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We revisit the process eþe� ! �Z at the ILC with transverse beam polarization in the presence of

anomalous CP-violating �ZZ coupling �1 and ��Z coupling �2. We point out that if the final-state spins

are resolved, then it becomes possible to fingerprint the anomalous coupling Re�1. 90% confidence level

limit on Re�1 achievable at ILC with center-of-mass energy of 500 GeVor 800 GeV with realistic initial

beam polarization and integrated luminosity is of the order of few times of 10�2 when the helicity of Z is

used and 10�3 when the helicity of � is used. The resulting corrections at quadratic order to the cross

section and its influence on these limits are also evaluated and are shown to be small. The benefits of such

polarization programmes at the ILC are compared and contrasted for the process at hand. We also discuss

possible methods by which one can isolate events with a definite helicity for one of the final-state

particles.
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I. INTRODUCTION

The International Linear Collider (ILC) [1,2] is a pro-
posed collider that will collide electrons and positrons at
high energy and luminosity and is expected to verify the
predictions of the standard model (SM) at a high level of
precision, and to establish interactions beyond the SM even
if there is no direct production of particles that are not in
the spectrum of the SM. One window to such new physics
is the discovery of CP violation beyond what is predicted
by the SM; for a review on basic principles of CP violation
at colliders, see Ref. [3]. It has been shown that the
availability of beam polarization of one or both of the
beams, transverse and longitudinal, can significantly en-
hance the sensitivity to such beyond the SM interactions;
see, e.g., Ref. [4] for a recent review.

If beyond the SM interactions are very subtle, then it is
particularly important to search for deviations from the SM
to linear order. Keeping these considerations in mind, the
issue of sensitivity to linear order of CP-violating anoma-
lous gauge boson couplings, denoted by �1 (�ZZ) and �2

(��Z) to be defined later, that contribute to the process
eþe� ! �Z with longitudinal beam polarization was con-
sidered in Ref. [5], and with transverse beam polarization
in Ref. [6] (for earlier discussions in the context of unpo-
larized beams see Ref. [7–9], and Ref. [10] for beam
polarization effects). These couplings are absent in the
SM even at loop level, and can be thought of representing
some basic interactions arising from an underlying theory;
for instance they can arise in some extensions of the SM at
the one-loop level [11–14], and thus their nonvanishing
value indicates a signature of new physics. Anomalous
couplings have been investigated at the Large Electron
Positron (LEP) collider, resulting in limits of the order of
0.05 (0.13) on the magnitude of ��Z (�ZZ) couplings [15].
The most stringent bounds on the absolute value of these

couplings comes from the recent D0 and CDF
Collaboration results of Tevatron [16,17]. Apart from these
direct limits, imposing unitarity of partial wave scattering
amplitudes can give limits on the couplings [8,18]. For an
ILC operating at

ffiffiffi
s

p ¼ 500 GeV, the analysis of Czyz
et al. [18] gives the unitarity limits j�1;2j & 2. Other uni-
tarity limits are expressed as of the order of ð0:1 TeV3Þ=�3

on dimension-6 couplings and of the order of
ð2 � 10�3 TeV5Þ=�5 on dimension-8 couplings, where �
is the assumed scale of new physics [8]. A review of these
results may be found in Ref. [19]. Considerations of the
anomalous sector involving W bosons have also been
recently studied in the context of the Large Hadron
Collider; see Refs. [20–22] for quartic couplings involving
� pairs along withW pairs as well as Z pairs and references
therein.
Since, in the process at hand, t- and u-channel ex-

changes are present, there is an additional dependence on
the polar scattering angle (�) between � and e� direction.
A polar-angle forward-backward asymmetry is seen with
longitudinally polarized beams due to the interference of
the CP-violating anomalous coupling with SM contribu-
tion [5], because the photon should be produced symmet-
rically if CP is conserved. Longitudinal beam polarization
improves sensitivity to some of the form factors, whereas
the transversely polarized beams with new combinations of
polar and azimuthal asymmetries enable better measure-
ment. This is due to the fact that, with transverse beam
polarization, one has an additional angle �, the azimuthal
angle with respect to the direction of quantization of the
electron polarization, which allows one to obtain distribu-
tions that are sensitive to the real parts of the anomalous
couplings. In order to obtain the fully differential cross
sections in the presence of anomalous gauge couplings,
one may use the helicity amplitudes listed in Ref. [18]
and account for the transverse polarization using the
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generalized formalism of Ref. [23]. Suitable asymmetries
may then be constructed which can be used to extract these
anomalous couplings. Furthermore, one can obtain 90%
confidence limits on these couplings if no signal is ob-
served for realistic beam polarization and typical inte-
grated luminosities. It may be emphasized that the limits
obtained in this work are completely based on an analytical
approach and is a strength of the method and is an exten-
sion of the approach of Ref. [6] which have proven neces-
sary for the extraction of Re�1. It would be a useful
benchmark for future simulation studies of the same
system.

As a consequence of the CPT theorem, in the absence of
beam polarization and with longitudinal beam polariza-
tion, only the imaginary parts of these contribute to the
cross section at linear order. It turns out that, with trans-
verse beam polarization and due to the interference of the
SM amplitudes with those arising from anomalous cou-
plings, only Re�2 contributes to the fully differential cross
section, whereas the Re�1 contribution vanishes because
the photon has only vectorlike couplings. Thus the ques-
tion of isolating Re�1 to leading order remains open.

Recently, it was shown, in the context of t�t production
with beyond the SM interactions parametrized in terms of
effective four-Fermi interactions, that the measurement of
final-state helicity can help in disentangling the contribu-
tions of scalar and tensor like four-Fermi interactions when
the beams are transversely polarized [24].

Inspired by the considerations in the work above, we
now ask whether at leading order one can isolate Re�1 by
the measurement of the helicity of the Z or the photon. The
answer is in the affirmative. Whereas the considerations of
the top-quark helicity referred to above can be extended to
the Z, which we describe in a little detail later on, there is
no analogous method for determining the helicity of the
photon as it is a stable particle. At low energies the final-
state helicity determination is a key ingredient for the
determination of neutrino helicity in the well-known
Goldhaber experiment [25]. However, it is conceivable
that there are materials that can be used in the construction
of the ILC detectors which could be used for these deter-
minations. In particular, aligned crystals could be candi-
dates for such detectors in case of high-energy photons, as
has been considered by the NA59 collaboration [26].
Leaving aside the experimental question of measurement
of the final-state helicities, which would affect the sensi-
tivity, we construct asymmetries that involve, e.g., samples
of positive and negative Z helicities, and also photon
helicities. These are then translated into 90% confidence
limits on the anomalous couplings Re�1;2 by combining

them with the previously established results. The best
limits are expressed in the Re�1 � Re�2 plane. If these
are set to zero one at a time, then we obtain the limit on
Re�1 to be 0.0958 when the helicity of only the Z is
resolved for a total center-of-mass energy (c.m.) of

500 GeV with an integrated luminosity of 500 fb�1 and
realistic polarizations. An improved limit of 0.0034 is
obtained when the helicity of � is resolved. The stability
of these limits when they are fed back into the expressions
at quadratic order for the cross section is also addressed, by
iteratively including the effects which turn out to be not of
great significance in practice.
This paper is organized as follows: In Sec. II, we recall

the basic vertices and present the definitions, followed by
Sec. III ,where we present the results of our computation of
the fully differential cross section with final-state helicity
resolution. In Sec. IV we define the asymmetries that we
have used to obtain 90% confidence limits. In Sec. V we
present a detailed discussion on the possibility of obtaining
samples of define helicities and discuss the issue of photon
and Z helicity measurement. In Sec. VI we present a
summary of the results and a discussion.

II. FORMALISM FOR THE PROCESS eþe� ! �Z

We begin by writing down the formalism for the process
closely following the treatment in Ref. [6]. We consider the
process

e�ðp�; s�Þ þ eþðpþ; sþÞ ! �ðk1; h�Þ þ Zðk2; hZÞ; (1)

where h� can take values �1 and the value for hZ can be

�1 and 0. As in Ref. [6], we impose electromagnetic gauge
invariance. The most general effective CP-violating
Lagrangian, retaining terms up to dimension 6 can be
written as [5]

L ¼ e
�1

2m2
Z

F��ð@�Z�@�Z
� � @�Z�@�Z

�Þ

þ e

16cWsW

�2

m2
Z

F��F
��ð@�Z� þ @�Z

�Þ; (2)

where e is the electric charge, mZ is the mass of Z boson,
cW ¼ cos�W and sW ¼ sin�W , with �W as the weak mixing
angle. �1 and �2 are in general complex. Terms involving
divergences of the vector fields have been dropped from the
Lagrangian. The SM diagrams contributing to the process
(1) are shown in Figs. 1(a) and 1(b), which correspond to
t- and a u-channel electron exchange, while the extra piece
in the Lagrangian (2) introduces two s-channel diagrams
with �-and Z-exchange, respectively, shown in Figs. 1(c)
and 1(d). Here we have used q ¼ k1 þ k2 as the momen-
tum label for the intermediate state in the s channel, and the

tensors Vð1Þ and Vð2Þ corresponding to the three-vector
vertices are given by
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Vð1Þ
���ðk1; q; k2Þ ¼ k1 � qg��k2� þ k1 � k2g��q�

� k1�q�k2� � k1�q�k2�

Vð2Þ
���ðk1; q; k2Þ ¼

1

2
½g��ðk2 � qk1� � k1 � qk2�Þ

� g��ðk2 � qk1� þ k1 � k2q�Þ
þ g��ðk1 � k2q� � k1 � qk2�Þ
þ q�k2�k1� þ q�k1�k2��: (3)

We have computed the cross section incorporating trans-
verse beam polarization using the helicity amplitudes
given in [18]. Note that the parametrization of the anoma-
lous Z�V� coupling, where V� ! �� or Z� in [18] is given
in terms of f�1 and fZ1 .

1

The cross section � for the transversely polarized state
can be expressed as [23]

� ¼ �unpol � 1

2
PT

�PTRe½T�þþT���

� 1

2
PT

�PTRe½e�2i�T�þ�T�þ�

þ 1

2
PTRe½e�i�ðT�þ�T�� þ T�þþT�þÞ�

� 1

2
�PTRe½e�i�ðT�þþT�þ þ T���T�þÞ�;

where the Tþþ, Tþ�, T�þ and T�� are helicity amplitudes
for the process at hand, � is the final-state azimuthal angle
and �unpol is the unpolarized cross section. In Tab, the

subscripts a, b ¼ þ;� stand for the helicities of the eþ
and e� respectively. In the above, beyond standard model
(BSM) interactions of the chirality-conserving type con-
tribute to the amplitudes Tþ� and T�þ, while those of the
chirality-violating type contribute to Taa, a ¼ þ;� (the
SM interactions themselves contribute only to Tþ� and
T�þ, when me effects are neglected). Note also the char-
acteristic e2i� dependence accompanying the terms bilin-
ear in transverse polarization, and the ei� dependence
accompanying the linear transverse polarization pieces
when the BSM physics is worked out to leading order.
However the process under study is of the annihilation

type and contains no electron and electron neutrino in final
state, so Tþþ ¼ T�� ¼ 0. So the above expression re-
duces to a much simplified form which is given below

� ¼ �unpol � 1

2
PT

�PTðcos2�ReT�þ�T�þ

þ sin2�ImT�þ�T�þÞ: (4)

This will be used in the following sections to evaluate the
distributions of interest.

III. DISTRIBUTIONS IN THE PRESENCE OF
TRANSVERSE POLARIZATION

We now give explicit expression for differential scatter-
ing cross section, for the two cases, viz., when the helicity
of Z is resolved, summing over the helicity of �, and vice
versa.
Let us introduce the definitions:

�s � s

m2
Z

B ¼ �2

16s2Wm
2
W �s

�
1� 1

�s

�
ðg2V þ g2AÞ; (5)

FIG. 1. Diagrams contributing to the process eþe� ! �Z. Diagrams (a) and (b) are SM contributions and diagrams (c) and (d)
correspond to contributions from the anomalous �ZZ and ��Z couplings.

1They are related to �1 and �2 as f�1 ¼ �2

4 and fZ1 ¼ � �1

4 .
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where s is the square of the total c.m. energy, and gV and
gA represent the vector and the axial vector couplings of
the electron with Z given by

gV ¼ �1þ 4sin2�W ; gA ¼ �1: (6)

In the equations below only terms of linear order in the
anomalous couplings are retained since they are expected
to be small. So far as the CP-violating part of the differ-
ential cross section is concerned, this is not an approxima-
tion, since the only contribution is from the interference
between the SM amplitude and the CP-violating ampli-
tude, linear in the anomalous couplings. The denominator
of the asymmetries which we calculate, however, would in
principle receive a contribution from terms quadratic in
the anomalous couplings. In principle, the validity of the
linear approximation is dependent on the c.m. energy of
the process, and for larger c.m. energy would require
the couplings to be smaller. We will see that in our case
the contribution of the quadratic terms to the cross section
is negligible for Re�1 and Re�2 below about 0.01, where
our limits lie, and therefore the linear approximation holds
good. Expressed differently, it can be said that the observ-
ables defined here are not sensitive to quadratic terms in the
cross section, for the values which will be probed at the
linear collider.

Resolving the polarization of Z and summing over the
polarizations of �, the differential cross sections for the
production of circularly polarized Z� and longitudinally
polarized ZL are given by

d	

d�

��������Z�
¼ B

�
d	SM

d�

��������Z�
þCZ�

A cos�þ CZ�
B

�
(7)

d	

d�

��������ZL
¼ B

�
d	SM

d�

��������ZL
þCZL

A cos�þ CZL

B

�
: (8)

Here

d	SM

d�

��������Z�
¼

�
1þ 2�s

ð �s� 1Þ2
��

1

4sin2�

�
� 8gAgV cos�

g2V þ g2A

þ 2ð1þ cos2�Þ
�
� 1

2
PeP �e

g2V � g2A
g2V þ g2A

cos2�

�

d	SM

d�

��������ZL
¼ 2�s

ð �s� 1Þ2
�
1þ PeP �e

g2V � g2A
g2V þ g2A

cos2�

�
(9)

are the corresponding SM differential cross sections, and
we have defined

CZ�
A ¼ 1

8ðg2Vþg2AÞ
ðððg2A�g2VÞPeP �ecos2�

�ðg2Aþg2VÞÞIm�1þð1þPeP �e cos2�ÞgVIm�2

þgAPeP �e sin2�Re�2Þ
CZ�
B ¼� 1

8ðg2Vþg2AÞ
ð�2gAgVIm�1

þðg2A�g2VÞPeP �e sin2�Re�1

þð1þPeP �ecos2�ÞgAIm�2þgVPeP �e sin2�Re�2Þ
(10)

and

CZL

A ¼ �2�s

8ðg2V þ g2AÞ
ðððg2A � g2VÞPeP �e cos2�

� ðg2A þ g2VÞÞIm�1 þ ð1þ PeP �e cos2�ÞgVIm�2

þ gAPeP �e sin2�Re�2Þ
CZL

B ¼ 0: (11)

Note the appearance of Re�1 in CZ�
B . On summing over

the Z helicities, however, the dependence on Re�1 disap-
pears. In the above, as defined earlier, � is the angle
between photon and the beam direction of e�, chosen as
the z axis. � is the azimuthal angle of the photon with the
direction of the transverse polarization of the e� chosen as
the x axis. d� ¼ d cos�d� is the integration measure for
the angular variables � and �. The eþ polarization direc-
tion can be parallel or antiparallel to the e� polarization
direction, the polarization in the former case being taken as
positive.
The cross sections for two circular polarization states of

� summing over all the Z states are given by

d	

d�

����������
¼ B

�
d	SM

d�

����������
þC��

A cos�þ C��
B

�
(12)

where

d	SM

d�

����������
¼

�
1

2sin2�

�
1þ cos2�þ 4�s

ð �s� 1Þ2

� PeP �e

g2V � g2A
g2V þ g2A

sin2� cos2�� 4gAgV
g2V þ g2A

�
�
�sþ 1

�s� 1

�
cos�

��
(13)

and
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C��
A ¼ �s�1

8ðg2Vþg2AÞ
ððg2Vþg2A

þðg2V�g2AÞPeP �ecos2�ÞIm�1

�gVð1þPeP �e cos2�ÞIm�2�PeP �egA sin2�Re�2Þ
C��
B ¼� �s�1

8ðg2Vþg2AÞ
�
2gAgV

�
�sþ1

�s�1

�
Im�1

þPeP �eðg2A�g2VÞsin2�Re�1

þgA

�
PeP �ecos2�� �sþ1

�s�1

�
Im�2

þgVPeP �e sin2�Re�2

�
: (14)

Again, Re�1 occurs in C��
B , but cancels on summing over

the � helicities.
Here one can easily check from Eq. (9) for Z and

Eq. (13) for � that after summing over different final
helicity states we get the same result, which also agrees
with one obtained in [6] for unpolarized final states.

At the ILC it is expected that about 90% electron polar-
ization would be achievable along with a positron polar-
ization of 60% [4]. The beams will be longitudinally
polarized, but there is a possibility that spin rotators can
be used to produce transversely polarized beams. Pe and
P �e are, respectively, the degrees of polarization of the e�
and eþ; for our calculation we have taken a realistic value
of Pe ¼ 0:8 and P �e ¼ 0:6. In the next section we will
employ these expressions to obtain 90% confidence level
(CL) limits on Re�1.

IV. ASYMMETRIES AND NUMERICAL RESULTS

In order to make the above expressions useful for appli-
cations at the ILC, and to disentangle the anomalous
couplings, we will define certain asymmetries that will
isolate Re�i with i ¼ 1, 2. Since the dependence of the
new couplings on the laboratory observables such as polar
and azimuthal angles are different, a suitable choice of
asymmetries can help in achieving this goal. For the
helicity-summed case, it was observed that the contribution
from Re�1 was zero. But the inclusion of helicity of either
of the final-state results in a contribution from Re�1.
Therefore, the situation where all the spin configurations
are available is explored in this section by constructing
various asymmetries. A through numerical analysis is done
to put a bound on the anomalous coupling Re�1 along with
Re�2.

A. Integrated Asymmetries

We define two CP-odd asymmetries constructed from
suitable partial cross sections. In all case, we assume a
cutoff of �0 on the polar angle in the forward and backward
directions, required to stay away from the beam pipe, and
our asymmetries are therefore functions of �0. The cutoff

may be chosen to optimize the sensitivity. One of the
asymmetries, AV�ð�0Þ, combines a forward-backward
asymmetry along with an azimuthal symmetry. The other,
A0V� ð�0Þ, is an asymmetry only in �. The asymmetries are
given by

AV�ð�0Þ ¼
1

	V
SMð�0Þ

X3
n¼0

ð�1Þn
�Z cos�0

0
d cos�

�
Z 0

� cos�0

d cos�

�Z 
ðnþ1Þ=2


n=2
d�

d	0�
d�

��������V
(15)

A0V� ð�0Þ ¼ 1

	V
SMð�0Þ

X3
n¼0

ð�1Þn
Z cos�0

� cos�0

�Z 
ðnþ1Þ=2


n=2

� d�
d	0�
d�

��������V

�
d cos� (16)

with the SM cross section given by

	V
SMð�0Þ ¼

Z cos�0

� cos�0

d cos�
Z 2


0
d�

d	SM

d�

��������V
; (17)

where V can be � or Z depending on whose polarization is
being considered. Since we are mainly concentrating on
the coupling Re�1, from Eq. (11) we see that longitudinal
Zwith h ¼ 0 is not sensitive to this coupling. Therefore we
will be mainly concentrating on Zh with h ¼ �.
Here AV�ð�0Þ and A0V� ð�0Þ are calculated for different

combinations of
d	0

�
d� jV which is the value obtained when

the two helicity states of V are summed over or the differ-
ence is taken.

d	0þ
d�

��������V
¼ d	

d�

��������Vþ
þ d	

d�

��������V�
(18)

d	0�
d�

��������V
¼ d	

d�

��������Vþ
� d	

d�

��������V�
: (19)

Here V� refers to V with helicity�1. The above choice of
asymmetries is motivated by the purpose of isolating the
couplings Re�1 and Re�2. Equation (18) contains a term

proportional to cos� coming from CV�
A , which with polar-

angle forward-backward asymmetry in AV�ð�0Þ survives,
whereas A0V� ð�0Þ goes to zero. Similarly Eq. (19) contains

term independent of cos� coming from CV�
B , therefore the

polar-angle forward-backward asymmetry of AV�ð�0Þ is
equal to zero, and A0V� ð�0Þ survives. In this case the term

proportional to cos� coming from d	SM

d� jV� vanishes for

both AV�ð�0Þ and A0V� ð�0Þ.

(1) Considering the case when the helicity of Z is kept
and that of � is summed over: The asymmetries
from Eq. (18) now evaluate to
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AZþð�0Þ ¼
BgAPeP �ecos

2�0Re�2

ðg2V þ g2AÞ	Z
SMð�0Þ

A0Zþð�0Þ ¼ 0:

(20)

Similarly from Eq. (19) the asymmetries are:

AZ�ð�0Þ¼0

A0Z�ð�0Þ¼2BPeP �eððg2A�g2VÞRe�1þgVRe�2Þcos�0
ðg2Vþg2AÞ	Z

SMð�0Þ
(21)

where

	Z
SMð�0Þ¼4
B

�s2þ1

ð �s�1Þ2
�
ln

�
1þcos�0
1�cos�0

�
�cos�0

�
:

(22)

In Eq. (21) since gV is small compared to g2A � g2V ,
the asymmetry will be dominated by the Re�1 term.
We here therefore expect to obtain a more stringent
limit on Re�1 compared to that on Re�2.

(2) Now considering the case that helicity of � is mea-
sured with that of Z summed over: The asymmetries
from Eq. (18) are

A�
þð�0Þ ¼ �BgAPeP �eð�1þ �sÞcos2�0Re�2

ðg2V þ g2AÞ	�
SMð�0Þ

A0�
þð�0Þ ¼ 0:

(23)

Here from Eq. (19) the asymmetries are :

A��ð�0Þ ¼ 0

A0��ð�0Þ ¼ � 2BPeP �eððg2A � g2VÞRe�1 þ gVRe�2Þð�1þ �sÞ cos�0
ðg2V þ g2AÞ	�

SMð�0Þ
; (24)

where

	�
SMð�0Þ ¼ 4
B

�
�s2 þ 1

ð �s� 1Þ2 ln

�
1þ cos�0
1� cos�0

�
� cos�0

�
:

(25)

As before, since gV is small compared to g2A � g2V , we here
expect to obtain more stringent limit on Re�1 compared to
that on Re�2.

Analyzing Eqs. (20), (21), (23), and (24), it is seen that
for both Z and �, AVþð�0Þ is only sensitive to Re�2, whereas
A0V� ð�0Þ depends on both Re�i, i ¼ 1, 2, where V ¼ Z, �.
The above is due to the polar-angle-dependent term in
Eq. (18) surviving for AVþð�0Þ, and the helicity-dependent
polar-angle-independent term in Eq. (19) surviving for
A0V� ð�0Þ. Comparing our results to the earlier work where
all the three helicity states of Z are summed over [6], the
same asymmetry AVþð�0Þ evaluated for Eq. (18), for the two
transverse states of Z is smaller by a factor of ( �s� 1).
Because of this the limit on Re�2 is poorer in this case,
whereas the additional advantage here is that we can put a
limit on Re�1 which was not possible earlier. The analysis
done for the case of � does not encounter this problem as
here we are summing over all its helicity states, unlike the
case of Z.

B. Numerical Analysis

We have calculated the cross section and the asymme-
tries for the case when eþ polarization is parallel to e�. For
our sensitivity analysis, we have assumed an integrated
luminosity of 500 fb�1.

Figure 2 shows the total cross section 	ð�0Þ, plotted as a
function of cutoff angle �0 at

ffiffiffi
s

p ¼ 500 GeV and 800 GeV.
The anomalous couplings contribute to the total cross
section only at quadratic order [5]. We have kept these
terms in Fig. 2, for a particular combination. Similar
behavior occurs for the case �2 ¼ 0:01 and j�1j ¼ 0, since
the cross section is almost symmetric in j�1j and j�2j with
(g2V þ g2A) almost equal to 1. It is clear from the figure that
the contribution of anomalous couplings is negligible for
values below 0.01, which correspond to the limits we find
from asymmetries given later. The corresponding limits on
Re�1 are 0.0048 at

ffiffiffi
s

p ¼ 500 GeV and 0.0014 at
ffiffiffi
s

p ¼
800 GeV for cutoff angle �0 ¼ 25	. The same limits will
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FIG. 2 (color online). The total cross section 	ð�0Þ plotted as a
function of �0 for (Re�2 ¼ 0, Im�1 ¼ 0, Im�2 ¼ 0) at

ffiffiffi
s

p ¼
800 GeV, (SM, red-solid) (Re�1 ¼ 0:01, brown-dashed) andffiffiffi
s

p ¼ 500 GeV (SM, blue-dotted) (Re�1 ¼ 0:01, green-dot-
dashed). Green-dot-dashed is coincident with blue-dotted.
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hold for Re�2 piece. Later in this section, we will see that
these limits are more stringent than the Z case but compa-
rable to the case when the helicity of � is considered. The
total cross section receives contribution both from
CP-conserving and CP-violating anomalous couplings.
Therefore, measuring deviation of the total cross section
from the SM prediction would not really be a test for
CP-violating couplings which we are considering here.
The linear contribution from the real part of the CP-
violating couplings only occur in the case of transverse
polarization and has no effect on the total cross section.
The imaginary parts contribute in linear order to the dif-
ferential cross section, but their effect is washed out in the
total cross section after the � integration.

We have done our whole numerical analyses for two
different cases at

ffiffiffi
s

p
of 500 and 800 GeV. In the first case,

we drop the terms quadratic in anomalous couplings from
the denominator of the asymmetries Eqs. (15) and (16).
The best limits on the couplings obtained in this case are of
the order of 10�3. For the second case, we then include the
terms quadratic in anomalous couplings to the denominator
of Eqs. (15) and (16), with the value coming from the best
limit obtained in the earlier case. It is apparent from the
above discussion that this contribution of order 10�3 in the
denominator would not much affect the asymmetries and
the limits obtained from them. This is another way of
putting the argument that the asymmetries and the limits
obtained are not sensitive to the quadratic terms in the
denominator at the level in which they can be probed.
We present the results in detail for the first case, i.e.,
without including quadratic terms, and then show the effect
on inclusion of quadratic terms.

We now consider the case when the helicity of Z is
resolved. Figure 3 shows the � integrated version of the
asymmetry AZþð�0Þ plotted as a function of cutoff �0 for
different c.m. energies with a value of Re�2 ¼ 0:1.

Figure 4 shows A0Z�ð�0Þ as a function of cutoff �0, when
the value of the anomalous couplings are taken as Re�1 ¼
0:1 and Re�2 ¼ 0 for different c.m. energies. However, as
mentioned before, Re�2, in the case of A0Z�ð�0Þ, is accom-
panied by the numerically small coefficient and thus we
obtain a larger limit on Re�2, where our linear approxima-
tion is not valid. So we will drop Re�2 in our consideration
of A0Z�ð�0Þ from here onwards. AZþð�0Þ behaves differently
from A0Z�ð�0Þ, due to the presence of the cos2�0 term in the
numerator. The asymmetry in the latter case increases with
the cutoff due to the SM cross section in the denominator,
which decreases faster than the numerator. In all the above
cases the asymmetry does not change much with c.m.
energy, as the observables above are all independent of it.
We have not given the figure corresponding to A�

þð�0Þ,
since it has already been considered in Ref. [6]. The figures
are all plotted with and without including quadratic terms
in the denominator of Eq. (15) and (16). It is observed that
there is not much deviation, with the inclusion of quadratic
terms couplings for the values, at the level probed by the
linear collider.
A similar analysis follows for the case when the helicity

of � is resolved while that of Z is summed over. Figure 5
shows the � integrated version of A0��ð�0Þ as a function of
cutoff �0, when the values of the anomalous couplings are
taken as Re�1 ¼ 0:1 and Re�2 ¼ 0 for different c.m. en-
ergies. The behavior is the same as that of the case when
helicity of Z is resolved except the fact that here the
asymmetries are enhanced by an extra factor of about
30 at

ffiffiffi
s

p ¼ 500 GeV and a factor of about 75 atffiffiffi
s

p ¼ 800 GeV due to the presence of the term (�s� 1) in
the numerator of Eq. (24). Because of this boost factor we
get limit on Re�2 which is well under the ambit of linear
approximation and thus we will retain it for further con-
sideration in A0��ð�0Þ. Moreover due to the presence of this
enhancement term, the asymmetry A0��ð�0Þ is sensitive to
c.m. energy. In this case also the asymmetries and the
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FIG. 3 (color online). The asymmetry AZþð�0Þ plotted as a
function of cutoff �0 for a value of Re�2 ¼ 0:1 at

ffiffiffi
s

p ¼
800 GeV with (brown-dashed) and without (red-solid) quadratic
terms and 500 GeV with (green-dot-dashed) and without (blue-
dotted) quadratic terms. Brown-dashed is coincident with blue-
dotted.
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FIG. 4 (color online). The asymmetry A0Z�ð�0Þ plotted as a
function of cutoff �0 for a value of Re�1 ¼ 0:1, Re�2 ¼ 0 for
different center of mass energies of 800 GeV with (brown-
dashed) and without (red-solid) quadratic terms and 500 GeV
with (green-dot-dashed) and without (blue-dotted) quadratic
terms. Brown-dashed is coincident with blue-dotted.

ISOLATING CP-VIOLATING �ZZ COUPLING . . . PHYSICAL REVIEW D 85, 034006 (2012)

034006-7



limits are calculated with and without including quadratic
terms in the denominator.

The asymmetries are used to calculate 90% CL limits
with realistic integrated luminosities in the absence of any
signal at ILC. The limit on the coupling is related to the
value A of the asymmetry by

�lim ¼ 1:64

jAj ffiffiffiffiffiffiffiffiffi
NSM

p ; (26)

where NSM is the number of SM events and A is the value
of the asymmetry for unit value of the coupling. The
coefficient 1.64 may be obtained from statistical tables
for hypothesis testing with one estimator; see, e.g.,
Table 33.1 in Ref. [19].

We see from Eqs. (20) and (23) that AVþð�0Þ solely
depends on Re�2, therefore an independent limit can be
placed on it. Considering the helicity of Z, Fig. 6 shows
that the best limit for Re�2 from AZþð�0Þ is obtained for
�0 ¼ 25	 at

ffiffiffi
s

p ¼ 500 GeV, though any nearby values of

�0 will give the same results. The limit corresponding to
Re�2 is 0.1757. A poor limit is obtained for

ffiffiffi
s

p ¼
800 GeV, as the SM cross section in the denominator of
Eq. (26) decreases much faster with the c.m. energy com-
pared to the asymmetry, which does not change. This can
be understood much more clearly from Eqs. (20) and (21),
where the anomalous couplings are not sensitive to the c.m.
energies for the transversely polarized Z. Similar analysis
is carried out for A0Z�ð�0Þ. Since A0Z�ð�0Þ depends on Re�1,
Fig. 7 shows that the best limit on Re�1 is obtained for
�0 ¼ 50	 at

ffiffiffi
s

p ¼ 500 GeV. The limit on for Re�1 is
0.0958. The limits obtained do not change much with the
inclusion of quadratic terms.
The results obtained on repeating the earlier analysis for

the case when the helicity of the � is resolved, for different
c.m. energies, is shown in Fig. 8. . In this case the sensi-
tivity improves with c.m. energy. This is in contrast to the
case where the helicity of Z is resolved, as from Eq. (26),
the SM cross section, which decreases with the c.m.
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FIG. 5 (color online). The asymmetry A0��ð�0Þ plotted as a
function of cutoff �0 for a value of Re�1 ¼ 0:1, Re�2 ¼ 0 for
different center of mass energies of 800 GeV with (brown-
dashed) and without (red-solid) quadratic terms and 500 GeV
with (green-dot-dashed) and without (blue-dotted) quadratic
terms. Green-dot-dashed is coincident with blue-dotted.
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FIG. 6 (color online). 90% CL limit possible on Re�2 from
AZþð�0Þ of Eq. (20) with an integrated luminosity of 500 fb�1 atffiffiffi
s

p ¼ 800 GeV with (brown-dashed) and without (red-solid)
quadratic terms and 500 GeV with (green-dot-dashed) and
without (blue-dotted) quadratic terms plotted as a function of �0.
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FIG. 7 (color online). 90% CL limit on Re�1 from A0Z�ð�0Þ
with an integrated luminosity of 500 fb�1 at

ffiffiffi
s

p ¼ 800 GeV
with (brown-dashed) and without (red-solid) quadratic terms and
500 GeV with (green-dot-dashed) and without (blue-dotted)
quadratic terms plotted as a function of �0. Green-dot-dashed
is coincident with blue-dotted.
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FIG. 8 (color online). 90% CL limit on Re�1 from A0��ð�0Þ
with an integrated luminosity of 500 fb�1 at

ffiffiffi
s

p ¼ 800 GeV
with (brown-dashed) and without (red-solid) quadratic terms and
500 GeV with (green-dot-dashed) and without (blue-dotted)
quadratic terms plotted as a function of �0. Green-dot-dashed
is coincident with blue-dotted.
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energy, is compensated by the asymmetry jAj, which in-
creases much more rapidly with energy, due to the term
( �s� 1). This also explains the better limits obtained on the
couplings in this case. The best limit is obtained for �0 ¼
50	 with Re�1 ¼ 0:0033 at

ffiffiffi
s

p ¼ 500 GeV whereas forffiffiffi
s

p ¼ 800 GeV, the limits improve to Re�1 ¼ 0:0020 for
�0 ¼ 45	.

We have also evaluated the simultaneous 90% CL limits
that can be obtained on Re�2 and Re�1 from AVþð�0Þ and
A0V� ð�0Þ for the case V ¼ �. In case of �, the numerator in
Eq. (24) is accompanied by a factor (� 1þ �s), resulting in
an enhancement. The region enclosed by the contours
obtained by equating the asymmetry with Re�2 as well
as Re�1 simultaneously nonzero to 2:15ffiffiffiffiffiffiffi

NSM

p corresponds to the

region allowed at the 90% CL. The coefficient 2.15 may be
obtained from statistical tables for hypothesis testing with
two estimators, see, e.g., Table 33.2 in Ref. [19]. The above
equation is solved for the value of �0 giving the best limit
for the couplings, which for A�

þð�0Þ is 25	, and similarly
for A0��ð�0Þ, we take �0 as 45	 at

ffiffiffi
s

p ¼ 500 GeV. Whereas
at

ffiffiffi
s

p ¼ 800 GeV, the best limits for the couplings are
obtained at 27	 for A�

þð�0Þ and 45	 for A0��ð�0Þ. Figure 9
shows the simultaneous limit obtained on Re�i taking the
helicity of �, for

ffiffiffi
s

p ¼ 500 GeV and 800 GeV. The indi-
vidual limits obtained by taking one coupling to be nonzero
at a time as well as the simultaneous limit on the anoma-
lous couplings from the asymmetries for different c.m.
energies are shown in Tables. I and II. It is seen that a
better individual limit is obtained on Re�1, compared to
the simultaneous limit. On the other hand, the simulta-
neous limit on Re�2 is better than than the individual limit
obtained on it from the asymmetry A0��ð�0Þ. This is due to
the fact that the coefficient gV accompanying Re�2 is too
small, Eq. (24), to give a deviation from standard model
results. But A�

þð�0Þ gives a better individual limit on Re�2

compared to the simultaneous case as here the accompany-
ing term is gA much larger compared to gV , Eq. (23).

V. UTILIZING FINAL-STATE Z AND �HELICITIES

In this section we discuss how the final-state helicities of
the Z and the � can be utilized in practice. We begin by
discussing the case of the helicity of the Z. The discussion
closely parallels the discussion that was recently provided
for measuring the helicity of the top quark in t�t production,
given in Ref. [24]. So far we have assumed that it would be
possible to isolate a sample of events where the Z has a
definite helicity, which in practice is not possible, as one
can only measure polarization at a statistical level. Unlike
an incoming beam of particles, which can be prepared in a
pure spin state, an outgoing particle is not available in a
pure state, but only a mixed state, yielding only an average
polarization. In order to be able to make use of the defini-
tions of various asymmetries which we discuss, we propose
a practical method which would serve to provide a sample
with predominantly positive or negative Z helicities, which
would lead to a depletion of the efficiency, but would be
able to achieve the main objective.
The spin of an unstable particle like the Z can be

analyzed by looking at the distribution of its decay prod-
ucts. The decay distribution of a lepton produced from a Z
with a definite helicity in the rest frame of the Z is given by

1

�ðZ ! ‘þ‘�Þ
d�ðZ� ! ‘þ‘�Þ

d cos�‘

¼ 3

8

�
1þ cos2�‘ � 2gVgA

g2V þ g2A
cos�‘

�
; (27)
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FIG. 9 (color online). 90% CL contours for the simultaneous
determination of Re�2 and Re�1 from A�

þð�0Þ and A0��ð�0Þ with
an integrated luminosity of 500 fb�1 at

ffiffiffi
s

p ¼ 800 GeV (red-
solid) and

ffiffiffi
s

p ¼ 500 GeV (blue-dotted) by including quadratic
corrections. The area inside the parallelogram is the allowed
region.

TABLE II. 90% CL limits on the couplings from asymmetries
A�
þð�0Þ for a cutoff angle of 27	, and A0��ð�0Þ for a cutoff angle of

45	 at
ffiffiffi
s

p ¼ 800 GeV, and integrated luminosity of 500 fb�1

when the helicity of � is considered with the helicity of Z
summed over, by including quadratic coupling terms in the cross
section.

Coupling Individual limit from Simultaneous limits

A�
þð�0Þ A0��ð�0Þ

Re�1 2:08� 10�3 2:37� 10�3

Re�2 3:65� 10�3 2:61� 10�2 3:65� 10�3

TABLE I. 90% CL limits on the couplings from asymmetries
A�
þð�0Þ for a cutoff angle of 25	, and A0��ð�0Þ for a cutoff angle of

45	 at
ffiffiffi
s

p ¼ 500 GeV, and integrated luminosity of 500 fb�1

when the helicity of � is considered with the helicity of Z
summed over, by including quadratic coupling terms in the cross
section.

Coupling Individual limit from Simultaneous limits

A�
þð�0Þ A0��ð�0Þ

Re�1 3:36� 10�3 3:83� 10�3

Re�2 6:14� 10�3 4:39� 10�2 6:14� 10�3
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1

�ðZ ! ‘þ‘�Þ
d�ðZL ! ‘þ‘�Þ

d cos�‘
¼ 3

4
sin2�‘; (28)

where �‘ is the angle made by the momentum of the ‘þ
with the spin quantization axis of the Z. The quantity
which differentiates between the positive and negative
helicity Z distributions is

2gVgA
g2V þ g2A


 0:147: (29)

For an elementary derivation of this result, see Sec. 10.2 in
Ref. [27].

It is thus seen from Eq. (28) that the ‘þ tends to be
emitted dominantly in the backward direction relative to
the spin of the Z for transverse polarization, and peaks at
�‘ ¼ 
=2 for longitudinal polarization. Thus, by applying
a cut keeping dominant emission of the fermions in the
direction of the boost of the Z, one can obtain a sample
which is enriched in events with negative helicity.
Similarly, a cut keeping dominantly backward emission
will yield a sample enriched in events with positive helic-
ity. Finally, keeping leptons emitted mostly in the trans-
verse direction will give a sample with dominantly zero
helicity.

Thus, one has to actually generate events including Z
decay and use the formulas to make predictions, and then
compare the expected number of events for a given set of
anomalous couplings with experiment and then place a
limit. Such a procedure would give limits which are less
stringent than obtained in our analysis. Strictly speaking,
we should include full spin density matrices for Z produc-
tion as well as decay into a certain final state, and consider
asymmetries constructed out of the momenta of the decay
products. However, we expect that the procedure described
here will approximate such a complete description, with
some reduction of efficiency.

To get some quantitative idea of the efficiency, we note
that if we use the three charged-lepton channels for Z
decay, with a combined branching ratio of about 10%,
with the simplifying assumption that the �-pair detection

efficiency is 1, the sensitivity is a factor of
ffiffiffiffiffiffi
10

p 
 3 of less.
The inclusion of a b �b channel would improve the sensi-
tivity somewhat. A full analysis including Z decay entails a
more complicated analysis with a different final state, and
is beyond the scope of this work.

For projecting the final-state � helicity, there is no
analogous method, as it is stable. In the context of the
Goldhaber neutrino helicity experiment [25], photons of a
particular helicity were filtered out by the means of a
magnetic material. Depending on the helicity state, pho-
tons are either absorbed in the material or not. Thus, by
counting the events in the photopeaks observed with the
scintillation detector for two different polarizations of the
magnet, they determined the photon helicity. Here also one
can conceive of using such a material in the construction of

the ILC detector which could be used for polarization
determination. We note here that, in the context of photon
polarimetry measurements, it has been demonstrated by
the CERN NA59 collaboration [26] that an aligned-crystal
technology can be used for an accurate measurement of the
polarization of initial-state photons in polarized photon
collisions at high energies typical of the photon-photon
collision mode of the ILC. Thus, it is conceivable that such
technology could be extended to the needs of a detector
that would seek to resolve the final-state photon helicity.
We therefore advocate the construction of such photon
helicity filtering detectors at the ILC that can open up the
possibility of further improving the bound on Re�1.

VI. SUMMARYAND DISCUSSION

In this paper, we have studied the process eþe� ! �Z at
the ILC at

ffiffiffi
s

p ¼ 500 GeV and 800 GeV with a realistic
integrated luminosity. We have pointed out the benefits of
the resolution of final-state spin for studying the effects of
couplings, which were otherwise invisible, with initial
longitudinal as well as transverse states. Inspired by the
work of final-state top-spin measurement, we have shown
that one can isolate Re�1ð�ZZÞ in the above process with
initial transverse states by the measurement of the helicity
of the Z or the photon.
We have also made a numerical study of the limits on

various couplings that could be obtained at a future linear
collider, assuming realistic transverse polarizations of 80%
and 60%, respectively, for e� and eþ, respectively. We
have also given the contour plot for allowed region in
Re�1 � Re�2 plane. We see that with final-state spin
resolution, transverse polarization can provide a sensitive
test of the anomalous coupling, Re�1. Overall, it is seen
that the resolution of helicity of � gives better limits on the
couplings, compared to the case when the helicity of Z is
resolved. The above is due to the fact that only transversely
polarized Z is sensitive to Re�1, but its contribution is
smaller by a factor of (�s� 1). Moreover, the contribution
of Re�1 and Re�2 to the asymmetries AZþð�0Þ and A0Z�ð�0Þ
is inversely proportional to

ffiffiffi
s

p
. Therefore, in the caseffiffiffi

s
p ¼ 800 GeV, the resolving power of asymmetries using
the helicity of the Z is suppressed compared to the case
when the helicity of � is resolved. Since the anomalous
couplings Re�1 and Re�2 cannot be completely disen-
tangled through helicity measurements, we present both
simultaneous and individual limits, where the latter is
obtained by setting one of the couplings to zero at a
time. These limits are found to be stable, when fed back
into the expressions to quadratic order for the cross sec-
tion. The asymmetries and the limits on the couplings are
also calculated with the inclusion of quadratic terms for the
cross section. The new limits obtained are summarized in
Tables I and II.
It must, however, be mentioned that one cannot directly

isolate events with Z helicities of þ1 or �1. Hence to
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measure the asymmetries we discuss, one would have to
carry out a subtraction of events in two kinematic regions
of the decay products corresponding to positive and nega-
tive polarizations of the Z. Doing so would entail a loss of
efficiency to a certain extent. We have not taken this into
account. It may be possible to consider the cases when the
helicities of Z as well as � can be resolved. Indeed, the
technology with aligned crystals (see Ref. [26]) could be
adapted for the final-state photon helicity resolution. It may
be possible to carry out a study based on this, but is beyond
the scope of the present work, as the features that we wish
to study are already apparent when we sum over the
helicity of one of the other. Furthermore, measuring both
spins would lead to a loss in statistics thereby making this
option less attractive. Additional studies beyond the scope
of the present work are related to polarimetry.

We conclude by discussing some further approaches of
value to the process at hand. It has been proposed that the
hard radiative decay of the Z can also be used to place
bounds on the magnitude of anomalous CP-violating cou-
plings [28]. Of special significance is the construction

presented in Refs. [29,30] of the formalism of a general
spin-1 density matrix for the Z-boson spin orientation
introduced in the context of CP-conserving anomalous
couplings. It would be of interest to see if this can be
extended to the case of CP-violating anomalous couplings
and so explore the possibility of using this formalism to
obtain bounds on such couplings as we have done here. In
Refs. [31,32], the process has been studied with BSM
interactions given by most general contact interactions
with the helicities of the � and Z summed over. It may
be of interest to apply the present considerations to this
scenario as well.
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