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The phase structure of the Polyakov loop-extended chiral quark-meson model is explored in a

nonperturbative approach, beyond a mean-field approximation, in the presence of a magnetic field. We

show that by including meson fluctuations one cannot resolve the qualitative discrepancy on the

dependence of the crossover transition temperature in a nonzero magnetic field between effective model

predictions and recent lattice results [1]. We compute the curvature of the crossover line in the T ��B

plane at a nonzero magnetic field and show that the curvature increases with increasing magnetic field. On

the basis of QCD inequalities, we also argue that, at least in the large Nc limit, a chiral critical end point

and, consequently, a change from crossover to a first-order chiral phase transition are excluded at zero

baryon chemical potential and nonzero magnetic field.
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I. INTRODUCTION

The phase diagram of strongly interacting matter in the
presence of an external magnetic field has been explored in
model studies and in first principle Lattice Quantum
Chromodynamics (LQCD) calculations. These investiga-
tions have an importance for physics of heavy-ion collisions
at top RHIC and LHC energies, where according to the
estimates (see Refs. [2,3]), the magnitude of the magnetic
field may reach extremely large values of eB� 10m2

�.
Model studies (see, e.g. Refs. [4–8]) have revealed a

general structure of the phase diagram in the temperature-
magnetic field (T � eB) plane. They showed that the chiral
crossover temperature Tpc increases with an increasing

magnetic field. This result has been, however, obtained
within a mean-field approximation, i.e. meson fluctuations
have not been taken into account. However, charged pion
degrees of freedom interacting with the magnetic field may
drastically change properties of the crossover transition
even at moderate values of B.

Early LQCD calculations [9] confirmed the increase of
Tpc with eB. Unfortunately, results of Ref. [9] may not be

final: the calculations were performed with standard stag-
gered fermions, large lattice spacing, and with somewhat
heavy pion masses. These deficiencies may diminish the
role of charged pions.

Recent LQCD studies [1] at physical pion mass, with
improved staggered fermions and extrapolation to the con-
tinuum have shown completely opposite dependence of Tpc

on the magnetic field eB. It has been found that the
transition temperature significantly decreases with increas-
ing magnetic field.

In this article, by analyzing the chiral structure of the
phase diagram of the Polyakov loop-extended quark-
meson model beyond a mean-field approximation, we
demonstrate that meson fluctuations cannot explain the

abovementioned qualitative discrepancy in the behavior
of the phase transition temperature with the magnetic
field.
LQCD calculations [9] showed that the chiral crossover

becomes sharper with the increasing magnetic field. The
preliminary results of Ref. [9] indicated that, at a critical
end point, the crossover may turn to a first-order phase
transition. Our model calculations with physical number of
colors Nc ¼ 3 show no evidence in favor of a possible
chiral first-order phase transition in a wide range of the
magnetic field. Based on the no-go theorem formulated for
QCD in Ref. [10], we will also argue that a chiral critical
end point and a change from chiral crossover to a chiral
first-order phase transition are forbidden at the leading
order of the large Nc expansion for any nonzero pion
mass.
In this paper, we do not consider the so-called ‘‘no-sea’’

approximation, the essence of which boils down to neglect-
ing vacuum contributions in a thermodynamic potential.
As was shown analytically in Ref. [11], the no-sea approxi-
mation results in a first-order chiral phase transition at zero
chemical potential in the chiral limit (already on the mean-
field level). This is in direct contradiction with recent
LQCD findings [12]. We refer to Refs. [4,11,13,14] for
the reader interested in a comparison between results of a
properly renormalized theory and those obtained in the
no-sea approximation at finite and zero magnetic field,
correspondingly.
The structure of the paper is as follows. In the next

section we discuss the functional renormalization group
flow equations in the nontrivial magnetic background and
review the mean-field approximations for the Polyakov
loop-extended Quark-Meson (PQM) model. Since the
PQM model is renormalizable, we perform dimensional
regularization to subtract divergences arising from the
vacuum term. Section III is devoted to the main results
and discussions, including abovementioned input from the
large Nc limit. Section IV contains our conclusions.*VSkokov@bnl.gov
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II. THE POLYAKOV LOOP-EXTENDED
QUARK-MESON MODEL

The quark-meson model is an effective realization of the
low-energy sector of QCD. The model is built to respect
symmetries of QCD, including the chiral symmetry in the
limit of vanishing pion mass. However, because the local
color SUðNcÞ invariance of QCD is replaced by a global
symmetry, the model does not describe confinement. The
improved version of the model, the PQM model incorpo-
rates a coupling of the quarks to a uniform temporal color
gauge field, represented by the Polyakov loop. In the
PQM model, many facets of confinement can be emulated
[15–17].

The Lagrangian of the PQM model reads

L¼ �q½i��D��gð�þ i�5 ~� ~�Þ�q�Uð�;��Þþ 1
2ð@��Þ2

þ 1
2ð@��0Þ2þD��

þD����Uð�; ~�Þ: (1)

The coupling between the effective gluon field and quarks,
and between the (electro)magnetic field B and quarks is
implemented through the covariant derivative

D� ¼ @� � iA� � iQAEM
� ; (2)

where A� ¼ gAa
��

a=2 and AEM
� ¼ ð0; Bx; 0; 0Þ. The flavor

matrix Q is defined by the quark electric charges Q ¼
diagð2=3e;�1=3eÞ. The spatial components of the gluon
field are neglected, i.e. A� ¼ ��0A0. The interaction of

charged pion �� ¼ ð�1 � i�2Þ=
ffiffiffi

2
p

with the electromag-
netic field is included byD� ¼ @� þ ieAEM

� . The effective

potential for the gluon field Uð�;��Þ is expressed in
terms of the thermal expectation values of the color trace
of the Polyakov loop and its conjugate

� ¼ 1

Nc

hTrcLð ~xÞi; �� ¼ 1

Nc

hTrcLyð ~xÞi; (3)

with

Lð ~xÞ ¼ P exp

�

i
Z �

0
d�A4ð ~x; �Þ

�

; (4)

where P stands for the path ordering, � ¼ 1=T and A4 ¼
iA0. In the Oð4Þ representation, the meson field is intro-
duced as 	 ¼ ð�; ~� ¼ ð�0; �1; �2ÞÞ and the correspond-
ing SUð2ÞL � SUð2ÞR chiral representation is defined by
�þ i ~� � ~��5.

The meson potential of the model,Uð�; ~�Þ, is defined as

Uð�; ~�Þ ¼ �

4
ð�2 þ ~�2 � v2Þ2 � c�: (5)

The effective potential of the gluon field is parametrized in
such a way as to preserve the Zð3Þ invariance:
Uð�;��Þ

T4
¼�b2ðTÞ

2
����b3

6
ð�3þ��3Þþb4

4
ð���Þ2:

(6)

The parameters,

b2ðTÞ ¼ a0 þ a1

�

T0

T

�

þ a2

�

T0

T

�
2 þ a3

�

T0

T

�
3

(7)

with a0 ¼ 6:75, a1 ¼ �1:95, a2 ¼ 2:625, a3 ¼ �7:44,
b3 ¼ 0:75, b4 ¼ 7:5, and T0 ¼ 270 MeV were chosen to
reproduce the equation of state of the pure SUcð3Þ lattice
gauge theory. When the coupling to the quark degrees of
freedom are neglected, the potential (6) yields a first-order
deconfinement phase transition at T0.

A. The FRG method in the PQM model

To take fluctuations into account in the PQM model, we
use the functional renormalization group (FRG) method.
This method is based on an infrared regularization of the
fluctuations at a sliding momentum scale k, resulting in a
scale-dependent effective action �k, the so-called effective
average action [18]. In this article, the Polyakov loop is
treated as a background field introduced self-consistently
on the mean-field level. Quark and meson fluctuations are
accounted for by solving the FRG flow equations.
The FRG flow equation for the PQM model at zero

magnetic field was derived in Ref. [19]. The derivation
for finite magnetic field is lengthy, but straightforward and
can be done along similar lines. Here we provide only the
final expression for the flow equation. It can be easily
proved that in the limit B ! 0 the flow equation reduces
to that of Ref. [19].
Following our previous work [19], the flow equation for

the scale-dependent grand canonical potential density,
�k ¼ T�k=V, is formulated for the quark and meson sub-
systems in the leading order of derivative expansion

@k�kð�;��;T;�Þ ¼ k4

12�2

��

1þ 2nBðE�;TÞ
E�

�

þ
�

1þ 2nBðE�;TÞ
E�

��

þ k
eB

2�2

X
1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � q2?ðn; e; 0Þ
q


ðk2 � q2?ðn; e; 0ÞÞ

�
�

1þ 2nBðE�;TÞ
E�

�

� k
X

f¼1;2

NcQffB

2�2

X

s¼ð1=2Þ;�ð1=2Þ

X
1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � q2?ðn;Qff; sÞ
q


ðk2 � q2?ðn;Qff; sÞÞ

�
�

1� Nð�;��;T;�Þ � �Nð�;��;T;�Þ
Eq

�

: (8)

Here nBðE�;�;TÞ is the bosonic distribution function
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nBðE�;�;TÞ ¼ 1

expðE�;�=TÞ � 1
;

with the pion and sigma energies

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ��0
k

q

; E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ��0
k þ 2� ��00

k

q

;

where the primes denote derivatives with respect to � ¼ ð�2 þ ~�2Þ=2 of �� ¼ �þ c�. The fermion distribution functions
Nð�;��;T;�Þ and �Nð�;��;T;�Þ,

Nð�;��;T;�Þ ¼ 1þ 2�� exp½�ðEq ��Þ� þ�exp½2�ðEq ��Þ�
1þ 3� exp½2�ðEq ��Þ� þ 3�� exp½�ðEq ��Þ� þ exp½3�ðEq ��Þ� ; (9)

�Nð�;��;T;�Þ ¼ Nð��;�;T;��Þ; (10)

are modified because of the coupling to the gluon field. The
quark energy is given by

Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ 2g2�
q

: (11)

The function q2? is defined as q2?ðn; q; sÞ ¼ ð2nþ 1�
2sÞjqjB and has the same structure as in mean-field ap-
proximation, see Ref. [4].

If one replaces the energies of particles by their tree-
level approximation and integrates the flow equation with
respect to the scale k, then, after integration by parts, the
effective thermodynamic potential � reduces to the
one-loop result for the PQM model in the presence of a
nonzero magnetic field. This also proves validity of the
flow equation (8).

The minimum of the thermodynamic potential is deter-
mined by the stationarity condition

d�k

d�

�
�
�
�
�
�
�
��¼�k

¼ d ��k

d�

�
�
�
�
�
�
�
��¼�k

�c ¼ 0: (12)

We solve the flow equation (8) numerically with the initial
cutoff � ¼ 1:2 GeV (see additional details in Ref. [19]).
The initial conditions for the flow are fixed to reproduce the
in-vacuum properties (T ¼ � ¼ 0, eB ¼ 0): the physical
pion mass m� ¼ 138 MeV, the pion decay constant f� ¼
93 MeV, the sigma mass m� ¼ 600 MeV, and the con-
stituent quark massmq ¼ 300 MeV at the scale k ! 0. We

treat the symmetry breaking term, c ¼ m2
�f� as an exter-

nal field. We also neglect the flow of the Yukawa coupling
g, which is not expected to be significant for the present
studies (see e.g. Refs. [20,21]).

The thermodynamic potential (13) does not contain con-
tributions of thermal modes with momenta larger than the
cutoff�. To obtain the correct high-temperature behavior of
thermodynamic functions we need to supplement the FRG
potential with the contribution of the high-momentum states.
For this, we follow the procedure described in Ref. [19]: at
high k >� themeson contribution to the flow in the equation
is disregarded and only the flow of massless quarks interact-
ing with the Polyakov loop is considered.

By solving Eq. (8), one obtains the thermodynamic
potential for the quark and meson subsystems,

�k!0ð�;��;T;�Þ, as a function of the Polyakov loop
variables � and ��. The full thermodynamic potential
�ð�;��;T;�Þ in the PQM model, including quark,
meson, and gluon degrees of freedom, is obtained by
adding the effective gluon potential Uð�;��Þ to
�k!0ð�;��;T;�Þ:
�ð�;��;T;�Þ¼�k!0ð�;��;T;�ÞþUð�;��Þ: (13)

The Polyakov loop variables, � and ��, are then deter-
mined by the stationarity conditions:

@

@�
�ð�;��;T;�Þ ¼ 0; (14)

@

@�� �ð�;��;T;�Þ ¼ 0: (15)

B. The mean-field approximation

To illustrate the importance of meson fluctuations
on the thermodynamics of the PQM model we compare
the FRG results with those obtained in the mean-field
approximation. As we earlier alluded to the one-loop
thermodynamic potential, the mean-field approximation
can be also directly obtained from the flow equation (8)
by (i) neglecting fluctuations of the meson fields and
replacing them by their classical expectation values;
(ii) integrating the flow equation with respect to the scale
k; (iii) performing integration by parts; (iv) and, finally, by
minimizing the thermodynamical potential with respect to
the mean fields.
In this way, we will obtain the thermodynamical poten-

tial for the PQM model in the mean-field approximation,
which coincides with the direct mean-field treatment (see
Ref. [4]) for the Lagrangian (1):

�MF ¼ Uð�;��Þ þUðh�i; h�i ¼ 0Þ þ�q �qðh�i;�;��Þ:
(16)

Here, the contribution of quarks with the dynamical mass
mq ¼ gh�i is given by
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�q �qðh�i;�;��Þ

¼�T
X

f¼1;2

X

s¼�ð1=2Þ;ð1=2Þ

X
1

n¼0

jQffjB
2�

Z dpz

2�

�
�

NcEq

T
þ lngðþÞðh�i;�;��;T;�Þ

þ lngð�Þðh�i;�;��;T;�Þ
�

; (17)

where

gðþÞðh�i;�;��;T;�Þ ¼ 1þ 3�exp½�ðEq ��Þ=T�
þ 3�� exp½�2ðEq ��Þ=T�
þ exp½�3ðEq ��Þ=T�; (18)

gð�Þðh�i;�;��;T;�Þ ¼ gðþÞðh�i;��;�;T;��Þ (19)

and Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ q2?ðn;Qff; sÞ þm2

q

q

is the quark quasi-

particle energy (see the definition of q2? in the previous

section). The first term in Eq. (17) is a divergent vacuum
fluctuation contribution, which has to be properly regular-
ized. Following Refs. [4,11], we employ dimensional regu-
larization to obtain:

�vacðBÞ
q �q ¼ � Nc

2�2

X

f¼1;2

ðQffBÞ2
�

xf
2

lnxf þ
x2f
2

ln
2jQffjB

M2

þ x2f
4
þ � 0ð�1; xfÞ

�

; (20)

where M is the renormalization scale, xf ¼ m2
q=ð2jQffBjÞ

and �ðt; xÞ is the Hurwitz zeta function.
In Eq. (20) the prime denotes the derivative with respect

to the first argument � 0ðt; xÞ ¼ @�ðt; xÞ=@t. The divergent
contribution were subtracted from Eq. (20) to reproduce
B ! 0 result for the vacuum contribution [11]

�vac
q �q ¼ �NcNf

8�2
m4

q ln

�

mq

M

�

: (21)

Indeed, using the asymptotic expansion of � 0ð�1; xfÞ in the
limit B ! 0 or equivalently xf ! 1 (see Ref. [22])

� 0ð�1; xfÞ 	 1

2

�

x2f � xf þ 1

6

�

lnxf �
xf
4
þ 1

12
þOðx�1

f Þ
(22)

it is easy to prove that limB!0�
vacðBÞ
q �q ¼ �vac

q �q .

In case of eB ¼ 0, the relevance of the vacuum contri-
bution for the thermodynamics of chiral models was dem-
onstrated and studied in detail in Refs. [11,23].

As usual, the equations of motion for the mean fields are
obtained by requiring that the thermodynamic potential is
stationary with respect to changes of h�i, �, and ��:

@�MF

@h�i ¼ @�MF

@�
¼ @�MF

@�� ¼ 0: (23)

The derivative of the thermodynamic potential with respect
to the chiral order parameter � also involves
@� 0ð�1; xfÞ=@xf which is given by

@� 0ð�1; xfÞ
@xf

¼ x� 1

2
þ ln

�ðxÞ
ffiffiffiffiffiffiffi

2�
p : (24)

The model parameters are fixed to reproduce the same
vacuum physics as in the FRG calculation.

III. PHASE DIAGRAM IN THE T� eB PLANE

In this section, we explore the properties of the chiral
crossover transition at finite temperature T and magnetic
field eB in the functional renormalization group (FRG)
approach and in the mean-field approximation for the
PQM model. The comparison of the results in two ap-
proaches allows to pin down the role of meson fluctuations.
As our calculations show, meson fluctuations lead to even
steeper rises of the transition temperature with increasing
field and, thus, are unable to describe the qualitative dis-
crepancy between recent LQCD results [1] and the mean-
field model predictions, which have been qualitatively
confirmed in early LQCD calculations [9].
In the FRG approach, the thermodynamic potential (13)

at finite temperature and chemical potential is obtained by
solving the flow equation (8) numerically, using the Taylor
expansion method (for details see Ref. [19] and references
therein). This approach has been successful applied to the
thermodynamics at finite density and temperature [19,23].
The structure of the chiral phase diagram can be re-

vealed by investigating the chiral order parameter �. In
Fig. 1, the dependence of the order parameter on the
temperature normalized by Tpc [24] for different values

of the magnetic field eB is shown in the FRG approach and
the mean-field approximation. Our results are in agreement
with those of Refs. [19,25] at zero magnetic field and lead
to the same conclusion: meson fluctuations result in a
strong smearing of the temperature dependence of the
order parameter, decreasing the strength of the transition.
By considering the derivative of the order parameter with
respect to the temperature, see Fig. 2, we conclude that the
transition in both models shifts to higher temperatures with
increasing magnetic field. Figure 2 also demonstrates that
the strength of the transition characterized by the peak in
jd�=dTj increases slightly with magnetic field. This in-
crease is minute for the mean-field approximation and
more pronounced if meson fluctuations are taken into
account by the FRG approach.
The same conclusion on the minor modification of the

transition strength follows from Fig. 3, where the mass of
�-meson as a function of temperature and magnetic field is
shown. Figure 3 demonstrates, that in the FRG approach,
the mass of�-meson in the broken phase is modified by the
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magnetic field stronger than the one in the mean-field
approach. This is expected because the charged meson
fluctuations included in FRG make the � mass more
sensitive to the magnetic field.

At the chiral critical end point, the mass of �-meson
(order parameter) is vanishing m� ! 0. Consequently, �
mass decreases along the crossover line towards the critical
end point in the T ��B plane. Contrary to this at zero �B
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FIG. 2 (color online). The derivative of the order parameter with respect to T as a function of the temperature for the different values
of the magnetic field eB measured in units of m2

�. The left (right) panel shows the FRG (mean-field) results.
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FIG. 1 (color online). The chiral order parameter as a function of the temperature for the different values of the magnetic field eB
measured in units of m2

�. The left (right) panel shows the FRG (mean-field) results.
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FIG. 3 (color online). The mass of the � as a function of the temperature for the different values of the magnetic field eBmeasured in
units of m2

�. The left (right) panel shows the FRG (mean-field) results.
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and nonzero magnetic field eB, we do not observe this
trend. In both approaches, the value of � mass at the
minimum is almost independent of the magnetic field.
We checked this fact up to very high magnitudes of the
magnetic field eB ¼ 30m2

�. Based on this observation, a
possible chiral critical end point in the PQM model can be
excluded in a very wide range of the magnetic field [26].
After considering the phase diagram in the T � eB plane,
we will return to this problem again addressing it from a
different direction.

By locating the maximum of the peak position in
jd�=dTj as a function of T at a given B we compute the
phase diagram of the chiral crossover transition in the T �
eB plane. The phase diagram is shown in Fig. 4. Contrary
to the recent lattice findings [1], the slope of the transition
line, , is positive. The inclusion of meson fluctuation
increases the slope calculated at large values of the mag-
netic field from MF 	 4:7 � 10�3 to FRG 	 7:1 � 10�3.
Performing the parametrization

TpcðBÞ
Tpc

¼ 1þ A

�

eB

T2
pc

�
�

(25)

of the phase transition line, which was introduced in
Ref. [9], we obtain �MF ¼ 6 � 10�4 in the mean-field ap-
proximation and �FRG ¼ 2:7 � 10�3 in the FRG approach.
In the PQMmodel, the role of meson fluctuations at a finite
magnetic field may be understood by the following con-
siderations. At zero magnetic field, the meson contribution
to the flow at any temperatures (including T ¼ 0) reduces
the chiral condensate, i.e. works towards the chiral resto-
ration. At a finite magnetic field, the charged pions acquire
an additional effective mass proportional to eB, which
penalizes the meson contribution to the restoration of the
chiral symmetry at nonzero magnetic field. The quark
contribution is not that trivial for analytic considerations:
while the finite temperature part acts towards the restora-
tion of the chiral symmetry, the vacuum part has an oppo-
site effect. The numerical mean-field calculations show

that the quark contribution increases the transition
temperature.
Another interesting issue that can be studied in LQCD

calculations and that may shed light to the QCD phase
diagram in the three-dimensional T � eB��B space is
the curvature of the crossover transition line in T ��B

plane � for nonzero magnetic field. The curvature is de-
fined by

TpcðB;�BÞ
TpcðB;�B ¼ 0Þ ¼ 1þ �ðBÞ

�

�B

T

�
2 þO

��

�B

T

�
4
�

: (26)

In Fig. 5, we show the curvature of the crossover line �ðBÞ
normalized by its value at zero magnetic field �0 ¼ �ðB ¼
0Þ [27]. The curvature in the FRG approach at higher
magnetic fields shows stronger dependence.
The issue of the chiral critical end point and subsequent

chiral first-order phase transition in the T � eB plane can
be addressed by a completely different approach of the
QCD inequalities developed in Refs. [28–31] and recently
discussed in Ref. [10]. Background electromagnetic field
does not break neither positivity of the Dirac operator (D)
nor its �5-hermiticity [32] (�5D�5 ¼ Dy). Thus the re-
sults of Ref. [10] can be with no modification extended to
the case of the nonzero magnetic field. The QCD inequal-
ities [28–31] can be translated to those for the meson
masses m� 
 m�, where m� is the mass of the lightest
pseudoscalar pion andm� is the lightest meson mass in the
channel �, consult Ref. [10] for details. This inequality is
rigorous for non-flavor singlet �. In the large Nc limit,
however, owing to 1=Nc suppression of the flavor-
disconnected diagrams, this inequality becomes applicable
for a flavor singlet channel, too. For us it is essential that
m� 
 m� at the leading order of large Nc expansion. From
the last inequality, it follows that at any finite value of the
pion mass the correlation length proportional to 1=m� is
finite, i.e. the chiral second-order phase transition is im-
possible. For the sake of argument, we remind the reader
that it has been rigorously established in high precision
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FIG. 5 (color online). The curvature of the transition line in
T ��B plane, �, as a function of the magnetic field.
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FIG. 4 (color online). The phase diagram in the FRG approach
and mean-field approximation.
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LQCD calculations of different groups [33–35] that for the
physical pion mass and at zero magnetic field and T 	
155 MeV [35,36] the chiral transition is a smooth cross-
over. In principle, the chiral crossover transition may turn
into the first-order one at a finite value of the magnetic
field. This, however, may happen only via a second-order
critical end point. The abovementioned argument disfavors
such a possibility at least in the large Nc limit.

We note, however, that this argument applies only to the
chiral transition. Existence of other phase transitions (e.g.
the first-order deconfinement phase transition) at high eB
cannot be excluded.

IV. SUMMARYAND CONCLUSIONS

Results of the recent LQCD calculations on the depen-
dence of the transition temperature on the magnetic field
disagree already at a qualitative level with those obtained
previously, as well as with various low-energy effective
models of QCD. In this article, we addressed this issue in
the Polyakov loop-extended quark-meson model beyond
the mean-field approximation. We showed that the inclu-
sion of meson fluctuations, which presumable were sup-
pressed in the early LQCD fluctuations and were neglected
in the mean-field models, is unable to resolve the above-
mentioned disagreement.

We calculated the phase diagram of the Polyakov
loop-extended quark-meson model in the mean-field ap-
proximation and in the functional renormalization group
approach. Both approaches result in a shift of the transition
temperatures to higher values then that at zero magnetic
field. Moreover, the relative increase of the transition tem-
perature is larger if meson fluctuations are taken into
account.

Although we observed that the transition strength in-
creases with an increasing magnetic field, we see no

evidence in favor of a possible chiral first-order phase
transition at finite values of the magnetic field eB.
Based on the large Nc non-go theorem of Ref. [10], we

provide another indication against a chiral critical end
point and a change from the chiral crossover to a first-
order phase transition in the T � eB plane for nonzero pion
mass.
Finally, in the PQM model calculations, it was also

shown that the magnetic field increases the curvature of
the transition in the T ��B plane.
In this article, we restricted ourselves to zero baryon

chemical potential. Nonetheless, the FRG approach to the
PQM model at a finite magnetic field can be successfully
applied at finite densities.
In this model, we do not take into account a contribution

of the charged vector mesons, e.g. ��. As was shown in
Ref. [37], in a high magnetic field (eBc 	 m2

�), the

�-meson condensate may form and drastically change
properties of nuclear matter.
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