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We derive the expression for the nonperturbative coupling of a hadron to two external currents from its

underlying structure in QCD. Microscopically, the action of each current is resolved to a coupling with

dressed quarks. The Lorentz structure of the currents is arbitrary and thereby allows to describe the

hadron’s interaction with photons as well as mesons in the same framework. We analyze the ingredients of

the resulting four-point functions and explore their potential to describe a variety of processes relevant in

experiments. Possible applications include Compton scattering, the study of two-photon effects in hadron

form factors, pion photo- and electroproduction on a nucleon, nucleon-pion or pion-pion scattering.
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I. INTRODUCTION

Pion- and photon-induced reactions with the nucleon
have been the main source of experimental information
on the structure and properties of light hadrons. In addition
to the data collected in N� scattering, pion photo- and
electroproduction experiments have provided new insight
in the electromagnetic properties of nucleon resonances
such as the �ð1232Þ or Nð1440Þ [1–5]. Moreover, virtual
Compton scattering in the low-energy region determines
the nucleon’s generalized polarizibilities and, at higher
energies, allows to resolve its spatial and spin structure
[6–8], thereby providing a connection to the underlying
substructure in Quantum Chromodynamics (QCD). The
Compton scattering amplitude also determines the magni-
tude of two-photon effects in the extraction of nucleon
form factors [9].

Depending on the studied momentum range, different
theoretical approaches are employed to describe these re-
actions. In deeply virtual Compton scattering (DVCS), the
factorization property of QCD allows to disentangle per-
turbative and nonperturbative contributions and model the
soft parts of the process by generalized parton distributions
[10–12]. Pion-nucleon and pion photoproduction on the
other hand are analyzed by unitarized chiral perturbation
theory [13], phenomenological partial-wave analyses
[14–16] or dynamical coupled-channel models [17–21].
Here, the dominant s- and t-channel poles are usually
implemented via potentials and the scattering matrices
are generated by iterating Bethe-Salpeter equations at a
purely hadronic level. Features such as unitarity and ana-
lyticity of the S-matrix, electromagnetic gauge invariance
and crossing symmetry are desired but not always realized
to full extent, see Ref. [21] for a discussion of this
issue. Nevertheless, these approaches provide important
theoretical input to the experimental data analyses and

are necessary to reconstruct baryon form factors from the
experimental cross sections.
A desirable alternative would be a nonperturbative cal-

culation of such scattering amplitudes within QCD itself,
i.e., by resolving the underlying dynamics in terms of
quarks and gluons. Typical diagrams that a microscopic
description should recover in various kinematical ranges
are shown in Fig. 1 for the case of pion photo- and electro-
production. Microscopically, the pion and the photon
couple to dressed quarks. This leads to handbag diagrams
(Fig. 1(a)) which, in the analogous case of virtual Compton
scattering, become dominant at large photon virtualities, as
well as so-called cat’s-ears diagrams (Fig. 1(b)) that com-
prise two active quarks. However, the relevant contribu-
tions in the low-energy regions are others, namely,
processes that involve s-channel nucleon resonances and
t-channel meson exchange (Figs. 1(c) and 1(d)). A com-
prehensive description should resolve those diagrams in
terms of their quark and gluon substructure as well. The
purpose of this paper is to derive such expressions in a
systematic way.
We work in the framework of Dyson-Schwinger equa-

tions (DSEs) of QCD [22–24]. They interrelate QCD’s
Green functions and thereby provide access to nonpertur-
bative phenomena such as dynamical chiral symmetry
breaking and confinement. In combination with covariant
bound-state equations, i.e., Bethe-Salpeter equations
(BSEs) and Faddeev equations, they present a comprehen-
sive framework for studying hadron properties from QCD.
The approach allows to probe the substructure of hadrons
at all momentum scales and all quark masses. It has been
applied to compute a variety of hadron observables such as
meson and baryon masses, wave functions, leptonic decay
constants, elastic and transition form factors; see [24–28]
and references therein.
Building upon that, a systematic and nonperturbative

procedure to construct hadron matrix elements from the
underlying Green functions is the ‘‘gauging-of-equations’’
method [29–31]. The basic idea is to couple an external*gernot.eichmann@theo.physik.uni-giessen.de
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current such as a photon to all internal building blocks to
arrive at a quark-level description of hadronic matrix ele-
ments, for example, electromagnetic form factors. If all
ingredients satisfy appropriate Ward-Takahashi identities
(WTIs), electromagnetic gauge invariance is satisfied by
construction. The method has been used for computing
nucleon form factors both in the quark-diquark model
[32] and from the covariant three-body equation [33].
The scope of the approach is however more general: the
same formalism can be exploited to derive generalized
parton distributions from their quark-gluon substructure
[34], and it has been recently applied to obtain the scatter-
ing amplitudes for N� scattering and pion electroproduc-
tion at a hadronic level, i.e., from chiral effective field
theories [35,36].

In the following we will use the gauging procedure to
resolve the coupling of a hadron to two external currents
from its substructure in QCD. The hadronic scattering
matrices obtained in that way are constructed from
QCD’s Green functions and hadron wave functions which,
in turn, must be determined beforehand from their DSEs
and bound-state equations. As a consequence, all hadron
resonances shown in Fig. 1 can be expressed through
diagrams that involve only the degrees of freedom in the
QCD Lagrangian. Since the method does not discriminate
between the scattering on mesons or baryons, and the
involved currents can have any desired Lorentz structure
and thus describe photons as well as mesons, one arrives at
a unified theoretical framework for a variety of reactions
including nucleon Compton scattering (N�? ! N�?),
pion-nucleon scattering (N� ! N�), pion photo- and
electroproduction (N�? ! N�), or �� scattering. We
will show in Sec. IV F that a rainbow-ladder truncation,
i.e., a gluon-exchange interaction between quark and anti-
quark, recovers the diagrams that were employed in
Refs. [37,38] to compute the �� scattering amplitude.
Our goal is to generalize that approach to accommodate
arbitrary interaction kernels and, in particular, to describe
scattering on baryons as well.

The manuscript is organized as follows. In Sec. II, we
provide a brief overview of the covariant bound-state
approach. The gauging method that provides the link
between a hadron’s current and the underlying quark-
antiquark vertices is discussed in Sec. III and exemplified

for the derivation of hadron form factors. In Sec. IV, we
derive the relation for scattering amplitudes, examine their
ingredients in various kinematical limits and provide spe-
cific examples for scattering on baryons and mesons. We
discuss possible applications and their practical feasibility
in Sec. V and conclude in Sec. VI.

II. BOUND-STATE EQUATIONS

In order to collect the necessary tools for the derivation
of the scattering amplitudes, we recall some basic relations
of the covariant bound-state approach in this section. More
detailed overviews can be found in Refs. [24,26,27,39].
The following considerations are general and apply for any
bound state of n valence quarks and/or antiquarks. In
practice, of course, we are primarily interested in mesons
with n ¼ 2 and baryons with n ¼ 3.
The quantity in QCD which describes a hadron micro-

scopically is the n-quark (i.e., 2n-point) Green function G,
as well as its n-quark connected and amputated counter-
part, the scattering matrix T that is defined via

G ¼ G0 þG0TG0: (1)

Here, G0 denotes the disconnected product of n dressed
quark propagators, e.g.: G0 ¼ S � S � S in the case of a
baryon. To keep the discussion as transparent as possible
we will use a symbolic notation throughout the paper. All
Dirac-Lorentz, color and flavor indices as well as momen-
tum dependencies are suppressed, and the products in
Eq. (1) and subsequent equations are understood as four-
momentum integrations over all internal loop momenta.
The Green function G can be expanded in its Dyson

series, thereby defining the n-quark kernel K that is the
sum of m-quark irreducible components (2 � m � n):

G ¼ G0 þG0KG0 þG0KG0KG0 þ . . . : (2)

Its nonperturbative resummation yields Dyson’s equation:

G ¼ G0 þG0KG , (3)

G�1 ¼ G�1
0 � K: (4)

The equivalent series for the T-matrix reads

T ¼ K þ KG0K þ . . . ; (5)

FIG. 1 (color online). Various contributions to the four-point function, here in the case of pion photoproduction on the nucleon, that
must be recovered in a microscopic description: handbag (a) and cat’s-ears diagrams (b); s-channel and, via crossing, u-channel
nucleon resonances (c); t-channel meson exchange (d).
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with its resummed version, illustrated in Fig. 2:

T ¼ K þ KG0T , (6)

T�1 ¼ K�1 �G0: (7)

So far we have not gained much: we have related one
unknown quantity (G, or T) with another (K). The central
observation is that hadrons must appear as poles in the
respective n-quark Green function or, equivalently, in the
n-quark scattering matrix. These poles will be generated
self-consistently upon solving Eq. (6), and they may be real
and timelike or shifted into the timelike complex plane via
a nonzero decay width. A pole in the scattering matrix
defines a ‘‘bound state’’ on its mass shell P2 ¼ �M2. The
scattering matrix at the pole assumes the form

T !P2¼�M2 � ��

P2 þM2
þ regular terms; (8)

where� defines the hadron’s bound-state amplitude and ��
is its charge conjugate. The same relation holds for the
Green function G if the amplitude is replaced by the
covariant wave function G0�, i.e., with quark propagator
legs attached. At the pole, upon inserting Eq. (8) in
Dyson’s equation and comparing the residues of the sin-
gular terms, Eq. (6) reduces to a homogeneous bound-state
equation for the amplitude �:

KG0� ¼ � , T�1� ¼ 0; (9)

where we have used Eq. (7) to arrive at the second version.
Equation (9) is the homogeneous Bethe-Salpeter equation
for a bound state of n valence quarks and shown in Fig. 2
for the case of a baryon. It can be solved once the kernel K
and the dressed quark propagator S that enters G0 have
been determined.

The total hadron momentum P2 enters Eq. (9) as an
external variable. The equation can be viewed as an eigen-
value problem for the quantity KG0 with eigenvalues
�iðP2Þ [40,41]:

KG0�i ¼ �i�i , (10)

T�1�i ¼ ð��1
i � 1ÞG0�i: (11)

The eigenvector �i describes a ground- or excited-state
hadron, with mass Mi, if its eigenvalue satisfies the condi-
tion �iðP2 ¼ �M2

i Þ ¼ 1. The ground state corresponds to
the largest eigenvalue of the matrix KG0.

The bound-state equation determines a hadron ampli-
tude up to a normalization. A covariant normalization
follows from the requirement that the T-matrix has unit
residue at the pole, i.e.

T0 !P2¼�M2 � � ��

ðP2 þM2Þ2 þ less singular terms; (12)

where 0 denotes the derivative d=dP2. Evaluating the
relation

ðTT�1Þ0 ¼ 0 ) T0 ¼ �TðT�1Þ0T (13)

at the hadron pole yields, in combination with Eqs. (8)
and (12), the on-shell canonical normalization condition:

��ðT�1Þ0� ¼ 1: (14)

As a corollary of Eq. (11), the derivative of the kernel
K that enters the normalization integral via Eq. (7) can
be traded for the derivative of the eigenvalue on the
mass shell, so that the normalization simplifies to:

��0 ��G0� ¼ 1 [42,43].
The numerical effort in solving a hadron’s bound-state

Eq. (9) is related to the Poincaré-covariant structure of the
hadron amplitudes. While a pion amplitude ���ðp; PÞ
depends on four covariant basis elements, a nucleon am-
plitude �����ðp; q; PÞ already includes 64 [44]. Here,

Greek subscripts are Dirac indices and p, q are relative
four-momenta. In fact, the ability to solve the equations
including the full covariant structure of the amplitudes is a
prerequisite for computing form factors and scattering
amplitudes. While the structure of ground-state baryons
such as the nucleon and the �-baryon is dominated by s
waves, orbital angular momentum in terms of p waves,
which are a consequence of Poincaré covariance, plays an
important role as well [33,45–47].
The physics that generates these phenomena is encoded

in the dressed quark propagator S and the kernel K which
represent the input of the equations, cf. Fig. 2. The quark
propagator and the one-particle-irreducible counterpart of
K are subject to the Dyson-Schwinger equations and, in
principle, can be solved numerically within a suitable
truncation. Moreover, they are related by vector and
axial-vector Ward-Takahashi identities which ensure elec-
tromagnetic current conservation as well as Gell-Mann-
Oakes-Renner and Goldberger-Treiman relations at the
hadron level.

== +

FIG. 2 (color online). Left panel: Dyson equation (6) for the scattering matrix in the three-quark system. Right panel: bound-state
equation (9) for a baryon.
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These identities can also be utilized as a systematic
construction principle for kernel ansätze [48]. In practice,
the majority of calculations in this particular framework
have been performed in the rainbow-ladder truncation,
where the q �q kernel is given by a dressed gluon-ladder
exchange, with two bare structures for the quark-gluon
vertices and an effective gluon propagator built from the
gluon dressing function and a simple model for the vertex
dressing; see [25,49,50] for a selection of results. The
quark propagator can then be easily solved from its DSE.
Similarly, solutions of a baryon’s bound-state equation,
which involves the three-quark kernel

K ¼ Kð3Þ þ ðS�1 � Kð2Þ þ permutationsÞ; (15)

were obtained upon neglecting the qqq-irreducible part
Kð3Þ, thereby defining the covariant Faddeev equation,

and by using a rainbow-ladder ansatz for the qq contribu-
tion Kð2Þ [33,44,47]. Recent progress in constructing q �q
kernels beyond rainbow-ladder, without resorting to an
order-by-order resummation, together with promising re-
sults in the meson sector [43,51–55] provide hope that such
expressions may eventually also be suitable for an imple-
mentation in baryon calculations.

We wish to emphasize that the subsequent derivation is
completely general and does not rely on any specific
assumptions for the input S, Kð2Þ, and Kð3Þ of the bound-

state equations. We will treat these quantities essentially as
black boxes and assume that they are known in advance.
While the rainbow-ladder truncation will ultimately prove
useful for practical implementations, the derivation of the
scattering amplitudes is valid for general kernels.

III. HADRON CURRENTS

A. Quark-antiquark vertices

In order to relate the coupling of an external current, for
instance, a pseudoscalar, vector, or axial-vector current, to
the underlying description of the hadron as a composite
object, one must specify how that current couples to the
hadron’s constituents. At the microscopic level, the current
couples to quarks. That is described by the quark-antiquark
vertex ��, cf. Fig. 3:

�� :¼ G�1
0 G��

0 ¼ ��
0 þ TG0�

�
0 ; (16)

where in the second step we have exploited Eq. (1). The
quantitiesG,G0, T, andK are those introduced in Sec. II in
the quark-antiquark case. The vertex is the contraction of

the quark-antiquark Green function with a ‘‘bare’’ term ��
0 ,

where � is not necessarily a Lorentz index but rather a
label for the type of current that will be identified with the
‘‘gauging’’ index in Sec. III B. For instance, �

�
0 can rep-

resent �5, �
�, or �5�

�, with appropriate renormalization
constants attached.
Inserting Dyson’s equation for G in (16) yields the

inhomogeneous Bethe-Salpeter equation for the vertex:

�� ¼ �
�
0 þ KG0�

�; (17)

which features the same ingredients as a meson’s bound-
state equation and thus can be solved consistently within
the same truncation.
Since the q �q scattering matrix T contains meson bound-

state poles, with the pole behavior from Eq. (8), any pole
will also appear in the vertex according to (16), so that on
the mass shell of the total momentum the vertex becomes
proportional to the bound-state amplitude:

�� !P2¼�M2 � ��

P2 þM2
G0�

�
0 ¼:

r��

P2 þM2
: (18)

This relation holds as long as the respective meson wave

function ��G0 has nonvanishing overlap with the structure

��
0 and the residue r� ¼ ��G0�

�
0 is thus nonzero. Among

other consequences, this feature is the underlying reason
for ‘‘vector-meson dominance’’ in hadron electromagnetic
form factors: at the microscopic level, the coupling to a
photon is represented by the quark-photon vertex which is
a Lorentz vector. The bare term �� has an overlap with the
�-meson wave function, and that overlap is proportional to
its electroweak decay constant. Consequently, the �-meson
pole appears in the (transverse part of the) quark-photon
vertex and transpires to the level of hadron form factors. If
the quark-antiquark kernel K that enters Eqs. (9) and (17)
as an input allows for a � ! �� decay, the �-meson
acquires a width and its pole will be shifted into the
complex plane.
Equation (18) further implies that a hadron’s coupling

to a meson can be described by the respective quark-
antiquark vertex in the same manner as the interaction
with a photon. Upon removing the on-shell meson pole
together with its residue from the vertex, the coupling to
the quark is represented by the meson’s bound-state am-
plitude. This is the central feature that enables a common
description of hadron-meson and hadron-photon interac-
tions: with a single expression for the q �q kernel K, differ-
ent types of quark-antiquark vertices can be readily solved

FIG. 3 (color online). Quark-antiquark vertex (16) and its behavior on the meson bound-state pole, Eq. (18).
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from the same inhomogeneous BSE (17) which differs
only by the inhomogeneous driving term �

�
0 . In view of

investigating the hadron’s coupling to a photon, one solves
the BSE with the inhomogeneous term �� to obtain the
quark-photon vertex; for describing its coupling to a pion,
one would implement �5 and remove the pion pole to-
gether with its residue from the resulting pseudoscalar
vertex, or solve the pion’s bound-state Eq. (9) directly.
Apart from that, there is no conceptual difference in the
description. Thus, whenever a quark-antiquark vertex ap-
pears in the following considerations, we will leave its
Lorentz type unspecified.

B. Gauging of equations

While, at least in principle, the tower of QCD’s Green
functions can be solved from Dyson-Schwinger equations,
the question of how to combine these Green functions for
obtaining structure functions at the hadron level is already
much less straightforward to answer. A systematic con-
struction principle to derive the coupling of a hadron
to an external current is the ‘‘gauging of equations’’
method [29–31].

Diagrammatically, gauging corresponds to the coupling
of an external current with given quantum numbers to an
n-point Green function. When acting upon that Green
function it yields an (nþ 1)-point function with an addi-
tional leg. Gauging is formally indicated by an index� and
has the properties of a derivative, i.e., it is linear and
satisfies Leibniz’ rule. At the quark level, it amounts to
replacing each inverse dressed quark propagator by the
respective quark-antiquark vertex, i.e., the vertex �� is
the gauged inverse-quark propagator:

S�1 ! ðS�1Þ� :¼ �� ¼ ð1þ TG0Þ��
0 : (19)

Correspondingly, each quark propagator is replaced by
S� ¼ �S��S, where the specific type of gauging is de-
termined by the structure ��

0 .

To derive a quark-level description of a hadron’s cou-
pling to an external current (or several external currents),
one applies the gauging operator to the n-quark scattering
matrix T. In the same way as the pole residues in T
correspond to hadron bound-state amplitudes, the residue
of T� defines a hadron’s current that, depending on the
type of �

�
0 , includes the various form factors of a hadron:

for example, its electromagnetic (��), pseudoscalar (�5) or
axial form factors (�5�

�). If T is gauged twice, the residue
in T�	 is the desired scattering amplitude that describes,
for instance, Compton scattering or the scattering of a
nucleon and a pion. With the help of Dyson’s Eq. (6) and
the Leibniz rule, the gauging operation can be systemati-
cally traced back to the gauging of quarks and that of the
kernel K.

Before applying the formalism to determine scattering
amplitudes, we will revisit the derivation of hadron form
factors in the next section. We will make frequent use of

the derivative property of the gauging operator which
implies

T� ¼ �TðT�1Þ�T (20)

and analogous relations for other Green functions.

C. Derivation of form factors

The form factors of a hadron are the Lorentz-invariant
dressing functions of the hadron’s current matrix element
J�. The latter is a three-point function that describes the
hadron’s interaction with the external current. At the level
of QCD’s Green functions, that interaction is contained in
the gauged n-quark scattering matrix, i.e., in the (2nþ 1)-
point function T�. To isolate a hadron’s form factor inside
T�, one must inspect its pole structure that is given in
terms of a pole for the incoming and one pole for the
outgoing hadron. The pole residue defines the current
matrix element:

T� !P2
i¼P2

f
¼�M2

� �fJ
� ��i

ðP2
f þM2ÞðP2

i þM2Þ ; (21)

where ðPf � PiÞ2 ¼ Q2 is the four-momentum transfer

and, for instance in the baryon case, �i ¼ �ðpi; qi; PiÞ
and �f ¼ �ðpf; qf; PfÞ are ingoing and outgoing baryon

amplitudes with different momentum dependencies. On
the other hand, Eqs. (8) and (20) yield

T� ¼�TðT�1Þ�T !P2
i¼P2

f
¼�M2

� �f
��f

P2
f þM2

ðT�1Þ� �i
��i

P2
i þM2

;

(22)

and by comparing these two equations one obtains the
current as the gauged inverse scattering matrix element
between the on-shell hadron amplitudes:

J� ¼ ��fðT�1Þ��i: (23)

In the limit Q2 ! 0, Eq. (23) reproduces the canonical
normalization condition: once the bound-state amplitude
is normalized via Eq. (14), the normalization of the result-
ing form factors is fixed as well. If the vector WTI is
respected throughout every stage, electromagnetic current
conservation and thus charge conservation, e.g., for a pion
or a proton, readily follow [32]. Similarly, if the axial-
vector WTI is correctly implemented at the level of the
kernels, the axial form factors satisfy Goldberger-Treiman
relations [56].
To make Eq. (23) more useful for practical numerical

implementations, we need to express the inverse-scattering
matrix by the kernel K and the propagator product G0.
Gauging Eq. (7) yields

ðT�1Þ� ¼ ðK�1Þ� �G�
0 ¼ G0�

�G0 � K�1K�K�1;

(24)
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where we have denoted the gauged inverse-propagator
product by ðG�1

0 Þ� ¼: ��. For instance, in a two-body

system it is given by

� � ¼ ðS�1 � S�1Þ� ¼ �� � S�1 þ S�1 � ��; (25)

and thus

G0�
�G0 ¼ S��S � Sþ S � S��S: (26)

When acting on the on-shell amplitudes, the inverse
kernels in (24) can be replaced by G0 via the bound-state

equations K�1�i ¼ G0�i and ��fK
�1 ¼ ��fG0. This

yields the final result for the current:

J� ¼ ��fG0ð�� � K�ÞG0�i: (27)

This relation has been exploited in numerous meson form-
factor studies [57–60]. In rainbow-ladder truncation:
K�

ð2Þ ¼ 0, and the resulting meson current is expressed by

impulse-approximation diagrams alone. In the baryon
case, the three-body kernel of Eq. (15) withKð3Þ ¼ 0 yields
the covariant Faddeev equation. The gauged kernel in
rainbow-ladder truncation becomes

K� ¼ �� � Kð2Þ þ permutations; (28)

which was recently implemented to compute the nucleon’s
electromagnetic form factors [33]. The analogue of
Eq. (27) in the quark-diquark model was utilized in
various quark-diquark studies of baryon form factors
[26,32,61,62].

IV. HADRON SCATTERING

A. Derivation of the scattering amplitude

We now turn to the derivation of four-point functions
within the present formalism. Generalizing Eq. (21), one
can identify the hadron’s coupling to two external currents
as the residue of the scattering matrix T�	 that is gauged
twice:

T�	 !P2
i¼P2

f
¼�M2 �fJ

�	 ��i

ðP2
f þM2ÞðP2

i þM2Þ : (29)

J�	 is the desired scattering matrix on the mass shell of the
incoming and outgoing hadron. The strategy to obtain its
quark-level decomposition proceeds along the same lines
as for the form factors in the previous section. After
expressing J�	 as a function of T, T�, and T�	, we will
relate these quantities to the dressed quark propagator S
and the kernel K as well as their gauged analogues.

In the first step we use the derivative property (20) of the
gauging operation to rewrite T�	:

T�	 ¼ ½�TðT�1Þ�T�	
¼ �TðT�1Þ�	T � TðT�1Þ�T	 � T	ðT�1Þ�T
¼ �TðT�1Þ�	T þ TðT�1Þ�TðT�1Þ	T

þ TðT�1Þ	TðT�1Þ�T
¼ T½ðT�1Þf�TðT�1Þ	g � ðT�1Þ�	�T; (30)

where the curly brackets denote a symmetrization in the
indices � and 	. Upon replacing the T-matrices on the far
left and right with

�f
��f

P2
f þM2 and

�i
��i

P2
i þM2

; (31)

respectively, we can identify the on-shell residue J�	:

J�	 ¼ ��f½ðT�1Þf�TðT�1Þ	g � ðT�1Þ�	��i: (32)

This equation is the equivalent of Eq. (23) for a four-point
function.
In the second step we want to relate the scattering

amplitude J�	 to the quantities K and G0. To obtain the
first term in Eq. (32), we insert ðT�1Þ� from Eq. (24) and
use the relations

G0TG0 ¼ G�G0;

K�1TG0 ¼ G0TK
�1 ¼ G;

K�1TK�1 ¼ Gþ K�1;

(33)

that follow from the definition of T in (1) and Dyson’s
equation (3). Note that the arrangement of the terms in
the resummation is irrelevant: G0KG ¼ GKG0. Again, the
inverse kernels can be replaced by G0 when acting on the
bound-state amplitudes. The result is

ðT�1Þ�TðT�1Þ	 ¼ G0½��ðG�G0Þ�	 þ K�ðGþ K�1ÞK	

� K�G�	 � ��GK	�G0: (34)

For the second term in (32), we gauge ðT�1Þ� from
Eq. (24) once again:

ðT�1Þ�	 ¼ G0½��	 � �f�G0�
	g�G0

þ K�1½Kf�K�1K	g � K�	�K�1: (35)

Some of the terms cancel when summing up Eqs. (34) and
(35), and the remainder is

J�	 ¼ ��fG0½ð��KÞf�Gð��KÞ	g � ð��	�K�	Þ�G0�i:

(36)

With the shorthand notation

� � :¼ �� � K�; ��	 ¼ ��	 � K�	; (37)

the final result for the current (27) and the scattering
amplitude (36) can be written in the compact form

J� ¼ ��fG0�
�G0�i; (38)
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J�	 ¼ ��fG0½�f�G�	g ���	�G0�i: (39)

Equation (39) is the central result of this work. We reiterate
that the equation is completely general: we have not as-
sumed any specific form for the type of currents, or the type
of hadron, or the structure of the kernel that enters the
equation. Figure 4 illustrates the relation for the case of a
baryon. We will examine its physical content in the next
section.

B. Ingredients of J� and J��

To analyze the features of the scattering amplitude J�	

in Eq. (39), we need to examine its ingredients in more
detail. It involves the quantities

� �; ��	; K�; K�	; G; (40)

i.e., the gauged disconnected propagator products, the
gauged kernels, and the n-quark Green function G. We
have assumed knowledge of the kernel K, given in terms of
a diagrammatic expression or an ansatz, and consequently
of the quark propagator S, the quark-antiquark vertex ��,
and the bound-state amplitude �. The propagator can be
solved from its DSE which involves a quark-gluon vertex
that is compatible with the expression for K; the vertex is
solved from its inhomogeneous BSE (17); and the bound-
state amplitudes are determined from their covariant
bound-state equations. Thus, the remaining task is to ex-
press the quantities in Eq. (40) in terms of S, �� and K.

We have already stated the decomposition of �� for the
quark-antiquark case in Eq. (25); the generalization to the
three-quark system is straightforward:

� � ¼ �� � S�1 � S�1 þ 2 permutations: (41)

Let us now have a second look at Eq. (39). Because of the
decomposition ofG from Eq. (1) we note that the first term
contains a sum of a disconnected contribution G0 and
another part that involves the scattering matrix T. In com-
bination with the decomposition of�� contained in�� via
Eq. (37), the part withG0 leads to diagrams in the baryon’s
scattering amplitude where the two currents couple to the
same quark (handbag diagrams) or different quark lines
(cat’s-ears diagrams). On the other hand, the appearance of
the scattering matrix T in the other part holds the promise
for recovering baryon resonances in the s and u channels.
We will return to this observation in more detail in
Sec. IVC.
Applying the gauging operation to the previous relation

for �� yields the quantity ��	 that enters the second term
in (39). One obtains

� �	 ¼ ��	 � S�1 þ S�1 � ��	 þ �f� � �	g (42)

in the quark-antiquark case and

��	 ¼ ��	 � S�1 � S�1 þ 2 permutations

þ �f� � �	g � S�1 þ 2 permutations (43)

for a system of three quarks. Here we have introduced the
vertex ��	 that describes the coupling of a dressed quark to
two external currents. We will analyze its features in detail
in Sec. IVD and show that it is the source of those
diagrams in J�	 that, on a hadronic level, amount to
t-channel meson exchange. The contributions from the
second line of Eq. (43) will provide further cat’s-ears
diagrams in the four-point function J�	.

FIG. 4 (color online). Upper panel: Diagrammatic representation of the scattering amplitude J�	, Eq. (39), in the case of a baryon. A
symmetrization of the two currents with indices � and 	 leads to an additional crossed diagram. Lower panel: Decomposition of the
quantity ��, cf. Eqs. (37), (41), and (44), that enters the scattering amplitude. For each of the first three graphs on the r.h.s. there are
two further permutations with respect to the quark lines. Only the first two diagrams contribute in rainbow-ladder truncation.
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The remaining quantities to be determined are the
gauged kernels K� and K�	. For a meson the respective
construction is, at least in principle, straightforward: for a
given diagrammatic expression of the quark-antiquark ker-
nel Kð2Þ, the gauged kernel is obtained by replacing all

internal dressed quark propagators by �S��S, and each
further Green function by its gauged counterpart (as long
as that object exists). The kernel in the baryon case, on the
other hand, is the sum of two- and three-quark irreducible
contributions given in Eq. (15). Therefore, the respective
gauged kernel also picks up contributions proportional to
�� and ��	:

K� ¼ K�
ð3Þ þ ð�� � Kð2Þ þ permÞ þ ðS�1 � K�

ð2Þ þ permÞ;
(44)

K�	 ¼K�	
ð3Þ þ ð��	�Kð2Þ þ permÞþ ð�f��K	g

ð2Þ þ permÞ
þ ðS�1�K

�	
ð2Þ þ permÞ: (45)

The object �� ¼ �� � K�, composed of Eqs. (41) and
(44), is depicted in the lower panel of Fig. 4.

C. Hadron resonances

As already anticipated above, the first term in the scat-
tering amplitude of Eq. (39) exhibits a welcome feature: it
involves the n-quark Green function G which contains
intermediate hadron resonances. For instance, if the two
currents with labels � and 	 represent photons, J�	 de-
scribes Compton scattering on a nucleon; if one of the two
currents is of pseudoscalar nature, it describes pion photo-
production, and if both indices are pseudoscalar, one ob-
tains the nucleon-pion scattering amplitude. In these cases,
the Green function G involves all possible s-channel nu-
cleon resonances and, via symmetrization in the indices �
and 	, also those in the u channel. Comparison with
Eqs. (8) and (38) entails that at the respective pole loca-
tions P2 ¼ �M2 of the resonances the scattering ampli-
tude J�	 becomes the product of two currents:

J�	 !P2¼�M2
��fG0�

f� G0� ��G0

P2 þM2
�	gG0�i ¼

J
f�
f J	gi

P2 þM2
;

(46)

where, depending on the order of the indices� and 	,�P2

is equal to the Mandelstam variable s or u. This is exactly
the type of diagram illustrated in Fig. 1(c).

Equation (39) additionally implements all off-shell con-
tributions of nucleon resonances through the three-quark
Green function G. In practice, however, a fully self-
consistent determination of G through Dyson’s equation
(3) is not feasible due to its nature of being a six-point
function. Owing to the rapidly increasing number of basis
elements and independent momentum variables, present
computational resources allow for a self-consistent com-
putation of four-point functions at best, such as, for

example, the nucleon bound-state amplitude, without trun-
cating the covariant structure of the desired quantity.
A potential alternative is to exploit Dyson’s equation and

derive an inhomogeneous Bethe-Salpeter equation for the
five-point function

�	
i
:¼ G�1

0 G�	G0�i (47)

that enters the expression for J�	. Using G ¼ G0 þ
G0KG, one arrives at the equation

�	
i ¼ �	G0�i þ KG0�

	
i ; (48)

which determines �	
i self-consistently once the driving

term �	G0�i is known. The first term in the scattering
amplitude (39) then acquires the form

�� fG0�
f�G0�

	g
i ; (49)

and substituting the analogue of Eq. (48) for ��
�
f yields

��
f�
f G0�

	g
i � ��

f�
f G0KG0�

	g
i ; (50)

where the interactions with the currents were completely
absorbed in the five-point functions ��

i;f.

Nevertheless, the attempt to solve Eq. (48) still presents
a numerical challenge. As a first step in exploring the
features of Eq. (39), a separable pole approximation in
the spirit of Eq. (46), with intermediate nucleon and �
resonances, seems far more practical. In that respect it will
be advantageous to separate the ‘‘pure’’ pole contribution
encapsulated in T from the remaining nonresonant struc-
ture. Naturally, following such a course provides limited
insight since one can only recover the effects of those
resonances that were explicitly inserted into the diagram
in the beginning. In view of the availability of NN�, NN�,
N��, and N�� form factors in the rainbow-ladder trun-
cated Dyson-Schwinger approach [35,56,60,63], however,
such an attempt would still be worthwhile as a first step. On
a more general note, even once Eq. (48) is solved fully self-
consistently, the fidelity of the rainbow-ladder truncation in
view of nucleon resonances beyond the �ð1232Þ is essen-
tially unknown. Thus, a self-consistent determination of
J�	 should also be augmented by an effort to go beyond
rainbow-ladder.

D. ��� and meson form factors

In contrast to the kinematical structure of the scattering
amplitude in the s channel, the second contribution to
Eq. (39) which involves the four-point function ��	 is
easier to access. ��	 describes the coupling of a dressed
quark to two external currents. To derive an expression for
that vertex, we start from the inhomogeneous BSE (17) for
the quark-antiquark vertex ��. Gauging that equation with
an additional index 	 removes the constant inhomogeneous
term and yields:
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��	 ¼ ð��Þ	 ¼ ð��
0 þ KG0�

�Þ	 ¼ ðKG0�
�Þ	

¼ K	G0�
� þ KG	

0�
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�
�	
0

þ KG0�
�	: (51)

Since the sequence of gauging is irrelevant, the quantities
in the second line must be symmetric under exchange
of � and 	. Equation (51) is again an inhomogeneous
Bethe-Salpeter equation, now for the quantity ��	, with
an inhomogeneous term

�
�	
0

:¼ K	G0�
� þ KG	

0�
�; (52)

and can be solved self-consistently once the quark propa-
gators �� and K� are known. In comparison with the
considerations of the previous subsection, this equation is
relatively easy to handle since ��	 is merely a four-point
function.

Because of its structure of an inhomogeneous BSE, one
can rearrange Eq. (51) to obtain a form analogous to (16):

��	 ¼ G�1
0 G�

�	
0 ¼ ð1þ TG0Þ��	

0 : (53)

From Eq. (6) one has ð1þ TG0ÞK ¼ T and thus

��	 ¼ ð1þ TG0ÞK	G0�
� þ TG	

0�
�

¼ K	G0�
� � TG0�

	G0�
�: (54)

The essence of this relation is that the object ��	, just as
the vertex �� itself, includes meson bound-state poles
in the total quark-antiquark momentum which have their
origin in the scattering matrix T. Consider, for example,
the case where the index� corresponds to a pion and 	 to a
photon. In that case, J�	 from Eq. (39) describes pion
(virtual) photoproduction, and �� in Eq. (54) represents
the pion bound-state amplitude�. The lowest-lying meson
pole in T corresponds to another pion, and at the respective
mass shell of the internal pion pole ��	 becomes

��	 !P2¼�M2 � � ��

P2 þM2
G0�

	G0�; (55)

where �P2 denotes here the Mandelstam variable t andM
the pion mass. Comparison with Eq. (38) implies that
the residue at the pole is just the pion’s electromagnetic
current:

��	 !P2¼�M2 � J��

P2 þM2
: (56)

Thus, the pion’s electromagnetic form factor, sketched in
Fig. 1(d), will be recovered in the solution of the inhomo-
geneous BSE (51) and enters the pion photoproduction
amplitude J�	 through the term ��	 which provides a
natural description of an ‘‘off-shell pion.’’ In addition, all
other meson poles whose bound-state amplitudes produce
nonzero form factors with a pion and a photon will appear
in the vertex ��	 and subsequently in J�	 as well.

E. Baryons in rainbow-ladder

After having studied the general features of the scatter-
ing amplitude, we turn to practical applications and ana-
lyze its decomposition under specific assumptions for the
involved kernels. The baryon’s bound-state Eq. (9) was
recently solved for both nucleon and� baryons by neglect-
ing the three-quark irreducible part Kð3Þ that enters the

kernel (15) and implementing a rainbow-ladder truncation
for the quark-quark kernel Kð2Þ [44,47]. In our context, the

rainbow-ladder truncation implies K�
ð2Þ ¼ 0 which simpli-

fies the structure of J�	 considerably. Here,Kð2Þ consists of
two bare quark-gluon vertices ��� that are connected by
an effective gluon propagator. In a vacuum, a single photon
or pion cannot couple to a gluon due to Furry’s theorem,
charge conjugation, and flavor arguments; however, two
photons or pions can. To account for that possibility, we
retain the term K�	

ð2Þ in our following considerations. It

would describe nonplanar processes of the type (e) in
Fig. 6 in the case of �� scattering and yield analogous
diagrams for the scattering on baryons.
We simplify the notation by writing

��
a ¼ ��

|{z}

a

� S�1 � S�1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

bc

; ��
a Ka ¼ ��

|{z}

a

� Kð2Þ
|{z}

bc

;

(57)

and similarly for �
�	
a and K

�	
a . The index a labels the

quark which couples to the current, or the spectator
quark with respect to the two-body kernel, and fa; b; cg is
an even permutation of f1; 2; 3g. The relations of Eqs. (41)
and (43)–(45) reduce in rainbow-ladder truncation to

�� ¼ X

a

��
a ; ��	 ¼ X

a

ð��	
a þ �f�

b �	g
c Þ;

K� ¼ X

a

�
�
a Ka; K�	 ¼ X

a

ð��	
a Ka þ K

�	
a Þ;

(58)

which yields for the quantities �� and ��	 defined in
Eq. (37):

� � ¼ X

a

��
a ð1a � KaÞ;

��	 ¼ X

a

ð��	
a ð1a � KaÞ þ �

f�
b �	g

c � K
�	
a Þ:

(59)

We can strip the notation to its bare minimum by suppress-
ing all occurrences of G0 ¼ S � S � S as well: all ampli-
tudes, vertices, kernels, and T-matrices are amputated and
their connection via dressed quark propagators is implicit.
Furthermore, we can absorb the two-quark quantities
ð1a � KaÞ in the baryon amplitudes and define:

ð1a � KaÞ�i ¼: �a
i ;

��fð1a � KaÞ ¼ ��a
f: (60)
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The baryon current of Eq. (38) in rainbow-ladder trunca-
tion becomes in that condensed notation:

J� ¼ X

a

��f�
�
a�a

i ¼ X

a

��a
f�

�
a�i: (61)

Similarly, to obtain the scattering matrix J�	, we sepa-
rate G into its disconnected part and the term that involves
the T-matrix via Eq. (1): G ¼ 1þ T. Hadron resonances
appear in T only, hence such a separation does not alter the
conclusions of Sec. IVC. The scattering amplitude thus
becomes

J�	 ¼ X

aa0

��a
f½�f�

a �	g
a0 þ �f�

a T�	g
a0 ��a0

i

�X

a

��f½��	
a �a

i þ �f�
b �	g

c �i � K�	
a �i�; (62)

which we can rearrange according to the breakdown shown
in Fig. 5:

J�	 ¼ X

a

��a
f�

f�
a �	g

a �a
i

þ X

a�a0
½ ��a

f�
f�
a �	g

a0�
a0
i � 1

2
��f�

f�
a �	g

a0�i�

�X

a

��f�
�	
a �a

i

þX

aa0

��a
f�

f�
a T�	g

a0�
a0
i

þX

a

��fK
�	
a �i: (63)

Here, each line from top to bottom matches one of the
diagrams (a)–(e) in Fig. 5. The colored amplitudes in the
figure correspond to �i and �f whereas the hatched

amplitudes represent the quantities �a
i , �

a
f from Eq. (60).

The third line in the above equation is identical to diagram
(c) since ��	 from Eq. (54) simplifies in rainbow-ladder
truncation to

��	 ¼ �Tð�f��	gÞ: (64)

Meson poles in the t-channel appear in diagram (c) whereas
s- and u-channel hadron resonances are contained in

(a) (b)

(d) (e)

(c)

2
1

FIG. 5 (color online). Contributions to the nucleon-photon Compton amplitude J�	 in rainbow-ladder truncation, cf. Eq. (63). All
quark propagators are dressed, and each box includes further diagrams with permuted quark lines. In addition, the photon indices �
and 	 must be symmetrized. T represents the quark-antiquark and three-quark scattering matrices and K the two-quark irreducible
kernel. The hatched nucleon amplitudes represent the quantities defined in (60). Diagram (c) contains t-channel meson exchange
whereas s- and u-channel nucleon resonances appear in diagram (d). To obtain the pion photoproduction amplitude, replace one of the
quark-photon vertices by an on-shell pion amplitude; for nucleon-pion scattering, replace both.
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diagram (d). Handbag contributions appear in all diagrams
except type (b); one can however show that diagrams (a),
(c), and the pure handbag content of (d) can bemerged into a
single graph of type (c) where the quark-antiquark scatter-
ing matrix T is replaced by the Green function G.

F. Mesons in rainbow-ladder

The representation of the scattering amplitude J�	 in
Eq. (39) is general and holds for baryons and mesons alike.
In the meson case, a rainbow-ladder truncation again
removes the gauged quark-antiquark kernel K� from
Eqs. (38) and (39). Here the notation of the previous
section is somewhat impractical and so we use the follow-
ing abbreviations:

�
�
" ¼ �� � S�1; �

�
# ¼ S�1 � ��; (65)

such that �� ¼ ��
" þ ��

# , and ��	
"# is defined analogously.

Suppressing the notation of the propagators, the rainbow-
ladder current becomes

J� ¼ ��fð��
" þ ��

# Þ�i; (66)

which is just the impulse approximation where the current
couples to the upper and lower quark lines.

In the case of the scattering amplitude J�	, the first
term in (39) stemming from the disconnected Green
function G0 yields

��fð�" þ �#Þf�ð�" þ �#Þ	g�i

¼ ��fð�f�
" �	g

" þ �f�
# �	g

# þ 2�f�
" �	g

# Þ�i (67)

whereas the contribution from ��	 reads

� ��fð��	
" þ �

�	
# þ �

f�
" �	g

# Þ�i: (68)

The final result,

J�	 ¼ ��f½�f�
" �	g

" þ �f�
# �	g

# þ �f�
" �	g

#

þ �f�
" T�	g

" þ �f�
# T�	g

#

þ �
f�
" T�	g

# þ �
f�
# T�	g

"
� ��	

" � ��	
# þ K�	��i; (69)

is illustrated in Fig. 6 in the case of �� scattering. The
first line in Eq. (69) corresponds to the impulse-
approximation diagrams of type (a); the second and third
lines represent the diagrams (b) and (c) with a vertical and
diagonal T-matrix insertion, respectively; and the terms

(a)

(e)

For example:

(c)

(b) (d)

FIG. 6 (color online). �� scattering amplitude J�	 in rainbow-ladder truncation, cf. Eq. (69). A further symmetrization in the
indices � and 	 duplicates the number of diagrams. To obtain the pion Compton scattering amplitude, replace the amplitudes attached
to � and 	 by quark-photon vertices.
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with �
�	
"# correspond to the horizontal t-channel T-matrix

insertion, type (d), stemming from Eq. (64). Finally, we
have retained the term K

�	
2 as well which can appear if

the gluon-exchange kernel is resolved into quark loops
and lead to nonplanar terms of type (e). However, since
the rainbow-ladder gluon is a model ansatz without ex-
plicit quark-loop content such a term does not contribute.

Figure 6 demonstrates that the impulse-approximation
diagrams alone are inconsistent with the rainbow-ladder
truncation. In Refs. [37,38], the �� scattering matrix
was computed upon implementing the full set of diagrams
(a)–(d). The resulting isospin amplitudes reproduce
Weinberg’s theorem for the scattering lengths at threshold
and the Adler zero in the chiral limit. Moreover, they show
excellent agreement with chiral perturbation theory in
general kinematics, and the 
 and �-meson poles in the
respective s, t, and u channels are readily recovered.

In contrast to the baryon case, all diagrams in Fig. 6
except type (e) can be computed fully self-consistently,
with comparatively modest numerical effort, if the external
particles are identical. This can be seen by replacing all
occurrences of T in Fig. 6 by the Green function G via
Eq. (1), whereby the impulse-approximation diagrams pick
up a minus sign. G satisfies Dyson’s equation (3) which,
upon contracting with two pion bound-state amplitudes �
in the spirit of Eqs. (47)–(50), can be transformed into an
inhomogeneous BSE:

��	 :¼ G�1
0 Gð�S�Þ ) ��	 ¼ �S�þ KG0�

�	:

(70)

��	 is a four-point function with two spinor and two
pseudoscalar legs and thus consists of 8 Dirac basis ele-
ments. Since the two pions are on-shell, it depends on four
Lorentz-invariant kinematic variables. In fact, the result
of Ref. [38] was obtained by a self-consistent solution of
Eq. (70) and its subsequent implementation in the scatter-
ing amplitude J�	. We finally note that the same set of
diagrams also appears in the photon four-point function
that enters the hadronic light-by-light contribution to the
muon anomalous magnetic moment [64].

V. DISCUSSION

The result for the scattering amplitude in Eq. (39) pro-
vides, in principle, a complete description of scattering
processes in QCD if a hadron couples to two particles
with q �q quantum numbers. Thus, the approach can be
applied to a variety of reactions such as nucleon
Compton scattering, nucleon-pion scattering, meson
photo- and electroproduction, �� scattering, or strange-
ness and charm production processes; but also to crossed-
channel reactions, for example, exclusive p �p annihilation
into two photons that will be studied with the PANDA
experiment at FAIR/GSI [65]. The diagrammatic decom-
position of the scattering amplitude allows to correlate
effects at the hadron level in various kinematical limits

with the underlying ingredients in QCD. The appearance of
the q �q scattering matrix in the t channel and, in the case of
baryons, the qqq scattering matrix in the s and u channels
induces the existence of bound-state poles at certain values
of the invariant Mandelstam variables. This feature can be
exploited to compute the ‘‘off-shell behavior’’ of the pion
electromagnetic form factor that appears in pion electro-
production [66]. Studying virtual Compton scattering, on
the other hand, enables to investigate two-photon correc-
tions to nucleon form factors [9], and isolating the handbag
structure in DVCS can be used to draw conclusions about
generalized parton distributions.
The approach relegates the determination of the scatter-

ing amplitudes to the knowledge of QCD’s Green functions
which are encoded in the quark propagator and the two-
and three-quark irreducible kernels. The aspiration to de-
scribe experimental cross sections thus becomes a matter
of constructing a truncation of the DSEs that captures the
physically relevant features. Naturally, in a first step one
would implement the widely used rainbow-ladder trunca-
tion for the computation of scattering amplitudes. We have
outlined the resulting expressions for scattering on baryons
and mesons in Sec.s IVE and IV F, respectively, and they
are illustrated in Figs. 5 and 6. We have already mentioned
that a gluon-exchange interaction yields a good description
of pseudoscalar and vector-meson properties in the light-
quark range, e.g., in view of �� scattering [38]. It is,
however, also well-suited for a broader range of hadron
properties, for example: the charmonium and bottomonium
region [67]; nucleon, � and � masses [44,47]; the nucle-
on’s electromagnetic, pseudoscalar and axial form factors
[35,56]; or the � electromagnetic and N�� and N��
transition form factors [60,63,68,68]. Judging from those
results, its implementation in the framework of scattering
processes seems to be well justified.
Nevertheless, there are important effects which are not

captured by a rainbow-ladder interaction. One example is
the opening of hadronic decay channels such as � ! ��
and � ! N� that produce nonanalyticities in the light
pion-mass regime and are essential for reproducing the
characteristic cut structures in scattering amplitudes. A
rainbow-ladder kernel does not provide such decay mecha-
nisms but produces instead stable bound states.
Interactions beyond rainbow-ladder are also vital for the
features of scalar, axial-vector and isosinglet mesons
[28,43,52], meson radial excitations [27,69], or heavy-light
mesons [70]. This suggests analogous conclusions when
considering baryon excitations and open strangeness or
charm production processes. In that respect it will be
crucial to complement the computation of scattering am-
plitudes by a simultaneous development of kernels beyond
rainbow-ladder truncation.
Probably the most prominent example for missing con-

tributions in rainbow-ladder truncation are pion-cloud cor-
rections in the chiral and low-momentum region. Their
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absence is visible in various hadron properties such as
nucleon electromagnetic form factors [33]. Dressing the
nucleon’s ‘‘quark core’’ by final-state interactions with
pseudoscalar mesons is among the goals pursued in the
approaches listed in the introduction, such as, for example,
by the EBAC group at JLAB [19]. In the Dyson-Schwinger
framework, pion-cloud effects should ultimately be imple-
mented at the level of QCD’s Green functions. From a
microscopic point of view, pion exchange corresponds to a
gluon resummation. This allows to reconstruct the relevant
topologies for generating phenomenological chiral cloud
effects from the underlying dynamics in QCD. Pion-loop
contributions will thus appear in all Green functions with
nonvanishing quark content and lead to complicated gluon-
interaction diagrams. A more manageable route was taken
in Refs. [53,64,71], where the assumption that the quark-
antiquark T-matrix in the low-energy region is dominated
by pion exchange was used to derive a consistent trunca-
tion of the DSEs beyond rainbow-ladder. Employing the
resulting q �q kernel in meson Bethe-Salpeter studies recov-
ers desired pion-cloud induced features, e.g., a reduction of
meson masses in the low quark-mass region [53]. The
eventual implementation of such hybrid kernels with
quark, gluon and effective pion degrees of freedom in the
baryon sector would mark a notable step forward.

The truncation dependence of the Dyson-Schwinger
approach finally provides also opportunities. The construc-
tion of Eq. (39) allows to trace experimentally observable
effects at the hadron level back to the underlying Green
functions of QCD and can thus supply information and
potential constraints on their properties. In that respect we
emphasize that it is not only the behavior of the quark-mass
function that has ramifications at the hadron level. The
quark propagator in Landau gauge is well determined
from lattice QCD [72,73], and even the rainbow-ladder
truncated Dyson-Schwinger result for the propagator
agrees reasonably well with those data. Equally important
for hadron properties is the structure of the two-quark and
three-quark kernels and the quark-gluon vertex upon
which they depend. Examples are the question of the
dominance of two- or three-quark interactions in the
baryon’s excitation spectrum, or the insufficiencies of a
gluon-exchange interaction for the observables mentioned
before. Putting constraints from experiment on these
(however gauge-dependent) quantities would be indeed
desirable.

Apart from the truncation dependence there are further
practical difficulties in computing Eq. (39). One of them
was already mentioned in Sec. IVC for the baryon case and
concerns the computational effort in accessing the
s-channel structure in the scattering amplitude, which is
the nucleon resonance region, as it involves the full three-
quark scattering matrix. Another problem is limited kine-
matical access to the phase space of such processes. This is
due to the singularity structure of the quark propagator

that inevitably emerges in the solution of the quark DSE as
a consequence of analyticity. While not a problem in
principle, present numerical implementations only sample
the kinematically safe momentum ranges of the quark
propagators that appear inside a momentum loop. This
leads to limitations, e.g., when computing masses of ex-
cited hadrons, and restricts the kinematical access to had-
ron form factors and scattering amplitudes. For instance,
accessing the nucleon resonance region above threshold in
the N� or N� scattering amplitudes might require an
extrapolation from spacelike photon or pion momenta.
These considerations make clear that the computation

of scattering amplitudes can only happen in gradual steps.
The primary emphasis would be put on understanding the
mechanisms in QCD that determine the behavior of the
partial-wave amplitudes in certain kinematical regions, or
to analyze and disentangle resonant and nonresonant
background effects in the s, t, and u channels and study
off-shell effects. One can furthermore isolate the proper-
ties of the quark core by investigating the current-mass
dependence of the results, in particular, in the region
where hadrons become stable bound states and the pion
cloud is suppressed. Eventually, with advanced numerics,
more sophisticated interactions and improved kinematical
coverage, a systematic description of scattering processes
from the underlying dynamics in QCD seems certainly
possible.

VI. CONCLUSIONS AND OUTLOOK

We have detailed a systematic construction to describe
scattering processes of photons and mesons with hadrons
in the Dyson-Schwinger framework of QCD. The approach
is Poincaré-covariant and covers both perturbative and
nonperturbative momentum regions as well as the full
quark mass range. Hadronic scattering amplitudes are re-
solved in terms of the underlying dynamics in QCD by
coupling the external currents to all dressed quarks.
Electromagnetic gauge invariance and crossing symmetry
are therefore satisfied by construction. The amplitudes can
be computed consistently if their microscopic ingredients,
i.e., the dressed quark propagator and the irreducible two-
and three-quark kernels, have been determined in advance.
The resulting expressions allow to relate hadron reso-
nances as well as background effects which appear in the
s, t and u channels to the structure of the internal two- and
three-quark scattering matrices.
Potential applications cover a wide range of reactions

such as Compton scattering, nucleon-pion scattering,
meson photo- and electroproduction or exclusive proton-
antiproton annihilation processes. Such studies would
further allow to access off-shell effects and two-photon
contributions in the extraction of form factors, and they can
potentially also provide information on generalized parton
distributions.
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We have discussed the practical feasibility of the ap-
proach and found that, while scattering on mesons is com-
paratively unproblematic from a computational point of
view, the application in the baryon sector will require sub-
stantial numerical effort. This is especially true for the
nucleon resonance region, whereas t-channel effects are
easier to access. We have exemplified the approach in a
rainbow-ladder truncation, where the two-quark kernel is
represented by a dressed gluon exchange and the three-
quark kernel is omitted. Its successful application in various
studies of meson and baryon phenomenology suggests that
this setup provides a suitable starting point to study hadron-
meson and hadron-photon reactions as well. Ultimately, in
view of implementing pion-cloud corrections and hadronic

decay channels, the computation of scattering processes
should be paralleled by an effort to go beyond rainbow-
ladder truncation. The derivation that we have presented is
general and can accommodate such purposes.
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