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The semi-inclusive B-meson decay into spin-singlet D-wave 2�þ charmonium, B ! �c2 þ X, is

studied in nonrelativistic QCD. Both color-singlet and color-octet contributions are calculated at next-

to-leading order in the strong coupling constant �s. The nonperturbative long-distance matrix elements

are evaluated using operator evolution equations. It is found that the color-singlet 1D2 contribution is tiny,

while the color-octet channels make dominant contributions. The estimated branching ratio BðB !
�c2 þ XÞ is about 0:41� 10�4 in the naı̈ve dimensional regularization scheme and 1:24� 10�4 in the

’t Hooft–Veltman scheme, with renormalization scale � ¼ mb ¼ 4:8 GeV. The scheme sensitivity of

these numerical results is due to cancellation between 1S½8�0 and 1P½8�
1 contributions. The �-dependence

curves of next-to-leading order branching ratios in both schemes are also shown, with � varying from mb

2

to 2mb and the nonrelativistic QCD factorization or renormalization scale �� taken to be 2mc.

Comparison of the estimated branching ratio of B ! �c2 þ X with the observed branching ratio of

B ! Xð3872Þ þ K may lead to the conclusion that Xð3872Þ is unlikely to be the 2�þ charmonium

state �c2.
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I. INTRODUCTION

One of the missing states in the charmonium family,
the �c2ð1D2Þ, is the only missing spin-singlet low-lying

D-wave charmonium state. Its mass is predicted to be
within 3.80 to 3.84 GeV [1–3], which lies between the
D �D and the D� �D thresholds. The JPC quantum number
of �c2 is 2

�þ; thus its decay toD �D is forbidden. Therefore,
this is a narrow resonance state, and its main decay modes
are the electromagnetic and hadronic transitions to lower-
lying S-, P-wave charmonium states and the annihilation
decays to light hadrons. Previously, we calculated the
inclusive light hadronic decay width of the 1D2 state at

next-to-leading order (NLO) in �s [4] in the framework of
nonrelativistic QCD (NRQCD). The results show that with
the total width of �c2 estimated to be about 660–810 keV,
the branching ratio of the electric dipole transition �c2 !
�hc is about (44–54)%, which will be useful in searching
for this missing charmonium state through �c2 ! �hc
followed by hc ! ��c and other processes.

The NRQCD factorization method [5] was adopted in
our calculation of �c2 light hadronic decay. Within this
framework, the inclusive decay and production of
heavy quarkonium can be factorized into two parts, the
short-distance coefficients and the long-distance matrix
elements. A color-octet heavy quark and antiquark pair
annihilated or produced at short distances can evolve into a
color-singlet heavy quarkonium at long distances via elec-
tric or magnetic transitions by emitting soft gluons,
This color-octet mechanism has been used to remove the

infrared (IR) divergences in P-wave [5–10] and D-wave
[4,11,12] charmonium decays.
Now, we turn to the B-meson nonleptonic decays, which

have played an important role in discovering new reso-
nances, especially new charmonium and charmoniumlike
states in recent years. The branching fractions of B-meson
inclusive decays into S-wave and P-wave charmonia, of
Oð10�3Þ to Oð10�2Þ [13], are relatively large. Therefore,
we may also expect to search for D-wave charmonia in
B-meson decays, and, in particular, to search for the spin-
singletD-wave charmonium�c2 in B ! �c2 þ X. Like the
charmonium light hadronic decay, charmonium production
in B-meson semi-inclusive decay may also be factorized in
NRQCD as

�ðB ! H þ XÞ ¼ X
n

Cðb ! c �c½n� þ XÞhOH½n�i; (1)

where the sum runs over all contributing Fock states. The
short-distance coefficients Cðb ! c �c½n� þ XÞ can be per-
turbatively calculated up to any order in�s, while the long-
distance matrix elements hOH½n�i should be determined
nonperturbatively. One may refer to [10,14] for more dis-
cussions on the feasibility of Eq. (1).
S-wave and P-wave charmonium production in

B-meson semi-inclusive decays has already been studied
by many authors in the literature [10,14–18]. In [10,14], it
was found that the experimentally observed branching
fractions for J=c and c 0 could be accounted for by NLO
calculations, while for �c1 and �c2 the branching ratios
were still difficult to explain. In [19], the branching frac-
tions for D-wave charmonium production in B-meson
semi-inclusive decays were calculated to be of Oð10�3Þ
in NRQCD at leading order (LO), where the NRQCD
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velocity scaling rules were used to estimate the long-
distance matrix elements. Similar results but somewhat
larger branching fractions were also obtained in [20].
However, the NLO QCD corrections are found to be very
important in many heavy quarkonium production pro-
cesses, e.g., in eþe� annihilation [21], hadroproduction
[22,23], and photoproduction [24]. Moreover, the velocity
scaling rules are too rough to give a quantitative estimate
for the long-distance matrix elements. Therefore, for
D-wave charmonium production in B-meson semi-
inclusive decays, aside from [19,20], a NLO calculation
and a better estimate for the matrix elements are necessary.

Another important motivation for carrying out this study
concerns the long-standing puzzle of the nature of
Xð3872Þ. Previous studies assumed that the quantum num-
bers of the Xð3872Þ were JPC ¼ 1þþ, and this was sup-
ported by a number of measurements. However, the new
BABAR measurement of Xð3872Þ ! J=c�þ���0 [25]
favors the negative-parity assignment 2�þ. Nevertheless,
people still argue that the observed properties of Xð3872Þ
strongly disfavor the 2�þ assignment [26–29]. Recently,
[30] proposed that the angular distributions of decay prod-
ucts could be used to distinguish between the 1þþ and 2�þ
assignments of Xð3872Þ. In this paper, we will further
clarify this problem by calculating the 1D2 charmonium
production rate in B-meson semi-inclusive decay. We will
compare the calculated branching ratio B ! �c2 þ X, with
the experimental measurement of BrðB ! Xð3872ÞKÞ, and
then discuss if Xð3872Þ can be the 2�þ charmonium �c2.

The paper is organized as follows. In Secs. II and III,
decay widths of four contributing Fock states at tree and
one-loop levels are calculated both in QCD and NRQCD,
and finite short-distance coefficients Cðb ! c �c½n� þ XÞ
for different components c �c½n� are obtained, respectively,
after matching between QCD and NRQCD. Computation
methods adopted in real and virtual corrections are dis-
cussed too. The long-distance matrix elements are esti-
mated using operator evolution equations. In Sec. IV,
numerical results are given and analyzed. And finally the
possibility of assigning the �c2 as Xð3872Þ is discussed.

II.LO CONTRIBUTION

We use the same description as in [10,14]. The weak
decay b ! c �cþ s=d occurs at energy scales much lower
than the W boson mass mW . Integrating out the hard scale
and making Fierz transformation, we finally arrive at the
effective Hamiltonian

Heff ¼GFffiffiffi
2

p X
q¼s;d

�
V�
cbVcq

�
1

3
C½1�ð�ÞO1ð�ÞþC½8�ð�ÞO8ð�Þ

�

�V�
tbVtq

X6
i¼3

Cið�ÞOið�Þ
�
; (2)

where the c �c pair is either in a color-singlet or a color-octet
configuration, denoted by O1 and O8, respectively,

O1 ¼ ½ �c��ð1� �5Þc�½ �b��ð1� �5Þq�;
O8 ¼ ½ �cTa��ð1� �5Þc�½ �bTa��ð1� �5Þq�:

(3)

O3–6 are the QCD penguin operators [31]. C½1�ð�Þ
and C½8�ð�Þ are the Wilson coefficients of O1 and O8,

and related to another group of coefficients Cþð�Þ and
C�ð�Þ through

C½1�ð�Þ ¼ 2Cþð�Þ � C�ð�Þ;
C½8�ð�Þ ¼ Cþð�Þ þ C�ð�Þ: (4)

At LO, expressions for C�ð�Þ are

CLO� ð�Þ ¼
�
�LO
s ðmWÞ
�LO
s ð�Þ

�
�ð0Þ
� =ð2�0Þ

; (5)

with the one-loop anomalous dimension

�ð0Þ
� ¼ �2ð3� 1Þ; (6)

and �s

�LO
s ð�Þ ¼ 4�

�0 ln½�2=ð�LO
QCDÞ2�

; (7)

where �0 ¼ 11� 2
3Nf. We choose mW ¼ 80:399 GeV

[13], mZ ¼ 91:1876 GeV, mb ¼ 4:8 GeV, Nf ¼ 4, and

�LO
QCD ¼ 128 MeV for four flavors to adjust �sðmZÞ to be

0.119 for five flavors.
Only four configurations contribute to �c2 production at

LO in v, the velocity of the heavy quark or antiquark in the
charmonium rest frame:

j�c2i ¼ Oð1Þj1D½1�
2 i þOðvÞj1P½8�

1 gi
þOðv2Þj1S½1;8�0 ggi þ � � � : (8)

With the Fock state expansion Eq. (8), we have

�ðb!�c2XÞ¼�ðb! 1S½1�0 XÞþ�ðb! 1S½8�0 XÞ
þ�ðb! 1P½8�

1 XÞþ�ðb! 1D½1�
2 XÞ

¼Cð1S½1�0 ÞhO1ð1S0ÞiþCð1S½8�0 ÞhO8ð1S0Þi

þCð1P½8�
1 ÞhO8ð1P1Þi

m2
c

þCð1D½1�
2 ÞhO1ð1D2Þi

m4
c

:

(9)

hO1ð1S0Þi, hO8ð1S0Þi, hO8ð1P1Þi, and hO1ð1D2Þi are the

production matrix elements of four-fermion operators de-
fined in [5,32]:
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O1ð1S0Þ ¼ �yc ðayHaHÞc y�;

O8ð1S0Þ ¼ �yTac ðayHaHÞc yTa�;

O8ð1P1Þ ¼ �y
�
� i

2
D
,�

Tac ðayHaHÞ � c y
�
� i

2
D
,�

Ta�;

O1ð1D2Þ ¼ �ySijc ðayHaHÞc ySij�; (10)

where D
, ¼ ~D�D

(
and Sij ¼ ð� i

2Þ2ðD
,i
D
,j � 1

3D
,2

�ijÞ.
We use Wolfram MATHEMATICA 7.0.1.0, FEYNARTS-3.4,

and FEYNCALC 6.0. At tree level, the coupling vertex struc-
ture �c��ð1� �5Þc restricts possible JPC numbers of char-

monium states. Matching amplitudes in both QCD and
NRQCD at LO leads to finite short-distance coefficients

Cð1S½1�0 Þ¼�0C
2
½1�3ð1��Þ2; Cð1S½8�0 Þ¼�0C

2
½8�

9
2ð1��Þ2;

Cð1P½8�
1 Þ¼ 0; Cð1D½1�

2 Þ¼ 0; (11)

where

�0 ¼ G2
FjVbcj2m3

b

216�ð2mcÞ ; � ¼ 4m2
c

m2
b

; (12)

and jVcsj2 þ jVcdj2 � 1 have been used. For the LO
Feynman diagram, see Fig. 1. The strong dependence
on renormalization scale � of C2

½1;8�ð�Þ at LO causes the

results in Eq. (11) to be unreliable (see Fig. 2) and calls for
higher order corrections. The QCD penguin operators in
Eq. (2) also contribute to nonzero tree-level decay width,
although their contribution is tiny due to the smallness of
C3–6ð�Þ. We will neglect their � dependence and adopt

those values given in [10,14], for they chose the same
values for mb, �

LO
QCD as ours. C3ðmbÞ ¼ 0:010, C4ðmbÞ ¼

�0:024, C5ðmbÞ ¼ 0:007, and C6ðmbÞ ¼ �0:028.
Together with CLO

½1� ðmbÞ ¼ 0:42 and CLO
½8� ðmbÞ ¼ 2:19, the

penguin contribution is

�P½1S½1�0 � ¼ 2
3ðC3 � C5Þ þ C4 � C6

CLO
½1�

¼ 0:06;

�P½1S½8�0 � ¼ 4
C4 � C6

CLO
½8�

¼ 0:007;

(13)

which add corrections to tree-level short-distance coeffi-
cients in Eq. (11):

Cð1S½1�0 Þ ¼ �0C
2
½1�3ð1� �Þ2ð1þ �P½1S½1�0 �Þ;

Cð1S½8�0 Þ ¼ �0C
2
½8�

9
2ð1� �Þ2ð1þ �P½1S½8�0 �Þ;

Cð1P½8�
1 Þ ¼ 0; Cð1D½1�

2 Þ ¼ 0:

(14)

III. NLO CALCULATION AND
DIVERGENCE CANCELLATION

A. Real corrections

Gluon mass regularization is adopted in our calculation;
therefore the �5 matrix can be treated in four-dimension.
Real correction figures are in Fig. 3. Divergences are
separated from the finite parts in the amplitude squared.
Two kinds of divergences appear: the soft and the collinear.
Three divergent regions exist: soft, soft-collinear, and

hard-collinear. Take 1S½1�0 for example. In the soft region,

the gluon connected to the incoming bottom quark turns
soft; i.e., its momentum goes to zero [(r1) of Fig. 3]. In the
soft-collinear region, the b-quark gluon turns soft and at the
same time the s/d-quark gluon is collinear with the out-
going s/d quark, or their momenta are parallel to each
other [(r1) and (r2) of Fig. 3]. In the hard-collinear
region, the s/d-quark gluon runs parallel to the s/d quark
[(r2) of Fig. 3]. IR divergences in (r3) and (r4) of Fig. 3
cancel each other. We take the following parametrization

FIG. 1. LO Feynman diagram of b ! c �cþ X.

FIG. 2 (color online). LO �-dependence curves of C½1;8�ð�Þ. The solid line denotes C½1�ð�Þ, and the dashed line C½8�ð�Þ. Ratios of
C2
½1;8�ð�Þ=C2

½1;8�ðmbÞ as functions of � are also shown.
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bðp1Þ ! cðp4Þ þ �cðp3Þ þ s=dðp5Þ þ gðp6Þ; (15)

and the quark propagators in four quark lines have
denominators

N1 	 �2p1 � p6 þ p2
6; N4 	 2p4 � p6 þ p2

6;

N3 	 2p3 � p6 þ p2
6; N5 	 2p5 � p6 þ p2

6;
(16)

respectively. For 1S½1�0 , p3 ¼ p4 and N3 ¼ N4. Divergent

terms are extracted before doing phase-space integration:

soft terms: 
 1

N2
1

; soft-collinear terms: 
 1

N1N5

;

hard-collinear terms
 1

N5

;
 1

N2
5

: (17)

Some of the hard-collinear terms are seemingly divergent
but finally contribute to the finite parts. The Mandelstam
variables are

s ¼ ðp1 � p6Þ2; t ¼ ðp5 þ p6Þ2;
u ¼ ðp1 � p5Þ2;

(18)

and

u ¼ 4m2
c þm2

b þ 	2 � s� t; (19)

with 	 the nonzero gluon mass. Rescaling all the dimen-
sional variables with respect to mb,

mc ¼ mb

2

ffiffiffiffi
�

p
; 	 ¼ mb

ffiffiffi



p
; (20)

and

s ¼ m2
bð1� yþ 
Þ; t ¼ m2

bð1� xþ �Þ; (21)

we finally arrive at the amplitude squared expressed
using dimensionless variables x, y instead of s and t.
Upper and lower limits of x and y are derived from those
of s and t via Eq. (21):

ymax ¼ 1þ 
� 1

4ð1þ �� xÞ
�
2�� xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4�

q �

�
�
�2þ 2
þ x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4�

q �
;

ymin ¼ 1þ 
� 1

4ð1þ �� xÞ
�
2�� x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4�

q �

�
�
�2þ 2
þ xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4�

q �
;

xmax ¼ 1� 
þ �; xmin ¼ 2
ffiffiffiffi
�

p
: (22)

Phase-space integration over x is a little bit complicated,
and the Euler transformation is needed by introducing a
new integration variable

tt 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 2

ffiffiffiffi
�

p
xþ 2

ffiffiffiffi
�

p
s

(23)

to replace x and its integration limits

ttmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 2

ffiffiffiffi
�

p � 
þ 1

�þ 2
ffiffiffiffi
�

p � 
þ 1

s
; ttmin ¼ 0: (24)

Divergences in (r3) and (r4) of Fig. 3 cannot cancel each

other for 1S½8�0 , which makes divergent terms more

complicated. They also produce the only IR pole, the

residual divergence in 1P½8�
1 , which can be canceled by

absorption into the redefinitions of nonperturbative ma-

trix elements of 1S½1�0 and 1S½8�0 states. Furthermore, there

is no divergence in the real correction of 1D½1�
2 .

B. Virtual corrections

In virtual corrections, IR divergences, soft and collinear,
are regulated with nonzero gluon mass like in real correc-
tions. Ultraviolet (UV) divergences are dimensionally
regulated at the amplitude level before projecting the free
charm quark pair onto a certain charmonium bound state of
a particular angular momentum and color. Virtual correc-
tion figures are in Fig. 4. Each diagram in Fig. 4 has a loop

FIG. 3. Real correction Feynman diagrams of b ! c �cþ X.
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integration over gluon momentum q. For example, in ðv1Þ
the UV divergent loop integration has the form

Z dDq

ð2�ÞD
q�q�

0

ðq2 � 	2Þððp1 � qÞ2 �m2
bÞððp4 � qÞ2 �m2

cÞ
;

(25)

and the UV divergent term comes only from the region
when q ! 1,

Z dDq

ð2�ÞD
q�q�

0

q2 � q2 � q2 ; (26)

which is proportional to the D-dimensional metric tensor

g��
0
. Thus the corresponding fermion chain in ðv1Þ reduces

into

������ � ������: (27)

�� is the short form for the electroweak vertex��ð1� �5Þ.
UV divergent term extractions from structures like above
are carried out upon using the Fierz transformations

������ � ������ ¼ ð16þ 4X�UVÞ�� � �� þ EX;

������ � ������ ¼ ð4þ 4Y�UVÞ�� � �� þ EY;

�� � �����
����� ¼ ð4þ 4Z�UVÞ�� � �� þ EZ;

(28)

where the scheme dependence of �5 is fully extracted and
contained in scheme-dependent variables X, Y, and Z,

naive dimensional regularization ðNDRÞ scheme:

X ¼ �1; Y ¼ Z ¼ �2;

’t Hooft–Veltman ðHVÞ scheme:

X ¼ �1; Y ¼ Z ¼ 0: (29)

Hence, the �5 matrix in �� can still be kept in four-

dimension when evaluating the trace formalism.
Evanescent operators EX, EY , and EZ exist only in D � 4
dimensions but vanish inD ¼ 4 [31]. Therefore they make
no contribution to the decay widths, and can be discarded

throughout the calculations. Again for the 1S½1�0 , self-energy

diagrams of ðv3Þ and ðv6Þ can only exist for a color-singlet

FIG. 4. Virtual correction Feynman diagrams of b ! c �cþ X.

FIG. 5. Self-energy correction Feynman diagrams of b !
c �cþ X.
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electroweak vertex; i.e., only C½1�ð�Þ appears. On the con-

trary, the other four diagrams ðv1;2Þ and ðv4;5Þ can only have
a C½8�ð�Þ electroweak vertex. Those six diagrams only

couple to the tree diagram with a C½1�ð�Þ vertex, contribut-
ing to C2

½1�ð�Þ and C½1�ð�ÞC½8�ð�Þ terms, respectively. IR

divergence of ðv1Þ cancels that of ðv2Þ, and ðv4Þ cancels
ðv5Þ.

Adding self-energy diagrams in Fig. 5, one can remove
UV divergences in ðv3Þ and ðv6Þ. Explicitly,

ðv3Þ þ ðs1Þ þ ðs2Þ ¼ UV finite;

ðv6Þ þ ðs3Þ þ ðs4Þ ¼ UV finite;
(30)

where

ðs1Þ ¼ � 4

3
ið4��sÞN�ðmbÞ

�
� 1

2�UV
þ 3

2
log

�
�

4

�

� logð
Þ � 2

�
ðtreeÞ;

ðs2Þ ¼ � 4

3
ið4��sÞN�ðmbÞ

�
� 1

2�UV
þ 3

2
log

�
�

4

�

� logð
Þ � 2

�
ðtreeÞ;

ðs3Þ ¼ � 4

3
ið4��sÞN�ðmbÞ

�
� 1

2�UV
� logð
Þ � 2

�
ðtreeÞ;

ðs4Þ ¼ � 4

3
ið4��sÞN�ðmbÞ

�
� 1

2�UV
þ logð
Þ

2
þ 1

4

�
ðtreeÞ;

(31)

with N�ðmbÞ ¼ ið4�Þ�UV�2�ð�UV þ 1Þð�2

m2
b

Þ�UV . No virtual

corrections to 1P½8�
1 and 1D½1�

2 exist accurate to NLO in

�s, because of their vanishing tree-level amplitudes. This
leads to a convenience directly that computation is reduced
significantly. ðv1Þ þ ðv2Þ þ ðv4Þ þ ðv5Þ is still UV diver-
gent, which needs operator renormalization, i.e., to sub-
tract the term proportional to 1

�UV
� �E þ lnð4�Þ or

equivalently make the replacement

1

�UV
! �E � lnð4�Þ: (32)

�E is the Euler constant. To summarize our renormaliza-
tion procedures. First, make mass renormalization for
charm, anticharm, and bottom quarks mR ! m0 ¼ mR þ
mct (no such operation is needed for strange or down
quarks which are taken to be massless in this paper),

mct ¼ 4

3
ið4��sÞN�ðmbÞ

�
3

�UV
þ 4

�
mR; (33)

second, add the self-energy diagrams of external quark
lines; finally, do operator renormalization explained above.

C. Residual divergence cancellation

We then demonstrate how the residual IR divergence is
canceled. At NLO in �s, on the QCD side,

�ðb ! �c2XÞ ¼ Cð1S½1�0 ÞQCDfiniteþCoulombhO1ð1S0ÞiBorn
þ Cð1S½8�0 ÞQCDfiniteþCoulombhO8ð1S0ÞiBorn
þ Cð1P½8�

1 ÞQCDsoft

hO8ð1P1ÞiBorn
m2

c

þ Cð1D½1�
2 ÞQCDfinite

hO1ð1D2ÞiBorn
m4

c

; (34)

while on the NRQCD side,

�ðb!�c2XÞ
¼Cð1S½1�0 ÞNRhO1ð1S0ÞiNRþCð1S½8�0 ÞNRhO8ð1S0ÞiNR

þCð1P½8�
1 ÞNR hO8ð1P1ÞiNR

m2
c

þCð1D½1�
2 ÞNR hO1ð1D2ÞiNR

m4
c

:

The subscript Coulomb or soft means having Coulomb or

soft pole. NRQCD operator mixing of 1S½1;8�0 and 1P½8�
1 is

shown in Fig. 6. This is similar for 1P½8�
1 mixing with 1D½1�

2 .
And the nonperturbative matrix elements up to NLO in
�s are

FIG. 6. NRQCD operator mixing of 1S½1;8�0 and 1P½8�
1 .
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hO1ð1S0ÞiNR ¼ hO1ð1S0ÞiBorn þ hO1ð1S0ÞiCoulomb � �s

4�

�
ln
	2

�2
�

þ 1

3

��
16

3

� hO8ð1P1ÞiBorn
m2

c

;

hO8ð1S0ÞiNR ¼ hO8ð1S0ÞiBorn þ hO8ð1S0ÞiCoulomb � �s

4�

�
ln
	2

�2
�

þ 1

3

��
16

3

��
CF

hO1ð1P1ÞiBorn
2Ncm

2
c

þ BF

hO8ð1P1ÞiBorn
m2

c

�
;

hO8ð1P1ÞiNR ¼ hO8ð1P1ÞiBorn þ hO8ð1P1ÞiCoulomb � �s

4�

�
ln
	2

�2
�

þ 1

3

��
16

3

��
CF

hO1ð1D2ÞiBorn
2Ncm

2
c

þ BF

hO8ð1D2ÞiBorn
m2

c

�
:

(35)

BF ¼ 5
12 . The Coulomb singularity in ðm5Þ and ðm6Þ of Fig. 6 is extracted and related to the tree-level matrix element in the

following way:

hO½n�ðc �cÞiCoulomb ¼ C½n�
��s

2v
hO½n�ðc �cÞiBorn; (36)

with the color factor

C½n� ¼
�CF ¼ 4

3 ; n ¼ 1 color-singlet c�c;

� 1
2Nc

¼ � 1
6 ; n ¼ 8 color-octet c �c;

(37)

leading to

�ðb ! �c2XÞ ¼ Cð1S½1�0 ÞNRhO1ð1S0ÞiBorn þ Cð1S½1�0 ÞBornhO1ð1S0ÞiCoulomb � Cð1S½1�0 ÞBorn �s

4�

�
ln
	2

�2
�

þ 1

3

��
16

3

� hO8ð1P1ÞiBorn
m2

c

þ Cð1S½8�0 ÞNRhO8ð1S0ÞiBorn þ Cð1S½8�0 ÞBornhO8ð1S0ÞiCoulomb

� Cð1S½8�0 ÞBorn �s

4�

�
ln
	2

�2
�

þ 1

3

��
16

3

�
BF

hO8ð1P1ÞiBorn
m2

c

þ Cð1P½8�
1 ÞNR hO8ð1P1ÞiBorn

m2
c

þ Cð1D½1�
2 ÞNR hO1ð1D2ÞiBorn

m4
c

: (38)

Matching Eqs. (34) and (38), one can get the finite short-distance coefficients accurate to one-loop level

Cð1S½1�0 ÞNR ¼ Cð1S½1�0 ÞQCDfinite; Cð1S½8�0 ÞNR ¼ Cð1S½8�0 ÞQCDfinite;

Cð1P½8�
1 ÞNR ¼ Cð1P½8�

1 ÞQCDsoft þ Cð1S½1�0 ÞBorn �s

4�

�
ln
	2

�2
�

þ 1

3

��
16

3

�
þ Cð1S½8�0 ÞBorn �s

4�

�
ln
	2

�2
�

þ 1

3

��
16

3

�
BF;

Cð1D½1�
2 ÞNR ¼ Cð1D½1�

2 ÞQCDfinite:

(39)

Coulomb singularities in Cð1S½1�0 ÞQCD and Cð1S½8�0 ÞQCD and
soft divergence in Cð1P½8�

1 ÞQCD are absorbed into the long-
distance matrix elements hO1ð1S0ÞiNR and hO8ð1S0ÞiNR.
There is no residual soft divergence in the real correction
to 1D½1�

2 because of the absence of the tree-level amplitude
of 1P½8�

1 . Considering its vanishing virtual correction, the
NLO correction to 1D½1�

2 is finite. The one-loop level short-
distance coefficient can be expressed in the common form

Cðb ! c �c½n� þ xÞ
¼ �0

�s

4�
ðC2

½1�g1½n� þ 2C½1�C½8�g2½n� þ C2
½8�g3½n�Þ;

(40)

and g1½n�, g2½n�, and g3½n� of 1S½1�0 , 1S½8�0 , and 1P½8�
1 were

calculated in [10,14]. We list them in the Appendix. For
1D½1�

2 , our results are new:

g1½1D½1�
2 � ¼ 0; g2½1D½1�

2 � ¼ 0;

g3½1D½1�
2 � ¼ 8

135
ð2�3 � 9�2 þ 18�� 6 logð�Þ � 11Þ:

(41)

D. Evaluation of long-distance matrix elements

Because of the lack of experimental information on the
matrix elements of D-wave operators, we cannot extract
them from experiments and have to invoke some theoreti-
cal estimates. The color-singlet matrix element hO1ð1D2Þi
may be determined by potential models with input parame-
ters, while the color-octet matrix elements may be esti-
mated using the operator evolution equations. Matrix
elements hO8ð1P1ÞiNR, hO1ð1S0ÞiNR, and hO8ð1S0ÞiNR are

renormalized in NRQCD, and thus have �� dependence,
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and this can be explicitly shown by deriving the quantities
on both sides of Eq. (35) with respect to ��:

dhO1ð1S0ÞiNR
d ln��

¼ �s

4�

32

3

hO8ð1P1ÞiBorn
m2

c

;

dhO8ð1S0ÞiNR
d ln��

¼ �s

4�

32

3
BF

hO8ð1P1ÞiBorn
m2

c

;

dhO8ð1P1ÞiNR
d ln��

¼ �s

4�

32

3
CF

hO1ð1D2ÞiBorn
2Ncm

2
c

:

(42)

Equation (42) has the same form as Eq. (45) in [4], where
the IR divergence is regularized in a dimensional regulari-
zation scheme. This is because the operator evolution
equations have nothing to do with the IR divergent parts.
The solutions are

hO8ð1P1Þð��ÞiNR ¼ 1

2Nc

8CF

3m2
cb0

ln
�sð��0

Þ
�sð��Þ hO1ð1D2ÞiBorn;

hO1ð1S0Þð��ÞiNR ¼ 1

2Nc

CF

2

�
8

3m2
cb0

ln
�sð��0

Þ
�sð��Þ

�
2

� hO1ð1D2ÞiBorn;

hO8ð1S0Þð��ÞiNR ¼ 1

2Nc

CFBF

2

�
8

3m2
cb0

ln
�sð��0

Þ
�sð��Þ

�
2

� hO1ð1D2ÞiBorn; (43)

where we take mc ¼ 1:5 GeV, b0 ¼ 11CA

6 � Nf

3 , CA ¼ 3,

Nf ¼ 3, �LO
QCD ¼ 153 MeV for LO, and �QCD ¼

399 MeV for NLO.
The initial matrix elements like hO8ð1P1Þð��0

Þi at start-
ing scale ��0

¼ mcv, where v2 ¼ 0:25, are eliminated.

One could refer to [4] for reasonability of doing so. The
evolution equation method for determining the long-
distance matrix elements has been used in estimating the
D-wave charmonium state light hadronic decay width and
hc decay width [4,11,12,33]. For hc, the evolution equation
could give a prediction for light hadronic decay width
within about a 30% error when compared to experimental
extraction [33]. That means the operator evolution equa-
tion is a good method to evaluate the P-wave long-distance
matrix element, and can be extended to the D-wave case,
which is lack of experimental data.

IV. RESULTS AND DISCUSSIONS

The long-distance color-singlet D-wave matrix element
is related to the second derivative of the radial wave
function at the origin

hO1ðn1D2Þi ¼ ð2J þ 1Þhn1D2jO1ðn1D2Þjn1D2i

¼ 5ð2NcÞ 15jR
00
nDð0Þj2
8�

; (44)

where Nc ¼ 3 and B-T potential model input parameter
jR00

1Dð0Þj2 ¼ 0:015 GeV7 [34] for charmonium. Before

giving the final results, we have to first deal with the
NLOWilson coefficients C½1�ð�Þ and C½8�ð�Þ. The expres-
sions for C�ð�Þ up to NLO in �s are given in [35]:

C�ð�Þ ¼
�
�sðMWÞ
�sð�Þ

�
�ð0Þ
� =ð2�0Þ�

1þ �sð�Þ
4�

B�
�

�
�
1þ �sðMWÞ � �sð�Þ

4�
ðB� � J�Þ

�
; (45)

with

J� ¼ �ð0Þ
� �1

2�2
0

� �ð1Þ
�

2�0

; B� ¼ 3� 1

6
ð�11þ �Þ;

(46)

and the one-loop and two-loop anomalous dimensions

�ð0Þ
� ¼ �2ð3� 1Þ;

�ð1Þ
� ¼ 3� 1

6

�
�21� 4

3
Nf � 2�0�

�
:

(47)

The scheme-dependent � are

� ¼
�
0; NDR scheme;

�4; HV scheme:
(48)

Note here an additional factor � 16
3 should be included in

B� in the HV scheme. �0 and �1 are in the NLO expres-
sion for �s:

�sð�Þ ¼ 4�

�0 lnð�2=�2
QCDÞ

�
1� �1 ln½lnð�2=�2

QCDÞ�
�2

0 lnð�2=�2
QCDÞ

�
;

(49)

with �QCD ¼ 345 MeV, �0 ¼ 11� 2
3Nf, and �1 ¼

102� 38
3 Nf.

LO and NLO short-distance contributions are given in
Table I. It is easy to see that at renormalization scale
� ¼ mb the short-distance coefficients in NDR and HV
schemes differ slightly for the dominant components
1P½8�

1 and 1S½8�0 . The long-distance matrix elements take

the following values:

hO1ð1D2Þi
m4

c

¼ 0:053 GeV3;
hO8ð1P1Þi

m2
c

¼ 0:0092 GeV3;

hO1ð1S0Þi ¼ 0:0036 GeV3; hO8ð1S0Þi ¼ 0:0015 GeV3;

(50)

where mc ¼ 1:5 GeV and ��0
¼ mcv ¼ 750 MeV. The

long-distance matrix elements hO8ð1P1Þi=m2
c, hO1ð1S0Þi,

and hO8ð1S0Þi are sensitive to charm quark mass mc and

initial scale��0
. Multiplying the short-distance coefficients

shown in Table I by the matrix elements in Eq. (50), we get
the B-meson semi-inclusive decay width into �c2. Then we
can estimate its branching ratio using theB-meson inclusive
semileptonic decay rate. That has the benefit of eliminating
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the Vbc dependence and reducing the mb dependence, as
was performed in [10,14,15,18]. The theoretical predic-
tion for the inclusive semileptonic decay width can be
expressed as [36]

�SL ¼G2
FjVbcj2m5

b

192�3
½1� 8z2þ 8z6� z8� 24z4 logðzÞ��1ðzÞ;

(51)

where z ¼ mc

mb
. The factor �1ðzÞ, including the NLO QCD

correction, has the approximate form [37]

�1ðzÞ ¼ 1� 2�sð�Þ
3�

�
3

2
þ

�
� 31

4
þ �2

�
ð1� zÞ2

�
: (52)

Using the calculated B-meson semi-inclusive decay width
given in Eq. (51), and the experimental semileptonic
branching ratio BrSL ¼ 10:74% [13], and taking mc and
��0

in regions (1.4, 1.6) GeV and (700, 800) MeV,

respectively, we finally arrive at the QCD renormalization
scale �-dependence curves in Fig. 7 for the branching
ratio Br½B ! �c2X� of B-meson semi-inclusive decay
into �c2. Note that varying ��0

only changes the relative

ratios among long-distance matrix elements, while vary-
ing mc affects not only the long-distance matrix elements
but also the short-distance coefficients.

When � is taken to be mb ¼ 4:8 GeV,

BrðB ! �c2XÞNDR ¼ ð0:41þ1:62
�0:56Þ � 10�4;

BrðB ! �c2XÞHV ¼ ð1:24þ2:23
�0:90Þ � 10�4;

(53)

where the central values correspond to mc ¼ 1:5 GeV and
��0

¼ 750 MeV, upper bounds to mc ¼ 1:4 GeV and

��0
¼ 700 MeV, and lower bounds to mc ¼ 1:6 GeV

and ��0
¼ 800 MeV, respectively. Since the color-octet

Wilson coefficient C½8�ð�Þ is much larger than the color-

singlet one C½1�ð�Þ,
C2
½8�ð�Þ

C2
½1�ð�Þ � 15; (54)

the LO decay width is dominated by that of 1S½8�0 , which is

proportional to C2
½8�ð�Þ. For NLO, decay widths of 1S½1�0

and 1D½1�
2 are negligible, and those of 1P½8�

1 and 1S½8�0 are of

the same order and make the most contribution to the
branching ratio in Eq. (53), but unluckily they largely
cancel each other. This cancellation is related to our esti-
mates for the long-distance matrix elements in Eq. (50). If

without this cancellation, the 1S½8�0 Fock state could give the

following central values:

BrðB ! 1S½8�0 XÞNDR ¼ 5:30� 10�4;

BrðB ! 1S½8�0 XÞHV ¼ 5:45� 10�4;
(55)

TABLE I. LO [Eq. (14)] and NLO [both Eqs. (14) and (40)] short-distance coefficients of four subprocesses, with �0 removed.
Results for both NDR and HV schemes are listed. The QCD renormalization scale � takes values from mb

2 to 2mb, where

mb ¼ 4:8 GeV, mc ¼ 1:5 GeV.

Fock state LO NLO NDR scheme NLO HV scheme

� mb=2 mb 2mb mb=2 mb 2mb mb=2 mb 2mb

1D½1�
2 0 0 0 0.0028 0.0020 0.0015 0.0026 0.0018 0.0014

1P½8�
1 0 0 0 �2:058 �1:545 �1:289 �1:880 �1:390 �1:150

1S½1�0 0.0458 0.2130 0.4330 �0:2102 �0:3978 �0:4892 �0:0633 �0:1950 �0:2629
1S½8�0 8.803 8.065 7.566 12.856 11.217 10.169 13.490 11.529 10.287
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FIG. 7 (color online). QCD renormalization scale � dependence of Br½B ! �c2X� in NDR scheme (left) and HV scheme (right).
The long-distance matrix elements are estimated using operator evolution equations. � ranges from mb

2 to 2mb. The shaded zone is

for the values of Br½B ! �c2X�. The upper bound solid curves correspond to mc ¼ 1:4 GeV and ��0
¼ 700 MeV, dashed lines to

mc ¼ 1:5 GeV and ��0
¼ 750 MeV, and lower bound solid curves to mc ¼ 1:6 GeV and ��0

¼ 800 MeV, respectively.
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which might be regarded as the upper bound of the branch-
ing ratio for this process. Furthermore, we may consider
the following uncertainty in the predictions of the branch-
ing ratio. Since

C½1�
C½8�


 �s; (56)

we might carry out a double expansion in both �s and
C½1�=C½8� simultaneously [15]. In this new expansion, terms

of different orders scale as follows:

LO : C2
½8�; NLO: �sC

2
½8�; C½1�C½8�;

N2LO: �2
sC

2
½8�; �sC½1�C½8�; C2

½1�;

N3LO: �3
sC

2
½8�; �2

sC½1�C½8�; �sC
2
½1�; � � � :

(57)

C2
½8� scales as LO, and �sC

2
½8� as NLO. �2

sC
2
½8� scales the

same order as �sC½1�C½8� and C2
½1�, and thus should also be

considered. Authors of [15] did not calculate all �2
sC

2
½8�

terms, but estimated their contribution by adding a correc-
tion term of the same order. The same method with a minor
modification was adopted in [10,14]. Unluckily, their
method can only be applied to the color-singlet channels
that have nonvanishing LO decay widths, and fails in our
case. In [18] the �2

sC
2
½8� virtual contribution from squared

one-loop amplitudes was calculated, but the real correction
was neglected by arguing that the real contribution was
phase-space suppressed. However, the IR divergent real
corrections cannot be omitted, as pointed out in [10,14].
Hence, a complete calculation at next-to-next-to-leading
order in �s might be needed to obtain the �2

sC
2
½8� contribu-

tion, but this is already beyond the scope of our calculation
in this paper. It will be interesting to see if the large

cancellation of 1P½8�
1 and 1S½8�0 could be weakened after

including the �2
sC

2
½8� contribution.

We now discuss the possible relation between the semi-
inclusive decay branching ratio B ! �c2X and the exclu-
sive decay branching ratio B ! �c2K. Obviously, the latter
must be much smaller than the former, since the X includes
many hadronic states other than the kaon. In particular, in
the case of B ! �c2X, the dominant contribution comes
from the color-octet c �c channels, which subsequently
evolve into �c2 by emitting soft gluons which then turn
into light hadrons such as pions. On the other hand, the
exclusive process B ! �c2K requires the soft gluons be
reabsorbed by the strange quark in b ! c �cþ s. This
probability is apparently very small. As a conservative
estimate, we believe the branching ratio of B ! �c2K
should be smaller than that of B ! �c2X by at least an
order of magnitude. The suppression of exclusive decay
relative to inclusive decay is supported by many other
charmonium states. For example, the branching ratio
of B ! J=cX is ð7:8� 0:4Þ � 10�3 [13], while
BrðBþ ! J=cKþÞ ¼ ð1:014� 0:034Þ � 10�3 and

BrðB0 ! J=cK0Þ ¼ ð8:71� 0:32Þ � 10�4. For �c1,
BrðB ! �c1XÞ ¼ ð3:22� 0:25Þ � 10�3, BrðBþ !
�c1K

þÞ ¼ ð4:6� 0:4Þ � 10�4, and BrðB0 ! �c1K
0Þ ¼

ð3:90� 0:33Þ � 10�4. Evidently, the observed inclusive
branching ratios are about 10 times larger than the corre-
sponding exclusive one. For �c2, which is similar to �c2

because in both cases at LO the color-singlet c �c Fock states
make no contributions, BrðB ! �c2XÞ ¼ ð1:65� 0:31Þ �
10�3, BrðBþ ! �c2K

þÞ< 1:8� 10�5, and BrðB0 !
�c2K

0Þ< 2:6� 10�5, the suppression of exclusive decay
is almost by two orders of magnitude. Therefore, we may
have a general observation that for a charmonium state
produced in B-meson decays the suppression factor of the
exclusive production branching ratio relative to the inclu-
sive one should not be larger than 1=10 (including the
factorizable and nonfactorizable exclusive processes).
This means BrðB ! �c2KÞ should be at most Oð10�5Þ,
based on our calculation.
In contrast, for Xð3872Þ the observed branching

ratio BrðB ! Xð3872ÞKÞ � BrðXð3872Þ ! D0 �D0�0Þ ¼
ð1:2� 0:4Þ � 10�4 [13]. Considering that there exist
many decay modes of Xð3872Þ other than Xð3872Þ !
D0 �D0�0, we may conclude that BrðB ! Xð3872ÞKÞ is at
least 10 times larger than BrðB ! �c2KÞ. Therefore,
Xð3872Þ is unlikely to be the JPC ¼ 2�þ charmonium state
�c2. In fact, for Xð3872Þ the JPC ¼ 1þþ assignments of
the D0 �D�0 molecule [38] or a charmonium-D0 �D�0
mixed state [39,40] are preferred by many authors,
instead of a JPC ¼ 2�þ state (for more discussions
see a recent review [41]).

V. CONCLUSIONS

In this paper, we calculate the semi-inclusive decay
width and branching ratio of B ! �c2X at NLO in �s in
the NRQCD factorization framework. The finite short-
distance coefficients are obtained by matching QCD and
NRQCD, and the nonperturbative long-distance matrix
elements are evaluated by using the operator evolution
equations. We find that at tree level only the S-wave

Fock states 1S½1;8�0 contribute, and the LO decay width is

dominated by that of 1S½8�0 , because of the largeness of the

color-octet Wilson coefficient squared C2
½8�ð�Þ over the

color-singlet one C2
½1�ð�Þ. Unlike �c2 light hadronic decay,

in this process, there is no residual divergence at NLO of

the 1D½1�
2 Fock state, due to the vanishing tree-level con-

tribution of 1P½8�
1 . At NLO in �s,

1P½8�
1 and 1S½8�0 dominate.

Unfortunately, they largely cancel each other. This cancel-
lation depends on our method for estimating the long-
distance matrix elements. As a result, we obtain the
branching ratio BrðB ! �c2XÞ ¼ ð0:41þ1:62

�0:56Þ � 10�4 in

the NDR scheme and ð1:24þ2:23
�0:90Þ � 10�4 in the HV

scheme, at � ¼ mb. The central values correspond to
mc ¼ 1:5 GeV and ��0

¼ 750 MeV, upper bounds to

mc ¼ 1:4 GeV and ��0
¼ 700 MeV, and lower bounds
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to mc ¼ 1:6 GeV and ��0
¼ 800 MeV, respectively.

If the large cancellation does not exist, the 1S½8�0 could

give BrðB ! 1S½8�0 XÞNDR ¼ 5:30� 10�4 and BrðB !
1S½8�0 XÞHV ¼ 5:45� 10�4, which could be regarded as

the upper bound of the branching ratio of this process.
The �-dependence curves of NLO branching ratios in
the two schemes are also shown, where � varies from mb

2

to 2mb and �� ¼ 2mc. Furthermore, we estimate the ex-
clusive decay branching ratio of B ! �c2K by considering
the suppression ratios of exclusive decays relative to in-
clusive ones for other factorizable and nonfactorizable
exclusive charmonium production processes, and conclude
that Xð3872Þ is unlikely to be a 2�þ charmonium state. We
hope that our results will be useful in finding the missing
charmonium state �c2 in experiments, and in further study-
ing �c2 production in B-meson exclusive decays.
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APPENDIX

1. Covariant projector method

In our calculation of short-distance coefficients, the
covariant projector method is adopted [42]. For any
spin-singlet charmonium production in four-dimension,
the covariant projector is

�P 0;0ðP; kÞ ¼ 1

2
ffiffiffi
2

p 6p3 �mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
2 þmc

q �5 6PþM

M

6p4 þmcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
2 þmc

q ; (A1)

where momentum of the charmonium bound state P ¼
p4 þ p3. Relative momentum between charm quark and
anticharm quark satisfies

p4 ¼ P

2
þ k; p3 ¼ P

2
� k: (A2)

Bound state massM ¼ 2mc, which holds in QCD radiative
correction calculations, for the relativistic effects is ne-
glected. For more details, one could refer to related con-
tents in [4].

2. One-loop level short-distance coefficients of 1S½1�
0 ,

1S½8�
0 , and 1P½8�

1 Fock states

For 1S½1�0 ,

g1½1S½1�0 � ¼ �4ð1��Þ2
�
8Li2ð�Þ � 4Zþ 4 logð1��Þ logð�Þ þ 4�2

3

�
þ 20ð1��Þ2

þ 8ð2� 5�Þð1��Þ2 logð1��Þ
�

� 16�ð1��Þ logð�Þ;

g2½1S½1�0 � ¼ 4ð1��Þ2
�
3 log

�
m2

b

�2

�
�Xþ Y

�
� 2ð17�2 � 53�þ 34Þð1��Þ

2��
þ 4�2 logð�Þ þ 8ð3��Þð1��Þ3 logð1��Þ

ð2��Þ2 ;

g3½1S½1�0 � ¼ 4

9
ð�ð1��Þð2�2 � 7�þ 11Þ � 6 logð�ÞÞ; (A3)

for 1S½8�0 ,

g1½1S½8�0 � ¼ �4

3
ð1��Þð2�2 � 7�þ 11Þ � 8 logð�Þ;

g2½1S½8�0 � ¼ 3ð1��Þ2
�
3 log

�
m2

b

�2

�
�Xþ Y

�
� 3ð17�2 � 53�þ 34Þð1��Þ

2ð2��Þ þ 3�2 logð�Þ þ 6ð3��Þð1��Þ3 logð1��Þ
ð2��Þ2 ;

g3½1S½8�0 � ¼ 9

2
ð1��Þ2

�
�4 log

�
m2

b

�2

�
þ 4X

3
þ 14Y

3
� 2Z

3
� 3log2ð2��Þ þ 6 logð1��Þ logð2��Þ � 6 logð2Þ

�

þ 3ð1��Þ
�
9ð�þ 1ÞLi2

�
1��

2��

�
� 18Li2

�
2ð1��Þ
2��

�
þ ð7�þ 29ÞLi2ð�Þ � 1

6
�2ð29�þ 7Þ

þ 18 logð2Þ logð2��Þ þ 2ð4�þ 5Þ logð1��Þ logð�Þ � 18 logð2Þ logð�Þ
�
þ 1

2
ð90�2 � 48�þ 17Þ logð�Þ

þ ð20�3 þ 2077�2 � 6221�þ 4478Þð1��Þ
12ð2��Þ � 3ð33�3 � 113�2 þ 106�þ 4Þð1��Þ2 logð1��Þ

ð2��Þ2� ; (A4)
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and for 1P½8�
1 ,

g1½1P½8�
1 � ¼ 16ð1� �Þ2

�
2 logð1� �Þ � log

�
�2

�

4m2
c

��
� 4

9
ð8�2 � 85�þ 119Þð1� �Þ � 8

3
ð12�2 � 6�þ 1Þ logð�Þ;

g2½1P½8�
1 � ¼ 0;

g3½1P½8�
1 � ¼ 10ð1� �Þ2

�
2 logð1� �Þ � log

�
�2

�

4m2
c

��
� 1

9
ð29�2 � 244�þ 347Þð1� �Þ � 2

3
ð30�2 � 15�þ 7Þ logð�Þ:

(A5)
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