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To see whether a heavy baryon and an antibaryon can form a bound state, the heavy baryonium, we

study the two-pion exchange interaction potential between them within the heavy baryon chiral

perturbation theory. The obtained potential is applied to calculate the heavy baryonium masses by solving

the Schrödinger equation. We find it is true that the heavy baryonium may exist in a reasonable choice of

input parameters. The uncertainties remaining in the potential and their influences on the heavy

baryonium mass spectrum are discussed.
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I. INTRODUCTION

The quark model has achieved great success in describ-
ing the experimentally observed hadronic structures to a
large extent. And the quark potential in between a quark
and an antiquark deduced from QCD can explain the
meson spectrum quite well. Many of the states predicted
by the potential model were discovered in experiment, and
the theoretical predictions are in good agreement with
experimental data, especially in the charmonium and bot-
tomonium sectors [1–3], where the masses of the charm
and bottom quarks are heavy enough to be treated non-
relativistically. However, things became confused after the
discovery of Xð3872Þ in 2003 by Belle [4], which was later
confirmed by BABAR [5]. In recent years, a series of
unusual states in the charmonium sector, such as
Yð4260Þ, Yð4360Þ, Yð4660Þ, and Z�ð4430Þ, were observed
in experiment [6]. Because of their extraordinary decay
nature, it is hard to embed them into the conventional
charmonium spectrum, which leads people to treat them
as exotic rather than quark-quark bound states. The typical
scenarios in explaining these newly found states include
treating Yð4260Þ as a hybrid charmonium [7], as a �c�

0

molecular state [8], as a conventional �ð4SÞ [9], as an

!�c1 molecular state [10], as a�c
��c baryonium state [11],

as a D1D or D0D
� hadronic molecule [12], and as a

P-wave tetraquark ½cs�½ �c �s� state [13]; Yð4360Þ is inter-
preted as a candidate for the charmonium hybrid or an
excited D-wave charmonium state, the 33D1 [14], and an
excited state of baryonium [15]; Yð4660Þ is suggested to be
the excited S-wave charmonium states, the 53S1 [14] and
63S1 [16], a baryonium state [15,17], a f0ð980Þ�0 bound
state [18,19], a 53S1–4

3D1 mixing state [20], and also a
tetraquark state [21,22]. There has recently been much
research on an ‘‘exotic’’ heavy quarkonium study in
experiment and theory. To know more about recent
progress in this respect and to have a more complete

list of references, one can see e.g. recent reviews [23,24]
and references therein.
In the baryonium picture, the triquark clusters are bar-

yonlike, but not necessarily colorless. In the pioneering
works of heavy baryonium for the interpretation of newly
observed exotic structures [11,15], there have been only
phenomenological and kinematic analyses, but without
dynamics. In this work we attempt to study the heavy
baryonium interaction potential arising from two-pion ex-
changes in the framework of heavy baryon chiral perturba-
tion theory (HBCPT) [25]. The paper is organized as
follows. In Sec. II we present the formalism for the heavy
baryon-baryon interaction study; in Sec. III we perform the
numerical study for the mass spectrum of the possible
baryonium with the potential obtained in the preceding
section; Sec. IV is devoted to a summary and conclusions.
For the sake of the reader’s convenience, some of the
formulas used are given in the Appendix.

II. FORMALISM

To obtain the heavy baryonium mass spectrum, we first
start by extracting the baryon-baryon interaction potential
using the same procedure as for the quark-quark interac-
tion [1].

A. Heavy baryonium

In the heavy baryonium picture [15], �c and �0
c are

taken as basis vectors in two-dimensional space. The bar-
yonia are loosely bound states of a heavy baryon and an
antibaryon, namely,

Triplet :

Bþ
1 � j�þ
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ci
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Here, the transformation in this two-dimensional ‘‘C-spin’’
space is approximately invariant, which is in analogy to the
invariance of isospin transformation in a proton and neu-
tron system.

B. Effective chiral Lagrangian

The heavy baryon contains both light and heavy quarks,
of which the light component exhibits the chiral property
and the heavy component exhibits heavy symmetry.
Therefore, it is plausible to tackle the problem of heavy
baryon interaction through the heavy chiral perturbation
theory. In the following we briefly review the gist of the
HBCPT for later use.

In usual chiral perturbation theory, the nonlinear chiral
symmetry is realized by making use of the unitary matrix

� ¼ eð2iM=f�Þ; (3)

where M is a 3� 3 matrix composed of eight Goldstone-
boson fields, i.e.,

M ¼

1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � K0

K� �K0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA: (4)

Here, f� is the pion decay constant.
After the chiral symmetry is spontaneously broken, the

Goldstone-boson interaction with the hadron is introduced
through a new matrix [26,27]:

� ¼ �1=2 ¼ eðiM=f�Þ: (5)

From � one can construct a vector field V� and an axial

vector field A� with simple chiral transformation proper-

ties, i.e.,

V� ¼ 1
2ð�y@��þ �@��

yÞ; (6)

A� ¼ i

2
ð�y@��� �@��

yÞ: (7)

For our aim, we work only on the leading order vector
and axial vector fields in the expansion of � in terms of
f�; they are

V� ¼ 1

f2�
M@�M; (8)

A� ¼ � 1

f�
@�M: (9)

For the heavy baryon, each of the two light quarks is in a
triplet of flavor SU(3), and hence the baryons can be
grouped into two different SU(3) multiplets, the sixtet
and the antitriplet. The symmetric sixtet and the antisym-
metric triplet can be constructed using 3� 3matrices [27];
they are

B6 ¼
�þþ

c
1ffiffi
2

p �þ
c

1ffiffi
2

p �0þ
c

1ffiffi
2

p �þ
c �0

c
1ffiffi
2

p �00
c

1ffiffi
2

p �0þ
c

1ffiffi
2

p �00
c �0

c

0
BBBB@

1
CCCCA (10)

and

B�3 ¼
0 �c �þ

c

��c 0 ��
c

��þ
c ���

c 0

0
BB@

1
CCA; (11)

respectively.
Introducing six coupling constants gi, i ¼ 1; 6, the gen-

eral chiral-invariant Lagrangian then reads [25]

LG ¼ 1
2tr½ �B�3ði 6D�M�3ÞB�3� þ tr½ �B6ði 6D�M6ÞB6�
þ tr½ �B��

6 ½�g��ði 6D�M�
6Þ þ ið��D� þ ��D�Þ

� ��ði 6DþM�
6Þ���B��

6 � þ g1trð �B6���5A
�B6Þ

þ g2trð �B6���5A
�B�3Þ þ H:c:þ g3trð �B�

6�A
�B6Þ

þ H:c:þ g4trð �B�
6�A

�B�3Þ þ H:c:

þ g5trð �B��
6 ���5A

�B�
6�Þ þ g6trð �B�3���5A

�B�3Þ:
(12)

Here, B�
6� is a Rarita-Schwinger vector-spinor field for a

spin- 32 particle; M�3, M6, M
�
6 represent heavy baryon mass

matrices of the corresponding fields. With the help of the
vector current V� defined in Eq. (8), we may construct the

covariant derivative D�, which acts on the baryon field as

D�B6 ¼ @�B6 þ V�B6 þ B6V
T
�; (13)

D�B�3 ¼ @�B�3 þ V�B�3 þ B�3V
T
�; (14)

where VT
� stands for the transpose of V�. Thus, the cou-

plings of the vector current to heavy baryons that are
relevant to our task take the following form:

LE1
¼ 1

2
trð �B�3i�

�V�B�3Þ

¼ 1

2f2�
��ci�

�ð�0@��
0 þ ��@��þ þ �þ@���Þ�c

(15)

and

LE2
¼ 1

2
trð �B�3B�3i�

�VT
�Þ

¼ 1

2f2�
��c�ci�

�ð�0@��
0 þ ��@��þ þ �þ@���Þ:

(16)
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According to the heavy quark symmetry, there are four
constraint relations among the six coupling constants of the
Lagrangian of Eq. (12), i.e.,

g6 ¼ 0; g3 ¼
ffiffiffi
3

p
2

g1;

g5 ¼ � 3

2
g1; g4 ¼ � ffiffiffi

3
p

g2;
(17)

which means the number of independent couplings is then
reduced to two. In this work, we employ g1 and g2 for the
numerical evaluation, as was done in Ref. [25].

Here, to get the dominant interaction potential we re-
strict our effort only to the pion exchange processes, as
usual. Notice that the couplings of the pion to spin- 32 and

spin- 12 baryons and of the pion to two spin-
1
2 baryons take a

similar form; in the following we merely present the spin- 32
and spin-pion baryon-pion couplings for illustration, i.e.,

L 1 ¼ g3ffiffiffi
2

p
f�

��0��
c @��

0�0
c þ H:c:; (18)

L 2 ¼ � g3ffiffiffi
2

p
f�

��þ��
c @��

þ�0
c þ H:c:; (19)

L 3 ¼ g4
f�

��þþ��
c @��

þ�þ
c þ H:c:; (20)

L 4 ¼ � g4
f�

��0��
c @��

��þ
c þ H:c:; (21)

L 5 ¼ � g4
f�

��þ��
c @��

0�þ
c þ H:c: (22)

To get the pion and two spin- 12 baryon couplings, one

only needs to replace the �
��
c by �c, g3 by g1, g4 by

g2, and insert ���5 in between the two baryon fields in
Eqs. (18)–(22).

C. Baryonium potential from two-pion exchange

To obtain the heavy baryon-baryon interaction potential
in configuration space, we start by writing down the two-
body scattering amplitude in the center-of-mass frame
(CMS), i.e. by taking pa ¼ �pb and p0

a ¼ �p0
b. In the

CMS the total and relative four-momenta are defined as

P ¼ ðpa þ pbÞ ¼ ðp0
a þ p0

bÞ ¼ ðE; 0Þ; (23)

p ¼ 1
2ðpa � pbÞ ¼ ð0;pÞ; (24)

p0 ¼ 1
2ðp0

a � p0
bÞ ¼ ð0;p0Þ: (25)

To perform the calculation, it is convenient to introduce
some new variables as functions of p and p0, i.e.,

W ðpÞ ¼ EaðpÞ þ EbðpÞ; (26)

W ðp0Þ ¼ Eaðp0Þ þ Ebðp0Þ; (27)

FEðp; p0Þ ¼ 1
2Eþ p0 � EðpÞ þ i	; (28)

where 	 is an infinitesimal quantity introduced in the so-
called i	 prescription. Following the same procedure as in
Refs. [28,29], it is straightforward to write down the
baryon-baryon scattering kernels, shown as box and
crossed diagrams in Fig. 1,

Kbox ¼ � 1

ð2�Þ2 ðE�W ðp0ÞÞðE�W ðpÞÞ
Z

dp0
0dp0dk20dk10d

3k2d
3k1

i

ð2�Þ4 	
4ðp� p0 � k1 � k2Þ 1

k22 �m2 þ i	

� 1

FEðp0; p0
0ÞFEð�p0;�p0

0Þ
�j�i�i�j

FEðp� k; p0 � k10ÞFEð�pþ k;�p0 þ k10Þ
1

FEðp; p0ÞFEðp;�p0ÞÞ
1

k21 �m2 þ i	
;

(29)

FIG. 1. Schematic diagrams which contribute to the baryonium potential.
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Kcross ¼ � 1

ð2�Þ2 ðE�W ðp0ÞÞðE�W ðpÞÞ
Z

dp0
0dp0dk20dk10d

3k2d
3k1

i

ð2�Þ4 	
4ðp� p0 � k1 � k2Þ

� 1

k22 �m2 þ i	

1

FEðp0; p0
0ÞFEð�p0;�p0

0Þ
�j�i�j�i

FEðp� k; p0 � k10ÞFEð�p0 � k;�p0
0 � k10Þ

� 1

FEðp; p0ÞFEð�p;�p0Þ
1

k21 �m2 þ i	
: (30)

Here, m corresponds to the pion mass and �i;j are heavy
baryon-pion interaction vertices that can be read off from
the Lagrangian in Eqs. (18)–(22). In the case of spin- 32
intermediate states,

�j�i�i�j ¼
�
g4
f�

�
4
�uð�pÞk�2 u�ðp� k1Þ �u�ðp� k1Þ

� k�1uðpÞ �vðpÞð�k
1 Þv
ð�pþ k1Þ �v�ð�pþ k1Þ
� k�2 vð�pÞ; (31)

and in the case of spin- 12 intermediates,

�j�i�i�j ¼
�
g2
f�

�
4
�uð�pÞ���5k

�
2 uðp� k1Þ �uðp� k1Þ

� ���5k
�
1uðpÞ �vðpÞ�
�5ð�k
1 Þvð�pþ k1Þ

� �vð�pþ k1Þ���5k
�
2 vð�pÞ: (32)

Integrating over p0
0, p0, k10, and k20 in Eq. (29), one

obtains the interaction kernel of the box diagram at order
Oð 1

MH
Þ,

Kbox ¼ � 1

ð2�Þ3
Z d3k1d

3k2

4Ek1
Ek2

�j�i

Ep�k1
þ Ep �W þ Ek1

� �i�j

E0
p þ Ep�k1

�W þ Ek2

� 1

Ep þ Ep0 �W þ Ek1
þ Ek2

; (33)

where MH represents one of the heavy baryon masses,

M�þ
c
, M�0

c
, or M��

c
; Ep�k1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� k1Þ2 þM2

��
c

q
is the

intermediate state energy; Ek1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1 þm2

q
and Ek2

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
2 þm2

q
are two pions’ energies; and W ¼ 2EðpÞ.

With the same procedure, we can get the interaction kernel
of the crossed diagram, i.e.,

Kcross ¼ � 1

ð2�Þ3
Z d3k1d

3k2

4Ek1
Ek2

�j�i

Ep�k1
þ Ep �W þ Ek1

� �j�i

E0
p þ Ep0þk1

�W þ Ek1

� 1

Ep þ Ep0 �W þ Ek1
þ Ek2

: (34)

Next, since what we are interested in are the heavy
baryons, we can further implement the nonrelativistic
reduction on spinors with the help of vertices given in
Eqs. (18)–(22). In the end, the nonrelativistic reduction
for �þ

c �
þ�
c �0 and �þ

c �
þ
c �

0 couplings gives

i

�
g4
f�

�
�uðp2Þu�ðp1Þðp2 � p1Þ� ¼ �i

�
g4
f�

�
Sy � q (35)

and

i

�
g2
f�

�
�uðp2Þ���5uðp1Þðp2 � p1Þ� ¼ i

�
g2
f�

�
�1 � q; (36)

respectively. Here, q ¼ p2 � p1 and Sy is the spin- 12 to

spin- 32 transition operator.

In the process of deriving the �þ
c � ��þ

c potential, the
�þ

c and �þ�
c are taken into account as intermediate states.

Using Eqs. (35) and (36) and the explicit forms of spinors
given in the Appendix, we can readily obtain the reduction
forms for the �þ

c intermediate state,

�uð�pÞ���5k
�
2 uðp� k1Þ �uðp� k1Þ���5k

�
1uðpÞ �vðpÞ

� �
�5ð�k
1 Þvð�pþ k1Þ �vð�pþ k1Þ���5k
�
2 vð�pÞ

¼ ðk1 � k2Þ2 þ ð�1 � k1 � k2Þð�2 � k1 � k2Þ; (37)

and the �þ�
c intermediate state in the box diagram,

�uð�pÞk�2 u�ðp� k1Þ �u�ðp� k1Þk�1uðpÞ
� �vðpÞð�k
1 Þv
ð�pþ k1Þ �v�ð�pþ k1Þk�2 vð�pÞ
¼ 4

9ðk1 � k2Þ2 � 1
9ð�1 � k1 � k2Þð�2 � k1 � k2Þ; (38)

and in the crossed diagram

�uð�pÞk�2 u�ðp� k1Þ �u�ðp� k1Þk�1uðpÞ
� �vðpÞð�k
1 Þv
ð�pþ k1Þ �v�ð�pþ k1Þk�2 vð�pÞ
¼ 4

9ðk1 � k2Þ2 þ 1
9ð�1 � k1 � k2Þð�2 � k1 � k2Þ; (39)

respectively. Thus, the spinor reduction finally leads
to an operator O1ðk1;k2Þ, of which the variables k1 and
k2 can be replaced by gradient operators r1 and r2 in
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configuration space and acting on r1 and r2, respectively.
This operator is expressed as

O1ðk1;k2Þ¼c1O1ðk1;k2Þþc2O2ðk1;k2Þ
¼c1ðk1 �k2Þ2þc2ð�1 �k1�k2Þð�2 �k1�k2Þ:

(40)

Here, the decomposition coefficients c1 and c2 are given in
Table I. The first part of Eq. (40) may generate the central
potential, and the second part may generate the spin-spin
coupling and the tensor potentials, which are explicitly
shown in the Appendix.

To get the leading order central potential, e.g. for the

�c-
��c system, we first expand the energy in powers of 1

MH
,

but keep only the leading term, like

1

Ep�k1
þ Ep �W þ Ek1

� 1

M��
c
þM�c

� 2M�c
þ Ek1

¼ 1

Ek1
þ �1

; (41)

where �1 ¼ M��
c
�M�c

represents the mass splitting. By

virtue of the factorization in integrals given in the
Appendix, we can then make a double Fourier transforma-
tion, i.e.,

VB
Cðr1; r2Þ ¼ �

�
g44
f4�

�ZZ d3k1d
3k2

ð2�Þ6
O1ðk1;k2Þeik1r1eik2r2fðk2

1Þfðk2
2Þ

2Ek1
Ek2

ðEk1
þ �1ÞðEk2

þ�1ÞðEk1
þ Ek2

Þ ; (42)

where the superscript B denotes the box diagram and the subscript Cmeans the central potential. Similarly, one can get the
central potential from the crossed diagram contribution,

VC
C ðr1; r2Þ ¼ �

�
g44
f4�

�ZZ d3k1d
3k2

ð2�Þ6 O1ðk1;k2Þeik1r1eik2r2fðk2
1Þfðk2

2ÞD; (43)

where the superscript C denotes the crossed diagram and
the subscript C means the central potential, and

D ¼ 1

4Ek1
Ek2

��
1

ðEk1
þ�1Þ2

þ 1

ðEk2
þ �1Þ2

�
1

Ek1
þ Ek2

þ
�

1

ðEk1
þ �1Þ2

þ 1

ðEk2
þ �1Þ2

þ 2

ðEk1
þ �1ÞðEk2

þ �1Þ
�

1

Ek1
þ Ek2

þ 2�1

�
: (44)

In order to regulate the potentials, we have introduced form
factors at each baryon-pion vertex. The resulting fðk2Þ
form factors appearing in Eqs. (42) and (43) will be given
in Sec. III.

Taking a similar approach as given above, one can read-
ily get the central potential in other interaction channels
and also the tensor potential. Notice that, although there
exists the one-pion exchange contribution in the �c-�c

system, due to the ���5 nature in the interaction vertex,

it only contributes to the �1 � �2 term, which is not our
concern in this work. Here we just focus on the central
potential.
Besides box and crossed diagrams, there are also con-

tributions from triangle and two-pion loop diagrams, as
shown in Fig. 2. As in the box and crossed diagrams,
after integrating over the energy component, we get the
pion-pair contribution, shown in the left diagram of
Fig. 2, as [30]

Vtriangleðr1; r2Þ ¼ g24
2f4�

ZZ d3k1d
3k2

ð2�Þ6
O2ðk1;k2ÞðEk1

þ Ek2
Þeik1r1eik2r2fðk2

1Þfðk2
2Þ

Ek1
Ek2

ðEk1
þ �1ÞðEk2

þ�1Þ ; (45)

where the O2ðk1;k2Þ ¼ ðk1 � k2Þ from spinor reduction
can be replaced in configuration space by the gradient
operator ðr1 � r2Þ. Similarly, the two-pion loop contribu-
tion, as shown in the right diagram of Fig. 2, reads

V2��loopðr1; r2Þ

¼ 1

16f4�

ZZ d3k1d
3k2

ð2�Þ6 eik1r1eik2r2fðk2
1Þfðk2

2ÞA: (46)

Here, A ¼ � 1
2Ek1

� 1
2Ek2

þ 2
Ek1

þEk2

. Expressing Eqs. (45)
and (46) in the integral representation of Ek1

, and making
the Fourier transformation, one can then obtain the corre-
sponding potentials.

III. NUMERICAL ANALYSIS

With the central potentials obtained in the preceding
section, one can calculate the heavy baryonium spectrum
by solving the Schrödinger equation. In our numerical
evaluation, the MATLAB based package MATSLISE [31] is
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employed. The following inputs from the Particle Data
Book [32] are used in the numerical calculation:

M�þ
c
¼ 2:286 GeV; M�0

c
¼ 2:454 GeV;

M��
c
¼ 2:518 GeV; f� ¼ 0:132 GeV;

m ¼ 0:135 GeV;

(47)

and both spin- 12 and spin-
3
2 fermion intermediates are taken

into account.
It is obvious that the main uncertainties in the evaluation

of heavy baryonium remain in the couplings of Eq. (17).
The magnitudes of the two independent couplings g1 and
g2 were phenomenologically analyzed in Ref. [25], and
two choices for them were suggested, i.e.,

g1 ¼ 1
3; g2 ¼ �

ffiffi
2
3

q
(48)

and

g1 ¼ 1
3 � 0:75; g2 ¼ �

ffiffi
2
3

q
� 0:75; (49)

which implies that g4 lies in the scope of 1 to 1.4, similar to
what was estimated by Ref. [33] in the chiral limit.

A. Gaussian form factor case

The central potential from the two-pion exchange box
diagram which can be regularized by the widely used

Gaussian form factor fðk2Þ ¼ e�k2=�2
reads

VB
CGðr1; r2Þ ¼ �

�
g44
f4�

��
1

�

Z 1

0

d�

�2
1 þ �2

O1ðk1;k2ÞFð�; r1ÞFð�; r2Þ

� 2�1

�2
O1ðk1;k2Þ

Z 1

0

d�

�2
1 þ �2

Fð�; r1Þ
Z 1

0

d�

�2
1 þ �2

Fð�; r2Þ
�

¼ X
i

VB
CGi þ � � � : (50)

Details of the derivation of Eq. (50) from Eq. (42) can be found in the Appendix. There, the function Fð�; rÞ is defined by
Eq. (A11). And, similarly, the central potential from the two-pion exchange crossed diagram gives

VC
CGðr1; r2Þ ¼ �

�
g44
f4�

��
1

�

Z 1

0

d�ð�2
1 � �2Þ

ð�2
1 þ �2Þ2 O1ðk1;k2ÞFð�; r1ÞFð�; r2Þ

�
¼X

i

VC
CGi þ � � � : (51)

Here, the ellipsis represents the high singular terms in the
r2 ! r1 ¼ r limit, which behave as higher order correc-
tions to the potential and will not be taken into account in
this work, but will be discussed elsewhere. The central
potential of Eq. (50) is obtained in the case of the spin- 32
intermediate state, and the explicit forms of VCGi from the
box diagram are

VB
CG1 ¼ � g44�

7

128
ffiffiffi
2

p
�7=2f4��

2
1

e�ð�2r2=2Þ; (52)

VB
CG2 ¼ � g44�

5

16
ffiffiffi
2

p
�7=2f4��

2
1r

2
e�ð�2r2=2Þ; (53)

FIG. 2. The triangle and two-pion loop diagrams.

TABLE I. The values of the coefficients c1 and c2 in the
decomposition of operator Oðk1;k2Þ in Eq. (40). The upper
table is for the spin- 12 intermediate state case, and the lower

table is for the spin- 32 case.

Spin-1=2 c1 c2

Box 1 1

Cross 1 1

Spin-3=2 c1 c2

Box 4=9 �1=9
Cross 4=9 1=9
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VB
CG3 ¼

g44�
3m5=2em

2=�2

32
ffiffiffi
2

p
�3f4��

2
1r

3=2
e�ð�2r2=4Þ�mr; (54)

VB
CG4 ¼

g44�
3m3=2em

2=�2

16
ffiffiffi
2

p
�3f4��

2
1r

5=2
e�ð�2r2=4Þ�mr

� g44m
9=2e2m

2=�2

128�5=2f4��
2
1r

5=2
e�2mr: (55)

With Gaussian form factors, it is seen from Eq. (A11) in the
Appendix that for a given � the function Fð�; rÞ is sup-
pressed for large � values; that is, the dominant contribu-
tion to the potential comes from the small � region. So, in
obtaining the analytic expressions of the above potentials
and hereafter, we expand the corresponding functions, as
defined in the Appendix, in � and keep only the leading
term. In this approach, the crossed diagram contributes to
the potential the same as the box diagram at the leading
order in � expansion, and hence is not presented here.

Similarly, we obtain the potentials from triangle and
two-pion loop diagrams, i.e.,

VT
CG5 ¼

g24m�3

32
ffiffiffi
2

p
�7=2f4��1r

2
e�ð�2r2=2Þ

� g24m
5=2�em

2=�2

16
ffiffiffi
2

p
�3f4��1r

5=2
e�ð�2r2=4Þ�mr

þ g24m
7=2e2m

2=�2

128�5=2f4��1r
5=2

e�2mr; (56)

and

VL
CG6 ¼ � m1=2�3

32
ffiffiffi
2

p
�2f4�r

3=2
e�ð1=4Þ�2r2�mr: (57)

To get the central potential for the case of the spin- 12
intermediate state, one needs only to make the following
replacement,

g4 ! g2; �1 ! �0
1 ¼ M�c

�M�c
; (58)

in Eq. (50).
Note that in the above asymptotic expressions we keep

only those terms up to order r5=2, and more singular terms
are not taken into account in this work. The dependence of
the potential on various parameters is shown in Fig. 3. The
results indicate that the potential approaches zero quickly

FIG. 3. The �c � ��c central potential behavior in the case of a Gaussian form factor versus different parameter choices.

FIG. 4. Radial wave function of the �c � ��c ground state. The left figure is for the case of a Gaussian form factor under the
conditions jg2j ¼ 0:95 and � ¼ 0:8, and the right one is for the case of a monopole form factor with jg2j ¼ 0:9 and � ¼ 0:95.
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in the long range in every case, while in the short range the
potential diverges very much with different parameters, as
expected. As a result, the binding energy heavily depends
on the coupling constants and the cutoff. One can read
from the figure that, in the small coupling situation, the
potential becomes too narrow and shallow to bind two
heavy baryons. Table II presents the binding energies of

the �c � ��c and �c � ��c systems with different inputs.
Schematically, the radial wave functions for the ground

state of the �c � ��c system with Gaussian and monopole
form factors are shown in Fig. 4, while the wave functions

for the �c � ��c system have similar curves.

B. Monopole form factor case

In order to regulate the singularities at the origin in
configuration space, people usually employ three types of
form factors in the literature, i.e. the Gaussian, the mono-
pole, and the dipole form factors [34]. For comparison, we
also calculate the potential with the monopole form factor
using the same factorization technique, and the basic
Fourier transformation for the monopole form factor is
presented in the Appendix for the sake of convenience.
Here, in obtaining the analytic expressions for the poten-
tials, we also expand the corresponding functions in pa-
rameter � and keeping only the leading term. Then, from
the box-diagram contribution we get

VB
CMðrÞ ¼ � g44

8�5=2f4��
2r5=2

�
m9=2

4
e�2mr þ�4m1=2

4
e�2�r

�

þ g44�
5=2m5=2

8
ffiffiffi
2

p
�5=2f4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ�

p
�2

1r
5=2

e�ðmþ�Þr: (59)

Contributions from triangle and two-pion loop diagrams
are

VT
CMðrÞ ¼

g24m
7=2

16�5=2f4��1r
5=2

e�2mr þ g24m�5=2

16�5=2f4��1r
5=2

e�2�r

� g24m
5=2�3=2

4
ffiffiffi
2

p
�5=2f4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ�

p
�1r

5=2
e�ðmþ�Þr (60)

and

VL
CMðrÞ ¼ � ð�2 �m2Þm1=2

32
ffiffiffi
2

p
�3=2f4�r

3=2
e�ðmþ�Þr

þ ð�2 �m2Þ�1=2

32
ffiffiffi
2

p
�3=2f4�r

3=2
e�2�r; (61)

respectively, where the superscripts B, T, and L stand for
box, triangle, and 2� loop. Note that since there is no
heavy baryon intermediate state in the 2� loop process,
as shown in the right graph of Fig. 2, its potential range
appears to be different.
We find that the structure of the potential with a mono-

pole form factor is much simpler than the Gaussian case.
The dependence of the potential on various parameters is
shown in Fig. 5. From the figure one can see that in the
small coupling case the potential changes less, which
means the potential tends to be insensitive to the small

FIG. 5. The �c � ��c central potential behavior in the case of a monopole form factor versus different choices of inputs.

TABLE II. Binding energies with different inputs using the
Gaussian form factor. The upper table is for the�c � ��c system,
and the lower one is for the �c � ��c system.

jg2j �ðGeVÞ Binding energy Baryonium mass

<0:9 <0:6 No � � �
0.9 0.6 �22 MeV 4.550 GeV

0.95 0.6 �77 MeV 4.495 GeV

1.0 0.6 �168 MeV 4.404 GeV

0.95 0.7 �196 MeV 4.376 GeV

0.95 0.8 �227 MeV 4.345 GeV

0.95 0.9 �588 MeV 3.984 GeV

g1 �ðGeVÞ Binding energy Baryonium mass

<1.0 <0.8 No � � �
1.0 0.8 �11 MeV 4.895 GeV

1.05 0.8 �61 MeV 4.845 GeV

1.1 0.8 �145 MeV 4.761 GeV

1.05 0.85 �141 MeV 4.765 GeV

1.05 0.9 �266 MeV 4.640 GeV

1.05 0.95 �438 MeV 4.468 GeV
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coupling, and hence the binding energy. Solving the
Schrödinger equation we then obtain eigenvalues for dif-
ferent input parameters, given in Table III. From the table,
we notice that the binding energy is sensitive to and
changes greatly with the variation of g1, jg2j, and the cutoff
�, the same as in the case with a Gaussian form factor.
Intuitively, the realistic baryonium can only accommodate
small ones of those parameters.

C. Ground state of �b � ��b baryonium

We also estimate the ground state of the �b � ��b bar-
yonium system with Gaussian and monopole form factors.
The results are shown in Table IV, where gb corresponds to
g2 in the charmed baryonium sector. Note that the domi-
nant decay mode of �b is to �b�, by which we may
constrain the �b�b� coupling from the experiment result,
and this may shed light on a further investigation of the
possible nature of baryonium.

IV. SUMMARYAND CONCLUSIONS

In the framework of heavy baryon chiral perturbation
theory we have studied the heavy baryon-baryon interac-
tion and obtained the interaction potential, the central
potential, in the case of two-pion exchange. The
Gaussian and monopole form factors are employed to
regularize the loop integrals in the calculation. As a leading
order analysis, the tensor potential and higher order con-
tributions in the 1

MH
expansion are neglected. As expected,

we found that the potential is sensitive to the baryon-pion
couplings and the energy cutoff � used in the form factor.
We apply the obtained potential to the Schrödinger

equation in attempting to see whether the attraction of
the two-pion-exchange potential is large enough to con-
strain two heavy baryons into baryonium. We find that it is
large enough for a reasonable choice of cutoff � and
baryon-pion couplings, which is quite different from the
conclusion of a recent work in the study of the D �D poten-
tial through two-pion exchange [35]. Since usually the
cutoff � is taken to be less than the nucleon mass, i.e.
about 1 GeV in the literature, in our calculation we adopt a
similar value to that employed in the nucleon-nucleon case.
In Ref. [35] the authors took a fixed coupling g ¼ 0:59 and
obtained the binding with a large cutoff, while in our
calculation for the baryonium system with a Gaussian
form factor, there will be no binding when g1 < 1:0 and
�< 0:8. The increase of the coupling constant will lead to
an even smaller � for a given binding energy.
Based on our calculations it is interesting to note that if

there exists binding in the �c � ��c system, with both
Gaussian and monopole factors, the coupling g1 will be
much bigger than what was conjectured in Ref. [25].

However, for the �c � ��c system, to form a bound state
the baryon-Goldstone coupling g2 could be similar in
magnitude to what was estimated in the literature.
Notice that the potential depends not only on the cou-

pling constants and the cutoff �, but also on the types of
form factors employed. Our calculation indicates that the
Gaussian form factor and the monopole form factor are
similar in regulating the singularities at the origin, and they
lead to similar results, with only subtle differences, for
both the �c and �b systems. Numerical results show that
the heavy baryon-baryon potentials are more sensitive to
the coupling constants in the case of the monopole form

TABLE III. Binding energies with different inputs using the
monopole form factor. The upper table is for the �c � ��c

system, and the lower one is for the �c � ��c system.

jg2j �ðGeVÞ Binding energy Baryonium mass

<0:7 <0:9 No � � �
0.8 0.95 �117 MeV 4.455 GeV

0.85 0.95 �420 MeV 4.152 GeV

0.9 0.95 �521 MeV 4.051 GeV

0.7 0.9 �5 MeV 4.567 GeV

0.7 0.95 �67 MeV 4.505 GeV

0.7 1.0 �252 MeV 4.320 GeV

g1 �ðGeVÞ Binding energy Baryonium mass

<0:9 <0:9 No

0.95 0.95 �438 MeV 4.468 GeV

1.0 0.95 �830 MeV 4.076 GeV

1.05 0.95 �1003 MeV 3.903 GeV

0.9 0.9 �40 MeV 4.866 GeV

0.9 0.95 �153 MeV 4.753 GeV

0.9 1.0 �345 MeV 4.561 GeV

TABLE IV. Binding energies with the change of parameters
for the �b-

��b system. The upper table is for the Gaussian form
factor, and the lower one is for the monopole form factor. Here
gb corresponds to g2 in the charmed baryonium sector.

jgbj �ðGeVÞ Binding energy Baryonium mass

<0:7 <0:7 No No

0.7 0.75 �4 MeV 11.236 GeV

0.8 0.75 �76 MeV 11.164 GeV

0.9 0.75 �294 MeV 10.946 GeV

0.8 0.8 �164 MeV 11.706 GeV

0.8 0.9 �396 MeV 10.844 GeV

0.8 1.0 �622 MeV 10.618 GeV

jgbj �ðMeVÞ Binding energy Baryonium mass

<1:0 <0:8 No No

1.0 0.8 �11 MeV 11.229 GeV

1.05 0.8 �56Mev 11.184 GeV

1.1 0.8 �143 MeV 11.097 GeV

1.05 0.8 �103Mev 11.137 GeV

1.05 0.9 �164 MeV 11.076 GeV

1.05 1.0 �321 MeV 10.919 GeV
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factor, but are more sensitive to the cutoff � in the case of
the Gaussian form factor. From our calculation it is tempt-
ing to conjecture that the recently observed states Yð4260Þ
and Yð4360Þ, but not Yð4660Þ [6], in the charm sector could

be a �c � ��c bound state with a reasonable amount of
binding energy, which deserves a further investigation. Our
result also shows that the newly observed exotic state in the
bottom sector, the Ybð10890Þ [36], could be treated as the

�b � ��b bound state, with an extremely large binding
energy.

It is worth emphasizing at this point that, although our
result favors the existence of heavy baryonium, it is still
hard to make a definite conclusion yet, especially with only
the leading order two-pion-exchange potential. The poten-
tial sensitivity on the coupling constants and energy cutoff
also looks unusual and needs further investigation. To be
closer to the truth, one needs to go beyond the leading order
of accuracy in 1

MH
expansion; one should also investigate

the potential while two baryonlike triquark clusters carry
colors as proposed in the heavy baryonium model [11,15];
last, but not least, the unknown and difficult to evaluate
annihilation channel effect on the heavy baryonium
potential should also be clarified, especially for a heavy
baryon-antibaryon interaction, which nevertheless could
be phenomenologically parametrized so as to reproduce
known widths of some observed states.
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APPENDIX

In this appendix, we present more detailed formulas and
definitions for the sake of the reader’s convenience.

The � matrices take the following convention:

�0¼ 1 0

0 �1

 !
; �i¼ 0 
i

�
i 0

 !
; �5¼

0 1

1 0

 !
: (A1)

And the Dirac spinors for �c read as

uðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþM�

2M�

s �
�a

��p
EþM�

�a

�
; (A2)

where �a is a two-component Pauli spinor, and

vðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþM�

2M�

s � ��p
EþM�

�a

�a

�
; (A3)

where �a ¼ �i
2��
a and a ¼ 1; 2. The spin- 32 field for

�þ� is described by the Rarita-Schwinger spinor u�ðp;
Þ,
which can be constructed by the spin-1 vector and spin- 12
field [37], that is,

u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþM�þ�

2M�þ�

s
Lð1ÞðpÞ��

� 1
��p

EþM�þ�

�
Sy�c ð
Þ; (A4)

where c ð
Þ is a four-component Pauli spinor of a spin- 32
particle, and Lð1ÞðpÞ�� is the boost operator for a spin-1
particle,

Lð1ÞðpÞ�� ¼
E

M�þ�
pj

M�þ�

pi

M�þ� 	i
j � pipj

M�þ� ðEþM�þ� Þ

0
B@

1
CA; (A5)

where i; j are indices of the space components of momen-
tum p. The positive- and negative-energy projection op-
erators for the spin- 12 baryon are

½�þðpÞ�
� ¼ X
�s

u
ðp; sÞ �u�ðp; sÞ ¼
� 6pþM�c

2M�c

�

�

(A6)

and

½��ðpÞ�
� ¼ �X
�s

v
ðp; sÞ �v�ðp; sÞ ¼
��6pþM�c

2M�c

�

�

;

(A7)

respectively.
The positive- and negative-energy projection operators

for the spin- 32 baryon are

½�þ
��ðpÞ�
� ¼ X

�s

u�;
ðp; sÞ �u�;�ðp; sÞ

¼
� 6pþM��

c

2M��
c

�

�

�
g�� �

����

3

� 2p�p�

3M2
��

c

þ p��� � p���

3M��
c

�
(A8)

and

½��
��ðpÞ�
� ¼ �X

�s

v�;
ðp; sÞ �v�;�ðp; sÞ

¼
��6pþM��

c

2M��
c

�

�

�
g�� �

����

3

� 2p�p�

3M2
��

c

þ p��� � p���

3M��
c

�
; (A9)

respectively. Here, � and � are Lorentz indices; 
 and �
are Dirac spinor indices.
The basic Fourier transformation with the Gaussian

form factor reads

I2ðm; rÞ ¼
Z 1

�1
d3k

ð2�Þ3
eikre�k2=�2

k2 þm2

¼ 1

8�r
em

2=�2

�
e�mrerfc

�
��r

2
þm

�

�

� emrerfc

�
�r

2
þm

�

��
; (A10)
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and hence

Fð�; rÞ ¼
Z d3k

ð2�Þ3
eikre�k2=�2

k2 þm2 þ �2

¼ I2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ �2

p
; rÞe��2=�2

: (A11)

The term erfcðxÞ is a complementary error function,
which is defined as

erfcðxÞ ¼ 2ffiffiffiffi
�

p
Z 1

x
e�t2dt: (A12)

The factorization in the double Fourier transformation is

H11¼
ZZ d3k1d

3k2

ð2�Þ6
eik1r1eik2r2fðk2

1Þfðk2
2Þ

!1!2ð!1þaÞð!2þaÞð!1þ!2Þ
¼
ZZ d3k1d

3k2

ð2�Þ6
1

a2

�
2

�

Z 1

0

eik1r1eik2r2fðk2
1Þfðk2

2Þd�
ð!2

1þ�2Þð!2
2þ�2Þ � 2

�

Z 1

0

eik1r1eik2r2fðk2
1Þfðk2

2Þ�2d�

ða2þ�2Þð!2
1þ�2Þð!2

2þ�2Þ
�
�1

a
G11ð�;r1ÞG11ð�;r2Þ

¼ 2

�

Z 1

0

d�

a2þ�2
Fð�;r1ÞFð�;r2Þ�1

a
G11ð�;r1ÞG11ð�;r2Þ: (A13)

Here,

G11 ¼
Z d3k1

ð2�Þ3
eik1re�k2

1=�
2

!1ð!1 þ aÞ ¼
Z d3k1

ð2�Þ3
2a

�

Z 1

0

eik1re�k2
1=�

2
d�

ða2 þ �2Þð!2
1 þ �2Þ ¼

2a

�

Z 1

0

d�

ða2 þ �2ÞFð�; rÞ; (A14)

and for simplicity we define !1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1 þm2

q
and !2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
2 þm2

q
.

In the case of the monopole form factor, i.e. fðk2Þ ¼ �2�m2

�2þk2 , the function that corresponds to Fð�; rÞ reads
Rð�; rÞ ¼

Z d3k

ð2�Þ3
eikr

k2 þm2 þ �2

�2 �m2

�2 þ k2 þ �2
¼ 1

4�r
ðe�r

ffiffiffiffiffiffiffiffiffiffiffi
m2þ�2

p
� e�r

ffiffiffiffiffiffiffiffiffiffiffi
�2þ�2

p
Þ: (A15)

The operator O1ðk1;k2Þ contains two parts. The first part of O1ðk1;k2Þ, while acting on functions in configuration
space, is

O1ðk1;k2ÞFð�; r1ÞFð�; r2Þ ¼ ðk1 � k2Þ2Fð�; r1ÞFð�; r2Þ ¼ ðr1ir1jÞFð�; r1Þðr2ir2jÞFð�; r2Þ

¼ 2

r2
F0ð�; rÞF0ð�; rÞ þ F00ð�; rÞF00ð�; rÞ; (A16)

where

rirj ¼
�
	ij �

xixj

r2

��
1

r

d

dr

�
þ xixj

r2

�
d2

dr2

�
; (A17)

and the limit r2 ! r1 ¼ r is taken. The second part of O2ðk1;k2Þ, while acting on functions in configuration space, is

O2ðk1;k2ÞFð�; r1ÞFð�; r2Þ ¼ ð�1 � k1 � k2Þð�2 � k1 � k2ÞFð�; r1ÞFð�; r2Þ
¼ 
1i
2j"ikl"jmnðr1kr1mÞFð�; r1Þðr2lr2nÞFð�; r2Þ
¼ 
1i
2jð	ij	km	ln þ 	im	kn	lj þ 	in	lm	kj � 	lj	km	in � 	lm	kn	ij � 	ln	im	kjÞ

� ðr1kr1mÞFð�; r1Þðr2lr2nÞFð�; r2Þ

¼ 2

3

�
1

r2
F0ð�; rÞF0ð�; rÞ þ 2

r
F0ð�; rÞF00ð�; rÞ

�
ð�1 � �2Þ þ 2

3

�
F0ð�; rÞ

r
� F00ð�; rÞ

�
1

r
F0ð�; rÞS12;

(A18)

where �1 � �2 gives the spin-spin potential and S12 ¼ 3ð�1�rÞð�2�rÞ
r2

� �1 � �2 gives the tensor potential.
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