ðnþ 1Þð2nþ 1ÞA3
2 � 6nðnþ 1ÞA2B3 þ 6n2C4

nA2
2

;

(24)

z ¼ 3ðnþ 2Þ ~B2
2 � 6ðnþ 1Þ ~A1

~C3

ðnþ 1Þ ~A1
~B2

: (25)

The coefficients Ai, Bi, Ci, etc., are renormalization-
scheme-dependent, so different renormalization schemes
lead to different BLM scales Q�;��;���; however, the final
result for � should be scheme-independent. Using this
argument, one can use the BLM scale-setting method to
relate perturbatively calculable observables; i.e. to derive
commensurate scale relations among different observables
[5]. In fact, any perturbatively-calculable physical observ-
able can be used to define an effective coupling constant by
incorporating the entire radiative correction into its defini-

tion [21]. For example, Reþe�ðQÞ � R0
eþe�ðQÞ½1þ �R

s ðQÞ
� �

defines an effective coupling constant �R
s ðQÞ, where

R0
eþe�ðQÞ stands for the Born result. Any effective coupling

constant can be used as a reference coupling constant to
define the renormalization procedure. More generally, each
effective running coupling constant or renormalization
scheme is a special case of the universal coupling function
as shown by Eq. (5).
The NLO commensurate scale relations between differ-

ent effective coupling constants can be found in Ref. [5].
Replacing the observable � by its corresponding effective

4Another way to set the BLM scale up to NNLO can be found
in Refs. [19,20], where, however, a unified effective scale Q� is
adopted for all orders.
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coupling constant and changing as to be another effective
coupling constant, starting from Eq. (13) and following the
same procedures, one can naturally obtain the commensu-
rate scale relations up to NNLO. Moreover, by using the
relations between Q�;��;��� and Q, one can find the needed
scale displacement among the effective scales which are
derived under different schemes or conventions so as to
ensure the scheme independence of the observables. For
example, from the relation between Q� and Q, one can
easily obtain the well-known one-loop relation for the

coupling constant [3], �MS
s ðe�5=3Q2Þ ¼ �GM-L

s ðQ2Þ, where
the scale displacement e�5=3 between the MS scheme and
the Gell-Mann-Low scheme [22] is a result of the conven-
tion that is chosen to define the minimal dimensional
regularization scheme [13].

A. The PMC and BLM correspondence principle

A systematic procedure for setting the PMC scale at LO
has been suggested in Ref. [4]. The main procedure is to
distinguish the nonconformal terms from the conformal
terms by the variation of the cross section with respect to
ln�2

0 (�0 stands for some initial scale of the process). At

LO, there is only one type of f�ig term (i.e. �0), and the
nonconformal terms always have the form of �0 ln�

2
0, so

one can determine the nonconformal terms exactly.
However, at higher orders, the ln�2

0 terms usually appear

in a power series as �0 ln�
2
0, �1 ln�

2
0, �

2
0ðln�2

0Þ2, etc. So
this method is no longer adaptable to deal with the higher-
order corrections because the derivative with respect to a
single ln�2

0 cannot distinguish all the emerged f�ig terms.

Some alternative should be introduced.
The purpose of the running coupling in any gauge theory

is to sum up all the terms involving the f�ig functions,
conversely, one can find all the needed f�ig terms at any
relevant order from the expansion of the running coupling
in the form of Eq. (A9). Using this fact and also the known
relation between f�ig and nf, one can obtain the PMC

scales from the BLM scale-setting method. We call this
the PMC and BLM correspondence principle. Since f�ig
(i � 2) are scheme-dependent, the PMC and BLM corre-
spondence depends on the renormalization scheme beyond
the two-loop level. It is noted that such an expansion is
different from that of Refs. [20,23], where all f�ig terms
which may contribute at the same order have been intro-
duced to deal with the Adler D function.

More explicitly, up to NNLO, the physical observable �
can be expanded in f�ig series as
� ¼ r0½ans ðQÞ þ ðA0

1 þ A0
2�0Þanþ1

s ðQÞ
þ ðB0

1 þ B0
2�1 þ B0

3�
2
0Þanþ2

s ðQÞ
þ ðC0

1 þ C0
2�2 þ C0

3�0�1 þ C0
4�

3
0Þanþ3

s ðQÞ�: (26)

The results for PMC can be naturally obtained from the
BLM scale setting through proper parameter correspon-
dence, i.e.

A1 ¼ A0
1 þ 11A0

2; (27)

A2 ¼ �2
3A

0
2; (28)

B1 ¼ B0
1 þ 102B0

2 þ 121B0
3; (29)

B2 ¼ �2
3ð19B0

2 þ 22B0
3Þ; (30)

B3 ¼ 4
9B

0
3; (31)

C1 ¼ C0
1 þ 2857

2 C0
2 þ 1122C0

3 þ 1331C0
4; (32)

C2 ¼ � 1
18ð5033C0

2 � 3732C0
3 � 4356C0

4Þ; (33)

C3 ¼ 1
54ð325C0

2 þ 456C0
3 þ 792C0

4Þ; (34)

C4 ¼ � 8
27C

0
4; (35)

which are obtained with the help of Eqs. (13) and (26) and

the four-loop f�ig terms under the MS scheme [9].

B. An application of PMC/BLM scale setting

We present an application of PMC/BLM scale setting up
to NNLO by dealing with the total hadronic cross section
in eþe� annihilation, Reþe�ðQÞ ¼ Rðeþe� ! hadronsÞ.
The explicit expression for Reþe�ðQÞ up to �4

s order under

the MS scheme can be found in Ref. [24]. One finds

Reþe�ðQÞ ¼ 3
X
q

e2q½1þ ðaMSðQÞÞ þ AðaMSðQÞÞ2

þ BðaMSðQÞÞ3 þ CðaMSðQÞÞ4�; (36)

where

A ¼ 1:9857� 0:1152nf;

B ¼ �6:63694� 1:20013nf � 0:00518n2f � 1:240�;

C ¼ �156:61þ 18:77nf � 0:7974n2f þ 0:0215n3f þ ��;

where � ¼ ðPqeqÞ2=ð3
P

qe
2
qÞ, eq is the electric charge for

the active flavors. The coefficient � is yet to be determined;
its value is small [18,25–27], and its contribution will be
further suppressed by the factor �, so we have set its value
to zero in the following numerical calculation. The values
of A, B, and C for nf ¼ 3, 4, and 5 are presented in Table I.

At the present order in �s, the nf terms which come

from the light-by-light-quark loops and are irrelevant to the
ultraviolet cutoff do not emerge, so all nf terms in the

above equation should be fully absorbed into �s. After
doing the BLM scale setting up to NNLO, we obtain
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Reþe�ðQÞ ¼ 3
X
q

e2q½1þ ðaMS
s ðQ�ÞÞ þ ~AðaMS

s ðQ��ÞÞ2

þ ~~BðaMS
s ðQ���ÞÞ3 þ ~~~CðaMS

s ðQ���ÞÞ4�; (37)

where all the coefficients and effective scales can be calcu-
lated with the help of the formulae listed in the Appendix.
The coefficients are presented in Table I; slight differences

for ~~B and
~~~C with varying nf are caused by the charge-

dependent parameter �.
From the experimental value, reþe�ð31:6 GeVÞ ¼

3
11Reþe�ð31:6 GeVÞ ¼ 1:0527� 0:0050 [28], we obtain

�0tH
MS

¼ 412þ206
�161 MeV (38)

and

�MS ¼ 359þ181
�140 MeV: (39)

With the help of the four-loop coupling constant (12), we

obtain �MS
s ðMZÞ ¼ 0:129þ0:009

�0:010. This value is somewhat

larger than the present world average �MS
s ðMZÞ ¼

0:1184� 0:0007 [29]. However, it is consistent with the

values obtained from eþe� colliders, i.e. �MS
s ðMZÞ ¼

0:13� 0:005� 0:03 by the CLEO Collaboration [30]

and �MS
s ðMZÞ ¼ 0:1224� 0:0039 from the jet shape

analysis [31]. One may observe that a smaller central value

of the world average for �MS
s ðMZÞ also results from the

measurements of � decays, � decays, the jet production in
the deep-inelastic-scattering processes, and from heavy
quarkonia based on the unquenched QCD lattice calcula-

tions [32]. A larger �MS leads to a larger �MS
s ðMZÞ,

and vice versa. If we set �MS
s ðMZÞ to the present world

average, we obtain �0tH
MS

jnf¼5 ¼ 245þ9
�10 MeV and

�MSjnf¼5 ¼ 213þ19
�8 MeV.5

It is found that after PMC/BLM scale setting, the per-
turbative expansion of Reþe�ðQ ¼ 31:6 GeVÞ becomes
more convergent. The higher-order corrections are used

to set the scales Q�, Q��, etc., respectively. In particu-
lar, we find Q� ¼ ð0:757� 0:008ÞQ which leads to

aMS
s ðQ�Þ=aMS

s ðQÞ ¼ 1:060� 0:004.
As a final remark, one can estimate the error caused by �

with the help of the scheme-dependent equation (4). Such
an analysis has been done in Ref. [8].6 It is found that even if
we set its value such that the � term has a comparable
magnitudewith thosewithout � at the fourth order, we shall
only achieve an additional 2% scheme error in addition to
the above experimental errors shown in Eqs. (38) and (39).

IV. SUMMARY

The extended renormalization group equations provide a
convenient way for estimating both the scale and scheme
dependence of the QCD predictions for a physical process.
The scheme dependence of a process can be reliably
estimated by the scheme equations for the extended renor-
malization group.
In the present paper, we have presented a general solu-

tion to the scale equation of the extended renormalization
group equations at the four-loop level. This formalism
provides a platform for a reliable error analysis and also
provides a precise definition for the asymptotic scale under
any renormalization R scheme, �0tH

R , which is defined as
the pole of the strong coupling constant in the ’t Hooft
scheme associated with the R scheme.
We have also given a systematic and renormalization-

scheme-independent method for setting the PMC/BLM
scales up to NNLO. The PMC provides the principle
underlying BLM scale setting; the two methods are equiva-
lent to each other through the PMC and BLM correspon-
dence principle. The scales can be set unambiguously by
PMC/BLM, which allows us to set the renormalization
scale at any required orders to obtain a scheme-
independent result. Such a scheme-independence can be
adopted to derive commensurate scale relations among
different observables and to find the displacements among
the effective PMC/BLM scales which are derived under
different schemes or conventions.
The elimination of the renormalization scale ambiguity

and the scheme dependence using PMC/BLMwill not only
increase the precision of QCD tests, but it will also increase
the sensitivity of the collider experiments to new physics
beyond the standard model.
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TABLE I. Coefficients for the perturbative expansion of
Reþe�ðQÞ before and after BLM scale setting.

nf ¼ 3 nf ¼ 4 nf ¼ 5

A 1.6401 1.5249 1.4097

B �10:2840 �11:6857 �12:8047
C �106:8960 �92:9124þ 2�=15 �80:0075þ �=33

~A 0.0849 0.0849 0.0849
~~B �23:2269 �23:3923 �23:2645
~~~C 82.3440 82:3440þ 2�=15 82:3440þ �=33

5Ref. [32] obtained a slightly different value of �MSjnf¼5 ¼
215� 9 MeV. However, it is obtained by taking a wrong sign of
ð�3=2�0Þ in the four-loop terms, which should be negative rather
than positive.

6Note there is a typo in Eq. (48) of Ref. [8], which should be
changed to, a0 ¼ aþ=ð1þ 3

2 c
R
3a

3þÞ1=3.
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APPENDIX A: COEFFICIENTS FOR THE BLM
SCALE SETTING UP TO NNLO

The step-by-step coefficients for the BLM scale setting
up to NNLO, which are introduced in Eqs. (14)–(16), are
listed in the following:

~A 1 ¼ A1 þ 33
2A2;

~~B1 ¼ ~B1 þ 33
2
~B2;

~~~C1 ¼ ~~C1 þ 33
2
~~C2;

(A1)

~B1 ¼ 1

4n
½1089ðnþ 1ÞA2

2 þ 153nA2 þ 66ðnþ 1ÞA1A2

þ ð4B1 � 1089B3Þn�; (A2)

~B2 ¼ �1

4n
½66ðnþ 1ÞA2

2 þ 19nA2 þ 4ðnþ 1ÞA1A2

� 4nðB2 þ 33B3Þ�; (A3)

~C1 ¼ 1

64A2n
2
½�40392C4n

3 þ 143748A4
2ð3þ 5nþ 2n2Þ þ 8A2n

2ð8C1 þ 35937C4 þ 5049B3nÞ

� 13464A3
2nðn2 � 3n� 7Þ þ 72A1A2ð1þ nÞð34A2n� 242B3nþ 121A2

2ð3þ 2nÞÞ
þ 3A2

2nð2857nþ 352B1ð2þ nÞ � 95832B3ð3þ 2nÞÞ�; (A4)

~C2 ¼ 1

192A2n
2
½22392C4n

3 � 52272A4
2ð3þ 5nþ 2n2Þð3þ 2nÞ � 24A2n

2ð�8C2 þ 6534C4 þ 933B3nÞ

� 48A1A2ð1þ nÞð19A2n� 132B3nþ 66A2
2ð3þ 2nÞÞ þ A2

2nð�5033n� 192B1ð2þ nÞ þ 3168B2ð2þ nÞ
þ 52272B3ð8þ 5nÞÞ þ 24A3

2nð�1871þ nð�627þ 311nÞÞ�; (A5)

~C 3 ¼ 1

576A2n
2
½�2736C4n

3 þ 4752A4
2ð3þ 5nþ 2n2Þ þ 144A2n

2ð4C3 þ 198C4 þ 19B3nÞ � 912A3
2ðn3 � 4nÞ

þ 288A1A2ð1þ nÞð�2B3nþ A2
2ð3þ 2nÞÞ � A2

2nð�325nþ 576B2ð2þ nÞ þ 9504B3ð5þ 3nÞÞ�; (A6)

~~C 1 ¼ 1

4ðnþ 1Þ ~A1

½33ðnþ 2Þ ~B2ð2 ~B1 þ 33 ~B2Þ þ ðnþ 1Þð153 ~B2 þ 4 ~C1 � 1089 ~C3Þ ~A1�; (A7)

~~C 2 ¼ �1

4ðnþ 1Þ ~A1

½2ðnþ 2Þ ~B2ð2 ~B1 þ 33 ~B2Þ þ ðnþ 1Þð19 ~B2 � 4ð ~C2 þ 33 ~C3ÞÞ ~A1�: (A8)

In deriving the above formulae, the following equation is implicitly adopted, i.e. the value of as at any scale Q� can be
obtained from its value at the scale Q,

asðQ�Þ ¼ asðQÞ
�
1þ �0

4
ln

�
Q�2

Q2

�
asðQÞ þ �1

42
ln

�
Q�2

Q2

�
a2sðQÞ þ �2

43
ln

�
Q�2

Q2

�
a3sðQÞ þ . . .

��1
: (A9)
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