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In this article, we calculate the contribution of the higher-twist Feynman diagrams to the large-pT

inclusive single pion production cross section in photon-photon collisions in case of the running coupling

and frozen coupling approaches within holographic QCD. We compare the resummed higher-twist cross

sections with the ones obtained in the framework of the frozen coupling approach and leading-twist cross

section. Also, we show that in the context of the frozen coupling approach a higher-twist contribution to

the photon-photon collisions cross section is normalized in terms of the pion electromagnetic form factor.

DOI: 10.1103/PhysRevD.85.034009 PACS numbers: 12.38.�t, 13.60.Le, 13.87.Fh

I. INTRODUCTION

One of the most significant theoretical advances in
recent years has been the application of the AdS/CFT
correspondence [1] between string theories defined in
five-dimensional anti–de Sitter (AdS) spacetime and con-
formal field theories in physical spacetime. Quantum chro-
modynamics (QCD) is not itself a conformal theory;
however there are indications, both from theory [2,3] and
phenomenology [4,5] that the QCD coupling is slowly
varying at small momentum transfer. In addition, one can
argue that if the gluon has a maximum wavelength or an
effective mass [6] due to confinement, that gluonic vacuum
polarization corrections and the � function must vanish in
the infrared. If there is a conformal window where the
QCD coupling is large and approximately constant and
quark masses can be neglected, then QCD resembles
a conformal theory, thus motivating the application
of AdS/QCD to QCD. So, even though QCD is not
conformally invariant, one can use the mathematical rep-
resentation of the conformal group in five-dimensional
anti–de Sitter space to construct an analytic first approxi-
mation to the theory. The resulting AdS/QCD model gives
accurate predictions for hadron spectroscopy and a de-
scription of the quark structure of mesons and baryons,
which has scale invariance and dimensional counting at
short distances, together with color confinement at large
distances.

The hadronic wave function in terms of quark and gluon
degrees of freedoms plays an important role in QCD
process predictions. For example, knowledge of the wave
function allows us to calculate distribution amplitudes and
structure functions or, conversely, these processes can give
phenomenological restrictions on the wave functions.

In Refs [7–11] the higher-twist effects were calculated
within the frozen coupling constant approach. In Ref. [12],
it was noted that in perturbative QCD (pQCD) calculations,
the argument of the running coupling constant in both
renormalization and the factorization scale Q2 should be
taken as equal to the square of the momentum transfer
of a hard gluon in a corresponding Feynman diagram.
But, defined in this way, �sðQ2Þ suffers from infrared
singularities.
The contribution of large orders of perturbation theory

related to the so-called renormalons has been investigated
by several authors, using, in particular, the method of
Borel summation [13–17]. In the case of (QCD), the co-
efficients of perturbative expansions in the QCD coupling
�s can increase dramatically even at low orders. This fact,
together with the apparent freedom in the choice of renor-
malization scheme and renormalization scales, limits
the predictive power of perturbative calculations, even in
applications involving large momentum transfer, where �s

is effectively small.
Investigation of the infrared renormalon effects in vari-

ous inclusive and exclusive processes is one of the most
important and interesting problems in the perturbative
QCD. It is known that infrared renormalons are responsible
for the factorial growth of coefficients in a perturbative
series for the physical quantities. But, these divergent
series can be resummed by means of the Borel transforma-
tion [13] and the principal value prescription [18] and the
effects of infrared renormalons can be taken into account
by a scale-setting procedure �sðQ2Þ ! �sðexpðfðQ2ÞÞQ2Þ
at the one-loop order results. Technically, all-order resum-
mation of infrared renormalons corresponds to the calcu-
lation of the one-loop Feynman diagrams with the running
coupling constant �sð�k2Þ at the vertices identically
equivalent to the calculation of the same diagrams with
nonzero gluon mass.
In thiswork,we apply the running coupling approach [19]

in order to compute the effects of the infrared renormalons
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on the pion production in photon-photon collisions
within holographic QCD. This approach was also employed
previously [20–24] to calculate the inclusive meson produc-
tion in photon-proton, proton-proton, and photon-photon
collisions.

Since experiments examining high-pT particle produc-
tion in two-photon collisions have been improved, it be-
comes important to reassess the various contributions
which arise in quantum chromodynamics. Also, the experi-
mental measurement of the inclusive charged pion produc-
tion cross section is important for the photon-photon
collisions program at the future International Linear
Collider (ILC).

Therefore, the calculation and analysis of the higher-
twist effects on the dependence of the pion wave function
in single pion production at photon-photon collisions by
the running coupling approach within holographic QCD
are very interesting search points.

In this respect, the contribution of the higher-twist
Feynman diagrams to a single meson production cross
section in photon-photon collisions is computed by using
various pion wave functions from holographic QCD. Also,
the leading and resummed higher-twist contributions are
estimated and compared to each other.

We organize the paper as the follows; In Sec. II, we
provide some formulas for the calculation of the contribu-
tions of the higher-twist and leading-twist diagrams. In
Sec. III, we present some formulas and analysis of the
higher-twist effects on the dependence of the pion wave
function by the running coupling constant approach, and in
Sec. IV, the numerical results for the cross section and
discussion for the dependence of the cross section on the
pion wave functions are presented. Finally, some conclud-
ing remark are stated in Sec. V.

II. HIGHER-TWIST AND LEADING-TWIST
CONTRIBUTIONS TO INCLUSIVE

REACTIONS

The higher-twist Feynman diagrams for the pion pro-
duction in the photon-photon collision �� ! MX are
shown in Fig. 1(a). The amplitude for this subprocess can
be found by means of the Brodsky-Lepage formula [25],

Mðŝ; t̂Þ ¼
Z 1

0
dx1

Z 1

0
dx2�ð1� x1

� x2Þ�Mðx1; x2; Q2ÞTHðŝ; t̂; x1; x2Þ: (2.1)

In Eq. (2.1), TH is the sum of the graphs contributing to the
hard-scattering part of the subprocess. The hard-scattering
amplitude THðŝ; t̂; x1; x2Þ depends on a process and can be
obtained in the framework of pQCD and represented as a
series in the QCD running coupling constant �sðQ2Þ. The
light-cone momentum fractions x � x1, x2 ¼ 1� x spec-
ify the fractional momenta carried by quark and antiquark
in the Fock state. As higher-twist subprocesses, which
contribute to �� ! �X, we take �q ! Mq.

The Mandelstam invariant variables for subprocesses
�q ! Mq are defined as

ŝ ¼ ðp1 þ p�Þ2;
t̂ ¼ ðp� � pMÞ2;
û ¼ ðp1 � pMÞ2:

(2.2)

We have aimed to calculate the pion production cross
section and to fix the differences due to the use of various
pion model wave functions. The asymptotic pion wave
function [26,27] and the Vega-Schmidt-Branz-Gutsche-
Lyubovitskij (VSBGL) wave function [28] predicted by
AdS/QCD, and also the pQCD evolution [29] have the
form:

�hol
asyðxÞ ¼ 4ffiffiffi

3
p

�
f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

;

�hol
VSBGLðxÞ ¼

A1k1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

exp

�
� m2

2k21xð1� xÞ
�
;

�p
asyðxÞ ¼

ffiffiffi
3

p
f�xð1� xÞ;

(2.3)

where f� ¼ 92:4 MeV is the pion decay constant.

FIG. 1. (a) The higher-twist contribution to �� ! MX;
(b): The leading-twist contribution to �� ! MX.
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We now incorporate the higher-twist subprocess
�q ! Mq into the full inclusive cross section. In this
subprocess, the photon and the pion may be viewed as an
effective current striking the incoming quark line.
Therefore, the complete cross section in a formal analogy
with deep-inelastic scattering is written as

E
d�

d3p
ð�� ! MXÞ

¼ 3

�

X
q �q

Z 1

0
dx�ðŝþ t̂þ ûÞŝGq=�ðx;�t̂Þ

� d�

dt̂
ð�q ! MqÞ þ ðt $ uÞ: (2.4)

Here Gq=� is the per color distribution function for a

quark in a photon. The subprocess cross section for �, �L,
and �T production is

d�

dt̂
ð�q ! MqÞ

¼
8><
>:

8�2�ECF

9 ½Dðŝ; ûÞ�2 1
ŝ2ð�t̂Þ

�
1
ŝ2
þ 1

û2

�
M ¼ �;�L

8�2�ECF

9 ½Dðŝ; ûÞ�2 8ð�t̂Þ
ŝ4û2

M ¼ �T;

(2.5)

where

Dðŝ; ûÞ ¼ e1t̂I�ðQ2
1Þ�sðQ2

1Þ þ e2ûI�ðQ2
2Þ�sðQ2

2Þ; (2.6)

I�ðQ2Þ ¼
Z 1

0
dx

�
��ðx;Q2Þ
xð1� xÞ

�
; (2.7)

and Q2
1 ¼ ŝ=2, Q2

2 ¼ �û=2 represents the momentum
squared carried by the hard gluon in Fig. 1(a); e1ðe2Þ is
the charge of q1ð �q2Þ and CF ¼ 4

3 .

The I� factors reflect the exclusive form factor of the
pion as is the motivation the arguments of �s and I�. Note
that the relation between I� and the pion form factor
completely fixes the normalization of the higher-twist
subprocess. The full cross section for � and �L production
is given by

E
d�

d3p
ð�� ! MXÞ

¼ s

sþ u

X
q �q

Gq=�ðx;�t̂Þ 8��ECF

3

½Dðŝ; ûÞ�2
ŝ2ð�t̂Þ

�
1

ŝ2
þ 1

û2

�

þ s

sþ t

X
q �q

Gq=�ðx;�ûÞ 8��ECF

3

½Dðŝ; t̂Þ�2
ŝ2ð�ûÞ

�
1

ŝ2
þ 1

t̂2

�
;

(2.8)

As seen from Eq. (2.8), the subprocess cross section for
longitudinal �L production is very similar to that for �
production. We have extracted the following higher-twist
subprocesses contributing to the two covariant cross
sections in Eq. (2.5) as

�q1 ! ðq1 �q2Þq2; �q2 ! ðq1 �q2Þq2: (2.9)

Also from Eq. (2.8), at fixed pT , the cross section falls
very slowly with s. Additionally, at fixed s, the cross
section decreases as 1=p5

T is multiplied by a slowly varying
logarithmic function, which vanishes at the phase-space
boundary. Thus, the pT spectrum is fairly independent of s
except near the kinematic limit.
One of the most important problems in the single in-

clusive pion production in photon-photon collision is the
possibility of normalization of the higher-twist subprocess
cross section in terms of the electromagnetic form factor
F�ðQ2Þ of the pion. The electromagnetic form factor
F�ðQ2Þ of pion is given by the expression,

F�ðQ2Þ¼
Z 1

0

Z 1

0
dx1dx2�

�
�ðx1;x2;Q2Þ

�THðx1;x2;�sð�Q2Þ;Q2Þ��ðx1;x2;Q2Þ: (2.10)

This allows us to completely determine the �q ! Mq
cross section in terms of the pion form factor, through
the relation,

Q2F�ðQ2Þ
4�CF�sðQ̂2Þ ¼ I2�ðQ̂2Þ: (2.11)

It should be noted from Eq. (2.11) that the form factor

contains the square of I�ðQ̂2Þ. In principle, an experimental
measurement of F�ðQ2Þ determines I� and hence the
�q ! Mq. So one can determine the cross section of
�� ! MX explicitly.
Now we can conclude that in the frozen coupling con-

stant approach �, the meson production higher-twist cross
section of �� ! MX is normalized in terms of the pion
electromagnetic form factor.
Extracting the higher-twist corrections to the pion pro-

duction cross section and a comparison of higher-twist
corrections with leading-twist contributions are essential
problems. The contribution from the leading-twist subpro-
cess �� ! q �q is shown in Fig. 1(b). The corresponding
inclusive cross section for the production of a meson M is
given by�
d�

d3p

�
��!MX

¼ 3

�

X
q; �q

Z 1

0

dz

z2
�ðŝþ t̂þ ûÞŝDM

q ðz;�t̂Þ

� d�

dt̂
ð�� ! q �qÞ; (2.12)

where

ŝ ¼ s; t̂ ¼ t

z
; û ¼ u

z
:

Here s, t, and u refer to the overall �� ! MX reaction.
DM

q ðz;�t̂Þ represents the quark fragmentation function into

a pion containing a quark of the same flavor. For �þ
production we assume that D�þ=u ¼ D�þ= �d. In the
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leading-twist subprocess, the pion is indirectly emitted
from the quark with fractional momentum z. The final
form for the leading-twist contribution to the large-pT

pion production cross section in the process �� ! MX is

�LT
M �E

d�

d3P

¼ 3

�

X
q; �q

Z 1

0

dz

z2
�ðŝþ t̂þ ûÞŝDM

q ðz;�t̂Þd�
dt̂

ð��!q �qÞ

¼ 3

�

X
q; �q

Z 1

0
d
1

z
�

�
sþ1

z
ðtþuÞ

�
ŝDM

q ðz;�t̂Þ

�d�

dt̂
ð��!q �qÞ

¼34

27
�2
E

1

z
DM

q ðzÞ 1
ŝ2

�
t̂

û
þ û

t̂

�
: (2.13)

The contributions from these leading-twist subprocesses
strongly depend on some phenomenological factors, such
as quark and gluon distribution functions in meson and
fragmentation functions of various constituents etc. We
should note that Dðz;�t̂Þ=z behaves as 1=z2 when z ! 0.
For the kinematic range considered in our numerical cal-
culations, Dðz;�t̂Þ=z increases even more rapidly. We
obtain the final cross section, Eq. (2.13), as follows: At
fixed pT , the cross section decreases with s asymptotically
as 1=s. At fixed s, the Dðz;�t̂Þ function causes the cross
section to decrease rapidly when pT increases towards the
phase-space boundary (z ! 1). As s increases, the phase-
space boundary moves to higher pT and the pT distribution
broadens.

III. HIGHER-TWIST EFFECTS WITHIN
HOLOGRAPHIC QCD AND THE ROLE

INFRARED RENORMALONS

The main problem in our investigation is the calculation
of the integral in Eq. (2.6) by the running coupling constant
approach within holographic QCD. It should be noted that,
in the exclusive processes, the coupling constant �s runs
not only due to loop integration, but also because of the
integration in the process amplitude over the light-cone
momentum fraction of hadron constituents. In this respect,
the exclusive processes have two independent sources of
power corrections to their characteristics: first, the loop
integration and second, the integration over the light-cone
momentum fraction of hadron constituents. Therefore, it is
worth noting that the renormalization scale (argument of
�s), according to Fig. 1(a), should be chosen to be equal to
Q2

1 ¼ ð1� xÞŝ, and Q2
2 ¼ �xû. The integral in Eq. (2.6)

takes the form in the framework of the running coupling
approach,

Dð	2
R0
Þ ¼

Z 1

0

�sð�	2
R0
Þ�Mðx;	2

FÞdx
xð1� xÞ : (3.1)

The�sð�	2
R0
Þ has the infrared singularity at x ! 1 for � ¼

1� x, or x ! 0 for � ¼ x, and so the integral (3.1) di-
verges. For the regularization of the integral, we express
the running coupling at the scaling variable �sð�	2

R0
Þ with

the aid of the renormalization group equation in terms
of the fixed one �sðQ2Þ. The solution of renormalization
group equation for the running coupling � � �s=� has the
form [18]

�ð�Þ
�

¼
�
1þ �

�0

4
ln�

��1
: (3.2)

Then, for �sð�Q2Þ, we get

�ð�Q2Þ ¼ �s

1þ ln�=t
; (3.3)

where t ¼ 4�=�sðQ2Þ�0 ¼ 4=��0.
Having inserted Eq. (3.3) into Eq. (2.6) we obtain

Dðŝ; ûÞ ¼ e1û
Z 1

0
dx

�sð�	2
R0
Þ�Mðx;Q2

1Þ
xð1� xÞ

þ e2ŝ
Z 1

0
dx

�sð�	2
R0
Þ�Mðx;Q2

2Þ
xð1� xÞ

¼ e1û�sðŝÞt1
Z 1

0
dx

�Mðx;Q2
1Þ

xð1� xÞðt1 þ ln�Þ

þ e2ŝ�sð�ûÞt2
Z 1

0
dx

�Mðx;Q2
2Þ

xð1� xÞðt2 þ ln�Þ ;
(3.4)

where t1 ¼ 4�=�sðŝÞ�0 and t2 ¼ 4�=�sð�ûÞ�0.
Although the integral (3.4) is still divergent, it is recast

into a suitable form for calculation. Making the change of
variable as z ¼ ln�, we obtain

Dðŝ; ûÞ ¼ e1û�sðŝÞt
Z 1

0

�Mðx;Q2Þdx
xð1� xÞðt1 þ zÞ

þ e2ŝ�sð�ûÞt
Z 1

0

�Mðx;Q2Þdx
xð1� xÞðt2 þ zÞ : (3.5)

In order to calculate (3.5), we will apply the integral
representation of 1=ðtþ zÞ [30,31] as

1

tþ z
¼

Z 1

0
e�ðtþzÞudu; (3.6)

which gives

Dðŝ; ûÞ ¼ e1 t̂�sðŝÞt1
Z 1

0

Z 1

0

��ðx;Q2
1Þe�ðt1þzÞududx
xð1� xÞ

þ e2û�sð�ûÞt2
Z 1

0

Z 1

0

��ðx;Q2
2Þe�ðt2þzÞududx
xð1� xÞ :

(3.7)
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In the case �hol
asyðxÞ for the Dðŝ; ûÞ, Eq. (3.7) is written as

Dðŝ; ûÞ ¼ 16f�e1ûffiffiffi
3

p
�0

Z 1

0
due�t1uB

�
1

2
;
1

2
� u

�

þ 16f�e2ŝffiffiffi
3

p
�0

Z 1

0
due�t2uB

�
1

2
;
1

2
� u

�
; (3.8)

and for �p
asyðxÞ, the wave function

Dðŝ; ûÞ ¼ 4
ffiffiffi
3

p
�f�e1û

�0

Z 1

0
due�t1u

�
1

1� u

�

þ 4
ffiffiffi
3

p
�f�e2ŝ

�0

Z 1

0
due�t2u

�
1

1� u

�
; (3.9)

where Bð�;�Þ is the beta function. The structure of the
infrared renormalon poles in Eqs. (3.8) and (3.9) strongly
depend on the wave functions of the pion. To remove them
from Eqs. (3.8) and (3.9) we adopt the principal value
prescription. We denote the higher-twist cross section
obtained using the running coupling constant approach
by ð�HT

� Þres.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we discuss the numerical results for
higher-twist and renormalon effects with higher-twist con-
tributions calculated in the context of the running coupling
constant and frozen coupling approaches on the depen-
dence of the chosen pion wave functions in the process
�� ! MX within holographic QCD. For the higher-twist
subprocess, we take �q1 ! ðq1 �q2Þq2 and �q2 ! ðq1 �q2Þq2
contributing to �� ! MX cross sections. Inclusive pion
photoproduction represents a significant test case in which
higher-twist terms dominate those of leading-twist terms in

certain kinematic domains. For the dominant leading-twist
subprocess for the meson production, we take the photon-
photon annihilation �� ! q �q in which the � pion is
indirectly emitted from the quark. The quark distribution
function inside the photon was used [32] and the gluon and
quark fragmentation functions into a pion was used [33].
The results of our numerical calculations are plotted in

Figs. 2–15. First, it is very interesting to compare the
higher-twist cross sections obtained within holographic
QCD with the ones obtained within perturbative QCD. In
Figs. 2 and 3 we show the dependence of higher-twist cross
sections, ð�HT

�þÞ0 and ð�HT
�þÞres, calculated in the context of

the frozen and running coupling constant approaches as a
function of the pion transverse momentum pT for �hol

� ðxÞ,
�p

�ðxÞ, and �hol
VSBGLðxÞ pion wave functions at y ¼ 0. It is

FIG. 3 (color online). Higher-twist �þ production cross sec-
tion ð�HT

�þÞres as a function of the pT transverse momentum of the

pion at the c.m. energy
ffiffiffi
s

p ¼ 183 GeV.

FIG. 2 (color online). Higher-twist �þ production cross sec-
tion ð�HT

�þÞ0 as a function of the pT transverse momentum of the

pion at the c.m. energy
ffiffiffi
s

p ¼ 183 GeV.

FIG. 4 (color online). Ratio ð�hol
HTÞ0=ð�HT

�þÞ0, where higher-
twist contribution are calculated for the pion rapidity y ¼ 0 at
the c.m. energy

ffiffiffi
s

p ¼ 183 GeV as a function of the pion trans-
verse momentum, pT .
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seen from the figures that the higher-twist cross section is
monotonically decreasing with an increase in the trans-
verse momentum of the pion. In Figs. 4–7, we show the
dependence of the ratios ð�hol

HTÞ0=ð�HT
�þÞ0, ð�HT

�þÞres=ð�HT
�þÞ0,

ð�HT
�þÞ0=ð�LT

�þÞ, and ð�HT
�þÞres=ð�LT

�þÞ as a function of the

pion transverse momentum pT for �hol
� ðxÞ, �p

�ðxÞ, and
�hol

VSBGLðxÞ pion wave functions. Here �LT
�þ is the leading-

twist cross section. As shown in Fig. 4, in the region
20 GeV=c < pT < 80 GeV=c, the higher-twist cross sec-
tion for �hol

� ðxÞ is suppressed by about half orders of
magnitude relative to the higher-twist cross section for
�hol

VSBGLðxÞ, but in the regions 10 GeV=c < pT <
20 GeV=c and 80 GeV=c < pT < 90 GeV=c, the higher-

twist cross section ð�hol
HTÞ0 is suppressed by about 2 orders

of magnitude relative to the higher-twist cross section for
ð�hol

VSBGLÞ0. Also, the higher-twist cross section for�p
�ðxÞ is

suppressed by about half orders of magnitude relative to
the higher-twist cross section for �hol

VSBGLðxÞ. In Figs. 5–7,

the dependence of the ratios ð�HT
� Þres=ð�HT

�þÞ0,
ð�HT

�þÞ0=ð�LT
�þÞ, and ð�HT

�þÞres=ð�LT
�þÞ are displayed as a

function of the pion transverse momentum pT for the
�hol

� ðxÞ, �p
�ðxÞ, and �hol

VSBGLðxÞ pion wave functions. It is

see that, the resummed higher-twist cross section for
�hol

asyðxÞ is suppressed by about 2 orders of magnitude

relative to the higher-twist cross section for ð�hol
VSBGLÞ0.

Noticed that one-half order is suppress for ð�hol
asyÞ0 and

FIG. 6 (color online). Ratio ð�HT
�þÞ0=ð�LT

�þÞ, where higher-twist
contribution are calculated for the pion rapidity y ¼ 0 at the c.m.
energy

ffiffiffi
s

p ¼ 183 GeV, as a function of the pion transverse
momentum, pT .

FIG. 5 (color online). Ratio ð�hol
HTÞres=ð�HT

�þÞ0, as a function of
the pT transverse momentum of the pion at the c.m. energy

ffiffiffi
s

p ¼
183 GeV.

FIG. 7 (color online). Ratio ð�HT
�þÞres=ð�LT

�þÞ, as a function of
the pT transverse momentum of the pion at the c.m. energy

ffiffiffi
s

p ¼
183 GeV.

FIG. 8 (color online). Higher-twist �þ production cross sec-
tion ð�hol

HTÞ0, as a function of the y rapidity of the pion at the

transverse momentum of the pion, pT ¼ 14:6 GeV=c, at the c.m.
energy

ffiffiffi
s

p ¼ 183 GeV.
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one order is suppress for ð�p
asyÞ0. It is observed from Figs. 6

and 7 that the ratios ð�HT
�þÞ0=ð�LT

�þÞ and ð�HT
�þÞres=ð�LT

�þÞ for
all wave functions decrease with an increase in the trans-
verse momentum of the pion. In Figs. 8–10, we have
depicted higher-twist cross sections ð�hol

HTÞ0, and ratios

ð�hol
HTÞ0=ð�HT

�þÞ0, ð�hol
HTÞres=ð�HT

�þÞ0, as a function of the ra-

pidity y of the pion at
ffiffiffi
s

p ¼ 183 GeV and pT ¼
14:6 GeV=c. The figures show that the higher-twist cross
section and ratios have a different distinctive behavior. As
is seen in Fig. 9, ratio ð�hol

asyÞ0=ð�hol
VSBGLÞ0 has a maximum

approximately at the point y ¼ �1:92. However, in this
pointratio ð�hol

VSBGLÞ0=ð�p
asyÞ0 has a minimum. As is seen

from Fig. 10, the resummed higher-twist cross section for

�hol
asyðxÞ is suppress by about 1 order of magnitude relative

to the resummed higher-twist cross section for�p
asyðxÞ and

with an increasing rapidity of pion, the ratio is kept ap-
proximately constant. But the resummed higher-twist cross
section for�hol

asyðxÞ is suppress by about one-half 2 orders of
magnitude relative to the frozen higher-twist cross section
for �hol

VSBGLðxÞ and has a maximum approximately at the

point y ¼ �1:92. However, resummed higher-twist cross
section for �hol

asyðxÞ is suppress by about 1 order of magni-

tude relative for the resummed higher-twist cross section
for �p

asyðxÞ and to stay is constant with an increasing

rapidity of pion. The figures also show that the ratio
depends on the choice of the pion wave function. An

FIG. 10 (color online). Ratio ð�HT
�þÞres=ð�HT

�þÞ0, as a function of
the y rapidity of the pion at the transverse momentum of the
pion, pT ¼ 14:6 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 183 GeV.

FIG. 9 (color online). Ratio ð�hol
HTÞ0=ð�HT

�þÞ0, as a function of
the y rapidity of the pion at the transverse momentum of the
pion, pT ¼ 14:6 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 183 GeV.

FIG. 11 (color online). Higher-twist �þ production cross sec-
tion ð�HT

�þÞ0, as a function of the pT transverse momentum of the

pion at the c.m. energy
ffiffiffi
s

p ¼ 209 GeV.

FIG. 12 (color online). Ratio ð�hol
HTÞres=ð�HT

�þÞ0, as a function
of the pT transverse momentum of the pion at the c.m. energyffiffiffi
s

p ¼ 209 GeV.
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analysis of our calculations concludes that ð�HT
�þÞ0 and

ð�HT
�þÞres higher-twist cross sections and ratios are sensitive

to pion wave functions predicted by holographic and per-
turbative QCD.

We have also carried out comparative calculations in the
center-of-mass energy

ffiffiffi
s

p ¼ 209 GeV and the obtained
results are displayed in Figs. 11–15. An analysis of our
calculations at the center-of-mass energies,

ffiffiffi
s

p ¼
183 GeV and

ffiffiffi
s

p ¼ 209 GeV, show that with an increas-
ing in the beam energy, contributions of higher-twist
effects to the cross section decrease by about 1–2 orders
of magnitude. As is seen from Figs. 4, 5, 9, 10, 12, 14, and
15, infrared renormalon effects enhance the perturbative

predictions for the pion production cross section in the
photon-photon collisions by about 1–2 orders of magni-
tude. Our opinion is this feature of infrared renormalons
may help the explain theoretical interpretations with future
experimental data for the pion production cross section in
the photon-photon collisions. In our calculations of the
higher-twist cross section of the process the dependence
of the transverse momentum of pion appears in the range of
ð10�9 � 10�22Þ mb=GeV2. Therefore, the higher-twist
cross section obtained in our work should be observable
at ILC.

V. CONCLUSIONS

In this work, the single meson inclusive production via
the higher-twist mechanism within holographic QCD are
calculated. For the calculation of the cross section, the
running coupling constant approach is applied and infrared
renormalon poles in the cross section expression are re-
vealed. Infrared renormalon induced divergences are regu-
larized by means of the principal value prescription and the
Borel sum for the higher-twist cross section is found. It is
observed that the resummed higher-twist cross section
differs from that found using the frozen coupling approxi-
mation in some regions considerably. We proved that the
higher-twist cross section for � pion production in the
photon-photon collisions may be normalized in terms of
the pion form factor. The following results can be con-
cluded from the experiments; the higher-twist contribu-
tions to the single meson production cross section in the
photon-photon collisions have important phenomenologi-
cal consequences, the higher-twist pion production cross
section in the photon-photon collisions depends on the
form of the pion model wave functions and may be used
for their study. Also, that the contributions of renormalons

FIG. 15 (color online). Ratio ð�HT
�þÞres=ð�HT

�þÞ0, as a function of
the y rapidity of the pion at the transverse momentum of the
pion, pT ¼ 16:7 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 209 GeV.

FIG. 14 (color online). Ratio ð�hol
HTÞ0=ð�HT

�þÞ0, as a function of
the y rapidity of the pion at the transverse momentum of the
pion, pT ¼ 16:7 GeV=c, at the c.m. energy

ffiffiffi
s

p ¼ 209 GeV.

FIG. 13 (color online). Higher-twist �þ production cross sec-
tion ð�hol

HTÞ0, as a function of the y rapidity of the pion at the

transverse momentum of the pion, pT ¼ 16:7 GeV=c, at the c.m.
energy

ffiffiffi
s

p ¼ 209 GeV.

A. I. AHMADOV, C. AYDIN, AND F. KESKIN PHYSICAL REVIEW D 85, 034009 (2012)

034009-8



effects within holograpich QCD in this process is
essential and may help to analyze experimental results.
Further investigations are needed in order to clarify
the role of higher-twist effects in QCD. Finally, the
future ILC measurements will provide further tests
of the dynamics of large-pT hadron production beyond
the leading twist.

ACKNOWLEDGMENTS

A. I . Ahmadov is grateful to all members of the
Department of Physics of Karadeniz Technical University
for the hospitality extended to him in Trabzon. Financial
support by TUBITAK under Grant No. 2221 (Turkey) is
also gratefully acknowledged.

[1] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
Int. J. Theor. Phys. 38, 1113 (1999); S. S. Gubser,
I. R. Klebanov, and A.M. Polyakov, Phys. Lett. B 428,
105 (1998); E. Witten, Adv. Theor. Math. Phys. 2, 253
(1998).

[2] L. von Smekal, R. Alkofer, and A. Hauck, Phys. Rev. Lett.
79, 3591 (1997).

[3] S. Furui and H. Nakajima, Phys. Rev. D 76, 054509
(2007); Proc. Sci., LAT2007 (2007) 301
[arXiv:0708.1421].

[4] S. J. Brodsky, S. Menke, C. Merino, and J. Rathsman,
Phys. Rev. D 67, 055008 (2003).

[5] A. Deur, V. Burkert, J. P. Chen, and W. Korsch, Phys. Lett.
B 650, 244 (2007).

[6] J.M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[7] J. A. Bagger and J. F. Gunion, Phys. Rev. D 29, 40

(1984).
[8] A. Bagger and J. F. Gunion, Phys. Rev. D 25, 2287 (1982).
[9] A. I. Ahmadov, I. Boztosun, R. Kh. Muradov, A. Soylu,

and E.A. Dadashov, Int. J. Mod. Phys. E 15, 1209 (2006).
[10] A. I. Ahmadov, I. Boztosun, A. Soylu, and E.A. Dadashov,

Int. J. Mod. Phys. E 17, 1041 (2008).
[11] V. N. Baier and A. Grozin, Phys. Lett. 96B, 181 (1980); S.

Gupta, Phys. Rev. D 24, 1169 (1981).
[12] S. J. Brodsky, G. L. Lepage, and P. B. Mackenize, Phys.

Rev. D 28, 228 (1983).
[13] G.’t. Hooft, in The Whys of Subnuclear Physics, Erice,

1977, edited by A. Zichichi (Plenum, New York, 1979),
p. 94.

[14] A. H. Mueller, Nucl. Phys. B250, 327 (1985); Phys. Lett.
B 308, 355 (1993).

[15] V. I. Zakharov, Nucl. Phys. B385, 452 (1992).
[16] M. Beneke, Phys. Rep. 317, 1 (1999).

[17] W. Greiner, S. Schramm, and E. Stein, Quantum
Chromodynamics (Berlin, Springer, 2002), 2nd ed.,
pp. 551.

[18] H. Contopanagos and G. Sterman, Nucl. Phys. B419, 77
(1994).

[19] S. S. Agaev, Phys. Lett. B 360, 117 (1995); 369, 379(E)
(1996).

[20] S. S. Agaev, Eur. Phys. J. C 1, 321 (1998).
[21] A. I. Ahmadov, C. Aydin, Sh.M. Nagiyev, Yilmaz A.

Hakan, and E.A. Dadashov, Phys. Rev. D 80, 016003
(2009).

[22] A. I. Ahmadov, C. Aydin, E. A. Dadashov, and Sh.M.
Nagiyev, Phys. Rev. D 81, 054016 (2010).

[23] A. I. Ahmadov and R.M. Burjaliyev, Int. J. Mod. Phys. E
20, 1243 (2011).

[24] A. I. Ahmadov, Sh.M. Nagiyev, and E.A. Dadashov,
arXiv:1107.1562.

[25] G. L. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157
(1980).

[26] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 77,
056007 (2008).

[27] S. J. Brodsky, Proc. Sci. LHC07 (2007) 002
[arXiv:0707.2643].

[28] A. Vega, I. Schmidt, T. Branz, T. Gutsche, and V.
Lyubovitskij, Phys. Rev. D 80, 055014 (2009).

[29] G. P. Lepage and S. J. Brodsky, Phys. Lett. 87B, 359
(1979).

[30] J. Zinn-Justin, Phys. Rep. 70, 109 (1981).
[31] A. Erdelyi, Higher Transcendental Functions (McGraw-

Hill Book Company, New York, 1953), Vol. 2.
[32] F. Cornet, Acta Phys. Pol. B 37, 663 (2006).
[33] S. Albino, B. A. Kniehl, G. Kramer, Nucl. Phys. B725, 181

(2005).

PION WAVE FUNCTIONS FROM HOLOGRAPHIC QCD AND . . . PHYSICAL REVIEW D 85, 034009 (2012)

034009-9

http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1103/PhysRevLett.79.3591
http://dx.doi.org/10.1103/PhysRevLett.79.3591
http://dx.doi.org/10.1103/PhysRevD.76.054509
http://dx.doi.org/10.1103/PhysRevD.76.054509
http://arXiv.org/abs/0708.1421
http://dx.doi.org/10.1103/PhysRevD.67.055008
http://dx.doi.org/10.1016/j.physletb.2007.05.015
http://dx.doi.org/10.1016/j.physletb.2007.05.015
http://dx.doi.org/10.1103/PhysRevD.26.1453
http://dx.doi.org/10.1103/PhysRevD.29.40
http://dx.doi.org/10.1103/PhysRevD.29.40
http://dx.doi.org/10.1103/PhysRevD.25.2287
http://dx.doi.org/10.1142/S0218301306004843
http://dx.doi.org/10.1142/S0218301308010325
http://dx.doi.org/10.1016/0370-2693(80)90240-3
http://dx.doi.org/10.1103/PhysRevD.24.1169
http://dx.doi.org/10.1103/PhysRevD.28.228
http://dx.doi.org/10.1103/PhysRevD.28.228
http://dx.doi.org/10.1016/0550-3213(85)90485-7
http://dx.doi.org/10.1016/0370-2693(93)91297-Z
http://dx.doi.org/10.1016/0370-2693(93)91297-Z
http://dx.doi.org/10.1016/0550-3213(92)90054-F
http://dx.doi.org/10.1016/S0370-1573(98)00130-6
http://dx.doi.org/10.1016/0550-3213(94)90358-1
http://dx.doi.org/10.1016/0550-3213(94)90358-1
http://dx.doi.org/10.1016/0370-2693(95)01114-6
http://dx.doi.org/10.1016/0370-2693(96)00013-5
http://dx.doi.org/10.1016/0370-2693(96)00013-5
http://dx.doi.org/10.1007/s100520050085
http://dx.doi.org/10.1103/PhysRevD.80.016003
http://dx.doi.org/10.1103/PhysRevD.80.016003
http://dx.doi.org/10.1103/PhysRevD.81.054016
http://dx.doi.org/10.1142/S0218301311018393
http://dx.doi.org/10.1142/S0218301311018393
http://arXiv.org/abs/1107.1562
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1103/PhysRevD.77.056007
http://dx.doi.org/10.1103/PhysRevD.77.056007
http://arXiv.org/abs/0707.2643
http://dx.doi.org/10.1103/PhysRevD.80.055014
http://dx.doi.org/10.1016/0370-2693(79)90554-9
http://dx.doi.org/10.1016/0370-2693(79)90554-9
http://dx.doi.org/10.1016/0370-1573(81)90016-8
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.010
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.010

