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Nucleon and A (1232) form factors at low momentum transfer and small pion masses
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An expansion of the electromagnetic form factors of the nucleon and A(1232) in small momentum
transfer and pion mass is performed in a manifestly covariant EFT framework consistent with chiral
symmetry and analyticity. We present the expressions for the nucleon and A(1232) electromagnetic form
factors, charge radii, and electromagnetic moments in the framework of SU(2) baryon chiral perturbation
theory, with nucleon and A-isobar degrees of freedom, to next-to-leading order. Motivated by the results
for the proton electric radius obtained from the muonic-hydrogen atom and electron-scattering process,
we extract values for the second derivative of the electric form factor which is a genuine prediction of the
p> BxPT. The chiral behavior of radii and moments is studied and compared to that obtained in the heavy-
baryon framework and lattice QCD. The chiral behavior of A(1232)-isobar properties exhibits cusps and

singularities at the threshold of A — 77N decay, and their physical significance is discussed.
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L. INTRODUCTION

The physics of nucleon form factors is about 60 years
old [1,2] and yet surprises in this venue are not unusual till
now. Just last year the most precise atomic measurement of
the proton charge radius yielded [3]: rg, = V(1) =
0.84184(67) fm, in unexpected disagreement with the
best electron-scattering result [4]: rg, = 0.879(8) fm.
Much effort since then have been focused on finding a
“missing” correction in the muonic-hydrogen result, e.g.
[5-8]. We, on the other hand, will attempt to provide here
some grounds for an improvement of the electron-
scattering analysis. The electron-scattering measurement
of the proton charge radius is done by determining the
slope of the proton form factors at zero momentum trans-
fer: Q> = —¢? = 0. In reality the measurements are done
at small but finite momentum transfer, 0> = 0.01 GeV?,
and an interpolation to zero is required. The simplest one is
based on Taylor expansion in Q?,
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where (r") is the nth moments of the proton charge
distribution which values are fitted to data. However,
the validity of such an expansion, its radius of conver-
gence, is limited by the nearest singularity in the complex
0? plane, which, if we neglect the radiative corrections, is
located at Q?> = —4m?Z, the two-pion production thresh-
old. This simply means that a polynomial fit is limited to
|Q?| < 4m% =~ 0.08 GeV?, where the database is scarce.
One can extend the interpolation range only by including
the effect of the pion-production channels explicitly. This
can in principle be done using dispersion theory, see e.g.
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[9-11]. For that, however, one needs the information in
the timelike region, which is also not accurate enough,
and is usually complemented in a model-dependent fash-
ion. Nonetheless, some of the state-of-the-art dispersion
analyses [12,13] had obtained the smaller value of rg),
(well before the muonic hydrogen result appeared!),
which reinforces the motivation to include the pion-
production effects in the interpolation of low-Q? data.
Here we approach this issue in the framework of chiral
perturbation theory (yPT) [14,15]. The yPT itself does
not have a prediction for the proton charge radius, its
leading-order value is given by a combination of low-
energy constants (LECs), which are free parameters of
the theory to be matched to QCD. However, the leading
order pion-loop contributions are fixed in terms of well-
known parameters and provide a prediction of the ana-
lytic structure of the form factors at small Q2. In this
work we shall only present the relevant yPT calculations;
their impact on the charge radius extraction will be
studied elsewhere.

Another set of issues concerning the electromagnetic
form factors comes from the side of lattice QCD, which
presently is the only method to do ab initio calculations of
the low-Q? hadron structure. The latest lattice QCD
calculations of the nucleon [16-20] and A(1232) [21-25]
electromagnetic (e.m.) properties call for a better analysis
of the pion-mass and volume dependencies. The most
troublesome are the results for the nucleon charge radii,
which show little dependence on the pion mass and a large
discrepancy with experiment upon a naive extrapolation to
the physical pion mass. yPT predicts charge radii to di-
verge in chiral limit (m, — 0) and therefore from its point
of view it is plausible that the correct chiral extrapolation
and finite-volume corrections will reconcile the lattice
results with experiment.
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Presently, both m . and finite-volume dependencies are
usually computed using the heavy-baryon yPT (HByPT)
[26], where the chiral expansion is accompanied with an
expansion in the inverse baryon mass. The latter expansion
can be poorly convergent (see, e.g. [27,28]) and the so-
called manifestly Lorentz-invariant schemes [27,29],
which avoid the heavy-baryon expansion, gain popularity
in practice. In this work we adopt the extended on-mass
shell scheme (EOMS) [30], which has the advantage of
preserving analyticity. As a result, our expressions for the
form factors will satisfy the usual dispersion relations
written in Q%, as well as the dispersion relation of

Ref. [31] written in m2:

e
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where 0 in the integration limits is indicative of the thresh-
old position, 7 is the number of subtractions; Q> and m?2
are positive. The earlier yPT analyses of nucleon and
A-isobar form factors were based on either the heavy-
baryon approach [32,33], or the infrared-regularization
scheme [34], where the above dispersion relations can
only be satisfied approximately, unless a special care is
taken as, e.g., in [35]. Reference [36] contains thus far the
only SU(2) calculation of nucleon form factors in the
EOMS whereas calculations of the octet- and decuplet-
baryon em moments has been reported in the context of
SU3) BxPT in [37-39]. Here we have recalculated the
contributions found in [36], included the leading-
order corrections due to A-isobar, and computed all the
A(1232)-isobar form factors to next-to-leading order.

In Sec. II, we summarize the ideas of chiral expansion in
the single-baryon sector and specify the contributions cal-
culated in this work. In Sec. III and IV we consider the
pion-mass dependence of, respectively, the nucleon and A
electromagnetic radii and moments, and compare it with
the HB yPT results and lattice-QCD results where possible.
In Sec. V we investigate some higher order effects to our
results and summarize this work in Sec. VI. Appendix A
contains the notation and definitions, while Appendices B
and C contain analytical expressions of the contributions
to, respectively, the nucleon and the A form factors
obtained in this work.

II. FORM FACTORS IN BARYON yPT

The chiral effective-field theory to which we refer as to
XPT is an effective-field theory of low-energy QCD, as it
contains the most general form of interaction among the
lightest hadrons—most notably, pions—in a way consis-
tent with symmetries of QCD Green’s functions [14,15]. A
special role is enjoyed by chiral symmetry which insures
that pions couple through a derivative couplings while the
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symmetry breaking terms are accompanied with powers of
m2. When the scale of spontaneous chiral symmetry break-
ing, 47 f,. = 1 GeV, is much larger than the scale of the
explicit symmetry breaking, m., as is observed in nature,
one may set up a systematic expansion of any observable
quantity in powers of E/(47f,) and m, /(47 f ), where E
is the characteristic relative-energy of external legs in a
given process. These ratios of light to heavy scales are
commonly denoted as p. To a given order in p, a finite
number of terms, accompanied by a finite number of
low-energy constants (LECs), contribute. Simple power-
counting rules exist to select the necessary contributions to
any given order in p.

A. Power counting in the single-baryon sector

The inclusion of the nucleon fields was initially done by
Gasser, Sainio and Svarc [40], who note that the nucleon
mass My invalidates the usual power-counting arguments.
For instance, the one-loop nucleon self-energy graph, with
the leading 7NN couplings, counts as order p3, but in the
actual calculation the positive powers of M, appear and
make this contribution of order p?. It was later on realized
that such “power-counting violating” terms have no physi-
cal effect since their contribution is always compensated
by LECs present at that order in the expansion of physical
quantity [29]. One can set up a scheme where the trouble-
some terms are absorbed by a renormalization of available
LECs, e.g. the EOMS [30].

A neat way to get rid of positive powers of M, from the
outset is provided by the HB yPT [26]. In HB expansion,
which is in a way similar to semirelativistic treatments, in
addition to the positive power of M one drops a number of
contributions with negative power of M. These contri-
butions are typically of the form

I B

with n higher than the order of p to which the expansion is
made. As long as the constants a and b are of order of unity
(natural size) relative to the coefficients of the given-order
term, these terms are indeed of the size of higher-order
corrections. There are examples, however, where a, b are
unnaturally large and the expansion fails as the result (see,
e.g. [27,28]). In these cases, the expansion in p might only
converge if one refrains from the HB expansion.

A popular manifest-Lorentz-invariant scheme where the
power-counting-violating terms do not arise is the infrared
regularization (IR) of Becher and Leutwyler [27], which
has been applied to nucleon form factors by Kubis and
Meissner [34]. The IR procedure can be described as
follows.

(1) An equivalent formulation of the IR: The negative-
pole contribution of nucleon propagator in a give
loop graph is deleted by hand. As the result, the
graphs with nucleon propagators only vanish, since
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the contour can always be closed in the half-plane
which does not have a pole. In the graphs where both
the nucleon propagators enter with a pion propaga-

tor, e.g.,
S0Sy(p) = 5 P
T = 1,
the nucleon propagator is replaced as follows:
p+ My
S —
M= - 5w
1
=S (p)[l + —] (5)
! SH(k(p? = M3)
In any one-loop graph containing N, pion
propagators,
Saky) - So(ky,), (6)
each nucleon propagator changes as follows:
N, 1
Sv(p) = Sx(p)] 1 = (-1 |
! ! s &=

(7)

This formulation is more convenient to check Ward-
Takahashi identities since the normal propagator preserve
gauge invariance and the additional part vanishes upon
closing the loop integration contour in the half-plane which
is free of poles. It is not difficult to see that the “modified”
IR procedure [41], introduced to define IR beyond one
loop, does not satisfy the e.m. gauge symmetry exactly,
but only to a given order in the chiral expansion. The
violating terms are of higher order from the viewpoint of
heavy-baryon expansion, but not in a covariant framework.

One apparent drawback of IR is that it changes the
analytic structure of the loop integrals such that unphysical
cuts appear. The unphysical cuts lie far outside the region
of yPT interest, but they still have an effect on that region
as can be seen, for example, through a dispersive repre-
sentation. Namely, if the quantity in question obeys a
dispersion relation, let say in energy s,

> .
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then in the IR scheme it would take the form:

G (5) = j sl Im G(s’) 0 o Im G (s")

—o0 S_S

()]

s

such that, even if f, is far away from the region of interest
(i.e., fo < s and s = s53), an unphysical contribution is
generated and its smallness is hard to assess a priory.
The imaginary part over the physical cut is the same in
IR, EOMS, or any other relativistic scheme. In fact, the
whole difference between the IR and EOMS is the unphys-
ical cut contribution.

A common problem of Lorentz-covariant schemes is
that the superficial index of divergence w may exceed
the chiral power-counting index n, and thus an UV-
divergence may appear w — n orders lower than the LEC
which renormalizes it. This problem is often viewed as an
inconsistency of the covariant approach, but in fact it only
means one needs to specify the renormalization scheme for
all LECs from the outset. In HB yPT, w = n, because the
time-derivatives of the heavy (nucleon) field are elimi-
nated. On the other hand, the HB yPT results can readily
be reproduced from covariant ones by expanding the latter
in the inverse baryon masses.

Since the nucleon 1is easily excited into the
A(1232)-resonance, the excitation energy A = M, —
My < 4 f ., the yPT with nucleons is not complete with-
out the A-isobar degrees of freedom. The power-counting
for the A-isobar contributions depends on how the two light
scales m,. and A compare to each other. m, ~ A leads to the
“small-scale-expansion” (SSE) [42], while m, < A leads
to the “O-expansion” [43,44]. In the absence of one-
particle-reducible graphs, as is in the case of form factors,
the two power-countings yield very similar results. In the
S-expansion, where a one-particle-irreducible graph with L
loops, N, pion propagators, Ny nucleon propagators, N

(N1) (1\?2) |
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(N7) (N8)
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9 ey OO
E
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(NT12)

FIG. 1 (color online).

(NT2)

Order-p? corrections to the nucleon form factors. Single-lines denote the nucleon, double-lines the A-isobar,

and dashed lines the pion propagators. The photon coupling is denoted by the blue square and the N7 or Am vertices

by dots.
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FIG. 2 (color online).

propagators, and V, vertices containing k powers of pion
momentum (and electric charge), counts as:

4L—=2N_,—Ny—Ny— ) kV, ,
p > k(E)NA. (10)

A

In the SSE the power-counting index of such graphs
would be

4L—2N,~Ny—Nay— > kV
p R (11)

and hence for p ~ A the two countings coincide. The pion
mass insertions which are relevant for the pion-mass-
dependence calculation will still render the countings to
be different. In this case, however, the d-expansion is not
appropriate as the pion-mass dependence needs usually to
be assessed in the range of m, ~ A. For this purpose we
adopt the SSE counting.

In this work we have calculated the p* graphs shown in
Figs. 1 and 2. The resulting expressions are collected in
Appendix B and C, respectively. Below we list the terms of
the effective chiral Lagrangian that were used in the cal-
culation of these loops.

B. Details of the effective Lagrangian and loop results

The effective Lagrangian is written in terms of pion,
nucleon, A-isobar and photon fields, 74, N, A > Ay, and—
expanded to the appropriate power in the number of these
fields, pion derivatives and mass—reads as follows:

) L r 4 p0) @
L=L)+ L)+ L, + L5

Ly = N0 = MyN = 52 N7 (B s,

T

Ly =K, (iy"“D, — Myy*")A,
Hy vad A a a
+ My eh AN, TD,A,)Db
ha
Loy = NT“y** (D, A,) (D4 ) + h.
TAN 2f77MA Y ( )( ) c.,
£y =§(D,aj>7rb)(p 7°) — m 7, (12)

Order-p? corrections to the A-isobar form factors.

where the definitions of the isospin and Dirac matrices are
given in Appendix A and the covariant derivatives are:

Db b = 599, 7" + ieQIPA,, 7Tb,
D,N = d,N + ieQyA,N + — 4f2 abCTaWb(('?#?TC),
= 09,0, tieQp\A, A, + —eabc’f“

DA, T3

M b(aM/JTC)’

(13)

with e > 0. Further details can be found in Sec. 4 of
Ref. [45].

The parameters of the Lagrangian are considered to be
known and their physical values are listed in Table 1. The
value of Hy = (9/5)g, =~ 2.28 is taken from the large-N.,.
limit and the value of 4, = 2.85 is fixed by the experimen-
tal A(1232)-isobar decay width I'y = 0.115 GeV, cf. [46].

The couplings to the A-isobar are chosen to be consis-
tent with the covariant construct of the free Rarita-
Schwinger theory and hence do not invoke the unphysical
degrees of freedom of vector-spinor field [47-49].
However, the minimal coupling of the photon, here the
vAA coupling, is the well-known exception. We attempt to
correct this problem by adding nonminimal yAA coupling
[23,50]:

Lm, = MLAAM(I‘KIFW — kaysFRA,,  (14)
where F# = grA” — 9”A* and Fr = g#"P19 A, are
the electromagnetic field strength tensor and its dual with
€023 = +1. This nonminimal coupling, for k; = k, = 1
is the one found in N = 2 supergravity (SUGRA), which is
known to overcome the above-mentioned consistency
problem.

TABLE I. List of parameters appearing in the loops and their
numerical values.

ga Hpy hy f,[MeV] m, [MeV] My [MeV] M, [MeV]
1.27 228 2.85 92.4 139.6 939 1232
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As the result, the yAA vertex becomes:

I p) = eQA[—iV“”“ + i%(g“”q“ —8"q")
A

e,y | (1)

with ¢ = p’ — p, and denote «,,, = k; = K, in the result-
ing expressions of the Appendix. In this way by putting
K,n = 0 or 1 we recover either the result of the minimal
coupling or of the “truncated SUGRA”. We want to note,
that only the SUGRA choice ensures that the e.m. moments
of the A(1232) take natural values at the tree level, see
[23,51] for more details.

With the above and the notation in Appendix A, our
results from the graphs in Fig. 1 for the isovector (V)
nucleon anomalous magnetic moment «y, and for the
Dirac (r})y and Pauli (r3), radii are then:

e )
Ky = m[Kv + FY(0)], (16)
Py =1y + 6% FY(q?), (17)
dq ¢*=0
6 d
Dy =— - @), 18
<r2>V Ky qu £=0 2 (6] ) ( )

with
FY(q*) = [FN'(¢%) + FN*(¢*) + FN3(g%) + FN(q?)
+ EYSO(q2) + EYT3(g2) + EYTR (). (19)

We list all expressions for the F fvj (¢?) in Appendix B. The
results for N56 and NT72 are not listed since they are
independent of ¢> and contribute only to the nucleon

charge which is renormalized. The I°<V and the ;v are the
low energy constants (LECs) for the nucleon anomalous
magnetic moment and the Dirac radius [52]. We fix these
by constraining Eq. (16) and (17) to their phenomenologi-
cal values at the physical pion mass: «y = 3.7 [53] and
(rt)y = (0.765 fm)? [9,54]. A LEC for the Pauli radius
enters at a p* ByPT calculation. From an EFT viewpoint,
the isovector and isoscalar nucleon combinations have a
very different behavior. In the case of the isoscalar, unlike
to the isovector part, sizeable two-loop corrections are
known to appear [55]. We will not discuss the isoscalar
quantities in our one-loop calculation.

Accordingly, our results from the graphs in Fig. 2 for the
A" (1232)-isobar magnetic moment w,, electric quadru-
pole moment 9 », magnetic octupole moment O, and the
charge radius (r%,) are:

e

Ha = g s + F5(0)] (20)
_e[y _ 1.
Q= Mil:QA 2F3 (O)], (21)
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e [~2 1
05 = 5[ 03+ PO - S0 + O] @2
° d
2\ @ A2\ A
h) = Fen + 6] 1 @) g PO
BN
FIGAE © ] 2

with

FAg) = [FF(g) + FP (@) + FP (@) + F(g)
+ FPq?) + FRT8 () + FRT2 (@) 24)

All expressions for the F iAj (g?) are given in Appendix C.

The quantities f15, Q o, O and rg, are the LECs for the
A" (1232)-isobar moments and its charge radius.

We estimate the error coming from terms higher order in
m2 by adding *n - m2 to our results where n is taken to be
of natural size, ie. n = 1.

In the upcoming sections we will use the following
parameters for better reading:

_ My _My _ My
o My’ My’
2 7
G- = —-, A=My— My, 25
q M12v A N ( )
S = A — gAMsc
My’ NN R
hAMsc HAMSC
Cypr = , = , 26
NAT R Y (26)

where M. is the relevant mass scale for the observables in
question, i.e. M,. = My for the nucleon quantities and
M. = M, for the A(1232) ones. We work in d = 4 — 2¢
dimensions.

C. Chiral structure and renormalization

As discussed in detail in Subsection I A, we employ the
EOMS scheme [30] to renormalize the loops in Figs. 1 and
2. We cancel the ultraviolet divergences so that the renor-
malized LECs are equal to their ““physical” values in the
chiral limit. Within this renormalization prescription the
divergences proportional to L = —é + vy tIn 41;1%2 (MS
scheme), as well as the finite m, constant terms, are
absorbed into the corresponding LECs.

In App. B and C we give all nucleon and A(1232)-isobar
quantities renormalized with MS, the renormalization of
the power-counting breaking terms is done in this section.
We will see that all renormalized LECs will not change
much by including various contributions.

For the nucleon isovector quantities to the order p? there
are LEC:s for the Dirac radius and the anomalous magnetic
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moment while one for the Pauli radius enters at the order
p*, cf. [52]. Schematically the chiral structures are:

<r%>V:;V+C1 +a11n/.L+Bllu,+@(M2), (27)

Ky = ’O(V + Ck + ﬂKIu’ + (9(1“2)’ (28)

1
(r3)y = 72; teytaylnu + Bou + O(u?),  (29)

with ¢;, «;, B; and 7y; as some definite constants given in
the next section. In the chiral limit both radii diverge with
Inw and 1/ w, respectively. The constants ¢, and ¢, have to
be renormalized and are listed in Appendix B. In Table II

we see how the values of the LECs ;V and f°<V change by
renormalizing the above constants when taking into ac-
count: only virtual nucleons, virtual nucleons and A(1232)
with minimal photon coupling, and virtual nucleons and
A(1232) with truncated SUGRA. The renormalized values
of the LECs do not change much by including the different
contributions. Further, our results for the nucleon case are
compatible to the p* calculation in [36].

In the case of the A(1232) electromagnetic quantities
there are LECs for all multipole moments and the charge

radius: f1, Qa, O, and rgy. Schematically the chiral
structures are:

pa = s+, + B+ O(u?), (30)
Qr= éA +tcg taglu+ Bou + O(u?), (31)
O5= COOA +co+ Bor + O(u?), (32)
() = Fgo + ¢, + a,Inu + B, + O(u?).  (33)

TABLE II. Values of the LECs by considering various contri-
butions to the observables. We use the following values for the
nucleon isovector and A*(1232) quantities at the physical point:
(r¥)y = 0.585 fm?, ky = 3.7, pp = 2.7y, Qa = —1.87Mii,
0O, = 0 and (r%,) = 0. In the second column the N/A means to
take only virtual nucleons (A(1232)) contributions for the nu-
cleon (A(1232)) quantities, the third column to include both
virtual baryons with minimal yAA coupling and the fourth to
take the truncated SUGRA.

N/A N + A minimal N + A nonminimal

Fy/ftm?2  —0.69 —-0.76 —0.74

Ky 5.03 5.05 5.13

wa/ N 2.78 2.73 2.87
94/ —3.50 —3.49 ~3.72

o A

Os/58r  —0.40 ~0.33 ~0.12

° A

Fpo/fm? —0.091 —0.086 —0.0831
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In the chiral limit only the A(1232) EQM and its charge
radius diverge with Inu whereas the MOM is finite. In the
MOM the logarithm coming from the F2(0) is exactly
canceled by the same term appearing in F4(0).

Again, the ¢; have to be renormalized and are explicitly
listed in the Appendix C. We use the following values for
the physical point to see the changes of the LECs with
respect to including the various contributions: @, =
2.7my, Qa = —1.8755. The A™(1232) magnetic dipole

A

moment is taken from [56] and the value for the quadrupole
moment is a large N, estimate, see Sec. IV B. For the
octupole moment and the charge radius no information is
available and we use: O, = 0 and (r%,) = 0. The numbers
for these quantities correspond to the bare change of the
LECs.

In total we see that the renormalized LECs change
within a reasonable degree.

II1. RECOVERING THE HBYPT RESULTS

The nucleon electromagnetic quantities were studied
within the SU(2) heavy baryon yPT approach in
Ref. [52] while the A(1232)-isobar ones in the HB yPT
SU(3) calculation Ref. [33]. The HB yPT approach is an
expansion in powers of 1/My where only the leading term
is kept. We compare our covariant B yPT results with these
studies and see that in this limit our formulas reduce to the
HB yPT expressions. In Appendix B 1 we give our full
results and discuss in this section only the terms up to the
second order in m .

A. Nucleon electromagnetic form factors

To compare our results to the HB yPT study [52], we
expand the HB yPT expression in m,. and A and absorb all
constant terms into the LECs:

1_(1+5gi) m,
Ve T e o
6 V6 4827 My
m

2 5n m
LT L Sy S W UL 4
A? 864f,277r2< nzA)’ (34)

2 2 2
®B) _ o _ &aMymg  hyMy &( o1 &) 35
TN T s A A Ay 9
<r2>(HB)K(\}{B)= 8/24MN _ h/%MN nﬁ
Vo6 48fZmm, 216f2m2A  2A
hiMNm%-

mﬂ'
~ S6A AT (1 + Zlnﬂ). (36)

We want to note that the A expansion is done only for the
comparison purpose. The corresponding parts of our work
with only nucleon contributions are:
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- >(N)1 ry <1 +5¢3  1lgims )nm” 35¢3m,  S5gimk a7
6 48127 24fim*M%) My 192fZmMy  192f27M3,’
2 2
(N) __ _ gAMNmﬂ' _ gAm 7gAm7r mg
R 8 s My oo
(rz)(N)QZ gflMN 29gf1 B 35gimw 23g§m% +( gi _ SgE‘mf, )nﬁ (39)
6 48f2mm, 96f2m?> 128fimMy 288f2m*M% \4fim? 8fim*M3) My

The HB yPT results are reproduced and all additional terms are of higher order in 1/M), however, some of these are
numerically as important as the HB yPT expressions.
Expanding our expressions with A(1232) contributions and minimal yAA coupling in m, gives:

(r >(A) 1 m%.r CJZVA

3 ﬁ(—?jo + 50R — 170R? + 243R? — 496R* + 991R° — 574R® — 254R” + 180R®
A? 162R*M3,

+ (96R2 — 216R?) ln% + (—=96R? + 192R? — 96R* + 240R5 + 400R® — 2236R”
N

+ 1328R® + 508R° — 360R'%)InR + (40 — 25R + 14R> — 107R> + 108R* — 60R>
A%(R + 1)?
— 100R® + 559R7 — 332R% — 127R° + 90R'?) ln%), (40)
N
() _ " A 2 34 4 5 6 7
—T 140 + 40R — 328R% + 4R3 + 12R* + 500R> + 56R° — 216R
VT AMy, 81R4(
+ 16R3(45 + 20R — 76R? — 7R + 27R*)InR + 4(5 + SR + 26R* — 18R?
4 5 6 7 8 9 A2(R ) 2
— 27R* — 45R> — 20R® + 76R” + TR® — 27R’) In——>—— + 144R*In 1M (41)
N N

6 A M2486R*
—12R3(20+ 10R + 210R? —

(A) 2
( 2>(A> _My Gy,

+242R3 4+ 210R* —
m2My CIZ\,A
A3(1+ R) M3,486R*
— 648R'0 + 24R3(—10 — 10R + 50R2 + 90R?
—6R(25 — 68R + 32R* — 8R> + 43R* + 90R’
A*(R+1)

N

—55R'0+54R'")In

Expanding these expressions also in A yields the A(1232)
contributions of Egs. (34)—(36). Compared to the minimal
vAA coupling, the nonminimal contributions give terms
that are of higher 1/My order than those already present
and do therefore not appear in a HB yPT calculation.

In total, our results reduce in the limit M, — oo to the
corresponding HB yPT expressions of [52]. We also see
explicitly that in the HB yPT numerical sizeable contribu-
tions, in that approach subleading in 1/My, are dropped.

300R? + 52R* + 146R> — 148RS —

300R> + 52R® + 146R7 — 148R?

—337R*+ 62R5 +412R® —
—337R® + 62R7 + 412R?®

<9O —370R +451R* +935R? — 1214R* — 78R’ + 861 R® — 807R” — 30R® + 162R°

5R7 4+ 27R®)InR 4+ 3R(50 — 71R — 179R?

A2(R+1)?
s+ 27RO AR 1441nﬁ)
M My

<4OR — 152R? + 582R> — 1912R* + 2540R> + 612R® — 4614R7 + 2820R® + 660R°

262R7
—262R°

—55R8 4+ 54R°)InR

+ (—432R> + 1008R? — 1152R* + 432R°)In m ) (42)
N

I
B. A(1232) electromagnetic form factors

In the case of the A(1232) em quantities, there exists
the HB yPT SU(3) calculation Ref. [33]. We will com-
pare our covariant formulae with this nonrelativistic
study.

To do that we expand our results of Appendix C
to the second order in m, below the A(1232) — wN
threshold:
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1 o CcA
Ua—= p + £<—288,u77 + w?(—5440 + 7514k, + (—2976 + 6864x,,,) ln,u))
,

972
Cha

360 - 1)

(i7r(6 + 12r — 18r% — 4813 + 24+* + 781 — 18r° — 6077 + 618 + 18/°)

+ w26 — 18r + 72 — 721 + im(—12 — 4873 + 1087 — 72r7) + 241nu
+ (9673 — 21677 + 1447 Inr + (—6 — 247 + 54 — 36¢7) In(#2 — 1)?)), (43)

2

486
Cha

Q,=0,-

( A8 + 1921Inpu + p?(—684 — 1794k, + (3240 + 1872K,,m)1nﬂ))

—— N _(jm(—6+ 6r+ 14r2 — 183 — 8+ + 241 — 8r% — 187 + 1418 + 6/° — 6/19)

18(r — 1)?

+ p(6 — Tr — 4r* + 257 — 12/* = 30r° + 24r° + im(4 — 6r + 8% — 201 + 40r° — 24r° — 3077 + 24/%)
+ (=8 4+ 12r) Inu + (—167% + 401> — 807° + 48+° + 601" — 487%) Inr
+ (2 =3r+4r2 — 1077 + 20° — 12r% — 1577 + 12¢%) In(r* — 1)?)), (44)

o C?
0y = 0y + =25 (—288um + n2(10168 — 2470k, + (—27024 + 14352k,,,) Inw))

2916
o
36(r 2 1)

(i7r(—6 — 10r + 612 + 1817 + 8r* + 61 — 41° — 26¢7 — 10/% + 122 + 6119)

+ u2(=2 + 267 + 30/ + 107° — 3615 — 2475 + im(d — 167 — 167> + 247° + 32r* + 287°
+ 1275 — 3617 — 24r%) — 8Inu + (32r + 3212 — 4813 — 64r* — 561° — 24r° + 7217 + 48/%) Inr
+ (2 —8r— 82+ 123 + 16/* + 141 + 61° — 1877 — 12/%) In(r* — 1)?)), (45)

2 2

<r%0> ”Eo +6

C2
72M§( 1)?

144 c2
81M2 ( 100 —?>ln + 6W(276O,um-+ w2(16476 + 136801nw) + K, 12(13026 +93601n4))

(im(—48 4+ 54r + 11612 — 16213 — 80r* +222r° — 5615 — 17417 + 12878 + 60r° — 60r'°)

+ /.L2(78 —106r — 2272 + 21413 — 84r* — 3007 + 24070 + im(4 — 24r + 80r2 — 2007 + 364r°
—204r% — 30077 4 240r%) + (—8 + 48r)Inp + (— 16072 + 400r> — 7287 + 4087° + 600" — 480r%)Inr
+(2—12r+40r2 — 10073 + 182r° — 1027° — 15077 + 1207%) In(r> — 1)2)), (46)

where the factor r in w, comes from defining the quantity
in u, and we included the factor 1/2 for the Q 5 and the 6
for the (r%,). We will now compare certain ratios of co-
efficients within our formulas against the same ratios ex-
tracted from [33].

Starting with (r2,), the ratio between the AT'1 and A1l
contribution of Fig. 2 in [33] is 25¢% , /81 where it is in our
work for the A¥(1232): 100H3/144. Together with the
ratio of the A(1232) kinetic to interacting term of 2/3 in
our Lagrangian compared to the one used in [33], we
obtain the same AT1/A1 ratio. Further, our ratio of the
W term in u, to the 1n,u term in (r,) is 355 / X0 which
equals that of [33], i.e. 0 where the factor 6 of the
radius definition is not included in [33]. Comparing in this
manner the formulas, we obtain an agreement for all

coefficients of the various p and Inu terms in the various
moments and charge radius.

In total, we conclude that our formulas reduce in the
limit of My — oo to the HByYPT nonrelativistic ones.
Comparing numerically several terms of our formulas
against the leading 1/M parts show that sometimes size-
able contributions are dropped in HB yPT.

IV. COVARIANT BARYON xPT RESULTS

In this section we present our main results. We study the
nucleon form factors at the physical point for small mo-
mentum transfer with respect to the extraction of the proton
electric radius from experimental data. Further, we also
study the chiral behavior of the nucleon and A(1232) form
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factors for Q> =0 with m2 < 0.3 GeV? and compare
them to available lattice QCD results.

A. Nucleon electromagnetic form factors

As discussed in the introduction the inclusion of pion-
production effects in the interpolation of low-Q? data for
the proton electric form factor can be addressed within the
framework of the baryon yPT. It is the second derivative of
G%(g*) which is a genuine prediction of this theory and
constrains the analytic structure of the form factor at
small spacelike momentum transfers, —g> < 0.01 GeV?.
Including such constraints in the proton charge radius
extraction from electron-scattering data could have a quan-
titative impact.

The proton electric form factor expanded to second
order in ¢ is:

GP 2:FP 2+ FP 2
7(q*)=F{(q*) g (g%)
2

(rg >p+1 d’

:+2
! 6 2q[d2]2

Gr(0)+0(¢%),  (47)

where we obtain for —4— 0 2]2 G7%(0) from App. B 1 the follow-

ing result at the physical point:
d2
[P
= 2.0891y; — 0.0017y, + 0.6401yr; + 0.5801y5
— 0.021 4 + K, 17971y, (48)

GE(O) GeV4

with I; as the isospin factors. Since the important contri-
butions, apart from the truncated SUGRA, come from the
diagrams N1, NT1 and N3, we can make a direct compari-
son to the HB yPT results of Ref. [52]:

d2
[dg* T
o 1+78
96012 m2 2
B S A S
1080272 (m2 — A?)?

GE"™ ()

_ 52
8PND

(49)

The first term comes from the diagrams N1, NT1 and is
also the 1/My leading term in our results. Expanding our
results in A coincides with the leading 1/My part of the
same expansion in the HB yPT.

In Table III we compare our covariant numbers with
those of the HB yPT. These numbers are to be entered for

i dq2]2 G7(0) in Eq. (47). In the case of only virtual nucleons,

second column, the difference of the results are the addi-
tional terms of higher 1/My orders in the diagram N1. In

PHYSICAL REVIEW D 85, 034013 (2012)

HB yPT the second derivative is domlnated by 0 2]2 F7(0)
s 4 FP(0) are of
subleading order. However, these terms are in case of the
A(1232) contributions, third column, the main cause of the
difference. The nonminimal yAA coupling contributions
are not present in the HB yPT. The large number comes
from the m.-constant terms in [ d ]2 F?(0) and d > F5(0).

These terms are of the same size as the correspondlng
constant appearing in the Pauli radius by considering
only nucleons, Eq. (39), and are also discussed with respect
to the chiral behavior later. Using the numbers of Table III
to constrain the extrapolation of experimental data in the
region of Q% = 0.01 GeV? could have a quantitative im-
pact on the extracted number for (r%),,.

Another application of our B yPT form factor results is
to study their chiral behavior in comparison to lattice QCD
calculations. In Fig. 3 we show the nucleon isovector
quantities ky, (r3)y and (r3),. The red solid curve corre-
sponds to taking all contributions, truncated SUGRA,
while the blue long-dashed curve to taking virtual baryons
with strictly minimal photon couplings. The green short-
dashed curve corresponds to the calculation with only
virutal nucleons. The 1QCD results are those of the
LHPC collaboration [17,20], of the work [18] and of the
QCDSF/UKQCD collaboration [19]. In our p? B yPT cal-
culation appear LECs for the quantities «y and (r7)y and
we constrain our results to the experimental values: ky =
3.7 [53] and (r})y = 0.585 fm? [9,54].

For the isovector anomalous magnetic moment «y and
the Dirac radius (r?),,, we see that the IQCD and our B yPT
results agree within the yPT error for pion masses above

= 0.1 GeV>. However, the data points for the smaller
pion masses are not reached. A similar behavior is found in
[17-19]. In these works the LHPC results were tried to fit
by a HB yPT small scale expansion calculation with in-
clusion of explicit A(1232)-isobar and a covariant NNLO
BxPT without explicit A(1232)-isobar. Conclusions in
[17,19] are that the lattice LHPC data could not be fitted
simultaneously.

In the case of the Pauli radius (r3)y to the order p? there
appears no LEC, hence the results are predictions. A LEC
enters at the order p*. We see that our truncated SUGRA

where the contributions coming from

TABLE III. Contrlbutlons to the second derivative of the pro-
ton electric charge radius, o 2]2 G7(0), from the covariant baryon
xPT in units of GeV~*. The columns correspond to: second one
to taking only virtual nucleons, third one to taking only virtual
A(1232) with minimal yAA coupling, fourth to the truncated

SUGRA and last one to the sum of all contributions.

Diagrams N1 +N2+N71 N3+N4 N4nm Sum
Covariant B yPT 4.80 —0.45 479  9.14
HB yPT 7.83 —1.30 -—— 653
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FIG. 3 (color online). Nucleon isovector anomalous magnetic moment «y and the Dirac (rf)v and Pauli (r%)v radii. The results
correspond to: solid (red) curve to nucleon and A(1232) contributions with truncated SUGRA; long-dashed (blue) curve to our result
with virtual nucleons and A(1232) with minimal coupling; short-dashed (green) curve to only virtual nucleon. The lattice results are
taken from: blue down-triangles [17], black right-triangles [18], brown up-triangles [19], green left-triangles [20]. The blue circles

denote the phenomenological values.

results nearly hits the experimental value. The reason is the
m-constant contribution from the nonminimal yAA cou-
pling. This term is of the same size as the constant %
coming from the usual virtual nucleon contribution,
Eq. (39). However there, the two negative m,, terms are
the cause of the small B yPT result with only nucleons. The
whole m . dependence of (r,)? coming from all considered
diagrams is dominated by the nucleon diagrams N1 and
N2. The A(1232) contributions add merely a small con-
stant term in the case of minimal photon coupling and a
large term for the nonminimal coupling. In a p* calculation
these parts would be renormalized.

For the Pauli-radius, our ByPT study and the 1QCD
results have the fact in common that the m2 dependence
is nearly linear for pion masses m2 = 0.1 GeV?. However,
the absolute values of (r3)y are rather different indicating
that some unknown components in the B yPT or 1QCD
calculations are missing.

In this and other works finite volume 1QCD results are
compared to infinite volume BYPT ones. Finite volume
effects on the B yPT side are known to be missing and
could be one part of the explanation for the above discrep-
ancies, especially for the small pion mass region. Further
studies are presently done in that direction.

B. A(1232) electromagnetic form factors

We now proceed to the AT (1232)-isobar magnetic
dipole (MDM), pua+, electric quadrupole (EQM),
QA+, magnetic octupole (MOM), O+, moments and
its charge radius (CR), (r%,). The experimental knowl-
edge of the A*(1232)-isobar is rather scarce. For the
A*(1232)-isobar MDM a value is obtained from the
radiative pion photoproduction yN — wNvy' [56]:

pas = 2.7719(stat.) = 1.5(syst.) = 3.9(theor.).  (50)

For the A*(1232) EQM we use the following model-
independent estimation based on the large-N, limit. In
Ref. [57] the large-N,. relation Q,+ = 25—\/§QPA +
O(N.?) was found which, combined with the
A(1232)-nucleon electric quadrupole moment of @ ,5 =
(—0.0846 * 0.0033) e fm? [58], gives a A" (1232)-isobar
EQM estimation at the physical pion mass of:

Q9+ = (—0.048 = 0.002) e fm? = —1.87%. (51)
My

Both values for w,+ and Q5+ are represented by blue

circles in Fig. 4. There is no experimental knowledge on

the A(1232)-isobar MOM and CR. The Fig. 4 shows our

results for the A(1232)-isobar electromagnetic quantities
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FIG. 4 (color online).
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The magnetic dipole MDM, electric quadrupole EQM, magnetic octupole MOM moments of the A™(1232)

and its charge radius CR. Both the results for the real part are shown with (red solid curves) and without (blue dashed curves) inclusion

of the yAA nonminimal coupling, respectively. The green short-dashed curves depict the imaginary parts of these quantities. The blue

circle correspond to the experimental value pp+ = (2.7 = 1.5)uy;, a large-N, estimation Q y+ = —1.87 % and O+ = 0. The 1QCD
A

data of [21] are denoted by green triangles while those of [22] are depicted by orange rectangles. The grey bands are described

in the text.

compared to the 1QCD results of [21,22]. The red solid
curves correspond to the real parts with truncated SUGRA
while the blue long-dashed curves correspond to excluding
the nonminimal couplings. The green short-dashed curve
are the imaginary parts which vanishes above m, = M, —
My. The 1QCD studies apply different extraction tech-
niques for the A" (1232)-isobar electromagnetic moments.
The Ref. [21] extracted the MDM by applying the external
background field technique while in [22] the MDM, EQM
and CR are obtained through the form factors evaluated at
finite Q2 and extrapolating to Q> = 0 by dipole and expo-
nential fits.

There are two pion mass regions for the A(1232)-isobar.
Above the threshold m, = My — My the A(1232) is sta-
ble while below the N7 decay channel is open. Striking
features in Fig. 4 are the cusp and singularities in the real
and imaginary parts of the moments and CR at this pion
mass. They result from the fact that resonance electromag-
netic properties at and near the opening of thresholds are
not well-defined [59].

The MDM pu, taken as the example, is usually defined by
the linear energy shift of the particle in an external
magnetic field B:

M(B) =M, — ii- B+ O(B?. (52)

However, the energy change of unstable particles depend
nonanalytically on B and the above linear approximation
can only be used when the following condition is met [59]:

elBl
2MA|MA - MN - m77|

< 1. (53)

At the pion mass m, = M, — My this is not the case and
as a consequence the conventionally used one-photon
approximation to extract a the moment is not valid.
Moreover, for a given magnetic field strength IEI, there
exists a pion mass region for which the A*(1232)-isobar
energy is not accurately approximated by Eq. (52), i.e.
where the MDM is not well defined. This is directly
relevant for lattice QCD investigations where the periodic
boundary conditions limit the values of |B].

To give explicit situations, we take two examples. Once
a spatial lattice of L = 32 with spacing a~! = 1 GeV and
once L =24 with a~' =2 GeV. We compare the mag-
netic field implementation by eBa®> = 27r/L as in Ref. [60]
and by eBa®> = 21r/L? as in [21]. Further, we take Eq. (53)
to be unity, i.e. a completely nonfulfillment of this relation,
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and solve for the region around the threshold m, = M, —
M . Within this region higher order B contributions can
not be neglected. For the finer lattice and linear-L imple-
mentation this region is m, = 213.4-372.6 MeV and for
the quadratic-L case m, = 290.5-295.5 MeV. For the
second setting the regions are for the linear-L m, =
—131.8-717.8 MeV and for the quadratic-L m, =
275.3-310.7 MeV. We represent the two regions for the
quadratic-L implementation as grey bands in Fig. 4.

The above considerations are directly applicable to the
extraction of A(1232)-isobar moments by the external
background field method as used, e.g., in [21]. The
Eq. (53) gives a relation on how to chose the parameters
in order to interpret the extracted 1QCD number as a
MDM. We like to notice that the work [21] uses pion
masses where Eq. (53) is not violated. However, future
lattices will soon allow for pion masses where this will
be the case.

The implications of the cusp and singularities on the
three-point function method is more subtle. Form factors
data points are obtained for finite Q% and extrapolated by
dipole or exponential fits to Q*> = 0. In the present case the
cusp and singularities fall on Q> = 0 for m, = My — M.
Qualitatively, a finite Q> would enter as an additional
energy parameter and the singularities would shift to Q2 #
0 related to m, # M, — M. For lattice calculations this
could mean that one extrapolates across this singularity
when all data points are on the right of the singularity.

Apart from the cusp and singularities we see that the
present B yPT study seems to be consistent with the 1QCD
data. With respect to the phenomenological uncertainties
of the values at m,, = 139 MeV, we can adjust the LECs

s, Qa, Op and rg such that both our results could agree
with both 1QCD works [21,22]. Further, the rather small
physical A(1232) electric radius, ~0.39 fm?, was also
reported in the works [39,61].

35}
3.0t
>
¢
25}
20}
0.0 0.1 0.2 0.3
2 2
m:; [GeV*]

FIG. 5 (color online).

PHYSICAL REVIEW D 85, 034013 (2012)

In the chiral limit the EQM and the CR are logarithmi-
cally divergent while the MDM and MOM are finite. In the
case of the MOM the divergent part of F,(g?) is canceled
by an equally divergent part in F,(g?).

V. HIGHER-ORDER EFFECTS

In this section we investigate the “‘robustness” of our
results by including several contributions which are nomi-
nally of higher order. One such effect is the pion-mass
dependence of the LECs, such as gy, f,, My and M,. In
the above we have taken them to be at the physical pion
mass, whereas the Lagrangian is expressed in terms of their
chiral-limit values. The difference between the two is
usually of order p2, and since our leading result is of order
p?, the effect of varying these LECs with the pion mass
should be of order p>. As we have not even included the p*
contributions, the consideration of the p° effects seems
premature. However, there are at least two reasons for
doing it here. First, as an error estimate according to
Beane [62]. The second reason is due to the fact that the
position of the cut associated with the decay of the A
depends on the A-nucleon mass difference, and hence the
small variations in this parameter may potentially lead to
significant effects in the quantities that are singular at the
decay threshold.

In Fig. 5, we investigate the nucleon and A(1232) mag-
netic moments with variation of f . and the baryon masses,
according to the following formulae [15,46]:

e

falm) = Fo1 - "o wiD) s
1672

MN(m%.) = A}N - 4cle37 + EN(sz), (55)

My(m%) = AO’IA —4ciam% + ReSp(m2),  (56)

pa+ [e/2My]

0.1 0.2 0.3

m? [GeV ?]

0.0

Chiral behavior of the nucleon and A(1232) magnetic moments with 7N loops. We compare our results

obtained with the phenomenological values for the coupling constants and baryon masses, green dashed line, against those with
including also the pion mass dependence of f,, My and My, solid black line. The lattice data are the same as in Figs. 3 and 4.
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with f» =87 MeV, N = 883 MeV, Ciy =
—0.87 GeV™!, M, = 1200 MeV, c;, = —0.40 GeV ™!
and the Xy, 3, given in Appendix D. We do not include
the pion mass dependence of the axial-vector constants
since their chiral behavior is not well constrained [62] and
seems to be not as prominent as those of f,, My and
M, [63].

In the left panel we can see that the variation of f, and
My with m_ in the leading-order expressions for the
nucleon a.m.m. results in the transition from the dashed
to the solid line. The effect is within the error band, but
curvature has appreciably increased which helps to connect
the lattice data with experiment.

In the right panel the variation of f, My and M, in the
expressions for the 7wN-loop contribution to the magnetic
moment of the A results in the transition from the dashed
to the solid line. Again, the effect is appreciable but
nonetheless is within the error with respect to the inclu-
sion of virtual A(1232), Fig. 4. The cusp appears at a
nearly the same position, i.e., is shifted by several MeV
due to the small change in the Delta-nucleon mass
difference.

VI. SUMMARY AND CONCLUSION

We have investigated the electromagnetic moments,
radii, and form factors of the nucleon and A(1232) baryons
in the realm of chiral perturbation theory. Analyticity
(microcausality) is playing an important role in these
quantities, and hence, in contrast to previous investiga-
tions, we have performed the calculations in the EOMS
scheme. We have obtained analytical expressions for vari-
ous contributions to the nucleon isovector magnetic
moments, Dirac- and Pauli-radius as well as the
A(1232)-isobar magnetic dipole, electric quadrupole and
magnetic octupole moments and charge radius, and com-
pared the results to experimental data and to recent lattice
QCD calculations where available.

B xPT predicts the analytic structure of the form factors
at small Q? and can serve the purpose of extrapolating the
electron-scattering data to Q> = 0. We calculated the value
of the second derivative of the proton electric form factor
Gh(q?) in BYPT.

We have analyzed the cusps and singularities appearing
in the pion mass dependence of the A(1232) electromag-
netic quantities at the point where the A — N7 decay
channel opens. These singularities are connected to the
fact that em properties of unstable particles at the threshold
are not well defined in perturbation theory. The self-energy
of unstable particles depend on the external magnetic field
in a essentially nonanalytic fashion. This has an impact on
the extraction of IQCD em moments of unstable particles
near their decay threshold. To interpret the number ex-
tracted in 1QCD in the vicinity of the opening of decay
channels as an em moment, the applied external magnetic

PHYSICAL REVIEW D 85, 034013 (2012)

field or the Q? data points of the form factor have to be
chosen specifically.

Comparing the chiral behavior of the nucleon em quan-
tities given by our covariant B yPT to recent IQCD studies,
we see that our results for the isovector anomalous mag-
netic moment and Dirac radius are in qualitative agreement
(within the BYPT uncertainties) with 1QCD results for
m2 > 0.1 GeV?. Including finite volume effects in our
B xPT formulae is the next step and expected to resolve
some of the discrepancies in the m2 < 0.1 GeV? region.
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APPENDIX A: NOTATIONS

1. Form factors

The e.m. form factors are defined through the Lorentz
decomposition of the matrix element of the vector current,
V# = P(0)y*W¥(0), between baryon states. In the case of
the nucleon,

(N(PHIP©O)y*(O)IN(p))

= a1 Y@ + AP Jut, A

with ¢ = p/ — p, 0> = —¢?, and u(p) as the nucleon
spinor with mass M. The invariants F| and F, are
the Dirac and Pauli form factors, respectively, which at
Q? = 0 yield the nucleon charge in units of e and the
nucleon anomalous magnetic moment:

FNO) =ey,  FY(0) = xy. (A2)

One distinguishes the isovector and isoscalar nucleon form
factors as:

FY(Q%) = FI'(Q%) — F!(Q?),
F5(Q%) = FP(Q%) + FI(QY).

In the case of the A(1232), which has spin 3/2, there are
four independent form factors:

AQ)IVEIA()
- —ﬁa(p'){[FA(Q2>w + 17 4

(A3)

T FA(Qz)]

5
+[F3A(Q2)7"+m q”FA(Q2>] }B<p), (A4)

2M 4M3
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where u,(p) is a Rarita-Schwinger spinor for the spin-3/2
A(1232)-isobar state of mass M,. The multipole form
factors Gy, Gy, Gga, Gz of the A are expressed in
terms of F’s as follows:

Geol Q%) = F3(Q) = 7FA(0%) + 376l 07)
GralQ?) = YO — T Q)
31+ DY) ~ F3(0Y)]

Gin(Q%) = FH(O) + F3(0) + ¢ Gyl 0?)
Gus(Q%) = FA(0) + F3(0?)
AR R (A)

with 7 = Q?/(4M3). At Q* = 0, the multipole form fac-
tors define the static moments: charge e, , magnetic dipole
moment u,, electric quadrupole moment @ 5 magnetic
octupole moment Oy, i.e.:

PHYSICAL REVIEW D 85, 034013 (2012)
ex = Gpo(0) = F{(0),

e
=_ G.(0) =
MA oM, Ml()

e
2M

[es + F2(0)]
A

e e 1

Qr = M_iGEZ(O) = M—i[% - §F3A(O)]’
e

@A = me(O)

3

2My

Besides the static moments, the slopes of the form

factors are of interest as they indicate the radii of the
respective e.m. distributions; generically:

6 dF(q?)

F0) dqg?

I:eA L FA0) - %(F?(O) + Ff(O))]. (A6)

(r)y = (A7)

2. Isospin and Lorentz structures
The isospin 1/2 to 3/2 and 3/2 to 3/2 transition matri-
ces T* and T ¢ appearing in the NA and AA Lagrangians
are given by:

0o £ 0 0
T1=i<_\/§ 0 I 0) leg%?o I By T2::-<\/§o1 o)
6\ 0 -1 0 43 3o 1 0 & ve\ o 1 0 3
0o 0o £ o
0 =% 0 0 10 0 0
Tzzﬁgo L R T3=g<o1oo> |00 0y
3010_%3 3\0 01 0 0O 0 -1/3 0
0o o0 g 0 0 O 0 -1
O = —ie™ 0 = (147 Ou = (1+3TY) 0y = 1(1+3T7) (AS)
The totally antisymmetric Dirac matrices products appearing in the NA and AA Lagrangians are defined as:
yHr = %[7’”, ¥l yrrP = %{7“”, P}t = —igh"P7y s, yHIPT = %[7’””, Y7l = iel?P7ys, (A9)
with the convention: g4,,3 = —&%12% = +1.
3. Loop integrals
In this work the following loop integrals appear:
d i —d
n = [ (zdwi" 2 —13\4]" = GV F(ﬁ(n)Z)W]W)_n
d
(2d77§d 2 - 13\4]'1 - 2(n1— /Mg
d'l lalglyl,  8ap8uv T+ 8pu8ar T 8pr8ap I (M), (A10)

Qm? [P = M]"

The corresponding solutions are:

4(n—1)(n —2)
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—i

Jy (M) = (4W)2M§CJ~V1[L — 1+ InM]
—i -
Aoy = L1 (A11)

(4m)? 2M2. M

with M = M /M2, where2 M, is the relevant mass scale,
and L=—1+y;+Inb . We work in d=4—2e¢
dimensions.

The D-dimensional spin-3/2 A-isobar propagator is
given by:

P+ My [
Saﬁ — _oapB + an,B
a (p) PP — M3+ ie p-1""7
1
a B _ A Bpa
LR (y*pP = ¥Fp®)
D—2
pep ] (A12)
(D — HM}
We use the following parameters:
m, M M . 2
p= =8 TN T (A1)
Mvc MN MA MN
gAMsc hAMsc HAMSC
Cyn = Cyp = Cpp= . Al4
Wy G Ty Con T (Al4)

APPENDIX B: NUCLEON ELECTROMAGNETIC
FORM FACTORS

For the nucleon electromagnetic form factors we take the
mass scale M. = My and the following functions occur:

My =zu? + (1 -2 = 2x(1 = 0,
My =(01-2)u?+ 22— 22x(1 — 0
My =zp? —z(1 = 2) + (1 — DR? — 22x(1 — 1) 3%,
My=(1—2p? = z(1 = 2) + 2R = 2x(1 — 1),

Mg = zp® —z(1 — 2) + (1 — 2)R?, (B1)

N1
i

CivIn

PHYSICAL REVIEW D 85, 034013 (2012)

with §> = ¢?/M3,. The isospin factors are:

+2
Iy = )
NET N, N78a = )
3 T3
+3 +1
In7sp, = 2 Inmi = 1/
3

In case of the unintegrated versions the densities have to be
integrated by:

(B2)

F(q?) = ,[0] dz f()l dxF(q% z, x) (B3)

with
-Ei = ln[j/l,]

The integrated isovector versions contain the following
expression:

1
A =~ (arctan

1 +R*— p? 1 —R>+ u?
T 4’u+arctan—'u)

r r

T = =R = (=1 + p2? + 2R2(1 + p?). (B4)

In the following expressions for the nucleon quantities we
renormalized already the infinite terms proportional to L.
However, the power-counting breaking terms (constant in
m,, terms) are still kept at this stage. Furthermore, we use
the notation dF; = diqz |,2—0F;(¢*) and list only contribu-
tions to the derivatives of F;(¢%) and F,(g?) or to the
nucleon anomalous magnetic moment.

1. Contributions to F;(q?)

Contributions from virtual nucleons:

= —6z+ 1472 — 12x72 — 473 + 4x7° + (—15z — 3.’Mlz + 427> — 36xz2 — 1723 + 16x2°) L,

+2M, 7z + (=27 + 1022 — 4xz% — 1823 + 12x73 + 142% — 12xz* — 425 + 4x5)[1/M,]
+ P (xz3 — x2P3) Ly + G2 (6x23 — 6x223 — 14xz* + 26x22% — 12x32% + 4xz® — 8x225 + 4x320)[1/ M, ]

(B5)

034013-15



T. LEDWIG et al. PHYSICAL REVIEW D 85, 034013 (2012)
e

o = —4z7 — ,’fVlzz + 472 — 8x? + 223 + L(—67 + 6.7~Vlzz + 12722 — 24x7% + 62°)
nNIN2

+[1/M,](4z* — 8xz* + 2%) + G [1/ M, ](xz® — x22% — xz* + x22* + 3255 — 2:32° + x*2)

+ X2 — 2x23 + 2x°7 + Ly(—z + 372 — 6x73 + 6x%2%) + [1/.7~\/12](4xz3 —4x23 + A

— 4xz* + 12x%7% — 8x37% — 2x2° + 24%7%)) (B6)
vri _ InniMy 2 2 2
Fi =55 @(=1+x0)x+ ) (=1 +In[g° (=1 + x)x + p*]) (B7)
32f.m
Contributions from virtual A(1232) with minimal yAA coupling:
18R*F1° 2 2 2 3 3 oy 2 2
—5——— = —36Rz — 367" + 80Rz> — 88Rxz” + 807> — 88xz> + L5(18 M3z — 36Rz — 362" + 96Rz
Ciplns
— 120Rxz2 + 9623 — 120x23) + 2(16 M5z + 20Rz + 2022 — 42Rz* + 44Rxz?> — 422° + 40xz3
+4x223 + L3(—24M;z + 24Rz + 2472 — 63RZ2 + 60Rxz? — 6323 + 48xz% + 12x22%)
+ [1/M3](24Rxz® — 24Rx%Z3 + 24xz* — 48Rxz* — 24x2z% + 96Rx2z* — 48Rx37* — 48x7°
+ 96x225 — 48x37%)) + G4 (—x2® + x22% + L5(6x2% — 6x223) + [1/M;](—6Rxz® + 6Rx*23 — 6xz*
+ 12Rxz* + 6x27* — 24Rx?*Z* + 12Rx37* + 12x2° — 24x22° + 12x37%)) (BY)
S4RY Y 2 1 p2 3 4 2.2 3.2 2.2 3.2 2.3
o = TSR+ SAMLRE: — 108RZ — S4R': + 240R%S + 240K’ — 264R%xz? — 264R"x2% — 186K
~NDIN4

+ 264R*xz® + L,(—54R%z + 108 M4R?z — 108R3z — 54R*z + 288R?z% + 288R3z2 — 360R*xz>

— 360R3xz? — 234R?7> + 360R*xz°) + §*(—8z + 30Rz + 48Rz — 26R%z — 36R*z — 162> — T9RZ?

— 138R%z2 — 75R37> — 48Rxz*> + 36R%xz* + 84R3xz* + 567° + 100RZ> + 162R?z3 — 258R?x73

+ 126R%x%z3 — 32z% — 51Rz* + 48Rxz* + M4(30z + 86Rz + 60R?z — 3822 — 69Rz? + 84Rxz%)
+[1/M,J(36R%xz + T2R3xz3 + 36R*xz® — 36R2x223 — T2R3x%23 — 36R*x27% — 144R2%xz* — 144R3x7*
+ 288R2x?z* + 288R3x%z* — 144R%x3z* — 144R3x3z* + 108R?xz° — 252R%x*7° + 144R%x*7%)

+ L£4(6z7 + 18Rz + 18R*z + 6R3z — 427> — 33Rz*> — 135R?*z* — 144R%z> — 36Rx7> + 108R*x7?

+ 144R3xz% + 667> + 60RZ> + 189R?*z® — 342R%xz> + 162R*x?73 — 30z* — 45Rz* + 36Rxz*

+ le4(IOSZ + 120Rz + 72R?*z — 120z — 180Rz*> + 144Rx7?))) (B9)
R2:}:‘N78 ~
—5— = (Iysa + In7sp) M73(R + 2) In Mg (B10)

Additional contribution from nonminimal yAA coupling:
27RS Fim

N G*(—24z — 20Rz + 24R*z + 12R*z — 8R*z + 722* + 116Rz> + 41R*z> — 3R> — 727> — 172R2’
ND'N4

— 65R%*73 + 247* + T6RZ* + le4(—421 — 198Rz — 115R?z + 427> + 178Rz%) + L,(—18z — 12Rz
+ 27R?*z + 18R3z — 3R%*z + 5472 + 66Rz? — 15R*z2 — 27R3 7% — 5473 — 96RZ> — 12R*7
+ 18z% + 42Rz* + M, (—72z — 198Rz — 96R?z + 7272 + 168Rz2))) (B11)

2. Contributions to F,(q?)

Contributions from virtual nucleons:
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7y

N 6z — 1422 + 12x22 + 42° — 4xz® + (127 — 4222 + 36xz% + 162° — 16x2°) L,
NNAN1

+ (22 — 1022 + 4xz2 + 1823 — 12xz2% — 142* + 12xz% + 425 — 4x2)[1/M,]
+ §2(—6xz3 + 6x22% + 14xz* — 26x2z% + 12x3z% — 4xz5 + 8x22° — 4x3)[1/ M, ] (B12)

N2
I3

o= —82% + 8xz + L,(8z — 2422 + 24x7?) + [1/ M,](—8z* + 8xz%)
nnIn2

+ G2[1/ M, (—8xz3 + 8x22% + 8xz* — 16x22* + 8x3z%) (B13)

Contributions from virtual A(1232) with minimal yAA coupling:

9R2 FN3 B B
2 jlrz = —28M;z + 18Rz + 1822 — 44RZ> + 44Rxz? — 442° + 44x2> + L3(24 M3z + 18Rz + 1827
ND*N3
— 42RZ2 + 60Rxz* — 4223 + 60xz%) + [1/M;]G*BRxz® — 3Rx?Z% + 3xz* — 6Rxz* — 3x%z* + 12Rx%z*
— 6Rx37* — 6x2° + 12x%22° — 6x32°) + G*(—10Rz — 107> + 22R7> — 22Rxz* + 2273 — 18x73
— 4x22% + L3(—12Rz — 122% + 30Rz* — 30Rxz% + 30z — 36xz> + 6x22%) + [1/M;](—12Rxz® + 12Rx2Z?
— 12xz* 4+ 24Rxz* + 12x%z* — 48Rx%z* + 24Rx37* + 24xz° — 48x27° + 24x379)) (B14)
27R4~T'12V4 2 3 4 2 2 2.2 3.2 2.2 3,2
LT = 8z — 30Rz — 42R*7 + 38R’z + 42R*7 — 247 + 63Rz* + 18R*z* — 69R’7* + 66R*xz" + 66R’xz
NDIN4

+ 2473 — 36Rz3 + 24R273 — 66R?xz — 87* + 3Rz* + M, (507 — 4Rz — 48Rz — 5022 — 15RZ?)

+ L4(—6z — 18Rz + 30R%z + 18R*z + 1822 + 45Rz% — 45R%z> — T2R37% + 90R2xz% + 90R3xz2 — 182°
— 36Rz% + 45R273 — 90R2xz® + 62* + 9Rz* + M, (=247 — 78Rz — 90R?z + 2472 + 36RZ%))

+ §*(2z + 2Rz — 2R?*z — 2R3z — 622 — 39Rz> — 12R*7> + 21R3Z% + 12Rxz? — OR*xz? — 21R3xz? — 273
+ 17Rz> — 33R*23 + 44x7° + 24Rx7® + 126R*xz> — 44x*73 — 24Rx*z> — 93R*x*7* + 67* + 12RZ*

— 44x7* — 15Rxz* + 44x27% + 3Rx2ZY + My (—9z — 5Rz + 2472 + 21Rz2 — 21Rxz?)

+[1/M,](12x23 + 18Rxz®> — 9R*xz® — 24R3xz3 — 9R*xz® — 12x223 — 18Rx2Z% + 9R2x2Z3 + 24R3x273
+ 9R*x273 — 36xz* — 36Rxz* + 36R%xz* + 36R3xz* + 36x%z% + 36Rx2z* — T2R%x%z* — T2R3x%7*

+ 36R%2x37* 4+ 36R3x3z* + 36x7° + 18Rxz> — 27R%*xz° — 36x%7° — 18Rx%7° + 63R%x%7> — 36R*x37°

— 12x2° + 12x22%) + L£4(3z + 3Rz — 3R?z — 3R%z — 1822 — 36Rz*> + 18R?z> + 36Rz> + 9Rxz?

— 27R?xz> — 36R3xz? + 1523 + 12Rz® — 45R*7% + 66xz° + 54Rxz> + 108R%xz> — 66x°7° — 54Rx*7°

— 63R%x%Z3 + 9Rz* — 66xz* — 18Rxz* + 66x%z* + 9Rx?7* + M,(6Rz + 36Rz2 — 36Rxz2))) (B15)

9R3_f]:'12\/78 ~

T —M75(R + 2)(—In7sp — In7saR — In7spR + (6175, R + In7g,(—3 + 6R)) In M) (B16)
ND

Additional contribution from nonminimal yAA vertex:
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2 =80Rz+ 126R%*z+ 12R%z — 34R*z — 240R72 — 252R*Z2 — 12R372 + 240RZ® + 126R?73 — 80RZ*

+ M, (176Rz + 170R?z — 176Rz?) + L,(48Rz + 18R2z — 108R3z — 78R*z — 144Rz> — 36R2 2>

+108R322 + 144RZ3 + 18R2z> — 48Rz* + M, (192Rz + 174R%z — 192Rz2)) + G*(24z — 20Rz — T2R?z

+ 12R3z 4+ 40R*z — 80z + 90RZ? + 164R?*z> — 6R37%> + 88z° — 52Rz*> — 16R?*z* — 304Rxz> — 234R%x 7
+304Rx2z3 +234R%x273 — 32z% — 18Rz* + 304Rxz* — 304Rx2z* + M, (40z + 84Rz + 28R%z — 3872 — 18RZ2)
+[1/M,J(—24RxZ3 + T2R3xz® + 48R*xz3 + 24Rx*23 — T2R3x273 — 48R*x22% + T2Rxz* — T2R3x2*
—T2Rx*7* + T2R3x*z* — T2RxZ> + T2Rx*2° 4+ 24Rxz% — 24Rx*z°) + L,(18z — 12Rz — 36R?z + 36R*
+42R%z — 6627 + 54R7> + 48R%*7> — T2R37> + 787° — 24Rz* + 48R?7* — 168Rx73 — 234R%xz> + 168Rx* 73
+234R2x273 — 302% — 18Rz* + 168Rxz* — 168Rx2z* + M, (1147 + 108Rz + 24R%z — 12022 — 12R72)))

(B17)
3. Isovector Dirac radius (r?),
Contributions from virtual nucleons:
dFY = — Inp Ci (—172 +163u% — 30u* + (—80 + 372> — 208 u* + 30u°) Inu
! 48f2m  3IM(—4 + u?)

—J—4 + 2
+ oyl =4+ (70 — T4 + 15u) lnu> (B18)

Mmoo+ =4+ /.L2

Contributions from virtual A(1232) with minimal yAA coupling:

324R*M3,dFS

2
CN D

= 60 — 20R + 143R? + 314R> — 611R* + 26R> + 441R® — 44R7 — 90R® — 130> — 80Ru>

— 562R*u* — 438R3u? — T78R*u? + 168R> u? + 270R° > — 55u* — 20Ru* + 287R*u*

— 204R3u* — 270R* u* + 50u® + S8ORu® + 90R?u® + A (70 4+ 60R + 32R> + 124R> — 678R*

— 664R> + 1136R% + 432R” — 1046R® + 92R® + 576R'0 — 44R" — 90R'? — 230> — 280R u>

— 418R*u? — 108R3 u? + 424R* u? — 8RO u? + 888Ru? — 676R" u? — 1930R u? + 256R° u?

+ 450R"Ou? + 220u* + 400Ru* + 972R?>u* + 560R3 u* + 1016R* u* + 936R> u* + 2284RO u*

— 584R7 u* — 900R® u* + 20’ — 120Ru® — 728R?>u® — 212R3 u® — 1032R* u® + 656R3 u®

+ 900R® u® — 130u® — 140Ru® + 52R?u® — 364R>ud — 450R* u® + 50'0 + 80Rw'® + 90R? 1 '0)

+ (=70 — 60R — 102R?> — 184R> + 576R* — 480R> + 560R® — 48R’ — 486R® + 44R° + 90R'?

+ 160u? + 220Ru? + 336R*u? + 24R3 u? + 144R* u? + 504R% u? + 1264R%u? — 212R7 u?

— 360R%u? — 60u* — 180Ru* — S16R>u* — 396R> u* — 1020R* u* + 372R% u* + 540R® u* — 80u®
— 60Rum® + 192R?1u® — 284R3 b — 360R* ub + 50u® + 8ORu® + 90R2®) InR + (—70 — 60R

— 102R? — 184R3 + 576R* + 480R> — 560R® + 48R’ + 486R% — 44R° — 90R'® + 160>

+ 220Ru? + 528R?u? — 24R3 u® — 144R* u? — 504R% u? — 1264R% u? + 212R7 u? + 360R% u?

+ 60u* + 180Ru* + S16R*u* + 396R3u* + 1020R* u* — 372R u* — S40R® u* + 80u®

+ 60Ru® — 192R?u® + 284R3 ub + 360R* u® — 508 — SORu® — 90R?u®) Inp (B19)

Additional contribution from the nonminimal yAA coupling:
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162R3 M3, dF?D
T —40 — 100R + 260R> + 45R* — 185R> — 430R® + 30R + 100R® + 130u? + 70Ru? — 30R? u?
ND

+ 230R3u? + 240R* % — 190R% u? — 300R® w? — 105u* + 155Ru* + 160R?u* + 290R3 u*

+ 300R*u* + 30u® — 130Ru® — 100R?u® + A(—30 — 170R — 120R? + 650R? + 820R* — 960R’

— 1540R® + 680R + 1350R® — 230R° — 580R'° + 30R'" + 100R'? + 1502 + 550Ru? + 410R? u?

— 520R3u? — 630R* u? — 620R u? — 830R®u? + 840R u? + 1400R® u? — 250R° u? — SO0R'O u?

—300u* — S00Ru* — 410R?>u* — 360R3 u* — 340R* u* — 640R> u* — 750R® u* + 700R” u* + 1000R® u*

+ 300u°® — 100Ru® — 30R?u® — 320R3u® — 350R* 1 — 900R u® — 1000R® u® — 1508 + 350R u®

+ 250R2u® + 550R?u® + 500R*u® + 301! — 130Ru'® — 100R? %) + (30 + 170R + 150R?

— 480R> — 670R* — 480R> — 870R® + 200R” + 480R® — 30R° — 100R'® — 120> — 380Ru>

— 320R? % — 480R> u? — 720R% u?* + 220R u? + 400R% 2 + 180u* + 120Ru* + 90R? u* + 60R? u*

+ 30R*u* — 480R u* — 600R® u* — 1200 + 220Ru® + 180RZu® + 420R3 u® + 400R* u® + 30u8

— 130Ru® — 100R?>u®) InR + (30 + 170R + 150R?> — 480R3 — 670R* + 480R> + 870R® — 200R’

— 480R® + 30R° 4+ 100R'" — 120> — 380Ru> — 320R?u? + 480R’> > + 720R® > — 220R7 >

— 400R% u? — 180u* — 120Ru* — 90R? u* — 60R? u* — 30R*u* + 480R> u* + 600R® u*

+ 1208 — 220Ru® — 180R*u® — 420R3 b — 400R* u® — 30u® + 130Ru® + 100R?>u®) Inpw  (B20)

4. Isovector anomalous magnetic moment «y

Contributions from virtual nucleons:

Fy ( [ 2 B
= (5—6u2)y—4+u>+2u’yf—4+ u*>(=7+3u®)Inp + w8 —13u% +3u*) In—— ) (B21)
ACky - ptA =4+’

Contributions from virtual A(1232) with minimal yAA coupling:
SIR*F>
Cha

= —40 — 100R — 153R? + 220R® + 697R* + 88R> — 191R® + 40R” + 54R® + 150> + 140Ru>

+ 522R*u? + 356R3 u? + 230R*u? — 120R° u? — 162Ru? — 35u* + 60Ru* — 49R*u* + 120R3 u*

+ 162R* u* + 10u® — 40RuS — 54R*u® + A(—10 — 40R — 64R> + 188R> + 434R* — 292R°

— 800R® + 220R7 + 658R® — 116R° — 272R'0 + 40R'! + 54R'> + 50> + 120Ru? + 342R*u? — 4R3 2
— 552R*1? — 648R3 u? — 632RO u?* + 444R7 u? + 774R3 u? — 200R° u? — 270R"Ou? — 100u* — 80Ru*
— 588R>u* — 356R3 u* — 328R* u* — 420R u* — 700R® u* + 400R” u* + 540R3 u* + 100u® — 80Ru®
+ 352R?1u® — 28R3u® + 176R* u® — 400R u® — 540R® u® — 50u® + 120Ru® + 12R?> u® + 200R> u®

+ 270R* 8 + 10u'% — 40R !0 — 54R?1'%) + (10 + 40R + 74R*> — 148R> — 360R* — 576R> — 440R°

+ 76R7 + 218R® — 40R® — 54R"0 — 40> — 80Ru> — 288R>u? — 144R3u? + 72R*u? — 288R° u?

— 448ROu? + 160R7 u? + 216R u? + 60u* + 300R?u* + 132R3 u* + 252R* u* — 240R% u* — 324R0u*
— 40u° + 80Ru® — 32R*u® + 160R?u® + 216R*u® + 10u® — 40Ru® — 54R?>u®) InR + (10 + 40R

+ 74R* — 148R> — 360R* + 144R> + 440R® — 76R” — 218R® + 40R° + 54R'° — 40> — SOR

— 432R* % — 288R3u? — T2R*u? + 288R u? + 448R°u? — 160R” u? — 216R3 u? — 60u*

— 300R?u* — 132R3 u* — 252R* u* + 240R% u* + 324R°u* + 40u® — S8ORu® + 32R? u®

— 160R3u® — 216R*u® — 10u® + 40Ru® + 54R%u®) Inp (B22)

Additional contribution from the nonminimal yAA coupling:

034013-19



T. LEDWIG et al. PHYSICAL REVIEW D 85, 034013 (2012)

81RYF2
Cha

=40 + 180R + 280R? + 340R> + 140R* + 80R> — 160R® — 100R” — 120> — 100Ru? + 120R>u?

+ 40R3u? + 280R*u? + 300R5 u? + 140u* — 120Ru* — 80R?u* — 300R3u* — 40u® + 100R u®

+ A(40 + 130R — 20R? — 320R> — 20R* + 280R> — 220R® — 220R” + 380R® + 230R°® — 160R'°

— 100R'"" — 200> — 420Ru? + 60R? u? + 220R*u? — 120R* 1> + 120R u? — 340R® > — 420R7 u?

+ 600R® u? + 500R° u? + 400u* + 380Ru* — 60R u* + 20R u* — 260R* u* — 120R% u* — 800RC w*

— 1000R” u* — 400® + 80R b + 20R21u® + 580R?u® + 400R* 1S + 1000R% u® + 2008

— 270Ru® — 500R?u® — 40u'% + 100Ru'%) + (—40 — 130R — 20R? + 190R> + 90R> — 220R® — 130R’
+ 160R® + 100R° + 160u> + 290Ru? + 90R> u? — 440R% u? — 400R” u? — 240u* — 90Ru*

+ 60R2u* + 210R? u* + 360R* u* + 600R u* + 160u° — 170Ru® — 40R? u® — 400R3 u®

—40u® + 100Ru®) InR + (—40 — 130R — 20R? + 190R® — 90R> + 220R® + 130R” — 160R® — 100R°

+ 16012 + 290R > — 90R® u? + 440R®u? + 400R” u? + 240u* + 90Ru* — 60R?u* — 210R% u*

— 360R*u* — 600R u* — 160u® + 170RuS + 40R? b + 400R3 ub + 40u® — 100Ru®) Inp (B23)

5. Isovector Pauli radius (r3)y

Contributions from virtual nucleons:

2C%
dFy = e M(—4N14Vr PERE (M —4 + p2(—124 + 105u% — 18u*) + 6y —4 + u2(—16 + 44u? — 22u* + 3ud) Inu
N
— =4 + 2
+ (16 — 21602 + 246u* — 84S + 9ud) Y T T H ““) (B24)
nt+—4+ ,LL2

Contributions from virtual A(1232) with minimal yAA coupling:

486R*M% dF3

2
CN D

= —90+280R — 171R? — 1106R3 + 108R* + 186R5 — 675R® + 132R” + 162R8 — 340R 12

+ 198R?u? + 162R? u? + 1116R* u?> — 504R > — 486R® u? +270u* + 300R u* — 26 1R u*

+612R3 u* + 486R* u* — 180’ — 240R u® — 162R?> ub + A (300R — 126R? — 1500R> + 378R*
+2712R> — 540R® — 1488R” + 1188R® — 12R° —918R'® + 132R"! + 162R'> — 600R u” + 342R?
+948R3 u? + 576R* u? + 576R 2 — 1044RO 2 + 348R7 > +2952R8 2 — 768R° u? — 810R 'O 2
+180u* + 480Ru* — 648R> u* + 216R* u* — 936R* u* — 3168RO u* + 1752R” u* + 1620R3 u*
—540° — 600R w® 4+ 252R? u® — 996R3 1 + 972R* u® — 1968 R’ u® — 1620R® 6 + 5408 + 660R 8
+342R? u® + 1092R3 u® + 810R* u® — 180 ' — 240R "% — 162R? 1) + (—300R + 126R? + 1440R3
+ 108R* + 1368R> — 432R® — 120R” + 756R® — 132R° — 162R'* 4+ 300R > — 216R? > + 192R3 u?
—72R* > —96R> > — 1872R® > + 636R” > + 648R8 > — 180 u* — 180Ru* + 252R* u* — 204R3 u*
+ 1296R* u* — 1116R> u* —972RO u* + 360u® + 420R u® + 852R3 u® + 648R* 1 — 1808

—240Ru® — 162R?* %) InR + (—300R + 270R? + 1344R> — 108R* — 1368R° + 432R° + 120R’

—756R% + 132R° + 162R'0 + 300Ru> + 216R? u?> — 192R3 > + 72R* u” + 96 R u? + 1872R0
—636R7 > — 648R¥ 2 + 180 u* + 180R w* — 252R? u* + 204R3 u* — 1296R* u* + 1116R° u* + 972R® u*
—360u5 —420Ru® — 852R3 b — 648R* u® + 1808 + 240R u® + 162R?> u®) Int (B25)

Additional contribution from the nonminimal yAA coupling:
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243R°M%,dF5

Cr

K

. =120+ 60R + 25R? + 390R> — 125R* + 420R® — 120R® — 270> + 60R u? + 65R? u? — 720R> >
—270R* u? + 360R u? + 360R® w? +90u* — 540R w* — 150R? u* — 720R3 u* — 360R* u* + 360R u°
+ 120R? 1% + A (90 + 180R — 60R? — 540R> — 600R* + 540R> + 1380R® — 180R” — 1290R®
+ 600R' — 120R"? — 3602 — 540Ru? — 60R? w2 + 360R> w2 + 750R* u? + 1080R w2 + 540R0 w2
—1260R” u? — 1470R3 u? + 360R° u? + 600R'° 2 + 540* + 180Ru* + 210R? u* + 720R? u*
+ 540R* u* + 1440R u* + 810R u* — 1440R7 u* — 1200R3 u* — 3601 + 900R w® + 120R? b
+ 900R? ® + 390R* 0 + 2160R’ w® + 1200R® u® + 90 u® — 1080R u® — 330R? u® — 1440R> u®
—600R* u® + 360R "% + 120R? 1 '%) + (—90 — 180R — 30R? + 360R> + 1170R* + 180R> + 810R°®
—480R® + 120R'0 + 27042 + 360R % + 120R% 12 + 300R* 12 + 900R5 w2 + 750R0 u? — 360R 12
—480R% > —270u* + 180R u* — 180R> u* — 60R* u* + 1080R> u* + 720RS u* + 90u® — 720R
—210R?u® — 1080R3 w0 — 480R* u® + 360R u® + 120R? u®) InR + (—90 — 180R — 30R? + 360R>
+ 570R* — 180R> — 810R® + 480R® — 120R'* + 270> + 360R u? + 120R? > — 300R* u?> — 900R> 2
—750R % + 360R 2 + 480R® > + 270 u* — 180R u* + 180R> u* + 60R* u* — 1080R° u*
—T20R u* — 900 + 720R u® + 210R? 110 + 1080R> 1u® + 480R* u® — 360R u® — 120R> ) Iny  (B26)

6. Renormalized constants
The constants are with & = §2R%(R + 1)2:

43g2 K2
. 8m7)2 = — —°A 4 A
(f 287) 3 304RS

+ (12R? + 24R* — 96R> — 960R® + 1120R7 — 96R® — 972R° + 88R'® + 180R!") InR
+ (1 + R)*(—35R + 40R> — 96R3 + 60R* + 264R5 — 348RS + 152R7 + 68R® — 45R%)Ind)

(60R — 20R? + 143R3 + 314R* — 611R® + 26RS + 441R” — 44R® — 90R®

h124Knm
324R3
+ 800R” + 1920R® — 120R° — 400R'%) InR + (1 + R)*(30 + 110R — 100R? — 390R* + 210R*

+ 450R5 — 240R® — 170R7 + 100R®) Ind), (B27)

(—80 — 200R + 520R? 4+ 90R* — 370R> — 860RS + 60R’ + 200R® + (—1920R> — 3480R°®

(f ,87)? h?
. ™ — 20 2 + A
84 T QIR

+ (—720R> — 880R® + 152R” + 436R® — 80R® — 108R'%)InR + SR(1 + R)*(—5 — 10R — 17R? + 98R3

(—40 — 100R — 153R? + 220R> + 697R* 4+ 88R> — 191R® + 40R” + 54R3

-~ h?
— 41R* — 34R5 + 27R%) Ind) + ;1';’;” (40 + 180R + 280R? + 340R> + 140R* + 8OR> — 160R®

— 100R” + (180R% — 440R® — 260R” + 320R8 + 200R°) InR + SR(1 + R)3(20 + 25R — 40R?
+ 25R3 + 20R* — 50R%) Ind). (B28)
APPENDIX C: A(1232) ELECTROMAGNETIC FORM FACTORS

For the nucleon electromagnetic form factors we take the mass scale M,. = M.
The following functions occur in the Feynman-graphs of Fig. 2:

My=zp2+ (127  My=(1-9p’+2%  My=zu®+ (1 -2 —z(1-2)

My=(0—-2u?>+ 2z —z(1 —2), Msg =z + (1 — 2)~ (C1)

For better reading we introduce the functions:
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Y s - - . = - s~ 1
Ji(M) = M[L -1+ InM], Jo(M) =[L + In2M], J3(M) = L7k (C2)
The isospin factors are given by:
2 8 2 8 2
3 3 1 1 3 3 3
: § ] : ; 5 ;
— — 9 — 3 13 — — 9 —
I, 2, L= ) ;= O 1y ) I 2, 1% ) Ir s (C3)
9 5 3 3 9 5 9
2 _ — _2 _ _2
In order to project on the individual Lorentz-structures we use the following identities:
ito(p')y*u*(p) = ito(p)n* = y#"q,Ju(p)
2M
1
1Pl “g"? — g ug(p) = u(p)] 2M5(1 + g Pyt — g Bt 4o qtgPyt Juglp) ()
A

with n = p’ + p. The first one is the Gordon-identity for A spinors and the second a A spinor identity given, e.g. in [64].
In the following subsections we give the individual contributions from the Feynman-diagrams of Fig. 2 to the
A(1232)-isobar form factors. We only list nonvanishing contributions. These are the nonrenormalized expressions.

1. Contributions to F2(0)

1 5 1 7 13 4 17 -
FZAI(O) = CAAllj;) dezl:* ——z——7*— 6,1(7 — 5% 722)}’2(:]\41)

6 3 6 9 9 9
1 1 5 11 199 .~ 4 5 5
F2A2(0):CAAIZJ; dZ2Z{_[_9 6 +Gd(ﬁ_@Z)]Jl(Mz)_[_54‘32_52 +%Z

32 50 10 23 .~
- — +_ —_
ed(27 9 z 3 22 542 )]Jz(.’Mz)}

F53(0) = Cyals f(}l dzZz{—I:—%z + 72— %r + zr]jz(j/l3)}F2A4(0) = Cyaly fol dz272{—[z — 22 + rz)J,(M,)}  (C5)

Nonminimal contribution to A2 with k; = k, = k,,, (without the y#°7 part):

47 8 271 70 ~
FZAZ(O) = KnmCAAI2[ dZZZ{ [18 §Z + Ed(—ﬁ + — 77 )]Jl(Mz)

22 10 3 2 188 = 28 37 16 s~
—|=E -+ 2Bt e+ -2+ =2 ) (M } C6
[9 3257 757 ed( 7 T3¢ Tt ):I 2(M,) (Co)

2. Contributions to F3 (0)

| o 2 70 44 76 \1- .~ . 8 o
F1(0) = cm[ dzZz{[3—2ed]J1(J\41)—|:4+3z—gz e ( Setae )]Jz(Ml)—§z2[1 —z2]J3(m1)}

0

I -5 2 10 59 16_104_ 1
FA2(0)=C I[dZ{— —Z4+Z7+ (—— )]JJVI [ +52+—

3 (0) AAL2 0 242 |73 9Z €4 3 54 1 (M) — 3 9 18Z
32 88 174 7 16, 16, 4
+ +—z- 2 — — = 2+ 4] }
E"<9 27" 7Y T gt )]J2(M2) [9 9 "ot (M)

! -4 oo 2. 2, 2 2 7. -
F3A3(O) = CNAI3[ dzZz{— gzz + VZ:IJz(M3) + [§z3 — §z4 + grz2 — grz3]J3(.7Vl3)}

0 L

1 Y~ 1 2 1 2 1 2 Y~
Z+rz— edgzz]Jz(J\/h) - [—gzz + §z3 - §Z4 - grzz - grzz2 + grz3:|13(.7\44)}

1
F240) = Cyaly fo dzZz{—

1 -~ 1 1 "~
F:"AS()(O) = CAAIgéj dx[4 + 6Z - Ed4Z]Jl(‘7Vl56) + CAAI?ﬁf dx§[12 + 48Z + Ed(44 - 28Z)]J1(M56) (C7)
0 0

Nonminimal contribution to A2 with k; = k, = k,,, (without the y5°7 part):
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1 28 118 269
F3A2(O) = KnmCAAIZJ; dZZZ{I:“- - EZ - Ed< T 27 )]J (M )

8 8 8 7 272 704 8 62 o~
—|-+-—z—=+=-+ —+—z—=72— =
[3 9% 3% Tt ed< 5 57 ¢ 9z 7% )]Jz(ﬂ\/lz)} (C8)

3. Contributions to F4(0)

FA(0) = Caal [O ' dz2z{[4 — 822 — egdz(l — DWo(M,) + 2 12[1 VAR )}

10 64 104 86 s~
F32(0) = CAAIZf dz2z [—z - 872 —ﬁz + € (—ﬁz +7Z2 +8—1Z3>]Jz(-7\42)

[, 16, 4, 2
[ 7T 9¢ " 27° ]J*(M”}

9
1 2 -~
FE0) = Cals [ dz2ef =512 = 24+ 122 = 12V (M)
0
1 2 -~
F340) = CNAI4j dZZZ{— 5[—z3 + 4 = rz3]J3(.’M4)} (C9)
0

Nonminimal contribution to A2 with k; = k, = k,,,, (Without the y#%Y part):

1 1 16 38 152 112 74
—Ff2(0)=CAA12/ dz2z{—[l6—8z+ed<——+ )]Jl(mz)_[_ 7+ 2——73
K 0 3 3 9 27

9
544136 , 148 2. 16 8 4
* Ed( 7T 9 TR )]JZ(M” [27 9 ¢ g Tyt ] MZ)} (C10)

4. Contributions to the charge radius <r2E0)

d
— FAl = f dzZz—{—]32z +110z% — 27 M, + [—6672 + 6624] -
dq* q*=0 ! 1 M,
+[—108 — 18z + 231z2]InM, + 81 M, 1nj\41}
d c 139 7 -~
— FA2 = — AAI[dZ { 128+192—1132+23*—[128+— ]3\4
el B P 2376 [— z z Z°] I
1 15 - _ 3
+ [—132z2%2 + 13277 — 33z4]j\4— + [—132 + 216z — 1522 — 713]1n:/\42 +[51 — 30z]M, 1n3\42}
2
d C 1 _
— FM = NAI f dz2 { . —272 }
dg® | o= ! ’ o M,
i F1A4= CNAQ[ dz2z—{+z —2[1 =272+ +2r—2rz+r - 2 M }
d =0 24 M4
d 2 Caa
e FAle _ 2 Cl1
d o 3 H2M2 T (/*L) ( )

Nonminimal contribution to A2 with k; = k, = k,,,, (without the y#%Y part):

d

@ FAQ CAA
dq*

—K
1 nm 2
q2:0 M

+[—60 + 427 — 1222 + 323]In M, + [54 + 127]M, InM,} (C12)

2
I f d7 % og (7472 + 6762 — 23627 + 82 — [225 — 23] M,

5. Renormalized constants
The constants are with 6 = 82(1 + r)%:
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. C
= AA( 965 — 1781 K,,) — 7 3g§( 12 — 287 — 18u2r + 2872 + 541% — 157% — 5175 + 6/
+ 1877 — 12.3(=8 + 4r + 137> = 3 — 10r* + ° + 3/ Inr + 3 + 6r — 9% — 24/°
+ 127 + 3955 — 97 — 307 + 375 + 9/°) Ind), (C13)

c c 1
c 22? (=604 — 4121k,,) + > (4r2(—4 =254 =27 = 4rt 4 3+ 30 Inr + 5 (11— 137 — 137

+22P7 =3 — 15 + 110+ 617 — 618 — 8(3 — 3r — r2 + 37 — r* — 37 + 3r9) lnb:)>,

(C14)
Caa Cna 3 4 5 6 7 8
= _—=(—6247 + 20293 ————— (=8 —10r+2r +7r + 20 + 7r° — 12r' — 6
€0 = 2916 “m) = 36501 1) PrAm A A A e et
+4r(=8 + 127 + 41 + 314 =2 — 13r° = 57 + 618 + 3/°) Inr
—6(=3-5r—=32—r +r*+6r +3r%Ind), (C15)
Can
o= — A% (3850 — 77007 + 385012 + (—5395 + 10790r — 53952k,
1944-M2 1)

c
Ne ((—4320r2 — 21607° + 4320r* — 1188/° — 367vw2rS + 324017 + 3240/%) Inr
1944M3

1
+ §(2268 — 3078r — 24301 + 4806r° — 324r* — 3888r° + 2646r° + 1620r" — 162078

+ (—648 + 7297 + 1566r> — 21877 — 1080r* + 29977 — 75615 — 234977 + 172878 + 8107° — 8107'0) 1n5)).

(C16)
APPENDIX D: NUCLEON AND A (1232) MASSES
In Sec. V we use the pion mass dependent nucleon and A(1232) masses of [46]:
My (m%) = AO/IN —deyymy + Zy(m3)
3% 2 \5/2 17 3
Sy(m2) = —#m%}l}(l - mTZ) arccos nzw + T’T - ( nzﬂ )
(87Tf77.)2 4MN 2’MN 16MN 2MN
2 4
+ Lz (30 - 10(’?”) + (m”) )1n(ﬁ)] (D1)
8My My My My
My(m2) = My — 4y ym2 + Re 35 (m2), (D2)
1/ h 20
San3) = =5 (A AW - Ve = vy (D3)
8 f77
1
v, = f dx(r + 0)(u2x + (1 — (2 — ¥)Log[u2x + (1 — ) — x)]
0
5 5 7 2 1 1 1 1 1
=" 4+ = _72_73_74_’_75_'_76_75 3+ 2 _ _ + 2 _ 3 + 2 2
V, 36 8" "3 3" g’ 6r T 6r(r 2 —2r — 6)Inr 12(r 121 + r)?In[1 — #?]
1 3 3

Vs (7+9r+3r + 9,3 +6r4)+ PGB+ 2r)Inr=+ §<1+§r—2r —r)ln[l—r] (D4)

with w = m, /My, r = My/Mj,.
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