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According to the generally accepted phase diagram of QCD, at low temperature and high baryon

number density the chiral phase transition of QCD is of first order and the coexistence of the Nambu-

Goldstone phase and the Wigner phase should appear. This is in conflict with the usual claim that the

quark gap equation has no Wigner solution in the case of nonzero current quark mass. In this paper we

analyze the reason why the Wigner solution does not exist in the usual treatment and try to propose a new

approach to discuss this question. As a first step, we adopt a modified Nambu-Jona-Lasinio (NJL) model

to study the Wigner solution at finite current quark mass. We then generalize this approach to the case of

finite chemical potential and discuss partial restoration of chiral symmetry at finite chemical potential and

compare our results with those in the normal NJL model.
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I. INTRODUCTION

Dynamical chiral symmetry breaking (DCSB) and
confinement are two fundamental features of quantum
chromodynamics (QCD). It is generally believed that
with increasing temperature and baryon number density
strongly interacting matter will undergo a phase transition
from the hadronic matter to the quark-gluon plasma (QGP)
which is expected to appear in the ultrarelativistic heavy
ion collisions. These two phases are generally referred to
as the Nambu-Goldstone phase which is characterized by
DCSB and confinement of dressed quarks and the Wigner
phase corresponding to QGP in which chiral symmetry
is partially restored and quarks are not confined.
Theoretically, these two phases are described by two differ-
ent solutions, the Nambu-Goldstone solution and the
Wigner solution of the quark gap equation. The existence
of these two solutions in the chiral limit (the current quark
mass m ¼ 0) has been shown in the framework of Dyson-
Schwinger equation (DSE) approach of QCD (see, for
example, [1,2]). However, it is a general conclusion in
the previous literature that, when the current quark mass
m is nonzero, the quark gap equation has only one solution
which corresponds to the Nambu-Goldstone phase and the
solution corresponding to the Wigner phase does not exist
[3,4]. This conclusion is hard to understand and one will
naturally ask why the Wigner solution of the quark gap
equation only exists in the chiral limit while it does not
exist at finite current quark mass. Furthermore, this con-
clusion is in fact not compatible with the current study of
chiral phase transition of QCD. In order to see this more
clearly, let us have a look at the generally accepted QCD

phase diagram (see, for example, Fig. 3 of Ref. [5]). As is
shown in the QCD phase diagram, it is generally believed
that at low temperature and high baryon number density
the chiral phase transition of QCD is of first order and the
coexistence of the Nambu-Goldstone phase and theWigner
phase should appear. It is well known that in the real world
the current quark mass is nonzero. If one cannot find the
Wigner solution of the quark gap equation in the case of
nonzero current quark mass, this will mean that we cannot
talk about the coexistence of these two phases. This is
obviously an unsettled and important problem in the study
of QCD phase transitions. The authors of Ref. [6] first
discussed this problem and asked whether the quark gap
equation has a Wigner solution in the case of nonzero
current quark mass. Subsequently, the authors of
Refs. [7–9] further investigated the problem of possible
multisolutions of the quark gap equation. However, as far
as we know, this problem has not been solved satisfactorily
in the literature. In the present paper we try to propose a
new approach to investigate this problem.
The main motivation of the present work is to study the

Wigner solution of the quark gap equation at finite current
quark mass and provide a new viewpoint on partial resto-
ration of chiral symmetry at finite chemical potential. This
paper is organized as follows: in Sec. II we analyze the
reason why in the previous literature theWigner solution of
the quark gap equation does not exist in the case of the
finite current quark mass and propose a new approach to
discuss this question. In Sec. III, based on such an
approach, we show in the framework of the Nambu-Jona-
Lasinio (NJL) model that the quark DSE has a Wigner
solution at finite current quark mass. Then, in Sec. IV we
generalize this approach to the case of finite chemical
potential to study partial restoration of chiral symmetry*zonghs@chenwang.nju.edu.cn
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and compare our results with the corresponding ones in
previous literature. The results are summarized in Sec. V.

II. QUARK GAP EQUATION AND ITS SOLUTIONS

In order to illustrate our new approach more clearly, let
us now briefly recall the usual arguments which exclude
the existence of the Wigner solution of the quark gap
equation when m � 0. The quark DSE under rainbow
approximation reads as follows (in the present paper we
will always work in Euclidean space, and take the number
of flavors, Nf ¼ 2 and the number of colors, Nc ¼ 3):

G�1ðpÞ ¼ G�1
0 ðpÞ þ 4

3

Z d4q

ð2�Þ4 g
2D��ðp� qÞ��GðqÞ��;

(1)

where GðpÞ is the dressed quark propagator, G0ðpÞ ¼
ði� � pþmÞ�1 is the free quark propagator, g is the strong
coupling constant, and D��ðqÞ is the effective dressed

gluon propagator. According to Lorentz structure analysis,
one has

G�1ðpÞ ¼ i 6pAðp2Þ þ Bðp2Þ; (2)

where Aðp2Þ and Bðp2Þ are scalar functions of p2.
Substituting Eq. (2) into Eq. (1), one has

½Aðp2Þ � 1�p2 ¼ 4

3

Z d4q

ð2�Þ4
g2Dðp� qÞAðq2Þ
q2A2ðq2Þ þB2ðq2Þ

�
�
p � qþ 2

p � ðp� qÞq � ðp� qÞ
ðp� qÞ2

�
; (3)

Bðp2Þ ¼ mþ
Z d4q

ð2�Þ4
4g2Dðp� qÞBðq2Þ
q2A2ðq2Þ þ B2ðq2Þ ; (4)

where Landau gauge has been employed. From Eqs. (3)
and (4), one can find when m ¼ 0 there are two distinct
solutions for Bðp2Þ. One solution is Bðp2Þ�0 which de-
scribes the Nambu phase, and the other one is Bðp2Þ�0
which describes the Wigner phase. However, whenm � 0,
it can be easily seen that Bðp2Þ � 0 is not a solution of
Eqs. (3) and (4). From this observation one often concludes
that, when m � 0, the quark DSE has only one solution
corresponding to the Nambu phase and theWigner solution
does not exist. Here, it should be noted that in obtaining
this conclusion one has assumed that the dressed gluon
propagators in these two phases are the same. However,
since the features of these two phases are so different, it is
reasonable to expect that the behavior of the dressed gluon
propagator should be different in these two phases (for
example, in the familiar liquid-solid phase transition of
water, the effective interactions between molecules are
different in the two phases). To see this more clearly, let
us look at the graphical representation of the DSE for the
dressed gluon propagator given in Fig. 1. From Fig. 1 it can
be seen that the quark propagator can affect the gluon

propagator through quark-loop insertions. Therefore, in
principle, since the quark propagators in the Nambu phase
and the Wigner phase are quite different, one naturally
expects that the gluon propagators in these two phases
should be different, too. Here we would like to stress that
this observation is model independent. Besides, this obser-
vation has been verified in the study of quantum electro-
dynamics in 2þ 1 dimensions (QED3) by using the
coupled DSE for the fermion and photon propagators
with a range of fermion-photon vertices [10] (QED3 has
many features similar to QCD, such as spontaneous chiral
symmetry breaking in the massless fermion limit and
confinement. Because of these reasons it can serve as a
toy model of QCD.) This indicates that one should choose
different forms of gluon propagator as input to solve the
quark propagators in the two different phases. Now, the key
problem is how to choose appropriate model gluon propa-
gators as input to calculate the dressed quark propagator in
the Nambu phase and the Wigner phase, respectively.
From Fig. 1 it can be seen that one can formally split the

full gluon propagator into two parts as follows:

D��ðqÞ ¼ DYM
�� ðqÞ þDQ

��ðqÞ; (5)

where DYM
�� is the pure Yang-Mills (YM) part which in-

cludes all diagrams without quark-loop insertions (which is
usually called quenched gluon propagator in lattice QCD)

and DQ
�� is the quark-affected part which includes all

diagrams with quark-loop insertions. Obviously, the pure
Yang-Mills part in the Wigner phase should be same as that
in the Nambu phase, whereas in principle the quark-
affected parts in these two phases should be different. At
present it is impossible to calculate the two parts DYM

�� ðqÞ
and DQ

��ðqÞ from the first principle of QCD. So one has to
resort to various nonperturbative QCD models to express
them phenomenologically.
Over the past few years, considerable progress has been

made in the framework of the QCD sum rule [11], which
provides a successful description of various nonperturba-
tive aspects of strong interaction physics. We naturally

FIG. 1. The DSE for the dressed gluon propagator.
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expect that it might provide some useful clue to the study
of the model gluon propagator. From the QCD sum rule
approach the lowest-order contribution of quark conden-
sate to the gluon propagator is [12]

���ðpÞ¼�g2
Z
d4ðy�zÞ

Z d4q

ð2�Þ4e
iðp�qÞ�ðy�zÞ

� tr

�
��

�i6qþm

q2þm2
��h �c ðyÞc ðzÞi

�

�����

mg2h �c c i
3p2

þ��� ; (6)

where h �c ðyÞc ðzÞi is the nonlocal quark condensate and
h �c c i is the ordinary two-quark condensate; the ellipsis

represents terms of higher orders in m2

p2 which we neglect in

the present work since we limit our discussion to two light
flavors u and d. It is evident that the value of quark
condensate h �c c i is different in the Nambu phase and the
Wigner phase. This makes the gluon propagators in these
two phases to be different. Therefore, in the following
calculation we can phenomenologically identify ���ðpÞ
in Eq. (6) as a good approximation of the DQ

��ðqÞ part in
Eq. (5).

III. NJL-LIKE MODEL AND TWO DISTINCT
SOLUTIONS AT ZERO CHEMICAL POTENTIAL

Now, we should specify a model framework to calculate
the quark propagators in the Nambu phase and the Wigner
phase. The dressed quark propagators are the most elemen-
tary of the n-point Green functions of QCD. It is evident
that the Dyson-Schwinger equations (DSEs) are the natural
tool for investigating it in the continuum. In particular, it
has been shown that DSEs are capable to describe the
chiral phase transition and deconfinement phase transition
at finite temperatures and chemical potential [2,13–17].
However, as is shown in Ref. [18], the Nambu-Jona-
Lasinio (NJL) model can capture the main physical fea-
tures of QCD at finite temperature and chemical potential.
For example, partial restoration of chiral symmetry, the
critical end point, and color superconductivity are all first
studied in the framework of the NJL model. This is the
reason why the NJL model is the most widely used QCD
model in the study of QCD phase transition at finite
temperature and chemical potential (although this model
has two defects, namely, it can neither accommodate con-
finement nor is renormalizable). Therefore, as a first step,
for simplicity in this paper we shall employ the NJL model
to study the quark propagators in the Nambu phase and the
Wigner phase.

In the normal NJL model the following model gluon
propagator,

g2D��ðp� qÞ ¼ ���

1

M2
G

�ð�2 � q2Þ; (7)

is employed to calculate the quark propagator, whereMG is
some effective gluon mass scale and � serves as a cutoff
and is set to be 1.015 GeV in Ref. [18]. This model gluon
propagator concentrates on the infrared region of the in-
teraction which is believed to be vital for DCSB of QCD.
With such a model gluon propagator, Eq. (1) becomes

i 6pAðp2Þ þ Bðp2Þ ¼ i 6pþmþ 4

3M2
G

Z d4q

ð2�Þ4 �ð�
2 � q2Þ

� ��½�i6qAðq2Þ þ Bðq2Þ���

A2ðq2Þq2 þ B2ðq2Þ : (8)

The solution of Eq. (8) is Aðp2Þ � 1 and Bðp2Þ � M with
M being a constant satisfying the following equation:

M ¼ mþ M

3�2M2
G

D1ðM2;�2Þ; (9)

where D1ðM2;�2Þ ¼ �2 �M2 ln½1þ�2=M2�. From
Eq. (9) it is easy to find that, when M2

G < 1=3�2, this

equation has two different solutions in the chiral limit.
However, when m � 0, one could only find one solution,
the Nambu solution, which satisfies M> 0. This result is
consistent with the one derived from the analysis of the
quark DSE under rainbow approximation.
Obviously, the vacuum of the Wigner phase should be

different from that of the Nambu phase and their difference
can be characterized by the quark condensate which is
regarded as the order parameter for chiral phase transition.
Therefore, the gluon propagator should be different due to
different values of quark condensate in these two phases. In
order to reflect this fact, we introduce the quark condensate
contribution [Eq. (6)] to the gluon self-energy and modify
the effective gluon propagator in the normal NJL model as
follows:

g2D��ðqÞ ¼ ���

1

M2
G

�ð�2 � q2Þ

� ���

1

M2
G

mh �c c i
�2

q

1

M2
G

�ð�2 � q2Þ

¼ ���

1

M2
eff

�ð�2 � q2Þ; (10)

where the first term in the right-hand side of Eq. (10) is the
usual model gluon propagator employed in the NJL model
which has the same form in both the Nambu phase and the
Wigner phase and can be regarded as the pure Yang-Mills
partDYM

�� ðqÞ in the present work; the second term, which is

inspired by the result of QCD sum rules [12], is the leading
order nonperturbative contribution from quark condensate
through quark-loop insertions. Here, it should be noted
that, according to the usual approximation of NJL model,
in obtaining the current quark mass dependent term of
Eq. (10) we have taken all the momentum dependence of
the effective interaction in momentum space as a constant.
For this purpose, we have introduced a momentum scale
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�q which reflects the large distance behavior of QCD. For

the external momentum squared much larger than �2
q, the

current quark mass dependent term of Eq. (10) can be
neglected, whereas for external momentum squared ap-
proaching �2

q the contribution of quark condensate which

has been neglected in the normal NJL model must be
considered. Just as will be shown below, the current mass
dependent term in Eq. (10) plays an important role in
searching for the Wigner solution at finite current quark
mass and the study of partial restoration of chiral symmetry
at finite chemical potential.

The value ofMG which accounts for the pure Yang-Mills
gauge field contribution could be fixed by requiring the
amount of the intensity of the effective interaction to be
Meff=� ¼ 0:17 for the Nambu solution M ¼ 238 MeV
which is determined by fitting the observables such as
pion decay constant and pion mass (in the present paper
we set the current quark mass m ¼ 5 MeV) [18]. With the
modified gluon propagator given by Eq. (10), the quark gap
equation, Eq. (9), becomes

M¼mþ M

3�2

�
1

M2
G

þ 1

M2
G

3MmD1ðM2;�2Þ
2�2�2

q

1

M2
G

�
D1ðM2;�2Þ:

(11)

Now let us turn to the calculation of Eq. (11). To illustrate
how the solution of Eq. (11) varies with different�q, let us

define

FðMÞ¼M�m� M

3�2

�
1

M2
G

þ 1

M2
G

3MmD1ðM2;�2Þ
2�2�2

q

1

M2
G

�

�CðM2;�2Þ; (12)

and the solution of FðMÞ ¼ 0 is just the solution of the
quark gap equation [Eq. (11)]. In Fig. 2 FðMÞ is plotted as a
function ofM with different�q. From Fig. 2 it can be seen

that, when �q is larger than about 100 MeV, the equation

FðMÞ ¼ 0 has only one solution M ¼ 238 MeV, which
is similar to the situation discussed in Ref. [7]. When

�q < 100 MeV, the equation FðMÞ ¼ 0 has three solu-

tions. Specifically, when 70 MeV<�q < 100 MeV, one

solution is the required Nambu solution M ¼ 238 MeV,
and the other two solutions are all smaller than it; when
�q < 70 MeV, among the two solutions other than the

Nambu one, one is smaller than it and the other one is
larger than it. Here we note that physical observables
require the Nambu solution to be M ¼ 238 MeV and the
stability condition of the Nambu solution would exclude
the existence of solutions larger than it. Therefore, the
parameter �q should be constrained within the range

70 MeV � �q � 100 MeV. For �q in this range, the

smallest solution of Eq. (11) is not very large compared
with the current quark mass, and when the current quark
mass m tends to zero, this solution will continuously tend
to zero, which is just theWigner solution in the chiral limit.
Therefore, this solution might be identified as the Wigner
solution in the case of m � 0 which describes the pertur-
bative dressing effect.
The result in Fig. 2 shows that the scale at which the

current quark mass dependent term of Eq. (10) would
affect the effective interaction can change the pattern of
the solutions of the quark gap equation. If the current quark
mass dependent term plays an important role in the infrared
region in the effective interaction (�q < 100 MeV), then

the intensity of the pure Yang-Mills field would be weak-
ened and the Wigner solution will appear. On the contrary,
when �q > 100 MeV, the pure Yang-Mills part would be

dominating and strong in the infrared region, and therefore
the Wigner solution cannot exist due to strong interaction.
From physical consideration we choose �q ¼ 70 MeV,

because in this case the gap equation has just two solutions
which can be identified as the Nambu solution and the
Wigner solution. For �q ¼ 70 MeV, we plot the FðMÞ
versus M curve for different current quark mass m in
Fig. 3. It can be seen that as m increases, the effective
massM of dressed quark in the Wigner phase will increase
and at last coincide with the Nambu solution when
m� 60 MeV.

Λ

Λ

Λ

Λ

Λ

FIG. 2 (color online). Solutions of the gap equation with
different �q (m is fixed to be 5 MeV).

FIG. 3. Solutions of the gap equation with different m (�q is
fixed to be 70 MeV).

YU JIANG et al. PHYSICAL REVIEW D 85, 034031 (2012)

034031-4



As usual, the quark condensate is defined as

h �c c i ¼�
Z � d4p

ð2�Þ4 Tr½GðpÞ� ¼�3MD1ðM2;�2Þ
2�2

(13)

and its value for the two solutions is listed in Table I.
[In Table I we list the solution of Eq. (11) with �q ¼
70 MeV and m ¼ 5 MeV.] It can be seen that the value of
the quark condensate in the Nambu phase is larger than that
of the Wigner phase by 1 order of magnitude, which repre-
sents DCSB of the Nambu phase. Here it should be pointed
out that the quark condensate of theWigner solution is small
but nonzero because it reflects the explicit chiral symmetry
breaking due to nonzero current quark mass.

Of course, in order to determine which solution is
the real one, one should compare the pressure (thermody-
namical potential) of the different solutions. The vacuum
pressure P of the two solutions is also listed in Table I
which is calculated via ‘‘steepest descent’’ approximation
as follows [4]:

P ¼
Z � d4p

ð2�Þ4 Tr
�
ln½G�1ðpÞG0ðpÞ�þ1

2
½G�1

0 ðpÞGðpÞ�1�
�
:

(14)

From Table I it can be seen that the vacuum pressure of the
Nambu phase is much larger than that of the Wigner phase
(more than 2 orders of magnitude), which means the
Nambu phase is more stable than the Wigner phase when
temperature and density are zero. The vacuum pressure
difference of the two phases can be regarded as the bag
constant Bbag and the results in Table I correspond to

Bbag � ð206 MeVÞ4 which is consistent with the value

used in the literature [3]. One may expect that with in-
creasing temperature and/or density this quantity may
change and chiral phase transition would happen. We
will discuss this question in the next section.

IV. PARTIAL RESTORATION OF CHIRAL
SYMMETRYAT FINITE CHEMICAL POTENTIAL

Now we can generalize the previous treatment to the
case of finite density. The quark propagator at finite quark
chemical potential � could be expressed as follows:

G�1ðp;�Þ ¼ iA 6pþ B� C��4; (15)

where Að ~p2; p4; �Þ, Bð ~p2; p4; �Þ, and Cð ~p2; p4; �Þ are
scalar functions of ~p2, p4, and �. With the model gluon
propagator in Eq. (10) the DSE of quark propagator at
finite chemical potential is

iA 6pþB�C��4¼ i 6pþm���4þ 4

3M2
eff

Z d4q

ð2�Þ4

� 2iA6qþ4B�2C��4

A2q2þB2�C2�2þ2iAC�q4
: (16)

From the above equation one could easily find the solution
should be A ¼ 1 and B and C are constant. The constant
C� plays the role of effective chemical potential and
therefore lets us set �� ¼ C� and B ¼ M which satisfy
the following combined equations:

M ¼ mþ 4

3M2
eff

Z d4q

ð2�Þ4
4M

q2 þM2 ���2 þ 2i��q4

¼ mþ 4M

3M2
eff�

3

Z �

0
dj ~qj ~q2

EqM

�
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ~q2

p
EqM þ��

�

þ arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ~q2

p
EqM ���

��
; (17)

�� ¼ �� 2�ð��Þ
3NcNfM

2
eff

; (18)

with quark number density �ð��Þ defined as follows [19]:

�ð��Þ ¼ �NcNf

Z d4q

ð2�Þ4 tr½Gðq;�Þ�4�; (19)

and EqM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þM2

p
. Equations (17) and (18) are nu-

merically solved and the results are shown in Fig. 4. From
Fig. 4, one could find the effective mass of the dressed
quark in the Wigner phase decreases with increasing �,
which means with increasing density the dressing effect
of quarks becomes more and more weak. On the other
hand, the corresponding one in the Nambu phase decreases
with increasing � until �� 160 MeV, and when �>
160 MeV the effective mass of the dressed quark in the
Nambu phase increases with increasing �.
In the previous literature (see, e.g., Refs. [16,20]) one

usually employs the maximum of the susceptibility @h �c c i
@m to

TABLE I. The Nambu and Wigner solution.

�q ¼ 70 (MeV) M (GeV) �h �c c i (GeV3) P (GeV4)

Nambu phase 0.238 3:13� 10�2 1:797� 10�3

Wigner phase 0.02 3:16� 10�3 3:06� 10�6

FIG. 4. Solutions of the gap equation at finite chemical
potential.
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determine the transition temperature. In fact, a more reli-
able criterion for the chiral phase transition is the pressure
difference of the Nambu phase and the Wigner phase, i.e.,
the bag constant Bbagð�Þ. The pressure density of the two

solutions at finite chemical potential could be calculated as
follows [19]:

P ð�Þ ¼ P ð� ¼ 0Þ þ
Z �

0
d�0�ð�0Þ; (20)

where the pressure density of the vacuumP ð� ¼ 0Þ can be
calculated through Eq. (14). TheBbagð�Þ is plotted in Fig. 5
inwhich one can seewhen�<�c ¼ 260 MeV theNambu
solution is more stable and when �>�c ¼ 260 MeV the
Wigner solution is more stable. At �c ¼ 260 MeV the
pressure of the two phases is equal and the two phases could
coexist at this point. Here it should be noted that no one has
calculated the Bbagð�Þ in the case of nonzero current quark
mass in the past. This is due to lack of knowledge about the
Wigner solution of the quark gap equation at finite current
quark mass in the previous literature.

Here it is interesting to compare our results with those of
the normal NJL model. The first-order phase transition
point �c in our modified NJL model is smaller than the
one obtained in the normal NJL model which is about
354 MeV or 500 MeV corresponding to different parame-
ters [21]. It should also be pointed out that, in the normal
NJL model, the second solution appears when � is big
enough [18], but the magnitude of this solution at the phase
transition point is much bigger (about 110 or 130 MeV, see
Ref. [21]) than the Wigner solution obtained in the present
paper (about 15 MeV). In addition, we want to stress that
the Wigner solution at finite current quark mass in the
normal NJL model is due to density effect. When the
chemical potential tends to zero, this solution disappears.
This shows� ¼ 0 is a singularity of the Wigner solution at

finite current quark mass. If this is real, it means that one
cannot study the Wigner solution by means of small �
expansion, while the method of small � expansion is
usually employed in the study of lattice QCD at finite
density.

V. SUMMARY

To summarize, based on the general analysis that the
dressed gluon propagator in the Wigner phase should be
different from that in the Nambu phase, we introduce the
contribution of quark condensate to the gluon propagator
and investigate the solution of quark DSE in the case of
nonzero current quark mass. With such a modified model
gluon propagator, in the framework of the NJL model we
show that the quark DSE indeed has a Wigner solution in
the case of nonzero current quark mass. We then generalize
this approach to the case of finite chemical potential and
discuss partial restoration of chiral symmetry at finite
chemical potential. From the calculated result of the bag
constant, we find that when �<�c ¼ 260 MeV the
Nambu solution is more stable and when �>�c ¼
260 MeV the Wigner solution is more stable. At �c ¼
260 MeV, the pressure of the two phases is equal and the
two phases could coexist at this point. We also compare our
results with those of the normal NJL model. It is found that
the first-order phase transition point �c in our modified
NJL model is smaller than the one obtained in the normal
NJL model which is about 354 or 500 MeV corresponding
to different parameters. In addition, in the normal NJL
model, the second solution appears when � is big enough,
but the magnitude of this solution at the phase transition
point is much bigger (about 110 or 130 MeV) than the
Wigner solution obtained in the present paper (about
15 MeV). Finally, we would like to point out that the
results obtained in this paper are based on a simple NJL
model. It is well known that the NJL model is far from
QCD. In order to obtain a more solid result, we need to
further discuss this problem in the framework of a model
with better QCD foundation, such as DSE of QCD [2].
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