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In the framework of the nonrelativistic quantum chromodynamics factorization formalism, we study the

processes of c ðnSÞ and �ðnSÞ decay into a lepton pair or a charm pair associated with two jets up to the

next-to-leading order in velocity expansion. We present the analytic expressions for the differential decay

rate to the invariant mass of the lepton pair or charm pair. We find that the ratio of the next-to-leading

order short-distance coefficient to the leading order one is in the range from �5:5 to �12:4. The

relativistic corrections are so large that they modify the leading order prediction significantly. Utilizing the

analytic expressions, we also investigate the relativistic corrections in different kinematic regions and their

dependence on the masses of the initial-state quarkonium and the final-state fermion. In addition, we study

the momentum distribution of D�þ in the process �ð1SÞ ! c �cgg ! D�þX.
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I. INTRODUCTION

Heavy quarkonium decay phenomena have been exten-
sively studied both in theory and in experiment, from
which one gains insight into both the structure of the heavy
quarkonium and quantum chromodynamics (QCD) inter-
actions. The predominant annihilation decay modes of the
S-wave spin-triplet heavy quarkonium are those hadronic
decays, radiative decays, and leptonic decays. With abun-
dant data of the S-wave spin-triplet heavy quarkonium
decays accumulated in experiments, higher order decay
processes are also interesting to investigate. Among
them, two types of processes are particularly interesting.
One type is that the S-wave spin-triplet charmonium and
bottomonium semi-inclusive decay into a leptonic pair and
light hadrons. The other one is the S-wave spin-triplet
bottomonium semi-inclusive decays into a charm meson
pair and light hadrons.

In experiment, charm production via �ð1SÞ was studied
first by the ARGUS Collaboration [1] and recently by the
BABAR Collaboration [2] as well as by the CLEO
Collaboration [3]. BABAR’s results [2] provided evidence
for an excess of D�� production over the expected rate
from the virtual photon annihilation process �ð1SÞ !
�� ! c �c ! D��X. With a number of c ðnSÞ events accu-
mulated at the Beijing Electron Positron Collider (BEPC
II) [4] and�ðnSÞ events accumulated at B factories [5], the
S-wave spin-triplet charmonium and bottomonium semi-
inclusive decay into a lepton (charm) pair and light hadrons
are expected to be measured well.

In comparison with experimental data, it is necessary to
theoretically study those processes precisely. The decay
rate of these processes can be analyzed in the framework of
nonrelativistic QCD (NRQCD) factorization formalism
[6]. According to it, the decay rates are expressed as a
sum of products of short-distance coefficients and NRQCD

matrix elements. The short-distance coefficients can be
expanded as perturbation series in coupling constant �s

at the scale of the heavy quark mass. The long-distance
matrix elements can be expressed in a definite way with the
typical relative velocity v of the heavy quark in the quark-
onium state.
The decay rate of the semi-inclusive leptonic decay

process c ð�Þ ! lþl�gg was first studied by J. P.
Leveille and D.M. Scott in the color-singlet model [7].
The polar and azimuthal angular distributions of the lepton
pair in this process were also studied in Refs. [8,9]. The
semi-inclusive charm decay process � ! c �cgg was first
researched in Refs. [10,11], and the invariant mass distri-
bution of c �c has been studied in Ref. [12]. The inclusive
charm production in �ðnSÞ decay was calculated in
Ref. [13]. Bigi and Nussinov have taken into account the
contribution of � ! c �cg [14]. The exclusive double char-
monium production from � decay was calculated by Jia
[15]. The authors of Ref. [16] also considered the � decay
to two charm jets by including the color-octet contribution.
Cheung, Keung, and Yuan calculated the color-octet J=c
production in the � decay [17].
According to the NRQCD factorization formula, only

the leading order (LO) contributions are considered for the
processes c ð�Þ ! lþl�ðc �cÞgg. In the next-to-leading or-
der (NLO), the decay rate receives relativistic corrections,
whose long-distance matrix elements are suppressed by v2

compared with the LO contribution. Notice that the rela-
tivistic corrections to the decay rates in the processes
J=c ! �gg and J=c ! ggg are extremely large and
significant [18]. One may expect that the decay rates of
the processes c ð�Þ ! lþl�gg and� ! c �cgg also receive
considerable contributions from the relativistic corrections
since those processes possess similar Feynman diagrams.
However, until now, a thorough analysis including the
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contributions of the NLO NRQCD matrix elements is
lacking. In this paper, we analyze the decay rate for
c ð�Þ ! lþl�ðc �cÞgg up to the NLO in the relativistic
expansion in the framework of the NRQCD factorization
formula. We calculate the short-distance coefficients of
both the LO and the NLO NRQCD matrix elements at
the tree level and present the analytic expressions for the
distribution of the invariant mass of the lepton pair or
the charm pair. With these expressions, we are able to
study the relativistic corrections in different kinematic
regions, and then provide theoretical discussions. We also
investigate the momentum distribution of the charm quark
in our work. With convolution of a charm quark fragment-
ing into a charmed hadron, we are able to predict the
momentum distribution of the charmed hadron. Since the
treatments for inclusive lepton pair production and charm
pair production are quite similar, we concentrate on deal-
ing with the process of Hð3S1Þ ! lþl�gg. The decay rate
of � ! c �cgg is readily obtained by multiplying a color
factor and substituting the electromagnetic coupling con-
stant � and the lepton mass ml into the strong coupling
constant �s and the charm mass mc, respectively.

The remainder of this paper is organized as follows. In
Sec. II, we present the NRQCD factorization formula for
the differential decay rate of the processHð3S1Þ ! lþl�gg
up to the NLO in v. In Sec. III, given the notations and
kinematic variables used in our calculation, we present the
formulas for the differential decay rate as well as the total
decay rate. Section IV is devoted to determining the short-
distance coefficients corresponding to the LO and the NLO
NRQCD matrix elements. In Sec. V, we present the nu-
merical results and provide discussions. A summary is
given in Sec. VI.

II. NRQCD FACTORIZATION FORMULA FOR
QUARKONIUMDECAY PROCESSHð3S1Þ ! lþl�gg

According to the NRQCD factorization formula, up to
relative order v2, the differential decay rate for a quark-
onium H decay into a lepton pair and light hadrons can be
expressed as [6]

d�½Hð3S1Þ ! lþl� þ X�

¼ dFð3S1Þ
m2

hHjO1ð3S1ÞjHi þ dGð3S1Þ
m4

�hHjP 1ð3S1ÞjHi; (1)

where m signifies the mass of a heavy quark in H,
hHjO1ð3S1ÞjHi and hHjP 1ð3S1ÞjHi are the NRQCDmatrix
elements, and Fð3S1Þ and Gð3S1Þ are the corresponding
short-distance coefficients, respectively. Here H can be
either charmonium or bottomonium. The four-fermion
operators O1ð3S1Þ and P 1ð3S1Þ are defined as

O1ð3S1Þ ¼ c y�� � �y�c ; (2a)

P 1ð3S1Þ ¼
1

2

�
c y�� � �y�

�
� i

2
D
$
�
2
c

þ c y�
�
� i

2
D
$
�
2
� � �y�c

�
; (2b)

where c and � are Pauli spinor fields for annihilating a
heavy quark, and creating a heavy antiquark, respectively;

�i denotes the Pauli matrix; andD
$
is the spatial part of the

antisymmetrical covariant derivative: c yD$� � c yD��
ðDc Þy�. The subscript 1 on the NRQCD operator indi-
cates that it is a color-singlet operator. According to the
velocity-scaling rules given in Ref. [6], the matrix element
of the operatorO1ð3S1Þ in the 3S1 state is of order v

3 while
that of the operator P 1ð3S1Þ is of order v5. The latter one is
suppressed by v2, which represents the NLO relativistic
corrections to the inclusive H decay.
The vacuum-saturation approximation [6] can be used to

simplify the decay matrix elements in Eq. (2). They read

hHjO1ð3S1ÞjHi ¼ jh0j�y� � ��c jHij2 � hO1iH; (3a)

hHjP 1ð3S1ÞjHi ¼ Re

�
hHjc y� � ��j0ih0j�y� � ��

�
�
� i

2
D
$
�
2
c jHi

�
: (3b)

This approximation is valid up to corrections of relative
order v4. For convenience, we introduce a dimensionless
ratio of the vacuum matrix elements in Eq. (3) for later
use [19,20]:

hv2iH ¼ h0j�y� � ��ð� i
2D
$Þ2c jHi

m2h0j�y� � ��c jHi : (4)

This quantity characterizes the typical size of relativistic
corrections for H.
Equation (1) implies that, to predict the decay rate, one

needs to determine both the short-distance coefficients and
the NRQCD matrix elements. The NRQCD matrix ele-
ments have been extensively studied by means of lattice
QCD [21], the nonrelativistic quark model [22], and fitting
the experimental data [23,24]. Therefore, once we deter-
mine the short-distance coefficients Fð3S1Þ and Gð3S1Þ,
with those values of matrix elements, we may calculate
the differential decay rate in Eq. (1). To determine the
Fð3S1Þ and Gð3S1Þ at the tree level, we apply the factoriza-
tion formula to the process of an on-shell Q �Q pair near the
threshold in a spin-triplet and color-singlet state decaying
to lþl�gg:
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d�½Q �Q1ð3S1Þ! lþl�gg�

¼dFð3S1Þ
m2

hQ �Q1ð3S1ÞjO1ð3S1ÞjQ �Q1ð3S1Þi

þdGð3S1Þ
m4

hQ �Q1ð3S1ÞjP 1ð3S1ÞjQ �Q1ð3S1Þi:
(5)

Notice that the factorization formula (5) takes a similar
form to (1) except that the hadron state is substituted into
the on-shell free quark pair state with the same quantum
number as the hadron. The decay rate in (5) can be calcu-
lated both in the QCD perturbation theory and in the
NRQCD factorization formula. By matching both sides,
the short-distance coefficients can then be determined.

III. KINEMATICS AND FORMULAS FOR THE
DECAY RATE

A. Kinematics and definitions

In this section, we define notations for the kinematics
involved in our work. We take p1 and p2 to be the momenta
of the incoming heavy quark Q and heavy antiquark �Q,
respectively, which are on their mass shells: p2

1 ¼ p2
2 ¼

m2. They are expressed as linear combinations of the total
momentum P and half of their relative momentum q:

p1 ¼ P=2þ q; (6a)

p2 ¼ P=2� q: (6b)

In the center of mass frame of the quarkonium, the
momenta are given by

P ¼ ð2E; 0Þ; (7a)

q ¼ ð0; qÞ; (7b)

where the orthogonal relation P � q ¼ 0 is satisfied.
We also assign k1, k2 to be the momenta of the two final-

state gluons, and l1, l2 to be the momenta of the produced
lepton pair. Therefore, the momentum Q of the virtual
photon yields to Q ¼ l1 þ l2. These momenta satisfy

k21 ¼ k22 ¼ 0; (8a)

l21 ¼ l22 ¼ m2
l ; (8b)

where ml denotes the mass of the lepton.
For convenience, we introduce a set of dimensionless

variables

x1 ¼ 2k1 � P
P2

; x2 ¼ 2k2 � P
P2

;

x3 ¼ 2Q � P
P2

; z ¼ Q2

P2
; (9a)

r ¼ 4m2
l

P2
; y1 ¼ jl1j

jl1jmax

¼ jl1j
ml

ffiffiffiffiffiffiffiffiffiffiffiffi
r

1� r

r
; (9b)

where y1 represents the momentum fraction for the lepton
and jl1jmax denotes the maximum of the lepton momentum
in the quarkonium center of mass frame. In the following
subsection, we will show that all the involved Lorentz
invariant kinematic quantities can be rewritten in terms
of these new variables.

B. The formulas for the decay rate

1. Differential decay rate of the invariant
mass of the lepton pair

For the decay process Hð3S1ÞðPÞ !
lþðl1Þl�ðl2Þgðk1Þgðk2Þ, it involves a four-body phase space
integral, which can be expressed as

Z
d�4 ¼

Z d3k1
ð2�Þ32k01

d3k2
ð2�Þ32k02

d3l1
ð2�Þ32l01

d3l2
ð2�Þ32l02

� ð2�Þ4�4ðP� k1 � k2 � l1 � l2Þ: (10)

Since there is no divergence emerging in our calculation,
dimensions of the space-time are set to 4 in (10). In order to
compute the invariant mass distribution of the lepton pair,
we decompose the four-body phase space integral (10) into
the product of a two-body phase space integral for the
lepton pair and a three-body one by inserting the following
two identities:

Z d4Q

ð2�Þ4 ð2�Þ
4�4ðQ� l1 � l2Þ ¼ 1;

P2
Z dz

2�
2��ðQ2 � P2zÞ ¼ 1: (11)

After integrating out the energy Q0 through the delta
function, we get

Z
d�4 ¼

Z dz

2�

Z
d�3

Z
d�2; (12)

where
R
d�2 and

R
d�3 are expressed as

Z
d�2 ¼ P2

Z d3l1
ð2�Þ32l01

d3l2
ð2�Þ32l02

� ð2�Þ4�4ðQ� l1 � l2Þ; (13a)Z
d�3 ¼

Z d3Q

ð2�Þ32Q0

d3k1
ð2�Þ32k01

d3k2
ð2�Þ32k02

� ð2�Þ4�4ðP� k1 � k2 �QÞ: (13b)

On the other side, the squared amplitude can be
expressed as the contraction of the leptonic tensor ~L�	

and hadronic tensor ~H�	:

jMj2 ¼ ~L�	 ~H�	; (14)

where the leptonic tensor ~L�	 is given by
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~L�	 ¼ e2

Q4
Tr½ðl=1þmlÞ��ðl=2�mlÞ�	�: (15)

It follows after integrating over the phase space momenta
that

L�	 �
Z

d�2
~L�	 ¼

�
�g�	 þQ�Q	

Q2

�
� L; (16)

where the Lorentz invariant L is given by

L ¼ 2�

3z

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

z

r �
1þ r

2z

�
; (17)

where � is the fine structure constant. As a result, we are
able to write the decay rate as

� ¼ 1

2

Z dz

2�
L
Z

d�3
~H�	

�
�g�	 þQ�Q	

Q2

�
; (18)

where the factor 1
2 accounts for the indistinguishability of

the two gluons in the final states. It is not hard to find that
the second term in the parentheses of (18) does not con-
tribute due to the current conservation.

The three-body phase space integral
R
d�3 can generi-

cally be expressed as the integral of two dimensionless
variables x1 and x2:Z

d�3 ¼ P2

128�3

Z
dx1dx2: (19)

Up to now, we have reduced the four-body phase space
integral (10) into the integration over three variables: z, x1,
and x2. The corresponding boundaries for these variables
are given by

1�x1�z

1�x1
�x2�1�x1�z; 1�z�x1�0; 1� z� r:

(20)

To simplify further the calculation, we make the variable
transformation:

x1 ¼ ð1� zÞx; (21a)

x2 ¼ ð1� zÞð1� xÞ½1� ð1� zÞxy�
1� ð1� zÞx : (21b)

After this transformation, the area of the integration is
significantly simplified as

1 � x � 0; 1 � y � 0: (22)

Now, the expression of the decay rate reduces to

� ¼ 1

2

P2

ð4�Þ4
Z 1

r
dz

Z 1

0
dx

Z 1

0
dy

ð1� zÞ3ð1� xÞx
1� ð1� zÞx L

� ð�g�	Þ ~H�	: (23)

From (23), we notice the principal task is to analyze the
subprocess Hð3S1Þ ! ��gg (corresponding to the contri-
bution from the hadron part ~H�	g

�	). In the next section,

we will use Eq. (23) to evaluate the total decay rate as well
as the differential decay rate over the invariant mass of the
lepton pair, equivalently, the dimensionless variable z.

2. Momentum distributions of the charm
quark and the charmed hadron

In this section, we first derive the formulas to calculate
the momentum distribution of the charm quark in the decay
process � ! g�gg ! c �cgg. The momentum distribution
of a charmed hadron h is then obtained by convolving it
with a fragmentation function, which describes a charm
quark fragmentation into the meson h.
As introduced in Sec. III B 1, we decompose the phase

space integration into two parts by inserting the identities
(11). Since we want to observe the momentum distribution
of the charm quark, we can integrate out the momenta of
the two final-state gluons. To this end, we introduce a
tensor T�	 which depends only on the momenta P andQ as

T�	�
Z d3k1
ð2�Þ32k01

d3k2
ð2�Þ32k02

ð2�Þ4�4ðP�Q�k1�k2Þ ~H�	

¼
�
�g�	þQ�Q	

Q2

�
H1þ 1

P2

�
P��Q�P �Q

Q2

�

�
�
P	�Q	P �Q

Q2

�
H2; (24)

whereH1,H2 are Lorentz invariant form factors. In the last
step of (24), we have applied the Lorentz covariance and
current conservation. By contracting g�	 and P�P	 sepa-
rately in (24), we are able to obtain the expressions of these
two form factors. We notice that H1 and H2 are indepen-
dent on the momenta of the two final fermions. To obtain
the decay rate, we need to include the charm quark pair part
as well as the remaining phase space.
Contracting with the leptonic tensor,1 we readily obtain

~T � T�	 ~L�	

¼
Z d3k1

ð2�Þ32k01
d3k2

ð2�Þ32k02
ð2�Þ4�4ðP�Q� k1 � k2Þ

� 2�r

m2
l

� T ¼ 2�r�

m2
l z

2

�
ðrþ 2zÞH1 �H2

�
�
ð1� rÞy21 þ rþ z� x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞy21 þ r

q ��
: (25)

Now, we turn to carry out the two phase space integra-
tion

R
d�2 and

R
d�3. For

R
d�2, we have

1Here we should replace the leptonic tensor ~L�	 in (15) with
the corresponding tensor for the charm quark pair; however, we
still use (15) to implement the calculation and the difference will
be compensated by multiplying a factor.
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Z
d�2 ¼ P2

Z d3l1
ð2�Þ32l01

d3l2
ð2�Þ32l02

ð2�Þ4�4ðl1 þ l2 �QÞ

¼ P2

8�

Z jl1jdjl1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þm2

c

q
jQj

¼ m2
l

2�r

Z y1dy1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞy21 þ r

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23 � 4z

q ; (26)

with the boundaries of y1:

y1þ � y1 � jy1�j; (27)

where

y1� ¼ x3

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4z

x23

s
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

z

r 1
A: (28)

We then deal with the phase space integral
R
d�3.

Analogously, we can reduce the integral
R
d�3 into (19).

Nevertheless, since the boundaries (28) contain x3, we
prefer to choose another set of integration variables, such
as x1 and x3:

Z
d�3 ¼ P2

128�3

Z
dx3dx1: (29)

The corresponding boundaries of x3 and x1 are

1þ z � x3 � 2
ffiffiffi
z

p
; (30a)

x1þ � x1 � x1�; (30b)

where

x1� ¼ 1
2

�
2� x3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23 � 4z

q �
: (31)

In addition, as shown in (12), to get the decay rate, we
should include another integration over z. The correspond-
ing boundaries of z are shown in (20) to be 1 � z � r.

Finally, the decay rate can be expressed as

�¼1

2

P2

ð4�Þ4
Z
dzdx3dx1dy1

y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�rÞy21þr

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23�4z

q �T;

(32)

where T is defined in (25).
In order to get the momentum distribution, we need to

change the integration order in (32), and to make y1 be the
last integral. Notice that the boundaries of y1 are indepen-
dent of x1; we need not change the order of the integration
of x1. This calculation is tedious but straightforward. Here
we present the expression as follows:

� ¼ 1

2

P2

2ð4�Þ5
�Z ffiffiffiffiffiffiffi

1�r
p

=2

0
dy1

Z z�

r
dz

Z x0
3þ

x03�
dx3

þ
Z 1

0
dy1

Z zþ

z�
dz

Z 1þz

x0
3�

dx3

�

�
Z x1þ

x1�
dx1

y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞy21 þ r

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23 � 4z

q � T; (33)

where the boundaries of x1 are given in (31), and

x03� ¼ 2

r

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞy21 þ r

q
� y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� rÞðz� rÞzp �
: (34)

In addition, the boundaries of variable z are the positive
solution of the following equation:

ð1þ z�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

z�

q 	 ð1� z�Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p ¼ y1: (35)

With the formula (33), and the boundaries (31), (34), and
(35), we can carry out a calculation of the distribution of
the charm quark momentum fraction y1. Now, we go
further to investigate the charmed-hadron momentum dis-
tribution. As discussed in Ref. [24], the momentum distri-
bution of a charmed hadron produced in � decay is softer
than that of the charm, due to the effect of hadronization.
The momentum distribution of a charmed hadron h can be
obtained by convolving the charm momentum distribution
with a fragmentation function for the charm quark frag-
mentation into the h.
The fragmentation function Dc!hðz0Þ describes the

probability of a charm quark with light-cone momentum
l01 þ jl1j hadronizing into a charmed hadron h with light-

cone momentum l0h þ jlhj ¼ z0ðl01 þ jl1jÞ. The fraction z0
can be expressed in terms of scaled light-cone momentum
fractions z1 for the charm and zh for the charmed hadron,
which are analogous to the scaled momenta y1 and yh [25],
where z1 is

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞy21 þ r

q
þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� r
p

y1

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p : (36)

Then, the fraction z0 is expressed as

z0 ¼ zh
z1

� ðl0h þ jlhjÞjmax

ðl01 þ jl1jÞjmax

; (37)

where the last factor on the right-hand side of Eq. (37)
becomes unity if the difference between the mass of the
charm quark and that of the charmed hadron can be ne-
glected. With this approximation, the momentum distribu-
tion of the charmed hadron can be written as [24]

RELATIVISTIC CORRECTIONS TO THE SEMI- . . . PHYSICAL REVIEW D 85, 034017 (2012)

034017-5



d�

dyh
¼ dzh

dyh

Z zm

zh

dz1
z1

Dc!hðzh=z1Þdy1dz1

d�

dy1

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞy2h þ r

q Z ym

yh

dy1Dc!h

�
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞy2h þ r

q
þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� r
p

yhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞy21 þ r

q
þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� r
p

y1

1
A d�

dy1
; (38)

where Dc!hðz0Þ ¼ z0Dc!hðz0Þ, ym represents the upper

boundary for y1 in (33), which equals
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p
=2 and 1

corresponding to the first term and the second term in the
parentheses, and zm corresponds to the value of z1 when y1
takes ym in (36).

The formulas (33) and (38), and the boundaries (31),
(34), and (35) can be used to carry out a calculation of the
distribution of the charmed-hadron momentum fraction yh.
In Sec. V, we will utilize these formulas to make
predictions.

IV. MATCHING THE SHORT-DISTANCE
COEFFICIENTS UP TO NLO IN v

In this section, we determine the differential short-
distance coefficients dFð3S1Þ and dGð3S1Þ that appeared
in (1). The short-distance coefficients are then readily
obtained by integrating over the integration variables.
Now, we describe the strategy. By employing the formulas
derived in the previous section, we first calculate the
differential decay rate for the process of a color-singlet
spin-triplet S-wave heavy quark pair decay into a lepton
pair plus two gluons Q �Q1ð3S1Þ ! lþl�gg in the QCD
perturbation theory, up to the NLO in v, and then carry
out the differential decay rate of the same process in the
NRQCD factorization formula. Finally, the short-distance
coefficients dFð3S1Þ and dGð3S1Þ in (1) are immediately
determined by identifying these two calculations.

A. Amplitude of Q �Q ! ��gg
As we have demonstrated in (17), (23), (25), and (33),

the lepton part has been explicitly written out. We still
have to deal with the subprocess Qðp1Þ �Qðp2Þ !
��ðQÞgðk1Þgðk2Þ. At the tree level, there are 6 diagrams
contributing to the amplitude as shown in Fig. 1. Given the
momenta defined in Sec. III A, the amplitude of the process
reads

Aðs1; s2Þ ¼ �vðp2; s2ÞT�uðp1; s1Þ; (39)

where uðp1; s1Þ and vðp2; s2Þ are the spinors of the heavy
quark and antiquark, respectively, and T� represents the

products of Dirac matrices and color-space matrices.
According to Fig. 1, the expression of T� reads

T� ¼ ð�ieQeg
2
sÞTbTa 

�2ðk2Þ

1

6k2 � 6p2 �m

�1ðk1Þ

� 1

6k1 þ 6k2 � 6p2 �m
�� þ 5 perms; (40)

where e, gs denote the QED and QCD coupling constant,
respectively, eQ denotes the electric charge number of the

heavy quark, a, 
1 and b, 
2 represent the color indices and
the polarization vectors of the two gluons, and � corre-
sponds to the Lorentz index of the virtual photon.

B. Projection of spin-triplet Q �Q state

The amplitude given in (39) describes the decay of the
heavy quark and the antiquark state with the spins of
the third component s1 and s2, respectively. To calculate
the decay of the Q �Q in the spin-triplet state and color-
singlet state, one needs to project the total spin state of the
Q �Q pair onto the spin-triplet and color-singletQðp1Þ �Qðp2Þ
state. This can be done by introducing the projection
operator �3ðp1; p2Þ [26] expressed by

�3ðp1;p2Þ¼
X
s1;s2

uðp1;s1Þ �vðp2;s2Þ
�
1

2
;s1;

1

2
;s2j1


	

 1cffiffiffiffiffiffi

Nc

p

¼� 1

8
ffiffiffi
2

p
E2ðEþmÞð6p1þmÞð6Pþ2EÞ
ð6p2�mÞ


 1cffiffiffiffiffiffi
Nc

p ; (41)

where 1c is the unit matrix in the fundamental representa-
tion of the color SU(3) group, and 
 is the polarization
vector of the spin-triplet state. The above spin-triplet pro-
jector is derived by assuming the nonrelativistic normal-
ization convention for Dirac spinor. With this projection
operator, the amplitude for a spin-triplet and color-singlet
Q �Q pair annihilation decay reads

A sing
� ½Q �Q ! ��gg� ¼ Trf�3ðp1; p2ÞT�g; (42)

where the trace is understood to act on both Dirac and color
spaces.

FIG. 1. The tree-level Feynman diagrams for Q �Q1ð3S1Þ !
lþl�gg. For simplicity, the crossed diagrams have been sup-
pressed.
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C. Projection of S-wave amplitude

Besides projecting the Q �Q pair onto the spin-triplet
state, to account for the contribution from the S-wave
orbital-angular-momentum state, one has to project further
the Q �Q state onto the S-wave state. It can be done by
averaging the amplitude Asing over all directions of the
relative momentum q in the Q �Q rest frame.

The amplitude can be expanded in terms of the powers
of q2 and the series can be truncated to the desired order.
Since here we are only interested in the NLO relativistic
corrections, we may do it by expanding the spin-triplet
amplitude Asing in q� through quadratic order, then mak-
ing the following replacement [27]:

q�q	 ! q2

3
��	ðPÞ; (43)

where

��	ðPÞ � �g�	 þ P�P	

P2
: (44)

D. The decay rate of Q �Q1ð3S1Þ ! lþl�gg up
to relative order v2

Since the calculation for the momentum distributions of
the charm quark and charmed hadron are similar to that of
the invariant mass distribution of the lepton pair, in the
following subsections, we merely demonstrate the latter.

We now proceed to compute the lepton pair invariant
mass distribution for the process Q �Q1ð3S1Þ ! lþl�gg at
the LO and the NLO in v, based on the techniques de-
scribed in Sec. IVC.

We first expand the amplitude given in (42) in terms of q
up to quadratic order, then apply (43) to extract the S-wave
part

�A� ¼ �Að0Þ
� þ �Að2Þ

�
q2

m2
þOðq4Þ: (45)

The hadronic tensor in (23) is then given by squaring the
amplitude �A�, averaging over the polarizations of

the initial state, and summing over the polarizations of
the two gluons:

~H�	 ¼ 1

3

X
pol

�A�
�A�
	: (46)

Substituting it into (23), the decay rate is expressed as

�¼� 4E2

2ð4�Þ4
Z
dzdxdy

ð1�zÞ3ð1�xÞx
1�ð1�zÞx �L�1

3

X
pol

�A�
�A�
�

¼�2m2

3

1

ð4�Þ4
Z
dzdxdy

ð1�zÞ3ð1�xÞx
1�ð1�zÞx �L

�X
pol

�
�Að0Þ� �Að0Þ�

� þð �Að0Þ� �Að0Þ�
� þ2Re½ �Að0Þ� �Að2Þ�

� �Þ

� q2

m2
þOðq4Þ

�
: (47)

In the calculation, we employ the MATHEMATICA pack-
age FEYNCALC [28] to implement the arithmetic of Dirac
trace and Lorentz contraction. The resultant distribution of
the invariant mass of the lepton pair reads

d�

dz
¼ 4�2�2

se
2
Q

27�m2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

z

r �
1þ r

2z

��
f0ðzÞ þ f2ðzÞ q

2

m2

�
;

(48)

where the analytic expressions for f0ðzÞ and f2ðzÞ are given
by

f0ðzÞ¼ 4

zð1�zÞ2
��
ð2z3�z2�12zþ8Þtan�1

0
@ ffiffiffiffiffiffiffiffiffiffiffi

1�z

z

s 1
A

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞ

p
ð4z2�9zþ8Þ

�
tan�1

0
@ ffiffiffiffiffiffiffiffiffiffiffi

1�z

z

s 1
A

�9ð1�zÞðz2�2zþ2Þþzð5z2�14zþ3Þlogz
�
;

(49)

and

f2ðzÞ¼ 4

9zð1�zÞ3
��
3ð4z4�8z3�57z2þ96z�38Þtan�1

�
0
@ ffiffiffiffiffiffiffiffiffiffiffi

1�z

z

s 1
A�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1�zÞp ð17z2�51zþ31Þ

�
tan�1

�
0
@ ffiffiffiffiffiffiffiffiffiffiffi

1�z

z

s 1
A�ð1�zÞð61z3�192z2

þ386z�198Þþ2zðz3�55z2

þ43z�13Þ logz
�
: (50)

Notice that, when extracting the relativistic corrections,

we do not expand r in terms of E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
in (48).

Actually, from the expression of (48), we find the differ-
ential decay rate is sensitive to the value of r in the region
of z ! r. Moreover, the decay rate develops a strong

dependence on r from this region, i.e.,
R
r dz

d�
dz / logr. In

our numerical calculation, we will choose r ¼ 4m2
l =P

2 ¼
4m2

l =m
2
H, where mH is the mass of the initial quarkonium.
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Since the quarkonium mass is well measured, this choice
may also reduce the uncertainties from the input
parameters.

For the same reasons, we will make the choice of r ¼
4m2

D=m
2
H in (33) when evaluating the momentum distribu-

tions for the charm quark and the charmed hadron.

E. The short-distance coefficients dFð3S1Þ and dGð3S1Þ
To determine the short-distance coefficients, we need to

calculate the parton level process Q �Q1ð3S1Þ ! lþl�gg in
the NRQCD factorization formula. The involved matrix
elements are easily obtained by perturbative NRQCD:

hQ �Q1ð3S1ÞjO1ð3S1ÞjQ �Q1ð3S1Þi ¼ 2Nc; (51a)

hQ �Q1ð3S1ÞjP 1ð3S1ÞjQ �Q1ð3S1Þi ¼ 2Ncq
2; (51b)

where the state of the heavy quark pair is normalized
nonrelativistically, and the factor 2Nc accounts for the
spin and color normalization.

Substituting (51) into (5), we can write down the corre-
sponding differential decay rate in the NRQCD factoriza-
tion formula:

d

dz
�ðQ �Q1ð3S1Þ ! lþl�ggÞ

¼ 2Nc

m2

�
dFð3S1Þ

dz
þ dGð3S1Þ

dz

q2

m2
þOðq4Þ

�
:

(52)

Matching the QCD side and the NRQCD side by equating
(48) with (52), one determines the short-distance coeffi-

cients
dFð3S

1
Þ

dz and
dGð3S

1
Þ

dz :

dFð3S1Þ
dz

¼ 2�2�2
se

2
Q

81�
f0ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

z

r �
1þ r

2z

�
; (53a)

dGð3S1Þ
dz

¼ 2�2�2
se

2
Q

81�
f2ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

z

r �
1þ r

2z

�
: (53b)

Employing (53), we are able to provide the following
discussions. It is instructive to look at the ratio

tðzÞ � dGð3S1Þ
dz

=
dFð3S1Þ

dz
¼ f2ðzÞ

f0ðzÞ ; (54)

which solely depends on variable z. This ratio characterizes
the importance of the NLO relativistic corrections com-
pared to the LO contribution. To visualize the relation, we
plot the ratio tðzÞ over the variable z in Fig. 2. From this
figure, we see that the ratio tðzÞ is negative in the physical
region with the variable z ranging from 0 to 1. We also
notice that the magnitude of tðzÞ rises rapidly with the
increase of z.

In addition, we go further to analyze the two limits of the
ratio tðzÞ. In the limit of z ! 0, there is

lim
z!0

tðzÞ ¼ 132� 19�2

12ð�2 � 9Þ ¼ �5:32; (55)

which agrees with the ratio of the short-distance coefficient
of the NLO relativistic corrections and that of the LO for
the processes c ! �gg and c ! ggg, as expected. In the
limit of z ! 1, it follows from Eqs. (49) and (50) that
f0ðzÞ ! 0, and f2ðzÞ ! const: As a consequence,

lim
z!1

tðzÞ ¼ � 8

1� z
þ 4

3
þOð1� zÞ: (56)

From (56), we see that the ratio tðzÞ goes to infinity in the
limit of z ! 1, which is the result of a vanishing f0ðzÞ in
that limit. In fact, we can see that f0ðzÞ vanishes in the limit
of z ! 1 from amplitude. When the momenta of two real
gluons are soft, the amplitude of J=c ! ��gg can be
separated into

AðJ=c !��ggÞ
¼g2s

�
p1 �
1p1 �
2
p1 �k1p1 �k2þ

p2 �
1p2 �
2
p2 �k1p2 �k2

�p1 �
1p2 �
2þp2 �
1p1 �
2
p1 �k1p2 �k2

�
�a1a2

2
AðJ=c !��Þ;

(57)

where 
i and ai indicate the polarization vector and color
index of the i gluon. At LO in v, there is p1 ¼ p2 ¼ P

2 , and

therefore AðJ=c ! ��ggÞ vanishes. Consequently, f0ðzÞ
vanishes in z ! 1.
Figure 2 and Eq. (55) combine to indicate that the NLO

relativistic corrections in this process are not only large but
increase rapidly with the rise of the virtuality of the inter-
mediate photon. One may doubt the convergence of the
expansion series in v. In Ref. [26], the authors calculated
the relativistic corrections to the decay rate of� ! ggg up
to v4. Their results indicate the relativistic corrections from

FIG. 2. Distribution of the scaled variable z for the invariant
mass of the lepton pair. We use F, G to signify the short-distance
coefficients Fð3S1Þ and Gð3S1Þ.
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the color-singlet matrix elements are convergent. Since the
Feynman graphs are quite similar, we expect the relativistic
expansion will be convergent in the process of � !
lþl�gg.

The short-distance coefficientsGð3S1Þ and Fð3S1Þ can be
readily obtained by integrating out the variable z. Finally,
substituting the short-distance coefficients given in
Eqs. (53) into Eq. (1), we present the differential decay
rates in the NRQCD factorization formula for the process
Hð3S1Þ ! lþl�gg:

d�½Hð3S1Þ ! lþl�gg�
dz

¼
�
dFð3S1Þ

dz
þ dGð3S1Þ

dz
hv2iH

�

� hOiH
m2

; (58)

where the matrix element hv2iH is previously defined in (4).
The decay rate is correspondingly achieved by integrating
out the variable z.

The differential short-distance coefficients as well as the
decay rate for the lepton pair production can be easily
extended to the process �ðnSÞ ! c �cgg, where the charm
pair is produced through one virtual gluon instead of the
virtual photon. One can get them by multiplying a color
factor 5=24, and substituting ml and e2Q�

2 into mD and �2
s

on the right-hand side of (53) and (58).2

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we first numerically evaluate the total
decay rate and the short-distance coefficients for various
processes, and then discuss the momentum distribution
related to the charmed meson D�þ in the process �ð1SÞ !
c �cgg ! D�þX.

A. Decay rate and the short-distance coefficients

In this subsection, we employ the obtained differential
short-distance coefficients (53) and the decay rate (58) to
make numerical predictions for the decay rate of the pro-
cesses Hð3S1Þ ! lþl�ðc �cÞgg. The corresponding discus-
sions are also presented.

To this end, we need to specify various input parameters,
such as the coupling constants, the pole masses of the
heavy quarks, the physical masses of various involved
quarkonia and final-state leptons and charm quark (we
choose the mass of the final-state charm quark to be the
mass of the charmed hadron), and the values of the non-
perturbative NRQCD matrix elements. In our calculation,
we take the charm and bottom quark pole masses to be
mc ¼ 1:4 GeV and mb ¼ 4:6 GeV, respectively. The
lepton masses are taken to be me ¼ 0:51� 10�3 GeV,

m� ¼ 0:106 GeV, m� ¼ 1:777 GeV [29]. Since the final-

state charm quark will dominantly evolve to the charmed
hadron, we choose the charm quark mass to be the mass of
the charmed hadronmD ¼ 1:87 GeV, which is the average
masses of the D0 and Dþ. The fine structure constant
changes slightly from the scale of charmonium to that of
bottomonium, so we uniformly choose � ¼ 1

133 for all the

decay processes involved.
The values of the quarkonium masses, coupling con-

stants, and the NRQCD matrix elements are listed in
Table I, where scales of the coupling constants are chosen
to be half of the corresponding decay quarkonium. In the
table, the masses of the quarkonia are taken from Ref. [29];
we take the NRQCD matrix elements hOiJ=c and hv2iJ=c
from Ref. [24], hOi�ðnSÞ from Ref. [12], and hOic ð2SÞ from
Ref. [30]; other values of the NRQCD matrix elements
hv2iH are determined by the Gremm-Kapustin relation
[19]:3

hv2iH ¼ mH � 2mpole

mpole

; (59)

where mpole denotes the pole mass of the heavy quark,

which is taken to be 1.4 GeV and 4.6 GeV for the charm
quark and bottom quark, respectively.
With the parameters chosen above, we are able to make

numerical predictions for various decay channels, which
include the inclusive lepton decay of the charmonium and
bottomonium, as well as the inclusive charm decay of the
bottomonium. First, we consider the total decay rate. The
predicted results are listed in Table II. In the table, we give
the decay rates both in the LO and in the NLO relativistic
corrections. To show the magnitude of the relativistic
corrections, we also list two ratios. One is the ratio of the
NLO and the LO short-distance coefficients, namely,
Gð3S1Þ=Fð3S1Þ. The other is the ratio of the NLO and the

LO decay rates �ð2Þ=�ð0Þ.

TABLE I. Numerical values for the parameters of different
initial-state particles: the mass mH , strong coupling constant
�sðmH=2Þ, the NRQCD matrix elements hO1iH and hv2iH .

mH ðGeVÞ �sðmH=2Þ hO1iH ðGeV3Þ hv2iH
J=c 3.097 0.334 0.440 0.225

c ð2SÞ 3.686 0.300 0.274 0.633

�ð1SÞ 9.460 0.215 3.07 0.057

�ð2SÞ 10.023 0.211 1.62 0.179

�ð3SÞ 10.355 0.210 1.28 0.251

2In calculating the decay rate of the process �ðnSÞ ! c �cgg,
we take the mass of the charm quark to be that of the D meson
mc ¼ mD in order to compare with the measurement of the
experiment [13].

3Since the pole masses of the charm quark and bottom quark
are not determined very well, the NRQCD matrix element
computed from the Gremm-Kapustin relation has a large uncer-
tainty. This is especially serious for the bound state quarkonium,
whose mass is close to 2mpole. Therefore, in the next subsection,
we adopt a new method to determine hv2iH for �ð1SÞ.
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From Table II, we find that all the relativistic corrections
are huge and negative. This is especially serious for the
bottomonium decay to charm pair channels. We can reach
two conclusions from the table. First, the ratio of the NLO
and the LO short-distance coefficients ascends with the
increase of r, which is previously defined as 4m2

l =m
2
H [or

4m2
D=m

2
H for �ðnSÞ ! c �cgg]. Second, in the channel with

small r such as �ðnSÞðc ðnSÞÞ ! eþe�gg, the ratio of the
short-distance coefficients approaches to that in the process
of J=c ! �gg or J=c ! ggg. This is understood from the
fact that the decay rate of Hð3S1Þ ! eþe�gg is dominated
by the region, where the virtual photon is nearly on-shell.

It is also intriguing to study the r dependence of the
relativistic corrections. In Fig. 3, we show the dependence
of the ratio Gð3S1Þ=Fð3S1Þ on r. From the figure, we see
that as the value of r increases, the relativistic corrections
will increase rapidly. Actually, this feature has been shown
in Table II. When the mass of the final-state fermion is
close to half of that of the initial quarkonium, the momenta
of the two real gluons will become soft, and therefore the
perturbative QCD calculation is unreliable. Therefore, only
the region r < 0:5 is plotted in Fig. 3.

B. Momentum distribution of charmed hadron D�þ

To predict the production rate of a charmed hadron from
�ð1SÞ decay, we need to consider the probability of a
charm quark hadronizing into the charmed hadron. In
Ref. [31], the authors computed the ratio Br½c ! h�. In
the Table 10 of Ref. [31], one can read that the ratio for
D�þ production is Br½c ! D�þ� ¼ 0:220. With this value,
we can readily derive the decay rate for D�þ production
through the process �ð1SÞ ! c �cgg ! D�þX.
As mentioned in the previous subsection, the NRQCD

matrix element hv2i�ð1SÞ determined from the Gremm-

Kapustin relation is sensitive to the bottom pole mass.
Here we present another method to determine this matrix
element, and then use the new value to predict the momen-
tum distribution of D�þ.
In Ref. [2], the BABAR Collaboration reported their

measurement Br½�ð1SÞ ! D�þX� ¼ ð2:52� 0:13ðstatÞ �
0:15ðsystÞÞ%. In addition, they derived the contribution
from the virtual photon annihilation process to be
Br½�ð1SÞ ! �� ! D�þX� ¼ ð1:52� 0:20Þ%, and there-
fore we may expect that the difference arises from the
contribution of �ð1SÞ ! c �cgg ! D�þX. With this as-
sumption,4 we are able to fix the value of hv2i�ð1SÞ through
the relation5

1

��

ðFð3S1Þ þGð3S1Þhv2iHÞ � hO1iH
m2

b

� Br½c ! D�þ�

¼ 2:52%� 1:52% ¼ 1:00%; (60)

TABLE II. The ratio r, theoretical predictions for the decay rate, the ratio between the NLO rate and LO rate, and the ratio between
the short-distance coefficients.

r �ð0Þ ðkeVÞ �ð2Þ ðkeVÞ �ð2Þ=�ð0Þ G1ð3S1Þ=F1ð3S1Þ
J=c ! eþe�gg 1:08� 10�7 4:73� 10�1 �5:91� 10�1 �125% �5:56

J=c ! �þ��gg 4:69� 10�3 1:08� 10�1 �1:57� 10�1 �145% �6:49

c ð2SÞ ! eþe�gg 7:66� 10�8 2:43� 10�1 �8:56� 10�1 �352% �5:55

c ð2SÞ ! �þ��gg 3:31� 10�3 5:98� 10�2 �2:41� 10�1 �403% �6:37

�ð1SÞ ! eþe�gg 1:16� 10�8 3:68� 10�2 �1:16� 10�2 �31:5% �5:53

�ð1SÞ ! �þ��gg 5:02� 10�4 1:22� 10�2 �4:16� 10�3 �34:0% �5:97

�ð1SÞ ! �þ��gg 1:41� 10�1 1:05� 10�3 �7:06� 10�4 �67:3% �11:8

�ð1SÞ ! c �cgg 1:56� 10�1 1:44 �1:01 �70:4% �12:4

�ð2SÞ ! c �cgg 1:39� 10�1 7:99� 10�1 �1:68 �210% �11:7

�ð3SÞ ! c �cgg 1:30� 10�1 6:63� 10�1 �1:90 �287% �11:4

FIG. 3. Dependence of the ratio of the short-distance coeffi-
cients Gð3S1Þ=Fð3S1Þ on r.

4In Ref. [16], the authors considered the contribution to the
charm pair production from the color-octet NRQCD matrix
element. According to the NRQCD velocity-scaling rules, this
contribution belongs to the higher order corrections at v expan-
sion. We are now working on v4 corrections to the process � !
c �cgg, and a thorough analysis including the contributions from
the color-octet NRQCD matrix elements will be presented in the
future.

5Since we use the experimental data related to the D�þ
production, here we choose r ¼ 4m2

D�þ=m2
�ð1SÞ, where mD�þ ¼

2:01 GeV.
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where �� represents the total decay rate of �ð1SÞ. By
taking as �� ¼ 54:02 keV, we obtain hv2i�ð1SÞ ¼
�0:0781. In Ref. [32], this matrix element is also deter-
mined to be �0:009� 0:003 through fitting the decay rate
of the process � ! eþe�. Though both results are nega-
tive, our result is much larger than theirs. We apply the
formulas (33) and (38) derived in Sec. III B 2 to calculate
the momentum distribution of D�þ. Prior to making the
numerical predictions, we need to select an appropriate
fragmentation function. Here we employ two well-known
models: the Kartvelishvili-Likhoded-Petrov (KLP) frag-
mentation function [33], which was used in the analyses
of charmed-hadron momentum distribution in �ðnSÞ and
�b decays, and the Peterson fragmentation function [34].
The KLP and Peterson fragmentation functions both have a
simple parametrization depending only on the light-cone
momentum fraction z0 (see Table III). The optimal values
of �c determined by the Belle Collaboration are �c ¼ 5:6,
and 0.054 for the KLP and Peterson fragmentation func-
tions, respectively [31].

The normalization factor Nh is determined by the con-
straint

R
1
0 dzDc!hðzÞ ¼ Br½c ! h�. Taking the fragmenta-

tion probability Br½c ! D�þ� ¼ 0:220, we are able to
determine the normalization factors for the two fragmen-
tation functions, which are shown in Table III.

With the formulas (33) and (38) and the fragmentation
functions in Table III, we can evaluate the momentum
distribution ofD�þ in the KLP and Peterson models, which
is shown in Fig. 4. We notice that the discrepancy between
the figures from the two models is small. This implies the
momentum distribution is insensitive to the models. In
addition, we find that the contribution from the NLO

relativistic corrections is comparable with that of the LO,
and therefore modifies the LO magnitude significantly.

VI. SUMMARY

In this work, we compute the NLO relativistic correc-
tions to the decay rates of the processes of c ðnSÞ�
ð�ðnSÞÞ ! lþl�ðc �cÞgg in the framework of the NRQCD
factorization formula. The differential short-distance coef-
ficients and decay rates over the invariant mass of the
lepton pair or the charm pair are presented analytically.
The relativistic corrections to all the processes are signifi-
cant. The magnitude of the NLO relativistic corrections
even surpasses that of the LO contribution in most pro-
cesses. Furthermore, we analyze the ratio of the differential
short-distance coefficients. The results indicate that the
relativistic corrections increase rapidly with rise of
the invariant mass of the lepton pair or the charm pair. In
addition, we study the r dependence of the ratio of the
short-distance coefficients Gð3S1Þ=Fð3S1Þ. In the limit of

r ! 0, our result is consistent with that of J=c ! �gg
or J=c ! ggg. With the increase of r, the ratio
Gð3S1Þ=Fð3S1Þ increases rapidly.
The momentum distributions of a free charm quark and

of a charmed hadron in the process �ð1SÞ ! c �cgg ! DX
are studied. We also determine the NRQCDmatrix element
hv2i�ð1SÞ based on the measurement of the BABAR

Collaboration. Taking it as an input parameter, we also
predict the momentum distribution of D�þ through the
process �ð1SÞ ! c �cgg ! D�þX.
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FIG. 4. The momentum distribution of the charmed hadron D�þ for the different fragmentation function. The left figure is for the
KLP model, and the right one is for the Peterson model. In the figure, the dotted line, dash-dotted line, and solid line correspond to the
LO, NLO, and total distributions, respectively.

TABLE III. The KLP and Peterson fragmentation function and
the value of the corresponding parameters.

Dðz0Þ Nh �c

KLP Nhz
0�cð1�z0 Þ 11.0 5.6

Peterson Nh
1
z0 ð1� 1

z0 � �c

1�z0Þ�2 0.127 0.054
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