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We discuss a simple approach to measure the weak mixing angles �s and �d of the Bs and Bd systems

in the presence of New Physics. We present a new expression that allows one to measure directly �NP
d;s if

New Physics contributes significantly to the mixing only. We apply the method to specific penguin-

mediated B ! PP, B ! PV and B ! VV modes. We provide a very stringent and simple bound on the

direct CP asymmetries of all these modes, the violation of which is a signal of New Physics in decay.

Within the same theoretical framework, an updated prediction for the branching ratio of Bs ! K0� �K0� is
presented, which can be compared with a recent LHCb analysis.
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In our quest for New Physics (NP) in flavor processes,
the weak angles �M involved in the mixing of Bdð�dÞ and
Bsð�sÞ mesons have been studied with a great attention
recently, since they have shown interesting discrepancies
with respect to the standard model (SM)[1,2]. On the one
hand, there is a tension in the SM fit between the measure-
ment of �d and the branching ratio of B ! �� (see also
Refs. [3,4] where the discrepancies with respect to other
inputs are discussed, e.g., inclusive or exclusive semilep-
tonic decays, or mixing-dependent observables). On the
other hand, the most recent angular analyses of Bs !
J=�� by CDF, D0 and LHCb [5–7] seem to reduce sub-
stantially the space for New Physics in �s. Finally, there
still remains an important discrepancy with the standard
model through the dimuon asymmetry measured at D0
[8,9].

In this context, it is useful to devise alternative methods
to extract the mixing angle of both Bdð�dÞ and Bsð�sÞ
systems from experiment. In this paper we will take the
point of view of assuming that New Physics contributes
significantly only to the mixing phases whereas the formal-
ism of the CKM matrix can still be used to analyze decay
amplitudes. Under this assumption we present a clean
method to extract the NP contribution to the weak mixing
phase �d;s from selected Bd;s ! PP, VP, and VV decays.

Some time ago [10], we proposed a test on the value of
sin�s in the SM by measuring certain longitudinal branch-
ing ratios and CP asymmetries of Bd;s mesons decaying

into vectors, for modes mediated by penguin diagrams—
we focused on the potential of the Bs ! �K0�K0� decay at
that time. The method has advantages both from the
theoretical and experimental points of view. On the theo-
retical side, it reduces the required theoretical input
mainly to a single hadronic quantity �, defined as the
difference between ‘‘tree’’ and ‘‘penguin’’ contributions.
More precisely, for a �BQ meson decaying through a

b ! q penguin-mediated process, the decomposition:

�A � Að �BQ ! M1M2Þ ¼ �ðqÞ
u T þ �ðqÞ

c P; (1)

with the CKM factors �ðqÞ
U ¼ VUbV

�
Uq, can be used to

define � as the difference of the hadronic matrix elements

that are multiplied by �ðqÞ
u and �ðqÞ

c respectively, i.e.,

� ¼ T � P: (2)

In the case of penguin-mediated decays, the evaluation of
this quantity using QCD factorization (QCDF) [11] is
expected to be particularly robust, as it was built specifi-
cally to cancel the infrared divergences coming from
spectator-quark and annihilation contributions up to next-
to-leading order [12,13]. On the experimental side, this test
of weak mixing angles within the standard model can be
performed simply by measuring a CP-averaged branching
ratio and an untagged rate. This allows us to avoid tagging,
although a time-dependent analysis is still required.
In the present article, we extend this approach beyond

the simple SM test on the weak mixing angles �s and �d

presented in Ref. [10]. Indeed, we show that we can also
use penguin-mediated decays to measure the size of NP
contributions to neutral-meson mixing, assuming that its
contribution to �B ¼ 1 decays is negligible. We also
update our predictions for the branching ratio of Bs !
�K�0K�0 which has been recently measured. The paper is
organized in the following way. In Sec. I, we present a
formula to pin down the NP contribution to �s and �d,
obtained from b ! d, s transitions, under the assumption
that NP provides significant contributions only to the
meson-mixing phases. In Sec. II, we discuss the main
theoretical input in this method. In Sec. III, we consider
three different examples of the method, corresponding to
B ! PP, PV and VV decays. We update our prediction in
Ref. [10] for BRlongðBs ! �K�0K�0Þ in Sec. IV, and compare
it with its recent measurement by the LHCb collaboration
[14]. In Appendix A we provide a dictionary between the
experimental measurements [15,16] and the theoretical
quantities [10] defined for longitudinal observables in
B ! VV decays. In Appendix B, we discuss differences
in the determination of the branching ratio for neutral
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mesons for tagged or untagged analyses, highlighting the
role played by the width difference �� (a problem particu-
larly relevant for Bs mesons).

I. FORMULAS FOR NP MIXING ANGLES

Using the unitarity relation �ðqÞ
u þ �ðqÞ

c þ �ðqÞ
t ¼ 0, we

can write Eq. (1) in terms of �ðqÞ
c and �ðqÞ

t :

�A � Að �BQ ! M1M2Þ ¼ ��ðqÞ
t T � �ðqÞ

c �: (3)

The weak phase in �ðqÞ
t is the angle �q, defined as

�q � arg

�
� VtbV

�
tq

VcbV
�
cq

�
¼ arg

�
��ðqÞ

t

�ðqÞ
c

�
; (4)

whereas �ðqÞ
c is real to a very good approximation for

both q ¼ d, s. Following the definitions in Appendix A,
we introduce the observables: a branching ratio BR ¼
gpsðjAj2 þ j �Aj2Þ=2 (where gps is the phase space factor)

and three CP asymmetries Adir, Amix and A��:

Adir � jAj2 � j �Aj2
jAj2 þ j �Aj2 ; Amix ��2�f

Imðe�i�QA� �AÞ
jAj2 þj �Aj2 ;

A�� ��2�f

Reðe�i�QA� �AÞ
jAj2 þj �Aj2 ;

(5)

defined in terms of �A and its CP-conjugate A, as well as the
BQ meson-mixing phase �Q (�f is the CP parity of the

final state).
These four observables can be written, using Eq. (3), in

terms of �ðqÞ
c;t , T, �, and �Q. One can then eliminate the

hadronic parameter T to obtain a relationship between
these observables:

2gpsj�j2j�ðqÞ
c j2sin2�q ¼ BRð1� �f sin�QqAmix

þ �f cos�QqA��Þ; (6)

with �Qq defined as:

�Qq ¼ 2�Q � 2�q þ�NP
Q ; (7)

being �NP
Q the New Physics contribution to the mixing

angle of the BQ system: �Q ¼ 2�Q þ�NP
Q . In deriving

Eq. (6) we have assumed that New Physics could alter only
the mixing phase of the neutral BQ meson, but not the

CKM matrix elements involved in the decay process (the
validity of this hypothesis could be tested through a con-
sistency check between different channels, as proposed in
Ref. [17]). Equation (6) is a generalization of similar
formulas developed in Refs. [10,12] in the context of the
SM. This relation is the starting point of our analysis.

Collecting all terms on the left-hand side in Eq. (6), and
defining:

C ¼ 2gpsj�cj2sin2�qj�j2
BR

; (8)

we can solve Eq. (6) for �Qq:

sin�Qq ¼ z�fÂmix �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
�fÂ��;

cos�Qq ¼ �z�fÂ�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
�fÂmix:

(9)

Here, z ¼ ð1� CÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

dir

q
, Âmix ¼ Amix=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

dir

q
,

and Â�� ¼ A��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

dir

q
, with the relation:

Â 2
mix þ Â2

�� ¼ 1: (10)

There is a twofold ambiguity in Eq. (9). In practice, we will
see that z ’ 1 (or equivalently C � 1), so that the two
solutions are very close and they can be considered as one
single solution within current theoretical and experimental
uncertainties. Notice also that z2 � 1, which provides a
very strong and interesting constraint on the size of Adir:

A2
dir <Cð2� CÞ: (11)

In general, a pair of values for BR and � imply an upper
bound on jAdirj [10,18] which is much tighter than the
experimental value for Adir. A violation of this bound
would be an indication of NP in decay. In the following

we will take Adir ¼ 0� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C� C2

p
in the numerical

analyses. For example, in the case of B ! �KS we have
C ¼ ð8:9� 7:7Þ � 10�5, which implies jAdirj< 0:019.
If there is no New Physics and if the process considered

is such that Q ¼ q, one recovers sin�Qq ! 0 and

cos�Qq ! 1, as can be checked from Eq. (7). In this

case, Eq. (6) reduces to the simple relation:

zSM ¼ ��fÂ
SM
�� : (12)

This compact equation can be easily rewritten as a SM test
of the angles of the unitarity triangle and corresponds to
Eqs. (33)–(36) of Ref. [10].

II. THEORETICAL INPUT

The theoretical input in this formalism is limited to the
quantity � defined in Eq. (2). As discussed in
Refs. [10,12], this quantity can be computed safely within
QCD factorization [11] for penguin-mediated decays be-
cause of the cancellation of long-distance contributions. As
a consequence of this cancellation, only penguin contrac-
tions contribute to �, as can be seen by inspection of
the formulas in Ref. [19]. The general form of � for a
BQ ! M1M2 decay is [10,12]:

�M1M2
¼ AQ

M1M2

CF�s

4�N
C1½ �GM2

ðm2
c=m

2
bÞ � �GM2

ð0Þ�; (13)

where M1 picks up the spectator quark of the BQ

meson. The normalization involves the M2 decay con-
stant and a B ! M1 form factor:

AQ
M1M2

¼ GFffiffiffi
2

p m2
BQ
fM2

ABQ!M1ð0Þ: (14)
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C1 is the relevant Wilson coefficient of the effective

Hamiltonian at a scale of order mb. �GM2
¼ GM2

�
rM2
	 ĜM2

is the penguin function with a u or a c quark

running in the loop and the sign depends on whether
M1 is a pseudoscalar or a vector meson (see [19,20]
for the precise definition of the quantities entering �).
For identical particles in the final state (for instance
Bs ! ��) an extra factor of 2 must be included in �.

In the case in which bothM1 andM2 are vector mesons,
there is a different � for each of the three transversity
amplitudes. As discussed in Ref. [20], only longitudinal
amplitudes can be handled safely within QCD factoriza-
tion, so we shall focus on longitudinal polarizations for
vector-vector modes, in the spirit of Ref. [10] (see also
Ref. [21] for a discussion of transverse amplitudes in
QCDF). This requires the definition of suitable longitudi-
nal observables, together with a procedure to extract them
from the observables that are actually measured, as dis-
cussed in more detail in the appendices of the present
article.

In Table I we present the values of � for BQ ! XY
penguin-mediated decay channels, with X, Y ¼ P, VL

(where VL stands for longitudinally polarised vectors),
using the same hadronic inputs as in Ref. [10].

III. NEUTRAL-MESON MIXING ANGLES FROM
BQ ! PP, PV, AND VLVL

In this section we illustrate the determination of the NP
contributions to both weak mixing angles �d and �s using
Eqs. (6) and (9). We consider channels of three different
types: Bs ! K0 �K0 (B ! PP), Bd ! �KS (B ! PV), and
Bd ! �K� (B ! VLVL). We will see that in the case of
Bd ! �KS and Bd ! �K�, all the required observables
are already measured, which allows us to perform a com-
plete analysis to extract�NP

d . There is no experimental data

for Bs ! K0 �K0, so we will only be able to present a case
study, which can be exploited immediately as soon as data
is available.
Besides the theory input � and the measured branching

ratio, we need additional inputs for the SM CKM parame-
ters. Since we are assuming that meson mixing could be
affected by NP, we must use values of the CKM elements
extracted using modes insensitive to mixing. The fit in
Table 11 of Ref. [1] satisfies this requirement, as the
mixing-related observables included in this fit are used
essentially to determine the size of NP in meson mixing
and have a very small impact on the CKM parameter
themselves, which are thus determined from tree-
dominated quantities. Indeed we checked that a fit limited
to the tree-dominated inputs of Ref. [1] yields almost
identical results for the CKM parameters. From Ref. [1]
we obtain, upon symmetrizing errors:

j�ðdÞ
u j ¼ ð4:1� 0:3Þ� 10�3; j�ðsÞ

u j ¼ ð9:5� 0:6Þ� 10�4;

j�ðdÞ
c j ¼ ð9:2� 0:2Þ� 10�3; j�ðsÞ

c j ¼ 0:041� 0:001;

�d ¼ ð26:2� 2:1Þ	; �s ¼�ð1:26� 0:07Þ	;

¼ ð69:9� 4:4Þ	; (15)

which will be used in the following studies.

A. First example: Bd ! �KS

We first consider Bd ! �KS. Using the formulas in
Eq. (9), together with � and C in Table I, and the
experimental numbers BR ¼ ð8:3� 1:0Þ � 10�6 and
Amix ¼ �0:56� 0:16 [22] (the product of intrinsic par-
ities is ��KS

¼ �1), we find the two solutions for the NP

contribution to the mixing angle:

�NP
d ¼ ð�0:38� 0:21Þ _ ð�0:35� 0:21Þ rad; (16)

from which we can give an averaged result:

�NP
d;aver ¼ �0:36� 0:22 rad: (17)

This result is (marginally) compatible with the SM value
�NP

d ¼ 0. However, the error on �NP
d is almost completely

dominated by the experimental uncertainty in Amix: any
improvement on the latter would impact our knowledge
of �NP

d and its agreement with SM expectations.

In Fig. 1 we show the regions in the Amix-A�� plane
corresponding to different values of �NP

d , the NP contribu-

tion to the mixing angle. The easiest way to understand this
plot is through the two constraints on Amix and A��: Eq. (6)
is a linear equation at fixed �NP

Q , whereas A2
mix þ A2

�� � 1

yields a radial constraint. For a fixed �NP
Q , the solution for

Amix and A�� is thus given by the intersection of a line with
the unit circle. If this line is tangent, the solution is limited
to one point, and our determination is perfectly precise.
The opposite situation occurs if the line goes through the
origin. It turns out that the distance of this line from the

TABLE I. Values of � for the various decays of interest, and
the corresponding values for C� BR, defined in Eq. (8). In the
case of two vector mesons these numbers should be understood
as referring to longitudinal polarizations (the third column
means C� BRlong in this case).

Channel j�jð10�7 GeVÞ C� BR

Bd ! K �K (3:23� 1:16) ð29:8� 21:9Þ � 10�9

Bs ! �KK (3:05� 1:11) ð1:21� 0:89Þ � 10�9

Bd ! K� (2:32� 1:00) ð0:74� 0:64Þ � 10�9

Bd ! K �K� (2:29� 0:93) ð14:7� 12:1Þ � 10�9

Bd ! K� �K (0:41� 0:60) ð0:47� 1:38Þ � 10�9

Bs ! �KK� (2:16� 0:89) ð0:60� 0:50Þ � 10�9

Bs ! �K�K (0:36� 0:53) ð0:02� 0:05Þ � 10�9

Bd ! K� �K� (1:85� 0:93) ð9:37� 9:53Þ � 10�9

Bs ! �K�K� (1:62� 0:81) ð0:33� 0:33Þ � 10�9

Bd ! K�� (1:92� 1:03) ð0:49� 0:53Þ � 10�9

Bs ! �K� (1:87� 0:94) ð8:80� 8:96Þ � 10�9

Bs ! �� (3:86� 2:09) ð0:92� 1:00Þ � 10�9

ANALYSIS OF Bd;s MIXING ANGLES IN THE . . . PHYSICAL REVIEW D 85, 034010 (2012)

034010-3



origin is given exactly by 1� C, so C measures the preci-
sion with which we can determine �NP

Q :

The smaller the value ofC, the more precisely we can pin
down the value of �NP

Q .

The SM solution is shown explicitly in Fig. 1, and the
gray box indicates the current experimental situation. One
can see there is marginal agreement, in line with the result
in Eq. (17). We stress that these results include all known
hadronic uncertainties, and the errors are relatively small
because the chosen theoretical input is robust. A more
precise value for the angle �d would achieve a substantial
reduction of the regions of fixed �NP

d in Fig. 1.

It should be mentioned that, since we have no way of
determining the sign of A��, there is a second box in Fig. 1
that has not been drawn, corresponding to �fA�� 
þ0:8.

We have discarded this possibility because it leads to a very
large New Physics mixing angle.

B. Second example: Bd ! �K�

An angular analysis of the decay Bd ! �K� is available
from both BABAR and Belle collaborations [15,16], with
an additional time-dependent analysis for the former ex-
periment. The averaged results read [15,22]

BR¼ ð9:8�0:7Þ�10�6; ACP ¼ 0:01�0:05;

fL ¼ 0:48�0:03; A0
CP ¼ 0:04�0:06;

��0 ¼ 0:28�0:42; ��0 ¼ 0:27�0:16:

(18)

Using Eqs. (A9)–(A12) in Appendix A (and noting that
��K� ¼ þ1), we obtain the longitudinal observables:

BRlong ¼ ð4:7� 0:4Þ� 10�6;

A
long
dir ¼�0:05� 0:08;

A
long
mix ¼ 0:96� 0:25;

Along
�� ¼�ð0:27� 0:86Þ:

(19)

Compared to the case of Bd ! �KS, the uncertainty on

A
long
�� is so large that one cannot distinguish, among the two

solutions, which one is disfavored by too large a value of
the NP mixing angle. For illustration we focus on the

negative solution of A
long
�� .

For this decay, Eq. (11) yields the following range for
the direct asymmetry:

A
long
dir ¼ 0� 0:015; (20)

which is more precise than the experimental value in
Eq. (19), and which is used in the following. Equation (9)
then yields the two solutions:

�NP
d ¼ ð0:31� 0:90Þ _ ð0:34� 0:90Þ rad; (21)

which can be averaged as:

�NP
d;aver ¼ 0:33� 0:90 rad: (22)

This result is compatible with the SM (�NP
d ¼ 0), and also

with the result obtained from Bd ! �KS (Eq. (17)), within
large uncertainties.
In Fig. 2, we show the regions in the Amix-A�� plane

corresponding to different values of the NP contribution to
the mixing angle. The SM solution is shown explicitly, and
the gray box indicates the current experimental situation.

FIG. 1 (color online). Amix vs A��, for several values of the
NP mixing angle �NP

d for Bd ! �KS, where BR ¼
ð8:3� 1:1Þ � 10�6, � ¼ ð2:32� 1:00Þ � 10�7 GeV and gps ¼
8:4� 109 GeV�2. The box indicates the experimental value for
the asymmetry Amix ¼ �0:56� 0:16 and the range obtained for
A�� using Adir ¼ 0� 0:019 (�f ¼ �1).

FIG. 2 (color online). Amix vs A��, for several values of the
NP mixing angle �NP

d for Bd ! �K�, where BRlong ¼
ð4:7� 0:4Þ � 10�6, � ¼ ð1:92� 1:03Þ � 10�7 GeV and gps ¼
8:2� 109 GeV�2. The box indicates the experimental values for
the asymmetries given in Eq. (19) (�f ¼ þ1).
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From this plot we see that a more accurate knowledge of

A
long
mix or A

long
�� would be very useful to test the SM

hypothesis.

C. Third example: Bs ! K0 �K0

There is currently no information on this mode.
However, the U-spin related decay Bd ! K0 �K0 has the
measured branching ratio [22]:

BRðBd ! K0 �K0Þ ¼ ð0:96� 0:20Þ � 10�6: (23)

As explained in Ref. [12], if there is no NP affecting the
decay Bd ! K0 �K0, one can predict the SM branching
ratio for the decay Bs ! K0 �K0 quite precisely. This pre-
diction is not affected by a possible NP contribution to �d

(see Section 3 of Ref. [10]), and since we are assuming
that there is no NP affecting �B ¼ 1 processes, it is a
good option to take this prediction as an input for our
analysis [12]:

BRðBs ! K0 �K0Þ ¼ ð18:2� 7:3Þ � 10�6: (24)

The present analysis of this decay should be considered as
a case study, waiting for data to be available.

Without further experimental information on CP asym-
metries, we cannot use Eq. (9) to extract �NP

s , the NP
contribution to the mixing angle. But it is still possible to
determine the regions in the Amix-A�� plane that corre-
spond to each value of �NP

s , similarly to Figs. 1 and 2.
Notice that in the present case we have simply �Qq ¼
�NP

s , since Q ¼ q ¼ s here. The case Bs ! K0 �K0 is
shown in Fig. 3. Whenever the branching ratio for this
mode is measured, this plot can be remade, although we
do not expect it to change in an appreciable way. A precise

measurement of the time-dependent CP asymmetry will
then provide an accurate determination of �NP

s .
One may wonder why we did not consider the decay

Bd ! K0 �K0 at a first stage, since its branching ratio is
known. However, the prospects for this particular decay
are not very alluring. The mixing angle involved in the
expression for C [Eq. (8)] is �d, and the branching ratio is
not particularly large, so that the value of C is small but not
tiny (C
 0:03). As mentioned above, the value of C
determines the potential accuracy of our procedure, which
turns out to be rather poor in the present case. This is true in
general for all b ! d transitions in our list (see Table I);
however, the situation may change if the branching ratio of
some of the modes is found to be large enough, as it might
be for Bd ! K�0 �K�0.
The three plots in Figs. 1–3 can be reversed and reinter-

preted as predictions for the Amix and A�� asymmetries if
the range for�NP

d;s is extracted from other processes, always

under the assumption that there is no significant New
Physics contribution to �B ¼ 1 processes.

IV. THE BRANCHING RATIOS BRðBd;s ! �K�0K�0Þ
WITHIN THE SM

In this section, we present a prediction for BRlongðBs !
�K�0K�0Þ in the SM using our approach. This prediction can
be easily turned, as shown later on, into a prediction for the
total branching ratio, once fL, ACP and A0

CP are mea-

sured (see Appendix A for details). This section is an
update of results presented in Ref. [10].
The two decays Bq ! �K�0K�0, with q ¼ d, s, are related

by U-spin symmetry. The symmetry-breaking effects can
be separated into a factorizable and a nonfactorizable part.
This translates into the following relations involving the
hadronic parameters Tq and Pq:

Ps ¼ fPdð1þ �PÞ; Ts ¼ fTdð1þ �TÞ; (25)

with the factorizable factor f:

f ¼ m2
Bs
ABs!K�
0

m2
BA

B!K�
0

¼ �s
K�K�

�d
K�K�

; (26)

and �T;P account for the nonfactorizable symmetry-

breaking effects. There is no theoretically clean way to
compute these quantities. Here we use QCD-factorization
to estimate an upper bound on this corrections. We get
j�Pj< 0:09, and keep its phase as a free parameter (even
though QCD factorization would predict it to be small). It
is very easy to show that the quantity �T is related to �P

through:

Td�T ¼ Pd�P: (27)

(This relation comes from Eq. (25) in the following
way: �s ¼ Ps � Ts ¼ fðPd � Td þ Pd�P � Td�TÞ ¼
fð�d þ Pd�P � Td�TÞ, but �s=f ¼ �d [see Eq. (26)],
so that �d ¼ �d þ Pd�P � Td�T).

FIG. 3 (color online). Amix vs A��, for several values of the NP
mixing angle �NP

s for Bs ! K0 �K0, where we take the estimate
BR ¼ ð18:2� 7:3Þ � 10�6 (see the text). In addition, we used
� ¼ ð3:05� 1:11Þ � 10�7 GeV and gps ¼ 8:03� 109 GeV�2.
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Observables related to the decay Bs ! �K�0K�0 can be
obtained if the ones for Bd ! �K�0K�0 are known. An
important result discussed in Ref. [10] is that the ratio:

Rsd � BRlongðBs ! K�0 �K�0Þ
BRlongðBd ! K�0 �K�0Þ ; (28)

is almost a constant if BRlongðBd ! K�0 �K�0Þ * 10�7, even
in the presence of NP in mixing. Indeed, when the two
branching ratios in Eq. (28) are reexpressed in terms of Ps;d

and �s;d (as computed in Table I), it becomes clear that the

ratio Rsd is completely dominated by the penguin contri-
butions Ps and Pd for large enough BRlongðBd ! K�0 �K�0Þ,
and thus determined by f and �P essentially. This behavior
is confirmed in Table II for several values of the branching
ratio.

Combining all the error sources (including the variation
of BRd in the range given in Table II), we obtain:

RDMV
sd ¼ 16:4� 5:2; (29)

which updates Table IV in Ref. [10]. The improvement on
the uncertainty comes, in particular, from Eq. (27) which
was not used in this reference. We have added the super-
script ‘‘DMV’’ to distinguish our determination from other
ones that we will describe now.

Indeed, this number can be compared with the value
obtained within the QCDF framework taking the usual
model for 1=mb-suppressed corrections described in
Ref. [20]. The corresponding predictions are for the Bs

decay mode: BRðBs ! �K0�K0�Þ ¼ ð9:1þ11:3
�6:8 Þ � 10�6 and

fLðBsÞ ¼ 0:63þ0:42
�0:29, and for the corresponding Bd decay

mode: BRðBd ! �K0�K0�Þ ¼ ð0:6þ0:5
�0:3Þ � 10�6 and

fLðBdÞ ¼ 0:69þ0:34
�0:27. We write Rsd in terms of total branch-

ing ratios and polarization fractions, as described in
Appendix A:

Rsd ¼ BRðBsÞfLðBsÞ
BRðBdÞfLðBdÞ fc; (30)

where we introduce the correcting factor

fc ¼ 1þA0
CPðBsÞACPðBsÞ

1þA0
CPðBdÞACPðBdÞ

: (31)

In Ref. [20], the predictions within QCDF are ACPðBsÞ ’
1% and ACPðBdÞ ’ �13%. Since the QCDF predictions
are dominated by longitudinal polarization, we assume
A0

CPðBsÞ and A0
CPðBdÞ to be of the same size, leading

to a factor fc ranging from 0.98 to 1, and to the QCDF
prediction:

RQCDF-I
sd ¼ 13:8� 19:2: (32)

Alternatively, if data on B ! K�� is used to control
annihilation rather than the usual model for these
1=mb-suppressed corrections, the predictions become
[20]: BRðBs ! �K0�K0�Þ ¼ ð7:9þ4:3

�3:9Þ � 10�6, fLðBsÞ ¼
0:72þ0:16

�0:21, BRðBd ! �K0�K0�Þ ¼ ð0:6þ0:3
�0:2Þ � 10�6, and

fLðBdÞ ¼ 0:69þ0:16
�0:20. In this case the prediction is practi-

cally the same but with smaller errors:

RQCDF-II
sd ¼ 13:7� 10:5; (33)

which has a central value a bit lower than our results, but is
compatible within its (larger) error bars.
The most recent experimental values [22] for BRðBd !

�K0�K0�Þ ¼ ð1:28þ0:35
�0:30 � 0:11Þ � 10�6 and fLðBdÞ¼

0:80þ0:10
�0:12�0:06 are consistent with the QCDF prediction,

although both are on the high range. The LHCb
collaboration has measured the Bs mode very recently,
reporting the following numbers [14]: BRðBs !
�K0�K0�Þ ¼ ð2:81� 0:46� 0:45� 0:34Þ � 10�5 and
fLðBsÞ ¼ 0:31� 0:12� 0:04.
Following the discussion in Appendix B, we can ex-

press the ratio Rsd in terms of experimentally measured
quantities:

Rsd ¼ BRLHCbðBsÞfL;LHCbðBsÞ
BRB-factðBdÞfL;B-factðBdÞ

1� y2

1þ y cos�s

; (34)

where we define y ¼ ��s=ð2�sÞ. In both cases, it was
assumed in the experimental analysis that there is no
CP-violation in decay, and therefore we do not include
the corrections associated with the direct asymmetries.
We take y ¼ 0:046� 0:027 [22], and the SM value of �s.
These results imply a quite low value for Rsd:

Rexp-I
sd ¼ ð8:1� 3:3Þ �

�
fLðBsÞ
0:31

�
¼ 8:1� 4:7: (35)

The measured value of fLðBsÞ is unexpectedly low with
respect to the polarization fraction for the U-spin related
channel: fLðBdÞ ’ 0:8. If fLðBsÞ ’ fLðBdÞ, we would ob-
tain a ratio Rsd ’ 21 in better agreement with Eq. (29),
although fLðBsÞ ’ 0:6 would fit better.
An alternative determination of this branching ratio

using data from B0
s ! D�

s �
� yields the result [23]

BRðBs ! �K0�K0�Þ ¼ ð2:64� 0:61� 0:42Þ � 10�5 in fair
agreement with the previous result:

R
exp-II
sd ¼ ð7:6� 3:2Þ �

�
fLðBsÞ
0:31

�
¼ 7:6� 4:5: (36)

A similar exercise with fLðBsÞ ’ 0:8 yields Rsd ’ 19, once
again in better agreement with our expectations.
Finally, one can invert these relations and get a predic-

tion for the total BRðBs ! �K0�K0�Þ, as measured at a
hadronic machine (thereby the subscript ‘‘LHCb’’):

TABLE II. Results for the ratio RDMV
sd for three different values

of BRlongðBd ! K�0 �K�0Þ. It can be seen that the dependence on
this branching ratio is very mild.

BRd 5� 10�7 5� 10�6 5� 10�5

RDMV
sd 16:05� 4:87 16:38� 4:92 16:46� 4:93
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BRðBs ! �K0�K0�ÞDMV
LHCb

¼ RDMV
sd BRB-factðBdÞ fL;B-factðBdÞ

fL;LHCbðBsÞ
1þ y cos�s

1� y2

¼ ð5:7� 2:5Þ � 10�5 �
�
0:31

fLðBsÞ
�

¼ ð5:7� 3:4Þ � 10�5; (37)

which can be trivially updated if the longitudinal polariza-
tion of the Bs mode changes.

We remind the reader that, as opposed to the rest of the
paper, all the predictions in this section have been obtained
within the SM. A detailed analysis of the impact of New
Physics on these observables is certainly worthwhile, but
lies beyond the scope of the present article.

V. CONCLUSIONS

We have shown how to exploit B ! PP, PV, and VV
penguin-mediated decays in order to obtain the New
Physics contribution to the weak mixing phase of both
Bd and Bs systems, under the assumption of no significant
New Physics contribution to the decay amplitudes. The
main theoretical input consists of the infrared-safe quantity
�, which can be evaluated within QCD factorization with a
good theoretical control. It is interesting that the experi-
mental knowledge of the branching ratio by itself yields a
stringent bound on the direct CP asymmetry, Eq. (11). As a
consequence, the knowledge of BR and Amix is sufficient to
determine the New Physics contribution to the weak
mixing angles. Different examples are discussed and the
corresponding values for �NP

Q presented; however, more

precise data is required before a clear conclusion can be
reached.

These results should be compared with the one obtained
from charmonium modes, where one is also sensitive
to the NP mixing angle. Time-dependent analyses
of B ! J=�KS give the average [1,22]: �c �c

d ¼
ð21:2� 0:9Þ	. Using the value quoted in Eq. (15) for the
SM contribution �d leads to the estimate:

�NP
d ðc �cÞ ¼ �0:09� 0:04 rad: (38)

In Ref. [1], the analysis of NP contributions to both Bd and
Bs mixings (so-called scenario I) including the experimen-
tal information available at that time led to the following
value for the NP mixing phase in the Bd sector:

�NP
d ð½1�Þ ¼ �0:22þ0:07

�0:05 rad: (39)

The main ingredient for this value is the discrepancy
between �c �c

d and BRðB ! ��Þ in the SM, and thus it will

only be marginally affected by the CDF, D0, and LHCb
updates concerning the Bs sector. The comparison of these
numbers with the ones obtained in Sec. III is shown in
Fig. 4.

Finally, an updated result for the longitudinal observ-
ables of the decay mode Bs ! �K0�K0� has been presented.
For the ratio of Bs to Bd longitudinal branching ratios,
defined in Eq. (28), we find:

RDMV
sd ¼ 16:4� 5:2: (40)

This result can be compared with recent experimental
analyses, and with similar theoretical predictions obtained
with alternative approaches:
(1) Our result is compatible with the QCDF prediction

[see Eq. (32)], although our error is about 4 times
smaller. If the QCDF is supplemented with Bd !
K�� data to fix 1=mb-suppressed corrections of
phenomenological relevance, the error decreases,
but still is twice as large as ours.

(2) Our result is compatible with the recent LHCb
measurement, Eq. (35), although the experimental
number seems rather low. We tentatively identify
this anomaly with the surprisingly low value for the
longitudinal polarization fraction fLðBsÞ ’ 0:3: a
value of fL ’ 0:8, similar to the one measured for
the U-spin related Bd mode, would lead to a
Rsd ’ 20, more in agreement with our prediction.
If the LHCbmeasurement of fLðBsÞ is confirmed, its
interpretation would constitute a theoretical chal-
lenge, as it would require a type of NP that violates
the flavour symmetry relating Bd and Bs decays very
significantly.

We hope that these results will trigger more precise
experimental analyses of penguin-mediated decays both
in Bd and Bs sectors, considering the potential of these
channels to identify New Physics in meson mixing.
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FIG. 4 (color online). Comparison between the NP mixing
angles obtained from c �c, from Bd ! �KS, from Bd ! �K�,
and from the fit in Scenario I of Ref. [1]. The line �NP

d ¼ 0
corresponds to the standard model.
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APPENDIX A: DICTIONARY FOR
LONGITUDINAL OBSERVABLES

IN B ! VV DECAYS

In the case of two-body B decays into vector mesons
V1 and V2, there are three different configurations of
helicity available h ¼ þ1, 0, �1. This is described by
three transversity amplitudes A0;?;jj corresponding to line-

arly polarized states, with definite CP properties (A0;jj
correspond to a CP-parity �0;jj ¼ �V1

�V2
, whereas A?

has �? ¼ ��V1
�V2

). As discussed extensively in

Refs. [20,21], the transversal amplitudes A?;jj are sup-

pressed by powers of 1=mB compared to the longitudinal
amplitude A0, leading to an expected longitudinal polar-
ization fL close to 1. In turn, this implies that predictions
based on the heavy-quark limit, such as those from QCD
factorization or SCET, are much more reliable for longi-
tunal observables than for parallel and perpendicular ones,
where only rough estimates can be derived.

This theoretical situation explains why we considered
only longitudinal observables for VV modes in Ref. [10] as
well as in the present article. We defined longitudinal
observables as the CP observables constructed by consid-
ering as final CP eigenstate the two-meson state with

longitudinal polarizations, i.e., the CP-averaged branching
ratio and the CP-asymmetries:

BRlong ¼ gps
jA0j2 þ j �A0j2

2
; (A1)

Along
dir ¼ jA0j2 � j �A0j2

jA0j2 þ j �A0j2
; (A2)

Along
�� þ iAlong

mix ¼ �2�0

e�i�QA�
0
�A0

jA0j2 þ j �A0j2
; (A3)

with the phase space factor relating an amplitude to the
corresponding branching ratio:

gps ¼
�B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

B � ðmV1
þmV2

Þ2�½m2
B � ðmV1

�mV2
Þ2�

q
16�m3

B

:

(A4)

A0 represents the longitudinal decay amplitude for BQ, �A0

its CP conjugate, and �Q the meson-mixing angle.

In principle, these quantities can be obtained from the
angular analysis of the differential decay width (with re-
spect to the usual angular variables �1, �2, c [20]):

d3�Bq!V1V2

d cos�1d cos�2dc
¼ 9

8�

�
ja0j2cos2�1cos2�2 þ jajjj2 12 sin

2�1sin
2�2cos

2c þ ja?j2 12 sin
2�1sin

2�2sin
2c

þ Re½a�0ajj�
1

2
ffiffiffi
2

p sin2�1 sin2�2 cosc � Im½a�0a?�
1

2
ffiffiffi
2

p sin2�1 sin2�2 sinc

� Im½a�jja?�
1

2
sin2�1sin

2�2 sin2c

�
: (A5)

If the initial meson is charged, or if we neglect the differ-
ence of lifetimes between neutral mesons (�� ¼ 0), the
coefficients ai and the transversity amplitudes Ai can be
identified up to a global normalization factor, and the
quantities (A1)–(A3) are easy to obtain from an angular
analysis of the decay, as explained in the following.

For the moment, the only available detailed time-
dependent analyses for VV modes of interest to us con-
cerns Bd ! �K� [15,16], providing CP-averaged parame-
ters and CP-asymmetries for the 3 transversity amplitudes
(these analyses for the Bd meson set��Bd

¼ 0). Using a�
superscript for Bd observables and a þ superscript for �Bd

observables, one has values for the branching ratios:

BRþ ¼
��

�total

¼ gps
X
�

j �A�j2;

BR� ¼ �

�total

¼ gps
X
�

jA�j2;
(A6)

and for the polarization fractions:

fþL ¼ j �A0j2P
�

j �A�j2
; f�L ¼ jA0j2P

�

jA�j2
: (A7)

We have, therefore, the relationships:

BR ¼ 1

2

1

�total

ð ��þ �Þ; ACP ¼
��� �
��þ �

;

fL ¼ 1

2
ðfþL þ f�L Þ; A0

CP ¼ fþL � f�L
fþL þ f�L

;

(A8)

and we can easily define the longitudinal observables in
terms of these observables:

BRlong ¼ BR � fL � ½1þA0
CP �ACP�; (A9)

A
long
dir ¼ � A0

CP þACP

1þA0
CP �ACP

; (A10)

Along
mix ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðAlong

dir Þ2
q

sinð2�þ argðA0= �A0ÞÞ; (A11)

DESCOTES-GENON, MATIAS, AND VIRTO PHYSICAL REVIEW D 85, 034010 (2012)

034010-8



Along
�� ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðAlong

dir Þ2
q

cosð2�þ argðA0= �A0ÞÞ; (A12)

where the relative phase between A0 and �A0 is defined
following the notation of Ref. [15]

argðA0= �A0Þ ¼ 2��0 þ 2��0: (A13)

In this analysis, the mixing angle �d was assumed to
have its standard model value 2� ¼ 0:75� 0:03 rad,
which we used to translate the measured quantities into

the longitudinal observables Along
mix and Along

�� . In the experi-

mental analysis of Ref. [15], there is only sensitivity to
sinð2�þ argðA0= �A0ÞÞ, which means that there is a sign

ambiguity in Along
�� , as seen in Eq. (19).

APPENDIX B: NEUTRAL-MESON OBSERVABLES
WITH A FINITE WIDTH DIFFERENCE

Since we consider the Bs meson in the present article, we
have to discuss the modifications induced by a finite life-
time difference, before distinguishing its impact on
flavour-tagged and flavor-untagged analyses for the longi-
tudinal observables of interest. We will see that we must
include different Oð��s=�sÞ corrections in each case
to connect the measured quantities and the observables
(A1)–(A3). As will become clear in the following, most
of this discussion applies not only to two-body vector
modes but more generally to any decay of a neutral meson
into a CP eigenstate.

1. Branching ratios in presence of meson mixing

The B- �B systems can be described in terms of
CP-conjugate flavour states jBQi and j �BQi (Q ¼ d, s).
The time evolution of an isolated neutral BQ meson of a

given flavour at t ¼ 0 and decaying at a later time t into a
CP eigenstate f is given as [24,25]:

�ðBQðtÞ ! fÞ ¼ Nf

jAfj2 þ j �Afj2
2

e��t

�
�
cosh

��t

2
þ Adir cosð�MtÞ

� A�� sinh
��t

2
þ Amix sin�Mt

�
; (B1)

�ð �BQðtÞ ! fÞ ¼ Nf

jAfj2 þ j �Afj2
2

e��t

�
�
cosh

��t

2
� Adir cosð�MtÞ

� A�� sinh
��t

2
� Amix sin�Mt

�
; (B2)

where the Hamitonian eigenvalues L;H ¼ ML;H �
i�L;H=2 define � ¼ H �L ¼ �M� i��=2. Also,

� � ð�H þ �LÞ=2 and Af ¼ hfjBQi. Nf is a time-

independent, but state-dependent normalization factor,

corresponding to the integration over phase space. The
mixing ratio q=p ¼ expð�i�QÞ is assumed to be a pure

phase in the present article (as suggested by the very small
values of the flavor specific asymmetries both for Bd and
Bs [22]).
The normalization factor Nf comes from:

�ðBQðtÞ ! fÞ ¼ NfjhfjBQðtÞij2: (B3)

Let us notice that this ‘‘definition’’ is rather ambiguous, as
one generally considers initial and final states that are
asymptotic (mass eigen)states, which BQ is not.

However, one can still determine this factor by going
back to the derivation of Fermi’s golden rule. This is
generally done for an initial mass eigenstate of the unper-
turbed Hamiltonian but can be easily adapted to the super-
position of two mass eigenstates jBLi, jBHi, provided that
the difference of energy between the two transitions
!L �!H ¼ hfjH1jBLi � hfjH1jBHi is small. In that
case, the normalization Nf corresponds to the phase

space available, computed for the mass eigenstates of
the unperturbed Hamiltonian. We obtain, therefore, the
same normalization as in the case of charged B-decays:

Nf ¼ gps�; (B4)

where gps is given by the phase space with an incoming

meson of mass M ¼ ðMH þMLÞ=2.
Since there is no unambiguous definition of the

CP-averaged branching ratio for neutral mesons as the
states involved (BQ and �BQ) are not mass eigenstates, we

should definewhat we call theCP-averaged branching ratio
for Bq decays. We opt for the simple definition, inspired by

the chargedmeson case, and corresponding to the value that
we would obtain through a measurement at t ¼ 0 (i.e.,
before neutral B-meson mixing could take place):

BRf ¼ gpsðjAfj2 þ j �Afj2Þ=2: (B5)

Wewill show later that this definition coincides exactlywith
time-integrated CP-averaged decay widths in the limit
�� ! 0, but that the relationship is corrected by terms of
orderOð��=�Þ. This correction depends on the experimen-
tal setting, because each one has a different sensitivity to the
time evolution of the neutral B-meson. This correction
factor can thus be seen as a correction for the temporal
acceptance of the considered experiment.
Let us now come to BQ ! V1V2 decays, and let us

assume that all the direct asymmetries vanish, whereas
A0;mix ¼ Ajj;mix ¼ �A?;mix ¼ � sin�Q and A0;�� ¼
Ajj;�� ¼ �A?;�� ¼ �� cos�Q, where � ¼ �V1

�V2
. As

discussed in Ref. [24], we can obtain the time-dependent
decay width from Eq. (A5), upon the identification:

jafj2 ! NjAfj2e��t �
�
cosh

��t

2
þ �f cos�Q sinh

��t

2

þ �f sin�Q sin�mt

�
; (B6)
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Re½a�0ajj� ! NjA0jjAjjj cosð�jj � �0Þe��t

�
�
cosh

��t

2
þ � cos�Q sinh

��t

2

þ � sin�Q sin�mt

�
; (B7)

Im ½a�fa?� ! NjAfjjA?je��t �
�
sin�f cosð�mtÞ

� � cos�f cos�Q sinð�mtÞ

þ � cos�f sin�Q sinh
��t

2

�
; (B8)

with f ¼ 0,? , k , and �0 and �k the relative strong phases
of A0 and Ak with respect to A?. There is a common

normalization factor N ¼ gps� for all amplitudes. The

CP-conjugate expression can be obtained by the replace-
ment �Q ! ��Q and by multiplying by (� 1) the two

imaginary parts involving a? in Eq. (B8).

2. Tagged analysis

Flavour-tagged analyses are particularly easy to perform
in B-factories as they produce intricated B �B pairs [15], and
they allow one to study separately the time-dependence of
B and �B samples as well as to extract the modulus and
relative phases of the three transversity amplitudes through
an angular analysis. The probability of the process depends
on the decay times ttag and tCP of both mesons (the one

decaying into a tagging state ftag and the one actually

studied for CP-violation and decaying into fCP). After
integrating over the sum ttag þ tCP, one obtains for

�tagðBQðtÞ ! fÞ a structure similar to that for untagged

decays provided that the exponential expð��tÞ is replaced
by expð��jtjÞ and that t ¼ tCP � ttag is allowed to run

from �1 to þ1. Indeed, from Ch. 1 in Ref. [26], we
have the joint decay amplitude Aðttag; tCPÞ which can be

integrated over time to yield:

Z
dttag

Z
dtCP

Z
½dp�Aðttag; tCPÞ

¼ �

2

Ntag

�
j �Atagj2

Z 1

�1
dtNCP

jACPj2 þ j �ACPj2
2

e��jtj

�
�
cosh

��t

2
þ Adir cosð�mtÞ � A�� sinh

��t

2

þ Amix sin�mt

�

¼ �

2
BRð �BQ ! ftagÞ �

Z 1

�1
dt�taggedðBQðtÞ ! fCPÞ

(B9)

where the first factor comes from the angular integral
describing the eþe� ! BQ

�BQ transition, and we have

defined �taggedðBQðtÞ ! fCPÞ as the integrand of Eq. (B9).

In the case of a nonvanishing width difference, and
assuming the normalization Eq. (B5), we can determine
the CP-averaged branching ratio by considering:

BRf;tagged ¼
Z þ1

�1
½�taggedðBQðtÞ ! fÞ

þ �taggedð �BQðtÞ ! fÞ� ¼ BRf � �2

�H�L

:

(B10)

We have, therefore, a correction of the time-integrated
branching ratio with respect to the branching ratio in
absence of mixing. This correction is due to the difference
of the widths between the two neutral states. This is
typically a small correction: if we define y � ��=ð2�Þ,
we can write [22]:

�2

�H�L

¼ 1

1� y2
¼

�
1þ ð0� 2Þ � 10�4 for Bd;

1þ ð2� 2Þ � 10�3 for Bs:
(B11)

3. Untagged analysis

In the case of hadronic machines, such as CDF, D0 and
LHCb, we encounter a rather different situation with no
flavour tags available and an integral over time being
performed. Since there is no information on the second
B-meson being produced, one must consider Eqs. (B1) and
(B2) for t  0. The CP-averaged branching ratio can then
be determined through:

BRf;untag ¼
Z þ1

0

1

2
½�untagðBQðtÞ ! fÞ

þ �untagð �BQðtÞ ! fÞ�

¼ BRf � �2

�L�H

�
1� A��

��

2�

�
: (B12)

Compared to the tagged case, we see that there is a further
term coming from Af;��. The resulting correction for the

branching ratio is larger than the one for B-factories, since
it is linear in the small quantity ��=ð2�Þ, and not
quadratic.
For vector-vector channels, assuming that the produc-

tion rate for BQ and �BQ is the same and that there is no

CP-violation in decay, BRV1V2;untag yields an angular struc-

ture identical to Eq. (A5), with the replacement:

jafj2 ! gpsjAfj2 �2

�L�H

�
1þ �f

��

2�
cos�Q

�
; (B13)

Re½a�0ajj� ! gpsjA0jjAjjj cosð�jj � �0Þ

� �2

�L�H

�
1þ �

��

2�
cos�Q

�
; (B14)
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Im½a�fa?� ! gpsjAfjjA?j

� �2

�L�H

�
�f

��

2�
cos�f sin�Q

�
; (B15)

where the cos� terms are the remnants of A��. After
integration over the angles, we obtain the CP-averaged
width:

�BQ!V1V2
¼ gps

�3

�L�H

�
�
jA0j2 þ jAjjj2 þ jA?j2

þ �
��

2�
cos�QðjA0j2 þ jAjjj2 � jA?j2Þ

�
;

(B16)

which is expressed in terms of the longitudinal and trans-
verse CP-averaged branching ratios.

In the case of the LHCb analysis for Bs ! K�0 �K�0
(� ¼ 1), an angular analysis was performed to extract

the total branching ratio as well as the longitudinal polar-
ization. The expression in Ref. [7] for the latter quantity
was given in the SM case with a vanishing mixing angle
�s. However, the angular analysis performed does not rely
on this assumption, so that we can just identify the coef-
ficients with the same angular dependence in the differen-
tial decay width, leading to: fL;LHCb ¼ ja20j=�B!V1V2

. We

can thus derive the relation, valid in the absence of
CP-violation in decay:

fL;LHCb � BRLHCb ¼ BRlong �2
s

�L�H

�
1þ��s

2�s

cos�s

�
:

(B17)

We see that even in the SM case where�s is tiny, there is a
small contribution from ��s=�s to the relationship be-
tween the polarization measured at LHCb and BRlong.
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