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There are good reasons that the deconfinement phase transition of pure Yang-Mills theory at finite

temperature should also be reflected in the behavior of gauge-fixed gluonic correlation functions.

Understanding this in detail would provide another important example of how physical information

can be extracted from gauge-dependent correlations, which is not always obvious. Therefore, herein we

study the behavior of the Landau-gauge gluon propagator of pure SUð2Þ across the phase transition in

2þ 1 and 3þ 1 dimensions in order to assess to what extend the corresponding critical behavior is

reflected in these correlations. We discuss why it should emerge from a continuum perspective and test our

expectations in lattice simulations. A comparison with SUð3Þ furthermore reveals quite clear indications

for a sensitivity of the gluon propagator to the order of the transition.

DOI: 10.1103/PhysRevD.85.034037 PACS numbers: 12.38.Aw, 11.15.Ha, 12.38.Lg, 12.38.Mh

I. INTRODUCTION

Our knowledge of even the most basic characteristic
features of the QCD phase diagram is still rather uncertain.
A rich structure of possible phases and transitions between
them is being discussed in various regions; see, e.g. [1–3].
Understanding how these phase transitions manifest them-
selves both theoretically and experimentally in a joint
effort is the great challenge of strongly interacting matter
research.

One of the well established properties of QCD with
2þ 1 flavors of dynamical quarks is a crossover at vanish-
ing chemical potential in a temperature range of about
150–180 MeV, e.g. [4–7]. However, many observables
nevertheless appear to reflect the deconfinement phase
transition that would occur if all quarks were sufficiently
heavy. In fact, whether and where in the so-called
Columbia plot the change from a genuine phase transition
to a crossover occurs might still change when going be-
yond QCD as an isolated theory. In particular, if one also
considers the quarks’ fractional electric charges and cou-
plings to more than one gauge group as in the standard
model, a centerlike symmetry reemerges which can break
at the transition as in the quenched case [8].

This finite-temperature deconfinement phase transition
of the pure SUðNÞ Yang-Mills theory in dþ 1 dimensions
follows the ZN symmetry-breaking pattern of a
d-dimensional q-state Potts model with q ¼ N. It is of
second order for N ¼ 2 (Ising universality class) in d ¼
2 and 3 and for N ¼ 3 in d ¼ 2. The self-duality of the
two-dimensional Potts models thereby manifests itself in

the free energies of the confining electric fluxes being
mirror images around criticality of those of center-vortex
ensembles with twisted boundary conditions [9–11].
Another tool to determine the dynamics of order pa-

rameters for the Yang-Mills phase transition, such as the
Polyakov loop, the chiral condensate, and to some extent
thermodynamic bulk properties, has been gauge-fixed cor-
relation functions, in particular, in the Landau gauge.
While it has been known for decades how the chiral phase
transition and, in particular, how its critical properties
manifest themselves directly in the gauge-fixed quark cor-
relation functions, it has only recently become clear how to
compute the nonperturbative effective potential of decon-
finement order parameters from the gauge-fixed propaga-
tors [7,12–18]. These analyses entail that already the
gauge-fixed propagators carry the critical properties of
the confinement-deconfinement phase transition, which
has been used explicitly in [13]. These findings have also
been studied using lattice simulations (see in particular
[18,19]), though systematic errors are still a matter of
ongoing research [18–22].
In the present paper we extend these investigations. We

first review in Sec. II how critical properties of the phase
transition are incorporated in the gauge-fixed correlation
functions. We argue that the gluon propagator should be
directly sensitive to the phase transition and, in particular,
that it should reflect critical scaling. In Sec. III the behavior
expected from these arguments is compared to results from
lattice simulations in three and four dimensions for SUð2Þ
Yang-Mills theory. In both cases the phase transitions are
of second order, but one should be able to distinguish the
different critical exponents corresponding the 2d and 3d
Ising universality classes, respectively. We also briefly
revisit the first-order case of four-dimensional SUð3Þ
Yang-Mills theory to assess the sensitivity of the gluon

*axelmaas@web.de
†j.pawlowski@thphys.uni-heidelberg.de
‡lorenz.smekal@physik.tu-darmstadt.de
§d.spielmann@thphys.uni-heidelberg.de

PHYSICAL REVIEW D 85, 034037 (2012)

1550-7998=2012=85(3)=034037(14) 034037-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.034037


propagator to the order of the transition in Sec. IV. Our
summary and conclusion are given in Sec. V. Some addi-
tional results on the momentum dependence of the propa-
gators are deferred to Appendix A, while an extended
discussion of the systematic and statistical errors is given
in Appendixes B and C, respectively.

II. CRITICAL BEHAVIOR AND THE GLUON
PROPAGATOR

The second-order finite-temperature deconfinement
phase transitions of SUð2Þ Yang-Mills theory in four di-
mensions, and both SUð2Þ and SUð3Þ in three dimensions,
are characterized by correlation lengths which diverge at
the critical temperature in the infinite-volume limit. As a
consequence, only the long-range properties of the theory
matter near criticality. These are determined by symme-
tries and dimensionality of the system, and the concepts of
universality and scaling apply. The second-order SUðNÞ
cases belong to Potts/Ising universality classes in two and
three dimensions as mentioned above. In particular, the
SUð2Þ Yang-Mills theories in three and four dimensions
that we are mainly interested in here, belong to the classes
of the two-dimensional and three-dimensional Ising mod-
els, respectively.

Critical behavior manifests itself in singularities of ther-
modynamic functions at the critical temperature Tc (and
vanishing external field). In particular, these singularities
show as characteristic noninteger powers of the reduced
temperature

t ¼
�
T

Tc

� 1

�
(1)

The critical exponents in these power laws only depend on
symmetry-breaking pattern and dimension, and are thus a
characteristic feature of a universality class. Scaling and
hyperscaling (in four dimensions or less) entail that all
critical exponents can be expressed in terms of two inde-
pendent ones, say � and �. The first is the critical exponent
of the diverging correlation length �, i.e.

� / jtj��; (2)

close to a second-order phase transition. The second is
defined from the (in general renormalization group depen-
dent) connected propagator GðpÞ of the order parameter,
whose zero momentum contribution defines the suscepti-
bility which diverges with exponent �,

Gð0Þ / jtj��; with � ¼ �ð2� �Þ: (3)

In the broken phase, an order parameter M scales with the
exponent �,

MðtÞ / jtj� with � ¼ 1
2�ðd� 2þ �Þ: (4)

Usually � is bound by its mean field value, i.e. � � 1=2,
and the derivative of MðtÞ with respect to t therefore
diverges at the critical temperature.
A natural order parameter for confinement is provided

by the Polyakov loop,

Lð ~xÞ ¼ 1

Nc

P exp

�
ig
Z 1=T

0
d�A0ð�; ~xÞ

�
: (5)

It depends on the zero component A0 of the gauge field, and
its correlation length is inversely related to the string
tension, i.e. �� ¼ T=�ðTÞ for T < Tc. Therefore, with
second-order transition, � / ð�tÞ� for t ! 0�.1

In a gauge-fixed approach the theory is described, in
general, in terms of gauge-dependent correlation functions,
i.e. N-point functions of the gauge field. These correlation
functions have to contain the information about the physics
at criticality, even though they change under gauge
transformations.
Indeed it has been shown how to extract the expectation

value of the logarithm of the Polyakov loop from the
gauge-fixed propagators in general gauges in terms of the
full effective potential Veff of hA0i [12–14]. The value of
hA0i at the minimum of Veff directly relates to the expec-
tation values of the eigenvalues of the logarithm of the
Polyakov loop; it is gauge invariant and also provides an
order parameter. Other recent examples are dual conden-
sates [24–28], which can likewise be computed from
gauge-fixed correlation functions [15–18,29], and in the
quenched case determine the Polyakov loop directly.
In [12,14] the potential has been computed in Landau

gauge; the critical temperature agrees well with lattice
results. In [13] the same result was obtained within a
computation in Polyakov gauge, a necessary requirement
for the results to be gauge-independent as they must be.
Moreover it has been verified that in SUð2Þ the potential
and hence the order parameter does indeed show the scal-
ing of the Ising universality class.
An interesting consequence of these computations and

the related formal analysis is that the gauge-fixed propa-
gators necessarily also show critical scaling. Here we
briefly review the corresponding results in [12–14]. In
[12] it has been shown that the effective potential of hA0i
in a general gauge can be computed solely from the ghost
and gluon propagators in the constant background �A0,

@kVeff;kð �A0Þ ¼ 1
2 TrhAa

�A
b
�i �A0

@kR
ba
k;��

� 1
2 Trh �CaCbi �A0

@kR
ba
k ; (6)

1Above Tc, the Polyakov-loop correlation length �þ is related
to the dual string or interface tension ~� / ð�þÞ1�d, a well-
defined order parameter for center symmetry breaking [23].
With second-order transition, ~� / t� for t ! 0þ, and (hyper-
scaling) � ¼ ðd� 1Þ�.
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where k is an infrared cutoff scale implemented by the
regulator Rab

k in the functional renormalization group

equations. At large cutoff scales the effective potential
vanishes. Hence, integrating the above Eq. (6) from the
trivial potential at k ! 1 to k ¼ 0 provides us with
Veffð �A0Þ ¼ Veff;k¼0ð �A0Þ, the full nonperturbative effective

potential of hA0i.
Since Veffð �A0Þ is the potential of the order parameter

hlogLi, it has to show critical scaling (if the transition is of
second order). Consequently, also the propagators will be
sensitive to critical scaling, in general.

The above setting even allows us to extract the scaling of
the longitudinal gluon. Its propagator schematically is of
the form,

hALALi �A0
¼ �L

1

ð� �D2
0 þ ~p2ÞZL

�L; (7)

where�L stands for the projection operator longitudinal to
the heat bath in the presence of the background �A0, and
i �D0 ¼ p0 þ g �A0. The prefactor ZL ¼ ZLð� �D2

0; ~p
2; �A0Þ

depends on �A0, �D2
0, and ~p2 separately and reduces to the

well-known longitudinal (inverse) Landau-gauge dressing
function for �A0 ¼ 0.

The solution a0 of the equations of motion for �A0 is the
order parameter related to hlogLi and derives from

@Veff

@ �A0

�������� �A0¼a0

¼ 0: (8)

Hence it scales according to (4), and the effective potential
also shows critical scaling, i.e.

@2Veff

@ �A2
0

ða0Þ / jtj�; (9)

with � ¼ �ð2� �Þ; see (3). Up to possible dependencies
on the background field, the inverse longitudinal
gluon propagator is proportional to (9), hALALi�1 /
@2Veff=@ �A2

0. In other words, the mass gap is given by the

curvature of Veffð �A0Þ in (9), and hence determines the
singular behavior of the gluon propagator at vanishing
frequency and momentum, i.e.

hALALi �A0¼a0
ðp ¼ 0Þ / jtj��: (10)

We conclude that at least the longitudinal or electric
propagator (7) scales as the propagator of an order parame-
ter; see (3). In [13] this has in fact been used to determine
the critical scaling directly from the longitudinal gluon
propagator.

Note however, that a similar analysis cannot be made for
transverse gluons and ghosts. This is due to the fact that
their inverse propagators contain no �A0-derivatives and
hence no dependence on the curvature term in (9).
Consequently, we cannot infer from this simple argument
whether one should see critical scaling in the transverse

gluon and ghost propagators or not. However, it is sugges-
tive that it at best arises in subleading order, that is, that
singularities might appear in higher T-derivatives. This
is supported by lattice results; see [18–20,30] and
Appendix C.
Now we turn to lattice Landau gauge and, in particular,

discuss the differences of simulations there to the back-
ground Landau-gauge scenario used above. The screening
mass of a two-point correlation function, the propagator
DðpÞ, defined as

Ms ¼ 1ffiffiffiffiffiffiffiffiffiffi
Dð0Þp ; (11)

is a candidate for critical behavior. Note that the corre-
sponding pole mass [30], if it exists, will in general only be
sensitive to correlation lengths up to its inverse size. Since
all results available so far [30] seem to exclude a zero pole
mass of the gluons, it is therefore to be expected that the
pole mass will not exhibit critical behavior.
The temperature dependence of the electric and mag-

netic gluon propagators and the ghost propagator in lattice
Landau gauge has been investigated previously; for details
see [18–22,31–39]. One observes that only the electric
propagator is sensitive to the phase transition [18,19,22].
However, the available lattice data do not yet allow to draw
firm conclusions about a possible scaling behavior at criti-
cality. Nevertheless, the susceptibility 	E defined as the
temperature derivative of its screening mass ME

s ,

	E ¼ @ME
s

@T
;

is sufficiently sensitive to determine the phase transition
temperature within the systematic errors; see [18] and
Appendix B.
The aim of the present investigation is the further as-

sessment of the critical behavior. This will be performed
using lattice simulations in three and four dimensions for
the gauge group SU(2). In four dimensions, for this pur-
pose, a significantly refined temperature mesh and in-
creased statistics were used compared to the previous
study [18]. The three-dimensional system, investigated
here for the first time, has the advantage, compared to
the four-dimensional one, that the expected critical expo-
nents are larger, and therefore the signal might be stronger.
In lattice Landau gauge, naively, one would expect a

similar behavior as for the background Landau gauge
discussed above. However, the two differ in at least one
important qualitative aspect. All currently employed prac-
tical implementations of the lattice Landau gauge, includ-
ing the one used herein, exhibit a screening mass. Given its
nonperturbative origin and appearance in a gauge-fixed
correlator, it will be referred to as a Gribov mass [40],2

2Note that in the original work [40] the so defined screening
mass was infinite.

GLUON PROPAGATOR CLOSE TO CRITICALITY PHYSICAL REVIEW D 85, 034037 (2012)

034037-3



mgribov. This mass is present at all temperatures and hence

interferes with critical scaling. This entails that the inverse
propagator can still have a mass gap at criticality. It is
important to emphasize that the effective potential Veff for
the order parameter a0 in such a gauge still satisfies (6).
Hence, the propagators must reflect critical scaling never-
theless. This implies that the screening mass ME

s of the
electric propagator in (11) contains both a regular Gribov
mass contribution as well as a singular critical one. From
Eq. (6) one concludes that the critical contribution is
determined by the exponent �. Unfortunately, this general
argument is not sufficient to disentangle the two contribu-
tions in a unique way. The two perhaps most natural
candidates to explore at least as approximate descriptions
near criticality might be to either simply add the two mass
contributions directly, i.e.

ME
s ðtÞ ¼ mgribov þ a�jtj�=2; (12)

where aþ ¼ a is a nonuniversal coefficient for temperature
t > 0 and a� ¼ b for temperatures t < 0, or, alternatively,
add two corresponding self-energy contributions to the
inverse propagator which would lead to a sum of squares
for the total mass, i.e.

ME
s ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

gribov þ a2�jtj�
q

: (13)

A simply testable criterion to at least discriminate these
two cases is provided by the corresponding susceptibilities
	E which near criticality in the first case (12) behaves

as 	E / jtj�=2�1, while with (13), 	E / jtj��1. For 1<
�< 2, in the 2d and 3d Ising universality classes one has
� ¼ 7=4 ¼ 1:75 and � ¼ 1:2372ð5Þ, respectively [41].
This implies that (12) leads to a susceptibility 	E ¼
@tM

E
s which would diverge at the critical temperature (in

the infinite-volume limit), while (13) would lead to a
vanishing one. This is illustrated by a cartoon of the
four-dimensional case in Fig. 1.

While there will of course neither be a divergence nor a
strict zero in 	E in a finite volume, the lattice results clearly
favor an enhancement of 	E near Tc corresponding to (12)
rather than a suppression, as can be seen from comparing
the cartoon in Fig. 1 with Fig. 2 for example. So we
conclude that (13) can relatively safely be ruled out. A
more conclusive study of the expected behavior based on a
self-consistency analysis of (6) would be clearly desirable
but will be postponed to future work.

Furthermore, because the Gribov mass itself is signifi-
cantly volume dependent [30,42–45], it is not possible at
the present to clearly identify the critical behavior in the
electric screening mass or its temperature derivative from a

finite-size scaling analysis of lattice results. The Gribov
mass creates a mass gap whose volume dependence espe-
cially at criticality is yet to be determined. A significant
amount of different volumes, and possibly discretizations,
will be necessary to disentangle the two intertwined finite-
volume effects on the electric screening mass, from critical
scaling and from the Gribov mass, requiring substantially
more resources than presently available to us.
Finally, it should be noted that the Ansätze (12) and (13)

are expected to be only valid in the critical region. The
Gribov mass in these fits will therefore not coincide with

t
-0.05 0 0.05

 (
G

eV
)

E χ
c

T

0

1

2

3

Model of the susceptibility

t
-0.05 0 0.05

 (
G

eV
)

sE
M

0.1

0.2

0.3

0.4
Finite case
Divergent case

Model of the electric screening mass

FIG. 1. Cartoon of the electric screening mass and suscepti-
bilities of the form (12) and (13), with critical exponents �=2
(divergent case) and � (finite case) with � ¼ 1:2372ð5Þ, i.e. with
the three-dimensional Ising universality class. The nonuniversal
constants are mgribov ¼ 0:2 GeV, a ¼ �1=4 GeV, and b ¼
3=4 GeV.
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the one at zero temperature, as further, subleading
temperature-dependent contributions are neglected.

III. LATTICE RESULTS

The gluon propagator is determined using standard
lattice methods; for details see [19,46]. We use the mini-
mal Landau gauge [30] with the implications discussed in
Sec. II. In particular, the gluon propagator exhibits a finite
Gribov screening mass already at zero temperature,
while the ghost behaves essentially tree-level-like
[42–45,47,48]. In four dimensions, in addition to the
data from [18], further results using a finer discretization
at the price of smaller physical volumes, are used. In three
dimensions, two different discretizations are used as well.
For the main purpose of this work only the electric screen-
ing mass is of importance. For completeness, also the
finite momentum results are reported, but relegated to
Appendix A.
For setting the scale a string tension of ð440 MeVÞ2 has

been used, based on the að�Þ values determined in [49] for
three dimensions and in [50] for four dimensions. This
particular value was chosen to ensure comparability to
the previous investigations [18,19]. The critical � values
are taken from [51] for three dimensions and from [50] for
four dimensions. A discussion of systematic effects due to
the scale setting can be found in Appendix B 1.

A. Three dimensions

The results for the electric screening mass, as well as its
susceptibility in three dimensions are shown in Fig. 2. It is
clearly visible that the maximum of the susceptibility
marks the critical temperature, which has been determined
independently using analyses of the free energy and quan-
tities derived from it [50,51]. Furthermore, a sizable vol-
ume scaling is seen for the smaller spatial volumes with
Nt ¼ 4 time slices. For the largest spatial extent the peak in
the susceptibility only becomes somewhat sharper, but not
significantly higher. This might be due to the mixing with
the Gribov mass as discussed in Sec. II. Note, however, that

the singular contribution to 	E ¼ @tM
E
s / jtj�=2�1 from

our model (12) would predict a finite-size L scaling of

the maximum as 	E
max / Lð1��=2Þ=� ¼ L1=8 for three-

dimensional SUð2Þ, corresponding to a factor 21=8 or about
only 9% increase with doubling the spatial lattice size
which is still within errors. Furthermore, in increasing Nt

from 4 to 6, which effectively reduces the physical L for
equal spatial lattice sizes by 2=3, we observe that the
results remain qualitatively unchanged, at least for the
two values checked here. The details might still be influ-
enced by lattice artifacts.
We reiterate that the screening mass, which is (semi)

positive by definition, is nonzero at the phase transition.
Moreover, because the peak in its temperature derivative
	E marks the phase transition, the screening mass does not

t
-0.05 0 0.05

 (
G

eV
)

E χ
c

T

0

1

2

3

Susceptibility

t
-0.05 0 0.05

 (
G
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)

sE
M

0.2

0.4

Phase transition vicinity
t

-0.2 0 0.2

 (
G

eV
)

sE
M

0

0.5

24x32
24x64

24x128
24x256
26x128

Electric screening mass in three dimensions

FIG. 2. The electric screening mass (top panel, and zoomed in
on the phase transition region in the middle panel) as a function
of the reduced temperature for various lattice sizes. The bottom
panel shows the corresponding susceptibility, where some tem-
perature points have been dropped to reduce the statistical errors.
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have a minimum there, but a point of inflection.3 It is also
well established that there is a finite screening mass in
minimal Landau gauge at zero temperature [44]. The pos-
sibility that it remains constant throughout all temperatures
up to the phase transition, and that it starts to increase
abruptly there, would imply that the nonuniversal coeffi-
cient a� ¼ b ¼ 0 and is included here. For our fits we thus
assume a constant contribution corresponding to a Gribov
mass introduced by the gauge fixing, which should be
temperature independent, to which we add a form resem-
bling a critical behavior as in (12). Subleading contribu-
tions around criticality will be neglected, leading to the
Ansatz for the screening mass,

ME
s ðtÞ ¼ mgribov þ 
ðtÞatð�þ=2Þ þ 
ð�tÞbð�tÞð��=2Þ; (14)

where we have furthermore introduced independent expo-
nents �þ and �� above and below Tc in order to assess to
what extend the results are consistent with a unique �þ ¼
��. As a side remark note that the Ansatz (14) for small t in
principle also includes the form in (13) which one should
obtain �þ ¼ �� ¼ 2�.

Performing the fits in the reduced-temperature interval
½�0:1; 0:1� yields the results shown in Table I. An example
of the quality of the fit is shown in Fig. 3. There are a
number of observations:

First, the fit form (14) describes the screening mass
rather accurately, and within the statistical errors also the
susceptibility in a satisfactory way. The resulting expo-
nents are all in the range 1< �< 2 [and thus inconsistent
with (13)], but they do not agree with one another very
well, which is only slightly improved if the fit interval is
further reduced, assuming a smaller critical region.

Given that the fits provide a rather good description of
both the screening mass and the susceptibility there are a
number of possible reasons for the observed nonsingularity
in the data itself. The first is that the volumes are just too

small and the discretization too coarse to be close enough
to a critical behavior. Given that the critical behavior is
well visible on comparable lattices for other observables
[51], this appears at first glance to be a rather unlikely
explanation. However, it is possible that the electric gluon
propagator lags significantly in the development of the
critical behavior behind those other observables. Indeed,
the gluon propagator requires already at zero temperature
very large volumes to reach even its qualitative infinite-
volume behavior [42–45]. This appears to be true also at
finite temperature [19,21]. Therefore this appears to be a
possible explanation.
The second possibility is that the critical region is very

narrow. Then it would be necessary to investigate the
region around the critical temperature with a much finer
mesh. In this case also significantly enhanced statistics
would be necessary, since the numerical derivative for
the determination of the susceptibility requires that the
statistical error must be much smaller than the distance
between two points.
Finally, it is of course still possible that the electric gluon

propagator simply does not show critical behavior. At the
moment this cannot entirely be excluded, despite the gen-
eral continuum arguments in favor given in Sec. II. This
could be due, e.g. to a more complicated interference with
the Gribov mass than the two possibilities considered in
(12) and (13). An alternative possibility will be discussed
in Sec. III C below. However, since the behavior of the
Polyakov loop can be derived from the propagators [18],
this appears somewhat unlikely, though by far not
impossible.

B. Four dimensions

Essentially the same qualitative behavior, though within
a different universality class, is expected in four dimen-
sions. The corresponding electric screening mass and its
susceptibility are shown in Fig. 4. The qualitative picture is
the same as in three dimensions. Note, however, that
because the critical temperature is about one-third lower
in four as compared to three dimensions, the physical
volumes are about 50% larger here than they would be
for the same number of lattice points in three dimensions.
Even though our volumes are nevertheless still smaller

TABLE I. The fit parameters for the fit (14) for the three-dimensional case. For the determi-
nation and placement of the statistical errors see Appendix C. Only the change in the last digits is
indicated. See Appendix B for a discussion of systematic errors.

Lattice mgribov (GeV) a (GeV) b (GeV) �þ ��
4� 322 0:37019�2þ3 0:85�4

þ5 �0:78þ4�4 1:88�4þ4 1:81�4þ4

4� 642 0:2637�6
þ6 0:90�4

þ4 �0:67þ3
�3 1:68�4

þ4 1:63�2
þ2

4� 1282 0:221�3
þ3 0:735�6

þ7 �0:368þ13
�14 1:39�9

þ10 1:134þ3
þ2

4� 2562 0:218�3
þ3 0:73�8

þ11 �0:33þ2
�3 1:39�10

þ12 1:02�3
þ3

6� 1282 0:2571þ5
�5 0:80�2þ2 �0:54þ3

�3 1:63�15
þ16 1:38�4þ4

3From the coarser temperature resolution in [18] it was sug-
gested that the transition occurred at the maximum of the electric
gluon propagator at zero momentum, i.e. for minimalME

s , which
is slightly off. However, this merely implies that the phase
transition temperature should be set to the peak in the suscep-
tibility 	E instead. Otherwise the results of [18] remain
unchanged.
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than in the three-dimensional case, the susceptibility is
significantly more peaked, showing that the phase transi-
tion leaves a much more significant imprint. However, the
peak of the susceptibility is somewhat displaced as com-
pared to the phase transition point. One possible reason
could be systematic errors in the scale setting. Other,
equally possible, reasons may be statistical fluctuations,
finite-volume effects, or discretization effects. Permitting
even only a systematic error of a percent, the correct phase
transition temperature is obtained within the total error.

Various such sources of systematic uncertainties are further
explored in Appendix B.
It is possible to perform the same fits as for the three-

dimensional case with the Ansatz (14). The results are
given in Table II, and shown in Fig. 5. The situation is
qualitatively the same as in three dimensions. The resulting
critical exponents tend to be somewhat smaller than in
three dimensions as expected from universality. The tem-
perature dependence of the electric screening mass below
Tc is weaker than before, and in is fact within errors
compatible with being essentially constant. With critical
scaling, the prediction for its maximal slope at criticality
would be roughly 	E

max / L0:6, which would predict a
25% difference between the two volumes used here.
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FIG. 4. The electric screening mass (top panel) as a function of
the reduced temperature for two different lattice sizes. The
bottom panel shows the corresponding susceptibility, where
some temperature points have been dropped to reduce the
statistical errors.
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FIG. 3. The quality of the fits compared to the data from the
4� 1282 lattice. The standard fit uses the values from Table I. As
an alternative, a fit using only a more restricted reduced-
temperature interval ½�0:05; 0:05� is also shown (dotted line),
which yields �� ¼ 1:52�10

þ9 and �þ ¼ 1:61�12
þ14. Fits have been

performed on the screening mass using all data points, and the
derivatives have then been calculated analytically. The error
bands are also shown.
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The somewhat stronger volume dependence of the maxi-
mum as compared to the three-dimensional case might be
reflected in Fig. 4 but this is well within the present errors
still, and thus not significant.

A further point to consider in the four-dimensional case,
in contrast to the three-dimensional one, is renormaliza-
tion. In three dimensions the gluon propagator is finite, and
no renormalization is necessary. This is not the case in four
dimensions. As a consequence, the screening mass, in
contrast to a pole mass, is renormalization-scale dependent
[30]. Here, the renormalization is performed by requiring
�2DLð�; TÞ ¼ 1 at � ¼ 2 GeV. However, this is prob-
lematic for two reasons. First, this introduces a temperature
dependence of the renormalization constant. Secondly, the
renormalization prescription for the gluon propagator in
Landau gauge is linked to the one for the ghost propagator
which might lead to a potential inconsistency, since also
the ghost propagator can acquire a temperature-dependent
renormalization. In the present case, however, these effects
can be estimated and are found to be well within the
statistical errors, see Appendix B 2.

C. Alternative observables

Since in both three and four dimensions the gluon
propagator does not show a behavior which can immedi-
ately be interpreted as a pure critical behavior, a natural
question might be whether one can suppress the influence
of nonthermal contributions depending on whether they are
due to discretization, finite-volume artifacts, genuine quan-
tum effects, or the Gribov mass as mentioned.
For this purpose the fluctuations of the screening mass

can be used, which are defined as

ms ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
DSð0Þp DSð0Þ ¼ <Dð0Þ>�h ffiffiffiffiffiffiffiffiffiffi

Dð0Þp i2: (15)

This essentially amounts to determining the pure fluctuat-
ing part.
The resulting screening mass for the four-dimensional

case is shown in Fig. 6. There are a number of observations
which can be made, despite the significantly increased
statistical uncertainty. First, the global features of the
screening mass are maintained. Second, even after remov-
ing the nonfluctuating part there is a nonzero baseline,
which implies that the Gribov mass from the gauge fixing
is present even in the fluctuations, though of course its
infinite-volume behavior cannot be inferred from these
results. Third, the slope again appears to increase at the
phase transition, which is not a statistically very sound
result at present, however. Nonetheless, the behavior is
suggestive, and this would imply a similar phase transition
signal also in the fluctuations.
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FIG. 5. The quality of the fits compared to the data from the
4� 463 lattice. The standard fit uses the values from Table I. As
an alternative, a fit using only a more restricted reduced-
temperature interval ½�0:05; 0:05� is also shown (dashed line),
which yields �� ¼ 0:5þ109

þ6 and �þ ¼ 1:5�3
þ2. Fits have been

performed on the screening mass using all data points, and the
derivatives have then been calculated analytically.

TABLE II. As Table I, but for four dimensions.

Lattice mgribov (GeV) a (GeV) b (GeV) �þ ��
4� 463 0:25�4

�2 1:16þ3
þ�6 �0:04þ200

�8 1:26�16
þ11 0:19þ378

þ0:43

6� 483 0:25�3
þ2 1:5þ1

�3 �0:07þ736
�17 1:54�12

0:05 0:6þ45
þ5
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In relation to the original goal of isolating critical be-
havior, however, there is no sign of improvement as com-
pared to the screening mass.

A second alternative would be the magnetic screening
mass. From the results in [18] and the results shown in
Appendixces A and C, it can already be inferred that it will
not exhibit a strong signal of the phase transition. Indeed, a
more detailed investigation of its susceptibility shows that,
if there is any signal of the phase transition encoded in the
magnetic screening mass at all, it is certainly substantially
weaker than that in the electric one. The same applies to the
gauge-fixing sector in form of the Faddeev-Popov ghosts.

IV. A NOTE ON FOUR-DIMENSIONAL
SUð3Þ YANG-MILLS THEORY

The physically more relevant case of four-dimensional
SUð3Þ Yang-Mills theory exhibits a (weak) first-order tran-
sition [52]. It has previously been studied with functional
methods [12–17,30–34,38,53–56] and on the lattice
[18,22,30]. The correlation length remains finite, and one
does not expect critical scaling. In principle, one should be
able to study the finite-size scaling with integer exponents
characteristic of first-order transitions which is rather ex-
pensive to investigate in lattice simulations, however.

Here we analyze the data from [18,30] supplemented by
additionally generated temperature points and with im-
proved statistics in a closer window around the transition
for comparison. This leads to an electric screening mass
and a susceptibility in four-dimensional SUð3Þ as shown in
Fig. 7. There is no significant temperature dependence
below Tc in the range considered here. The constant value
serves as the baseline in our fit. Above Tc we allow a
temperature dependence of a form which is typical for a
first-order transition in addition to the constant contribu-
tion. With these assumptions we observe that the data in

the reduced-temperature interval ½�0:1; 0:1� is well de-
scribed by a fit of the form

ME
s ¼ mgribov þ 
ðtÞa ffiffiffiffiffiffiffiffiffiffiffiffi

�þ t
p

; (16)

with parameters mgribov ¼ 0:222�3
þ5 GeV, a ¼ 0:7�4

þ1 GeV,

and � ¼ 0:06�4þ37.

The data provide rather clear indication that a pro-
nounced jump forms at the transition characteristic of its
first-order nature. A much more detailed analysis espe-
cially of the finite-volume behavior of these results will
be necessary to substantiate whether a discontinuity in the
electric screening mass develops in the infinite-volume
limit or not. The fact that the transition is only weakly first
order makes such an analysis particularly demanding. At
present we can conclude, however, that the behavior
looks significantly different from the second-order cases
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FIG. 6. The fluctuation of the screening mass (15) in four
dimensions from the 4� 463 lattice.
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discussed in Sec. III. An emerging discontinuity at the
phase transition appears to be indicative of a sensitivity
of the longitudinal gluon propagator to the order of the
transition. One should nevertheless be wary of lattice
artifacts [22] in this exploratory study also.

V. CONCLUSIONS AND OUTLOOK

In summary, we argue that critical behavior of the
confinement-deconfinement phase transition of pure
Yang-Mills theory should be reflected in the longitudinal
gluon propagator, in particular, in the electric screening
mass. Our data show in all cases, for SUð2Þ and SUð3Þ, that
the phase transition can be clearly identified by a peak in its
temperature derivative. Although it turns out to be rather
difficult to disentangle a singular critical contribution to
the electric screening mass from a regular one, which is
presumably predominantly a Gribov copy effect, it seems
that there is such a contribution in SUð2Þ, and that this
contribution changes when going from three to four di-
mensions in a way consistent with the change from the 2d
to the 3d Ising universality class. Our results for the critical
exponents are still somewhat off, however, which might be
mainly due to an insufficient way of isolating the corre-
sponding contributions. Whether our qualitative findings
will finally be backed by a more quantitative analysis on
the basis of universality arguments, including a verification
of the expected finite-size scaling, as it is well established
for various other observables, will have to await further
study.

In comparison, the electric screening mass of pure
SUð3Þ in four dimensions appears to show the discontinu-
ity indicative of the first-order phase transition there. This
seems to indicate that the electric gluon propagator is
sensitive to the order of the transition, likewise.

To ultimately clarify all this will require both substan-
tially larger spatial volumes as well as finer discretizations.
It will be important to further pursue this for two reasons.
One is that identifying critical behavior in this simplest of
observables will improve our understanding of the driving
mechanisms behind critical behavior and the order of the
phase transition in general. Second, this clarification is of
great interest in the construction of realistic truncation
schemes for functional methods which have the potential
of providing a genuine first-principle approach to describe
full QCD with various quark flavors and masses at finite
temperature and density [7].

Thus, to further pursue these investigations is of prime
importance in our efforts to combine both numerical lattice
and functional continuum methods for a reliable determi-
nation of the QCD phase diagram.

ACKNOWLEDGMENTS

We are grateful to Christian S. Fischer and Michael
Müller-Preussker for a critical reading of the manuscript.

This work is supported by the Helmholtz Alliance Contract
No. HA216/EMMI and the Helmholtz International Center
for FAIR within the LOEWE program of the State of
Hesse. A.M. was supported by the FWF under Grant
No. M1099-N16 and by the DFG under Grant
No. MA3935/5-1. L. v. S. received additional support
from the Helmholtz Association, Grant No. VH-NG-332,
and the European Commission, FP7-PEOPLE-2009-RG,
Grant No. 249203. D. S. acknowledges support by the
Landesgraduiertenförderung Baden-Württemberg via the
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APPENDIX A: FULL MOMENTUM DEPENDENCE

Besides the critical behavior manifest at zero momen-
tum also the full momentum dependence of the propaga-
tors is important, both for combining with functional
methods as well as to estimate the reliability of other
approximation techniques, likehard-thermal-loop calcula-
tions close to the phase transition.

Hence, in this appendix the full momentum dependence
of both parts of the propagator, the electric and the mag-
netic one, for the zeroth Matsubara frequency will be
presented. Higher Matsubara frequencies can then be ap-
proximated rather accurately with this information [18].

Results for the Faddeev-Popov ghost can be found else-
where [18,19,30,57].
The results in three dimensions are shown in Fig. 8 for

the 4� 1282 lattice. For four dimensions the results for the
6� 483 lattice are shown in Fig. 9. The results for the
4� 463 lattice can be found in [18]. For both dimensions,
the results are qualitatively similar, up to the differences
present already at zero temperature. In particular, the
abrupt change in the electric screening mass discussed in
the main text finds its echo at finite momentum. The
magnetic propagator shows no pronounced dependence
on the temperature, except for a general suppression.
It is an interesting observation that the smoothness of the

electric screening mass in three dimensions compared to
four dimensions also surfaces in the finite momentum
behavior. This again can be interpreted as a sign that
Yang-Mills theory in four dimensions is ‘‘closer’’ to a
first-order transition than three dimensions, as is known
from other observables.

APPENDIX B: SYSTEMATIC ERRORS

Calculations like the present ones are sensitive to vari-
ous systematic errors, as has been pointed out repeatedly
[18–22]. In the following various such errors will be dis-
cussed in turn, including the scale setting, renormalization,
finite-volume effects and aspect ratio issues.

1. Scale setting

The scale in the present calculations has been set in four
dimensions using an interpolation formula of the type,

a
ffiffiffiffi
�

p ¼ c1

�
þ c2

�2
þ c3

�3
þ c4

�4
;

with �, the string tension, set to ð440 MeVÞ2, and where
the coefficients have been fitted to the results from [50],
yielding c1 ¼ 31:9, c2 ¼ �237, c3 ¼ 574, and c4 ¼
�444. However, since reduced temperatures of size 0.01
have been included in the calculation, this setting maybe
too imprecise. Using data from [58], different values for
the coefficients have been obtained as c1 ¼ 33:6, c2 ¼
�249, c3 ¼ 599, and c4 ¼ �461. In this case, the critical
� was determined more precisely as � ¼ 2:2986, instead
of � ¼ 2:299, as used in the main part of the text.
However, this leads only to a shift in t of the order of
0.01, i. e. reduced temperatures in the main text should be
taken to have a systematic uncertainty of �0:01. This
accommodates the shift of the peak of the susceptibilities
in Fig. 4 compared to t ¼ 0. Similar comments apply, of
course, to the three-dimensional case.

2. Renormalization

In four dimensions, the propagators have to be renor-
malized. As a consequence, also the screening mass is
renormalized by the same wave-function renormalization
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FIG. 9 (color online). The full momentum dependence of the
zero-mode electric (top panel) and magnetic (bottom panel)
gluon propagator in four dimensions. To extend the temperature
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factor. In the main text, this is done at each temperature
individually at 2 GeV. Of course, since finite temperature is
not introducing any new divergences [59], it is also pos-
sible to renormalize once and for all at zero temperature.
However, since the renormalization constants are both
potentially volume-dependent and not available for all �
values investigated, this has not been done here.

To assess the relevance of renormalization, it is shown in
Fig. 10 the effect of renormalizing only once at zero
temperature for the 4� 463 lattice. Here, the � depen-
dence of the renormalization constants is ignored, given
that it is expected to be only logarithmic in the scaling
regime. The result show indeed no change within statistical
errors. This was expected, as at a momentum of 2 GeV
temperature effects are still rather small. This may change

at lager temperatures, but is not relevant for the present
purpose.

3. Finite-volume effects

In the main text, the spatial volume was not kept fixed,
but small variations have been permitted to obtain a very
dense mesh of temperatures around the critical one. In
particular, the spatial volumes at very low temperatures
and very high temperatures are quite different. To assess
the influence of this effect, the electric screening mass and
susceptibility it shown at fixed spatial volume in Fig. 11.
As is visible, the overall generic behavior over the whole

temperature range is not significantly altered when using a
fixed instead of a varying spatial volume. However, as has
already been observed in other calculations [21], it is
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visible that a finer lattice seems to increase the plateau
directly before the phase transition. Of course, in the
present case neither the temperature mesh, nor the spatial
volumes, are exceptionally large. Therefore, this should be
taken only as an indication, and requires further study.

4. Aspect ratio

As already indicative in the discussion of the finite-
volume effects, also the aspect ratio and the temporal
discretization play a significant role. In Fig. 12 the electric
screening mass at a fixed temperature is shown for a
number of different spatial volumes and aspect ratios. In
the figure, the aspect ratio increases from left to right,
approaching the infinite-volume and continuum limit
such that the temperature extension remains finite, while
the spatial extension diverges. It is visible that at small
aspect ratios and volumes a significant dependence on
these two parameters exist. However, towards the infinite-
volume and continuum limit, this dependency quickly
diminishes, if the limit is taken in the presented order,
though the statistical error bars are rather large. The final
value is in agreement with the one obtained in the main
text. In contrast, at fixed aspect ratio and spatial volume a
much larger impact of going to the continuum limit has
been found [19,21], indicating that the different approaches
towards the desired limit have to be investigated carefully.

APPENDIX C: STATISTICAL ERRORS

The assessment of the quality of fits presented in the
main text is a rather complicated problem. Usual 	2 checks
can only be expected to give a reliable estimate if the fit
form is linear, but the present one is nonlinear, nonanalytic,
and noncontinuously differentiable, and in the case of

SU(3) not even continuous. In order to estimate the statis-
tical error of the fit we therefore use a comparison with a
null hypothesis instead. This null hypothesis is the absence
of any signal of the phase transition, i.e. a trivial linear
behavior

ME
s ðtÞ ¼ m0 þ að1þ tÞ: (C1)

For a quantity not influenced strongly by the phase tran-
sition this is an adequate description, as is shown in case of
the magnetic screening mass in Fig. 13.
To estimate the error, the results for the electric screening

mass have also been fitted to the formula (C1). Then, instead
of using the average values for the electric screeningmass, a
value within the 67% confidence interval for each tempera-
ture point was chosen such that it was closest to the fitted
linear behavior. Then these points were fitted again within
the fit Ansatz (12). Since the Ansatz (12) contains also this
null hypothesis, this gives exponents as close as possible to
the null hypothesis. To estimate an opposite error, the
fluctuation were performed towards as far away as possible
from the null hypothesis (C1). These two fits gave two
further fit parameters. In the Tables I and II the deviation
of the fit parameters towards the null hypothesis is set as a
subscript, while those as far away from the null hypothesis
as possible are set as superscripts. These results have been
used in the Figs. 3 and 5. In the four-dimensional case in the
low-temperature phase the uncertainties in the fits is quite
significant, a consequence of the compatibility with a con-
stant within errors. Thus fits with a free prefactor and an
exponent can turn out to be optimal by combining very
extreme combinations of both. The result should thus be
rather interpreted as that the low-temperature behavior is
within errors compatible with a constant.
In the SU(3) case in Fig. 7 the error for the fit was

determined in the same way.
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